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Abstract. We obtain two generalizations of a known theorem of A. Alam and M. Imdad (Fixed 
Point Theory Appl. 17 (2015) 693–702) showing that some standard proofs can be obtained 
involving only Cauchy sequences of the successive approximations instead of the usual successive 
approximations sequences. Suitable examples prove the effective generalization of our results in 
metric spaces not necessarily complete. 

Keywords: Cauchy sequence, d-self-closed  relation, relation contraction, relation preserving  

1. Introduction 

Fixed point theorems involving contraction conditions under preserving relations are known in 
literature (cf. [1, 2, 3, 4, 5]). These theorems involve usual sequences of successive approximations 
in complete metric spaces. Our aim is to prove that extended theorems can be obtained by 
considering only Cauchy sequences in metric spaces non necessarily complete.  

2. Preliminaries  

We start with some known definitions [1]. 

Definition 1. Let X be a non-empty set and ℜ be a binary relation (eventually partial) defined on X. 
A sequence {xn} of X is called ℜ-preserving if (xn,xn+1)ℜ for every n=0,1,2,...,n,... . 

From now on we consider such binary relations and we write simply ℜ X2 . 

Definition 2 (cf. [1, 4]). Let (X,d) be a metric space and ℜX2. ℜ is called d-self-closed if 
whenever {xn} is ℜ-preserving and converging to a point x X , then there exists a subsequence 
{xn(k)} of {xn} such that either (xn(k),x)ℜ or (x,xn(k))ℜ for every k=0,1,2,... . 

Definition 3 (cf. [6]). Let X be a nonempty set and ℜX2. For x,yX, a ℜ-path of length k (where  
k=0,1,2,...) in X from x to y is a finite sequence {z0, z1, z2, . . . , zk}, 1≤ k, of points of X satisfying 
the following conditions: 

(i) z0 = x and zk = y, 
(ii) (zi,zi+1)  ℜ for each i = 0,…,k−1. 
 
Notice that a path of length k involves k + 1 elements of X, although they are not necessarily 
distinct. In [2], generalizing a famous theorem of [3], the following theorem was established: 
 
Theorem 1. Let (X,≤) be a partially ordered set and there exists a metric d:X×X [0,+∞). Let T be 
a selfmap of X such that 
 
1) T is monotone non-decreasing, 
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2) there exists a point Xx 0 such that 0 0( )x T x , 
3) if {xn} is a non-decreasing Cauchy sequence in X, then {xn} is converging to a point Xz and 
T(xn) z for every n, 
4) there exists c[0,1) such that d(T(x),T(y)) c∙d(x,y) for all (x,y) X2 with x≥y, 
 
then T has a fixed point Xw  such that .0 wx   
 
In [1], generalizing many theorems contained in the references therein cited, the following theorem 
was established (not including the case T continuous considered later): 

Theorem 2.  Let (X,d) be a complete metric space, ℜX2 and T be a selfmap of X such that 
 
1) there exists in X a point x0 such that (x0,Tx0)ℜ, 
2)  is ℜ T-closed, that is (x,y)ℜ implies (Tx,Ty)ℜ, 
3)  is dℜ -self-closed, 
4) there exists c[0,1) such that d(T(x),T(y)) c∙d(x,y) for all pair (x,y)ℜ. 
 
Then T has a fixed point. Moreover, if there exists a ℜ-path from x to y for all x,yX, then this 
fixed point is unique. 
 
3. Unification of Theorems 1 and 2 
 
Now we unify Theorem 1 and 2 with the following: 
 
Theorem 3. Let (X,d) be a metric space, ℜX2  and T be a selfmap of X. Suppose that 
 
1) there exists in X a point x0 such that (x0,Tx0)ℜ, 

2) ℜ is T-closed, 

3) for any sequence {yn} ℜ-preserving, n=0,1,2,..., which is Cauchy and converging to a point 
y X , there exists a subsequence {yn(k)} of {yn} such that either (yn(k),y)ℜ or (y,yn(k))ℜ for 
every k=0,1,2,..., 

4) there exists c[0,1] such that d(Tx,Ty) ≤ c∙d(x,y) for all (x,y)ℜ. 

Then T has a fixed point z in X and there exists a sequence  kz  such that either (T , )kz z   or ℜ

( ,Tz )kz ℜ for every k=0,1,2,... . Moreover,  
 
5) if there exists a ℜ-path from x to y for all x,yX, then this fixed point is unique. 
 

Proof. Let x0 ≠ Tx0 otherwise the thesis is trivial. Put h=d(x0,Tx0) > 0 and yn = Tn(x0) for every 
n=0,1,2,..., so we have T0x0= x0=y0, T1x0=Tx0=Ty0=y1, T2x0=Ty1=y2,…,Tyn= yn+1 for n=0,1,…  
Because of  properties 1) and 2), the sequence {yn} is ℜ-preserving. In virtue of property 4), we 
have that d(yn+1,yn)= d(Tn+1x0,Tnx0) ≤ cn∙h  for n=1,2,... and hence {yn}is a Cauchy sequence. By 
property 3), {yn} converges to a point z in X and there exists a subsequence {yn(k)}  of {yn} such 
that either (yn(k),z)ℜ or (z,yn(k))ℜ for all k=0,1,2,... .This implies that d(yn(k)+1,Tz)= d(Tyn(k),Tz) 
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≤ c·d(yn(k),z ) by property d) and passing k ∞, we have d(z,Tz)=0 and therefore z is a fixed point 
of T.  By setting zk=yn(k) for every k=0,1,2,..., we have  (Tz , )k z ℜ if (zk,z ) ℜ  or ( ,T )kz z   if ℜ

(z,zk) ℜ  for every k=0,1,2,... because of property b). If property 5) holds, then the fixed point is 
unique as proved in [2].  

Remark 1. Theorem 1 is generalized from Theorem 3 by defining the non-decreasing order “≤” as 
relation ℜX2. Theorem 2 is generalized from Theorem 3 because the condition 3) of Theorem 2, 
i.e. definition  2, is restricted only to Cauchy sequences and moreover the hypothesis that X is 
complete does not appear in Theorem 3 as well. 

In the following example Theorem 3, inspired to Example 4 of [2],  holds while Theorem 2 is not 
applicable. 

Example 1. Let X = {(x,x): x(-1,1]} ⊆ R2 endowed with the Euclidean metric d. Then (X,d) is a 
non-complete metric space and define ℜ as ((x,x),(y,y))ℜ iff x ≤ y and x≠0, y≠0, ((x,x),(0,0))ℜ 
and ((0,0),(x,x))ℜ if x(-1,1]}.  Let c[0,1) and define T: X X as T((x,x)) = (cx,cx) if x < 0 
and f((x,x))=(0,0) if x0. It is immediate to verify that property 1) holds since ((0,0),(0,0)) 
=((0,0),(T0,T0))ℜ, moreover properties 2) and 3) hold trivially. Additionally  we have that 
d(T(x,x),T(y,y)) = d((kx,kx),(ky,ky)) = 21/2·c·│x – y│=  c·d((x,x),(y,y)) if x<y<0, d(T(x,x),T(y,y)) 
= d((kx,kx), (0,0)) = 21/2·c·x = k·d((x,x),(y,y)) if x≤0, y>0, d(T(x,x),T(y,y)) = d((0,0),(0,0)) = 0 < 
c·d((x,x),(y,y)) if 0 < x ≤ y, thus property 4) holds. Also property 5) holds because there exists at 
least an ℜ-path of length 2, i.e. ((x,x),(0,0))ℜ and ((0,0),(y,y))ℜ, joining two any points (x,x), 
(y,y) of X. Indeed (0,0) is the unique fixed point of T but Theorem 2 is not applicable because X is 
not complete. 

Remark 2. If 5) does not hold, Theorem 3 does not guarantee the uniqueness of the fixed point as 
proved in the following example: 

Example 2.   Let X=[0,1]-{1/2}  be endowed with metric d(x,y) = |x − y| for all x,y X. Define ℜ
X2 as follows: (x,y)ℜ if for all x,y X such that  0xy<1/2 or 1/2<xy1.Then X is a 
metric space with the partially defined binary relation ℜ. Define T:X X as  Tx=x/2 if 0x<1/2 
and Tx=(x+1)/2 if 1/2<x1. Then property 1) holds because 1/2<x0 Tx0 if x0(1/2,1]. The 
property 2) holds because T is strictly increasing in both intervals [0,1/2)  and (1/2,1]. The property 
3) holds because it is enough to take strictly increasing sequences in (1/2,1]. Property 4) holds also 
for c=1/2. Property 5) fails because if x[0,1/2] and y(1/2,1], for any finite ℜ-path of length k, 
{z0, z1, z2, . . . , zk}, there exists at least certainly some m{0,1,...,k-1) such that zm[0,1/2) and 
zm+1(1/2,1], hence (zm,zm+1) ℜ. Note that T has two fixed points which are 0 and 1.                                   
 
Remark 3. Theorem 2 is not applicable to Example 2 because X is not complete. 
 
 
 
4. Relation contractions and continuous selfmaps 
 
In [2] the following theorem appears: 
 
Theorem 4. Let (X,≤) be a partially ordered set and there exists a metric d:X×X [0,+∞). Let T be 
a selfmap of X such that 
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1) there exists a point Xx 0 such that 0 0( )x T x , 
2) T is continuous and non-decreasing, 
3) if  {xn} is a non-decreasing Cauchy sequence in X, then {Txn} converges to a point Xz , 
4) there exists c[0,1] such that d(T(x),T(y)) c∙d(x,y) for all (x,y)X2 with x≥y, 
 
then T has a fixed point. 
 
In the case T is assumed continuous, Theorem 2 becomes [1]: 
 
Theorem 5.  Let (X,d) be a complete metric space, ℜX2 and T be a selfmap of X such that 
 
1) There exists at least a point (x0,Tx0)ℜ, 
2)  is Tℜ -closed,  
3) T is continuous, 
4) there exists c[0,1] such that d(T(x),T(y))c∙d(x,y) for all (x,y)ℜ. 
 
Then T has a fixed point.  
 
Now we unify Theorems 4 and 5 with the following: 
 
Theorem 6.  Let (X,d) be a metric space, ℜX2  and T be a selfmap of X. Suppose that 

1) there exists in X a point x0 such that  (x0,Tx0)ℜ, 

2.1) ℜ is T-closed,   

2.2) T continuous, 

3) if {xn} is a ℜ-preserving  Cauchy sequence in X, then {Txn} converging  to a point Xz , 

4) there exists c[0,1] such that d(Tx,Ty) ≤ c∙d(x,y) for all (x,y) ℜ. 

Then T has a fixed point in X.  
 
Proof. As in the proof of Theorem 3, let x0 ≠ Tx0, h=d(x0,Tx0) > 0 and yn = Tn(x0) for every 
n=0,1,2,... . Because of  properties (1) and (2.1), the sequence {yn} is ℜ-preserving. In virtue of 
property 4), we have that d(yn+1,yn)= d(Tn+1x0,Tnx0) ≤ cn∙h  for n=1,2,... and hence {yn}is a Cauchy 
sequence. By property 3), {Tyn} converges to a point z and therefore {TTyn}={Tyn+1} converges to 
Tz because of  property 2.2), thus z=Tz because of the uniqueness of the limit.  
 
Remark 4. Theorem 4 is generalized from Theorem 6 by defining the non-decreasing order “≤” as 
relation ℜ  X2 . Theorem 5 is generalized from Theorem 6 because if {xn} is a ℜ-preserving  
Cauchy sequence in X,  the completeness of X and the continuity of T assure that Txn converges to 
a point of X, i.e. the property 3) of Theorem 6 holds. 

The following example shows Theorem 5 is not applicable but Theorem 6 is [2]: 

Example 3. Let X=[0,1]-{1/5} with the metric d(x,y) = |x − y| for all x,yX. Define ℜX2as 
follows: (x,y) ℜ if x≤y for all x,y X. Define T: X X as Tx=(x+4)/5 for any xX. Obviously T 
is continuous in X and ℜ is T-closed. If {xn} is a ℜ-preserving (that is monotone non-decreasing)  
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Cauchy sequence in X, then {Txn} is a monotone non-decreasing bounded sequence and hence 
converging  to a point Xz . Thus properties 1), 2), 3) hold, while 4) holds too because it is 
enough to assume k=1/5. (X,d) is a metric space not complete, so Theorem 5 is not applicable while 
all the assumptions of Theorem 6 (or Theorem 4)  are satisfied and 1 is the (unique) fixed point of 
T. 

Remark 4. The uniqueness of the fixed point can be guaranteed from several additional properties 
of the relation ℜ (cf. [1, 4, 5, 7, 8, 9, 10, 11]) which here we do not take under examination. 

The following example, borrowed from [1], shows that the continuity of T in Theorem 6 is 
necessary. 

Example 4. Consider X = [0, 2] equipped with usual metric d(x,y) = |x − y| for all x,yX. (X,  
d) is a complete metric space. Define ℜX2 as ℜ = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2)} and T : X → 
X as T0=1/4, T(x) = 0 if 0<x ≤1, Tx= 1 if 1<x≤ 2. ℜ is T-closed but T is not continuous. Consider 
any ℜ-preserving sequence{xn}, then (xn, xn+1)ℜ-{(0, 2)} for all n=0,1,2,… . Hence xn=0 or xn=1 
for all n=0,1,2,… . If {xn} is a ℜ-preserving  Cauchy sequence in X, then we have definitively xn=0 
(resp., xn=1), i.e. there exists some suitable integer m such that xn=0 (resp., xn=1) for every integer 
n>m,  which implies that Txn=1/4 (resp., Txn=0) for all n>m. Further d(T0,T0)=d(T1,T1)=0, 
d(T1,T0)=d(T0,T1)=1/4≤c·1=c·d(1,0), d(T0,T2)=3/4≤ c·2= c·d(0,2), where c=1/2. Thus all the 
hypothesis of Theorem 6 hold except property 2.2) but T has no fixed points. 
 
5. Conclusions.  
 
We have generalized fixed point theorems for theoretic-relation contractions about continuous 
selfmaps of metric spaces. Suitable examples prove the effective generalization of our results in 
metric spaces not necessarily complete. 
Future researches shall be necessary for establishing extensions of the results here presented, 
essentially common fixed point theorems involving Cauchy sequences of Jungck type (cf. [7, 8, 9, 
10, 11]), under a more general condition of weak commutativity of two selfmaps. 
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