
Article

How to Test, Analyze, and Reduce Memory
Interference Delay in Modern COTS Multicore
Systems?

Nizar Msadek

University of Luxembourg
Interdisciplinary Centre for Security, Reliability and Trust (SnT)
Esch-sur-Alzette, Luxembourg
Email: nizar.msadek@uni.lu

Abstract: In modern Commercial Off-The-Shelf (COTS) multicore systems, cores can produce
several simultaneous memory requests. The processing of such requests over the memory controller
negatively impacts the interference delay triggered by running parallel tasks on the platform. In
this paper, we propose a software-based testing approach for analyzing memory interference delay,
when cores are exposed to extensive read/write requests that access in parallel their Cache Coherent
Interconnect. The hardware targeted in this work is the well-known LayerScape QorIQ LS2085A,
which can be approached as a potential successor to the Freescale QorIQ P4080. The test analysis was
conducted based on a bare-metal operating system that we developed to guarantee a deterministic
execution environment at all time points. Our testing was accomplished using a set of carefully
designed synthetic benchmarks as well as TACLeBench benchmarks.

Keywords: Memory Delay; Multicore Systems; Interference Delay; Real-Time Systems; Testing

1. Introduction

While the processing of many simultaneous memory requests generally improves the overall memory
performance, there remains a challenge to understand precise timing anomalies related to memory in
a context where several applications run concurrently. This is because each memory request is likely to
be interfered by other requests. Accordingly, analyzing interference delays in modern COTS multicore
systems is an important topic in the real-time research community. The targeted hardware in the present
study is the well-documented QorIQ LS2085A, a potential successor to Freescale QorIQ P4080. We
examine its memory interference delays as well as their impact on the overall system performance. Our
study is elaborated based on the publicly available information provided in [1] [2] [3] [4] [5] [6] [7] [8].
Specifically, our contributions are as follows:

(i) To the best of our knowledge, this is the first analysis study examining memory interference
delay with respect to the LS2085A platform.

(ii) We provide a comprehensive analysis of the LS2085A platform to know all essential information
about the board, including memory hierarchy, I/O interfaces, and cores.

(iii) In order to support the underlying platform, we design a bare metal operating system in which
no preemptions and/or other side effects may disturb the measurements at runtime.

(iv) We experimentally analyze the platform using carefully designed synthetic benchmarks as well
as TACLeBench benchmarks.

The paper is organized as follows: Section 2 provides background on the QorIQ LS2085A platform.
Section 3 outlines the control mechanisms used for efficient synchronization of cores at runtime.
Section 4 presents evaluation results. Section 5 discusses related work. Finally, concluding remarks are
presented in Section 6.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201809.0223.v1
http://creativecommons.org/licenses/by/4.0/

2 of 23

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

64-bit DDR4

Cache Coherent Interconnect

SA
TA

 3
.0

System Control

Internal BootROM

Security Fuses

Security Monitor

Power Management

SA
TA

 3
.0

8-lane 10 GHz SerDes 8-lane 10 GHz SerDes

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

512 KB Coherent L2 Cache

32 KB
D-Cache

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

1 MB Coherent L2 Cache

ARM® A57 Core ARM® A57 Core

1 MB
Platform
Cache

32-bit DDR4
Memory

Controller

Memory
Controller

64-bit DDR4
Memory

Controller

P
C

Ie

P
C

Ie

PC
Ie

 (S
R

-IO
V)

P
C

Ie

SMMU SMMU SMMU

System Interfaces
IFC Flash

QuadSPI Flash

eSDHC

2x DUART

4x I2C

4x FlexTimer

2x USB 3.0 + PHY

SPI

Service Processor

DCE Security
Engine

4 MB PEB
memory

WRIOP

Queue /
Buffer

Manager

PME

Advanced
IO

Processor
(AIOP)

Management
Complex

DPAA2 Hardware

Layer 2
Switch Assist

8x 1/10G + 8x 1G

9x WDOG

4x GPIO

QDMA

Figure 1. QorIQ LS2085A Board Block diagram (according to [3])

2. Architectural Description

Modern COTS-based multicore systems support a high degree of level memory parallelism through
a variety of sophisticated components. This section provides the background on these components
and reviews existing techniques for achieving shared-memory parallelism. The LayerScape QorIQ
LS2085A [1] [2] computing platform is considered a prominent example of modern COTS MPSoC that
enables the realization of smarter and predictable safety-critical systems of tomorrow. It is based on
ARM technology [9] and belongs to the QorIQ LS2 family of communication processors [10]. It is also
a successor to the Freescale QorIQ P4080. Figure 1 provides an overview of the LayerScape QorIQ
LS2085A. Its main parts are further detailed in the below sections.

2.1. Overview and Memory Hierarchy

The QorIQ LS2085A board consists of eight Cortex-A57 cores running at 2 GHz. Each core has separate
L1 data/instruction caches and one unified L2 cache per two cores. The data cache has a capacity of 32
KB, whereas the instruction cache has a capacity of 48 KB. The size of L2 caches is larger than the level
one caches, equivalent to 1 MB. The cores communicate among themselves and with the main memory
over the Cache Coherent Interconnect (CCI). The CCI allows for two memory controllers to connect
DDR4 RAM to the cores. Each controller sits behind 1 MB of global L3 cache.

2.2. Cache Coherent Interconnect

The Cache Coherent Interconnect (CCI) is responsible for managing and optimizing coherency between
caches and the main memory. To the best of our knowledge, only little information is currently available
on its implementation protocol. While its implementation remains a black box, investigating the
interference delay between cores when these access the same data can prove useful to the purposes of
our evaluation. This important aspect helps to ensure non-determinism in the system and consequently
to reduce the overestimation of WCETs.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

3 of 23

*

*

*

Miscellaneous

Level 2 memory system

Load
store

Adv SIMD and FP

Cryptography†

Dispatch
stages

Rename

Virtual to
physical
register

pool

Return
stack

Instruction
fetch

L2-TLB

Debug ETM

Data
TLB

Data
cache

Decode Writeback

Slave

Processor arbitration (1st level)

Instruction
cache

Instruction
TLB

Debug
and CTI

L2 arbitration (2nd level)

Auto prefetch
engine

Fill / Evict
buffers

Master

System registers
Register

file

ACP Memory
interface

Trace
GIC

CPU Interface

InterruptsTimerEvents

Generic
Timer

Ind Pred

Integer execute

Cortex-A57 MPCore

* Depending on the implementation, this feature might not be available

Branch
prediction

L2 data RAM
(512KB to 2MB)

Snoop TAG
RAM

Snoop

PMU

ACE or CHI

APB ATB AXI4-Stream

Message
interrupts

Trace
outputDebug

AXI

*
Core 0

Core 1
Core 2

Core 3

Figure 2. Block diagram of a Cortex-A57 core according to [6]

2.3. Cortex-A57

ARM Cortex-A57 [6] is a high-performance, low-power core that belongs to the latest family of
A5X-Series. Its implementation is based on ARMv8-A architecture [7] and integrates eight cores in
a single multicore device, with L1 and L2 cache subsystems. Figure 2 gives an overview of its main
different parts. The QorIQ LS2085A platform considered in this study differs from the implementation
depicted in Figure 2 in the number of cores (i.e., eight cores are used instead of four).

2.3.1. Instruction Fetch

The Instruction Fetch Engine (IFE) fetches the instructions from the L1 instruction cache and delivers
them to the decode engine in up to three instructions per cycle. IFE can support both dynamic and
static branch predictions. The L1 instruction cache is a 48KB 3-way set-associative cache characterized
by a 64-byte cache line and an optional dual-bit parity protection per 32 bits in the Data RAM as well
as 36 bits in the Tag RAM. The IFE also includes a 48-entry fully-associative L1 instruction Translation

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

4 of 23

Lookaside Buffer (TLB) that disposes of native support for 4KB, 64KB, and 1MB page sizes. The 2-level
dynamic predictor is equipped with a Branch Target Buffer (BTB) for fast target generation.

2.3.2. Instruction Decode

The Instruction Decode Engine (IDE) supports both A32 and A64 instruction sets (see Section 3 for
further details) as well as the advanced SIMD and Floating-Point instruction sets. It also features
a modern technique for register renaming that facilitates out-of-order executions by removing
Write-After-Write (WAW) and Write-After-Read (WAR) hazards [11].

2.3.3. Instruction Dispatch

The Instruction Dispatch Engine (IDiE) performs checks on the decoded instructions. This is an
important task that allows to control in a deterministic way when the pipelines are executed and when
the results are retried. The Dispatch Engine supports different types of general purpose registers for
both AArch32 and AArch64 states (see Section 3) as well as for the advanced SIMD and floating-pint
operations.

2.3.4. Integer Execute

The Integer Execute Engine (IEE) is responsible for executing all integer type instructions that include:

• Two symmetric Arithmetic Logical Unit (ALU) pipelines
• Integer multiply-accumulate and ALU pipeline
• Iterative integer divide hardware
• Branch and instruction condition codes resolution logic
• Result forwarding and comparator logic

2.3.5. Load/Store Engine

The load/Store Engine (LSE) is responsible for managing all load and store operations. It maintains
coherency between the L1 and L2 memory systems, and uses a 32KB 2-way set-associative cache with
a 64-byte cache line. The latter is characterized by an optional Error Correction Code (ECC) protection
per 32-bits. The Load/Store Engine also contains a 32-entry fully-associative L1 data referred as to
TLB, which provides support for 4KB, 64KB, and 1MB page sizes.

2.3.6. L2 Memory System

The L2 memory system maintains L1 instruction and data cache misses from each core. It coordinates
requests from the AXI4-Stream, the ACE/CHI master interface and the ACP slave interface. L2
memory features the following capabilities:

• L2 cache with:

– 512KB, 1MB, or 2MB configurable size
– 16-way set-associative cache with data ECC protection per 64-bits

• Duplicate copy of L1 data cache Tag RAMs from each core for handling snoop requests
• 4-way set-associative of 1024-entry L2 TLB in each core
• Automatic hardware prefetcher with programmable instruction fetch and load/store data

prefetch distances

3. System Control

The ARM Cortex-A57 core can make use of two processing states, namely the 32-bit and 64-bit
processings [12]. The ARMv8 architecture of the 32-bit processing is referred to as AArch32, while the
architecture of the 64-bit processing is referred as to AArch64. Since this core can run in two states, it
provides capability to execute applications in 64-bit code while also maintaining compatibility with the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

5 of 23

Register Width Description

R0 – R14 32-bit general-purpose registers
SP 32-bit stack pointer, alias for R13
LR 32-bit link register, alias for R14
PC 32-bit exposed program counter
S0 – S31 32-bit floating-point registers
D0 – D31 64-bit floating-point/SIMD registers
Q0 – Q31 128-bit SIMD registers

Table 1. AArch32 Registers

Register Width Description

W0 – W30 32-bit general-purpose registers
X0 – X30 64-bit general-purpose registers
LR 64-bit link register, alias for X30
SP 64-bit stack pointer
XZR 64-bit zero register
V0 – V31 128-bit floating-point/SIMD registers

Table 2. AArch64 Registers

Inst. Aarch32 Aarch64

I.1 ADD R1, R2, R3 ADD W1, W2, W3

I.2 VCMP.F64 D0, D1 FCMP D0, D1
VMRS APSR_nzcv, FPSCR

Table 3. Example of processing instructions in Aarch32 and AArch64 (according to[15]).

existing 32-bit code. This Cortex-A57 core is also equipped with a fully out-of-order execution pipeline
which enables to process up to 128 instructions in parallel [11]. Each instruction can be broken into
micro operations which are dispatched to multiple arithmetic, branch, floating-point, and load/store
execution units. The following section provides an overview of the register allocation as well as the
processing instructions of both AArch32/AArch64 states.

3.1. Register Allocation

Tables 1 and 2 illustrate the user-visible registers available on AArch32 and AArch64 execution states.
The AArch32 execution state provides fifteen 32-bit registers which are referred to as R0-R14 and
sixteen 128-bit single-instruction multiple-data registers labeled as Q0-Q15. The SIMD registers are
sometimes referred to as NEON registers and can be used in pairs of 64-bit registers from D0 to
D31. For instance, D0 and D1 are the lower and higher parts of Q0. It is important to note that all
registers delivered by AArch32 are also accessible when the core is operating at AArch64 execution
state. Detailed descriptions of the different techniques for mapping registers from AArch32 to AArch64
have been extensively documented elsewhere [13] [14] [4], and do not form part of the scope of this
paper. The AArch64 execution state has the additional thirty-one 64-bit registers labeled as X0-X30,
and thirty-two 128-bit NEON registers as V0-V31. All registers are accessible at all times, and in all
Exception levels. The XZR register is tasked to hold the constant 0 when it is used as a source register,
and to discard the result if it is used as a destination register. The Stack Pointer (SP) is mostly used
as a load/store base register, and in a small cases for arithmetic instructions to provide access to the
current stack pointer. For more details on this topic, please refer to [5].

3.2. Processing Instructions

Different processing instructions are available in both AArch32 and AArch64 sates in order to operate
values of the general-purpose registers [5] [4]. Most of these instructions are distinguished based on
register types. For instance Table 3, shows the same ADD operand used but with different register
types and nevertheless the assembler can automatically choose the correct encoding based on the
type of registers and performs the result in R1 and W1, respectively. It is likewise important to note
that a one-to-one mapping between instructions in both AArch32 and AArch64 states is not always
a straightforward task [15]. This is the case for example when floating point operations are used, as
shown in Table 3. On the AArch32 state, two instructions are needed: one to perform the comparison

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

6 of 23

and another to load the result into the condition flag register. The same operation, however, on
AArch64 would require only one instruction.

3.3. Enabling/Disabling Caches

Some ARMv7-A based cores such as Cortex-A9 require the use of software in order to disable all caches
in the system [8]. The use of such software is no longer necessary for the ARMv8-A based Cortex-A57
since the hardware is able to disable automatically the caches after each reset. Nevertheless, in the
event of a core powerdown process [8], enabling and disabling caches would prove useful. Therefore,
the Cortex-A57 offers a set of operations to interact with caches as shown in Listings 1 and 2.

1 ** read SCTLR_EL1 into x1

2 MRS x1, SCTLR_EL1

3 ** set bit 2 and enable data caching

4 ORR x1, x1, #(0x1 << 2)

5 ** set bit 12 and enable instruction caching

6 ORR x1, x1, #(0x1 << 12)

7 ** write x1 to SCTLR_EL1 back

8 MSR SCTLR_EL1, x1

Listing 1: how caches are enabled

1 ** read SCTLR_EL1 into x1

2 MRS x1, SCTLR_EL1

3 ** clear bit 2 and disable data caching

4 EOR x1, x1, #(0x1 << 2)

5 ** clear bit 12 and disable instruction caching

6 EOR x1, x1, #(0x1 << 12)

7 ** write x1 to SCTLR_EL1 back

8 MSR SCTLR_EL1, x1

Listing 2: how caches are disabled
The System Control Register (SCTLR) controls the enabling and disabling of caches. If bit 2 and 12 are
set, all access permissions are granted and thus the I/D caches are activated. Conversely, if bit 2 and
12 are cleared then caches will be deactivated.

3.4. I/O interfaces

LS2085A architecture provides support for different I/O interfaces, which are used to connect with
master and slave devices. Master devices are essentially controlled by master interfaces. These
interfaces are able to perform memory accesses via the Coherent Interconnect. Examples of such
master interfaces include the Peripheral Component Interconnect Express (PCI/PCIe) and the Serial
AT Attachment (SATA). Because of their direct link with the Interconnect, master interfaces can
potentially impact the interference delays of cores at runtime. The slave interfaces cannot initiate
memory access on their own as is the case of master interfaces. They are rather triggered by software.
Slave interfaces include Dual asynchronous receiver/transmitter (DUART), Serial Peripheral Interface
(SPI), and Inter-Integrated Circuit (I2C).

3.5. Synchronization Mechanisms

Synchronization between cores in their access memory is necessary for maximizing utilization at
runtime. Cortex-A57 attempts to perform this – among others – by optimizing the order of instruction
executions and data accesses, e.g., by optimizing the sequence of instructions as presented in Listings 3.

1 ** Load from Normal/Cacheable memory leads to a cache miss

2 LDR X0, [X1]

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

7 of 23

3 ** Store to Normal/Non-cacheable memroy

4 STR X2, [X3]

Listing 3: In-Order execution of instructions
Let us assume that the first instruction we wish to execute leads to a cache miss. As a result, the
processor would wait many cycles for the load to complete before executing the store instruction.
In Cortex-A57, this delay can be significantly reduced. To do so, the processor recognizes where
no dependence exists between the instructions and then executes the store instruction before the
load instruction. In some cases, however, these speculative reads or out-of-order executions are not
desirable since they can lead to unintended program behavior. For this purpose, synchronization
mechanisms are needed. Some of them are introduced as follows:

3.5.1. Primitive Instructions

Cortex-A57 core provides primitive instructions to perform atomic memory accesses, including
Load and Store exclusive instructions (LDXR/STXR). These are typically used to ensure that multiple
processes do not interfere with each other when accessing the same physical address. The LDXR/STXR
pair works as follows: LDXR loads a value from a memory address and tries to claim an exclusive
lock on this address. When the lock succeeds, the STXR sets afterwards the new value on that location.
Both LDXR/STXR instructions are typically used as a basis to implement spinlocks or mutexes (see
below the Subsection Mutexes).

3.5.2. Barriers

there are different types of barriers supported by the ARM Cortex-A57 core:

• Data Memory Barrier (DMB) forces that all memory accesses before the DMB instruction
terminate before any memory access after the DMB instruction starts.

• Data Synchronization Barrier (DSB) terminates when all instructions before the DSB instruction
terminate.

• Instruction Synchronization Barrier (ISB) flushes the CPU pipeline in such a way that all
instructions coming after the ISB are fetched from cache or memory, once the ISB has been
completed.

3.5.3. Mutexes

The aforementioned instructions will be made clear using a mutex as an example. A mutex is a flag that
enables to access a program block in an atomic fashion. The below listings outlines the implementation
of mutex lock/unlock in the Cortex-A57 core using LDXR/STXR.

1 LOCKED EQU 1

2 UNLOCKED EQU 0

3
4 lock_mutex

5 ** Check if locked

6 LDXR w1, [w0]

7 ** Compare with "locked"

8 CMP w1, #LOCKED

9 ** Mutex is locked, go into standby

10 WFEEQ

11 ** On waking recheck the mutex

12 BEQ lock_mutex

13
14 ** Attempt to lock mutex

15 MOV w1, #LOCKED

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

8 of 23

16 ** Attempt to lock mutex

17 STXR w2, w1, [w0]

18 ** Check whether store completed

19 CMP w2, #0x0

20 ** If store failed, try again

21 BNE lock_mutex

22 ** Required before accessing protected resource

23 DMB

24 RET lr

Listing 4: Exemplified implementation of a mutex lock
The lock_mutex function is responsible for acquiring the mutex or blocking until it is acquired. If the
mutex is blocked, then all processes must wait for an event WFEEQ before retrying. The function first
executes a Load-Exclusive instruction to get the address passed in W0. The value of this address is then
compared with locked. If the mutex is locked, the process is momentarily halted before invoking the
function lock_mutex again, otherwise, it performs a Store-Exclusive of the value locked. In the case that
the Store-Exclusive operation succeeds, the process will execute a DMB and return.

1 unlock_mutex

2 ** Ensure accesses to protected resource have completed

3 DMB

4 ** Write "unlocked" into lock field

5 MOV w1, #UNLOCKED

6 STR w1, [w0]

7 cbnz

8 ** Ensure update of the mutex occurs before others wake

9 DSB

10 ** Send event to other CPUs

11 SEV

12 RET lr

Listing 5: Exemplified implementation of a mutex unlock
The task of unlock_mutex is to release the mutex and send an event of type SEV in order to notify all
processes of the change. Afterwards, the function executes a DMB operation to ensure that all memory
accesses are done in that point of time. It writes unlocked and stores the value of unlocked in W1. It
should be noted that for the store operation a normal STR instruction is used. This is because only one
process is currently holding the mutex. In such a case, a DSB is needed to ensure update before other
processes wake. Processes are then notified and the program return.

4. Evaluation

This section introduces the methodology used to evaluate the target LS2085 platform. A bare-metal
operating system was developed in order to guarantee a deterministic execution environment at
all time points. This was a necessary step to avoid any side effects that might occur during the
evaluation, and which may impact the overall measurement setup. Using this operating system, a
series of measurements were conducted. The focus lies basically on determining the interference
delays and memory accesses of cores. The methodology for investigating these measurements contains
the following two steps:

• Micro-Benchmarking: in the first step an exploring evaluation is used to examine fundamental
properties of the LS2085 platform and its limitations in providing these properties.

• Comparative Benchmarking: within a comparative Benchmarking, the performance of the
LS2085 platform applied to a suite of benchmarks is measured. The TACLe Benchmarks are used
to perform the measurements.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

9 of 23

4.1. Micro-Benchmarking

Following a description of the evaluation setup, measurement results are presented and followed by a
discussion on the Micro-Benchmarking.

4.1.1. Evaluation Setup

The evaluation setup adopted in the present study is similar to that proposed in [16]. A synthetic
interference application was created to constantly trigger load/store instructions for all cores. The
application runs on a bare-metal operating system in such a way that no preemptions can disturb the
measurements during runtime. The body of the application contains a main loop which is executed
within one thread per core. Algorithm 1 shows its implementation in pseudocode. At the beginning,

Algorithm 1 General Measurement Loop

1: for 0 to NMEAS do
2: call enable/disable_caches()
3: call barrier()
4: call time()
5: call meas_loop(OPERATION,NBYTES,GAP)
6: call time()
7: end for

all caches are enabled or disabled depending on the conducted experiment. Then, a barrier is used
to start the cores at the same time and thus in parallel. This barrier is implemented according to the
concepts presented in Section 3.5. Once the synchronization is complete, the measurement function
meas_loop is executed and the time intervals are calculated for each core based on their Time Base
Register. The following provides an overview of the parameter settings used:

• NMEAS: stands for the number of replayed scenarios in which the measurements are reported.
For this evaluation setup, NMEAS is set to 100 since no significant changes in the results have
been observed for larger values of NMEAS.

• Operation: serves to specify the type of operation needed for each conducted experiment.
To ensure that the LS2085 platform is evaluated under a great variety of conditions, cores
were divided into master and slave cores. For all conducted experiments, only one master is
responsible for executing and reporting the results whereas the slaves execute only the routine,
and thus in parallel with the master. Since the synthetic application can only issue read or write
requests, we decided to consider the following type of operations:

– WM/WS: Write (Master) with concurrent write (Slaves)
– WM/RS: Write (Master) with concurrent read (Slaves)
– RM/WS: Read (Master) with concurrent write (Slaves)
– RM/RS: Read (Master) with concurrent Read (Slaves)

• GAP: is essential to control the cache line size. Obviously, the choice of this parameter is only
relevant when the caches are activated. For a cache line size of 64B, an offset of 64B is needed –
called GAP (see [16] for further details).

In the meas_loop, two macros were used to trigger both of load and store instructions. An exemplary
instrumentation of the read macro is shown in Listing 6. Please note that before calling this macro, the
registers x0, x1, and x2 are initially filled with begin/end address as well as the gap value, respectively.

Listing 6: Macro code for read memory requests

1 asm volatile(

2 "MOV x9, x0\n\t"

3 "read_loop:\n\t"read

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

10 of 23

4 "LDRB w10, [x9 , #0x000]\n\t"

5 "LDRB w10, [x9 , #0x040]\n\t"

6 "LDRB w10, [x9 , #0x080]\n\t"

7 "LDRB w10, [x9 , #0x0c0]\n\t"

8 "LDRB w10, [x9 , #0x100]\n\t"

9 "LDRB w10, [x9 , #0x140]\n\t"

10 "LDRB w10, [x9 , #0x180]\n\t"

11 "LDRB w10, [x9 , #0x1c0]\n\t"

12 "ADD x9, x9, x2\n\t"

13 "CMP x1, x9\n\t"

14 "BHI read_loop\n\t"

15 "NOP");

In the first line, the begin address is moved to x9. Then, a read_loop is called between line 3 and 14 to
trigger continuously read accesses in register w10. For each iteration, a gap is added to increment the
value of address begin and a comparison is then performed in line 13 to check the end. If the end is
reached the macro terminates, otherwise the read_loop is called again. In almost the same manner as
the read macro, the write macro has been implemented.

Listing 7: Macro code for write memory requests

1 asm volatile(

2 "MOV x9, x0\n\t"

3 "MOV x10, #0x2a\n\t"

4 "write_loop:\n\t"

5 "STRB w10, [x9 , #0x000]\n\t"

6 "STRB w10, [x9 , #0x040]\n\t"

7 "STRB w10, [x9 , #0x080]\n\t"

8 "STRB w10, [x9 , #0x0c0]\n\t"

9 "STRB w10, [x9 , #0x100]\n\t"

10 "STRB w10, [x9 , #0x140]\n\t"

11 "STRB w10, [x9 , #0x180]\n\t"

12 "STRB w10, [x9 , #0x1c0]\n\t"

13 "ADD x9, x9, x2\n\t"

14 "CMP x1, x9\n\t"

15 "BHI write_loop");

The only difference with the previous example – Listing 6 – is that the store instructions are used
instead of loads to permanent trigger the write accesses. Listing 7 shows an exemplary instrumentation
of its code.

4.1.2. Evaluation Results

In the following, 8 experiments are presented to examine the performance of the QorIQ LS2085A. The
focus lies on interference delays and CPU cycles. It should be noted that interconnect delays and
memory access delays cannot be distinguished in the measurements. All experiments were conducted
according to the above-mentioned setup, using enabled/disabled caches, and thus for all combinations
of read/write operations. To safely upper bound the measured results, the maximum values are used.
These values are reported first due to their relevance in estimating the WCETs. Nevertheless, for the
sake of completeness, the minimum results have been also added at the end. For all experiments, the
values on the horizontal axis stand for the number of active cores. By this means, the term of 1 reflects
that only one core is active, 2 that two cores are used, and so on. The term of 8 means that all 8 cores
are active. These notations were adopted for all experiments which follow and – depending on the
conducted experiment – the performance measurements are always depicted on the y-axis. The first

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

11 of 23

3 4 5

2

4

6

8

·107

Active cores

M
ax

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s] WM/WS
WM/RS
RM/WS
RM/RS

(a) Disabled caches

1 2 3 4 5 6 7 8

2

4

6

·107

Active cores

M
ax

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

(b) Enabled caches

Figure 3. Maximal interference delay measured with disabled/enabled caches

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1
·108

Active cores

M
ax

.C
PU

cy
cl

es
pe

r
C

or
e

WM/WS
WM/RS
RM/WS
RM/RS

(a) Disabled caches

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1
·108

Active cores

M
ax

.C
PU

cy
cl

es
pe

r
C

or
e

(b) Enabled caches

Figure 4. Maximum number of CPU cycles measured with disabled/enabled caches

four experiments examine the max/min performance values evaluated with disabled/enabled caches
under the consideration of all Read/Write combinations:

• Experiment 1.a - 1.b: Maximal interference delay measured with disabled/enabled caches (see
Figure 3)

• Experiment 2.a - 2.b: Maximum CPU cycles measured with disabled/enabled caches (see
Figure 4)

• Experiment 3.a - 3.b: Minimal interference delay measured with disabled/enabled caches (see
Figure 5)

• Experiment 4.a - 4.b: Minimum CPU cycles measured with disabled/enabled caches (see Figure 6)

4.1.3. Discussion of the Evaluation Results

As can be seen from Experiments 1.a - 1.b, the number of active cores plays a major role in influencing
the values of interference delays. The greater the number of cores used, the bigger the interference
delays. Furthermore, it can be seen from Experiment 1.b that enabling caching indeed generates
less overhead delay than with disabled caching. This effect is due to the impact of cache hits which
eliminates the need to contact the main memory frequently, and as a consequence, the overhead delay
is reduced in the system. Additionally, different values of interference delay were observed for diverse
combinations of Read/Write operations. For instance, the WM/WS operations generate more idle time
compared to other operations, especially in the case of RM/RS operations. This can be explained by
the fact that performing many concurrent write operations would extensively modify data and has as

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

12 of 23

1 2 3 4 5 6 7 8

2

4

6

8

·107

Active cores

M
in

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s] WM/WS
WM/RS
RM/WS
RM/RS

(a) Disabled caches

1 2 3 4 5 6 7 8

2

4

6

·107

Active cores

M
in

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]
(b) Enabled caches

Figure 5. Minimal interference delay measured with disabled/enabled caches

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1
·108

Active cores

M
in

.C
PU

cy
cl

es
pe

r
C

or
e

WM/WS
WM/RS
RM/WS
RM/RS

(a) Disabled caches

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1
·108

Active cores

M
in

.C
PU

cy
cl

es
pe

r
C

or
e

(b) Enabled caches

Figure 6. Minimum number of CPU cycles measured with disabled/enabled caches

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

13 of 23

a result to produce also more interference delays and CPU time (see experiment 2.a - 2.b) to achieve
coherency.

4.2. Comparative Benchmarking

The above introduced setup is now extend by a set of benchmarks to further analyze the performance of
the QorIQ LS2085A. This section includes a description of the extended methodology, the experiment
results and a discussion.

4.2.1. Extended Setup

the aim was to examine the performance of the LS2085A with respect to different benchmarks from the
TACLeBench collection [17]. For this purpose, the latest version 1 of the TACLeBench was used. It
consists of a collection of 102 self-contained algorithms - i.e., meaning that no extra dependencies are
needed for standard libraries or specific operating systems. This characteristic makes the TACLeBench
collection indeed very suitable for our conducted experiments. However, evaluating all the 102
algorithms would go beyond the scope of this paper, we decided therefore to restrict ourselves only to
some of them. We selected those algorithms which have a runtime higher than 10000 and less than
1000000 clock cycles. Table 4 gives an overview of the resulted set.

Name SLOC Description Application Area

binarysearch 47 Binary search of 15 integers Controlling
fac 21 Factorial function Optimization
prime 41 Prime number test Safety/Security
bitcount 164 Couting number of bits in an integer array Data Loading
fft 78 1024-point FFT, 13 bits per twiddle Audio/Image Processing
insertsort 35 Insertion sort Controlling
matrix1 28 Generic matrix multiplication Optimization
md5 344 Message digest algorithm Safety/Security
sha 382 NIST secure hash algorithm Safety/Security

Table 4. Benchmark characterization, showing the code size, description and exemplary application
areas.

In order to guarantee that all these benchmarks are evaluated under different Read/Write conditions,
we decided to consider the following two operations:

• BM/WS: Selected Benchmark (Master) with concurrent write (Slaves)
• BM/RS: Selected Benchmark (Master) with concurrent read (Slaves)

For each operation, one benchmark is selected and executed on a master core (BM) iteratively within a
loop of 100 iterations. The synthetic application is solely used to intensify the effect of Read/Write
interferences (WS,RS) at runtime. It is executed in parallel on the remaining cores – called slaves –
until the selected benchmark terminates. And finally, the master takes on the role of reporting the
measurements as done before by the micro-benchmarking setup.

4.2.2. Evaluation Results

In the following the results of the performance measurements according to the benchmarks that were
introduced in Section 4.2.1 are presented. These benchmarks are evaluated within different scenarios of
disabled/enabled caches and each of them for both combinations of BM/WS and BM/RS operations.
All of the conducted experiments were replayed 100 times and the maximum values are reported
first due to their relevance in determining the WCETs. Nevertheless for the sake of completeness, the

1 Version 1.9 – https://github.com/tacle/tacle-bench

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

14 of 23

minimum results have also been added at the end. The aspects of interest include the interference
delays and cpu cycles. These aspects are always shown on the y-axis depending, on the conducted
experiment. Values on the x-axis stand for the selected benchmark with respect to its number of active
cores. The representation of four and six cores were omitted for simplicity purposes, since they bring no
additional information in interpreting the output results. Therefore, the term of 1 reflects that only one
core is active and 8 that all cores are active. The first six experiments examine the maximal interference
delays for all benchmarks – evaluated with disabled/enabled caches under the consideration of all
Read/Write combinations – whereas the last six experiments consider the performance measurements
related to CPU performance.

• Experiment 5.a - 5.c: Maximal interference delay measured with disabled caches. (see Figures 7, 8
and 9)

• Experiment 6.a - 6.c: Maximal interference delay measured with enabled caches. (see Figures 10,
11, and 12)

• Experiment 7.a - 7.c: Maximum CPU cycles measured with disabled caches. (see Figures 13, 14,
and 15)

• Experiment 8.a - 8.c: Maximum CPU cycles measured with enabled caches. (see Figures 16, 17,
and 18)

BINARYSEARCH FAC PRIME
1 core 8 cores 1 core 8 cores 1 core 8 cores

0.5

1

1.5

·105

Active cores

M
ax

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

BM/WS. BM/RS.

Figure 7. Experiment 5.a: Maximal interference delay measured with disabled caches for one and eight
active cores. The considered benchmarks are binarysearch, fac, and prime.

BITCOUNT INSERTSORT MATRIX1
1 core 8 cores 1 core 8 cores 1 core 8 cores

2

4

6
·106

Active cores

M
ax

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

BM/WS. BM/RS.

Figure 8. Experiment 5.b: Maximal interference delay measured with disabled caches for one and eight
active cores. The considered benchmarks are bitcount, insertsort, and matrix1.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

15 of 23

FFT MD5 SHA
1 core 8 cores 1 core 8 cores 1 core 8 cores

0.5

1

1.5

2

2.5

·109

Active cores

M
ax

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

BM/WS. BM/RS.

Figure 9. Experiment 5.c: Maximal interference delay measured with disabled caches for one and eight
active cores. The considered benchmarks are fft, md5, and sha.

BINARYSEARCH FAC PRIME
1 core 8 cores 1 core 8 cores 1 core 8 cores

0

0.2

0.4

0.6

0.8

1

1.2
·105

Active cores

M
ax

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

BM/WS. BM/RS.

Figure 10. Experiment 6.a: Maximal interference delay measured with enabled caches for one and
eight active cores. The considered benchmarks are binarysearch, fac, and prime.

BITCOUNT INSERTSORT MATRIX1
1 core 8 cores 1 core 8 cores 1 core 8 cores

0

1

2

3

4

·105

Active cores

M
ax

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

BM/WS. BM/RS.

Figure 11. Experiment 6.b: Maximal interference delay measured with enabled caches for one and
eight active cores. The considered benchmarks are bitcount, insertsort, and matrix1.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

16 of 23

FFT MD5 SHA
1 core 8 cores 1 core 8 cores 1 core 8 cores

1

2

3

·107

Active cores

M
ax

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

BM/WS. BM/RS.

Figure 12. Experiment 6.c: Maximal interference delay measured with enabled caches for one and
eight active cores. The considered benchmarks are fft, md5, and sha.

BINARYSEARCH FAC PRIME
1 core 8 cores 1 core 8 cores 1 core 8 cores

0.6

0.8

1

1.2

1.4

1.6

·105

Active cores

M
ax

.C
PU

cy
cl

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure 13. Experiment 7.a: Maximum number of CPU cycles measured with disabled caches for one
and eight active cores. The considered benchmarks are binarysearch, fac, and prime.

BITCOUNT INSERTSORT MATRIX1
1 core 8 cores 1 core 8 cores 1 core 8 cores

0

2

4

6
·106

Active cores

M
ax

.C
PU

cy
lc

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure 14. Experiment 15.b: Maximum number of CPU cycles measured with disabled caches for one
and eight active cores. The considered benchmarks are bitcount, insertsort, and matrix1.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

17 of 23

FFT MD5 SHA
1 core 8 cores 1 core 8 cores 1 core 8 cores

0.5

1

1.5

2

2.5

·109

Active cores

M
ax

.C
PU

cy
cl

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure 15. Experiment 15.c: Maximum number of CPU cycles measured with disabled caches for one
and eight active cores. The considered benchmarks are fft, md5, and sha.

BINARYSEARCH FAC PRIME
1 core 8 cores 1 core 8 cores 1 core 8 cores

0

0.5

1

1.5

·104

Active cores

M
ax

.C
PU

cy
cl

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure 16. Experiment 8.a: Maximum number of CPU cycles measured with enabled caches for one
and eight active cores. The considered benchmarks are binarysearch, fac, and prime.

BITCOUNT INSERTSORT MATRIX1
1 core 8 cores 1 core 8 cores 1 core 8 cores

0

1

2

3

4

·105

Active cores

M
ax

.C
PU

cy
cl

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure 17. Experiment 8.b: Maximum number of CPU cycles measured with enabled caches for one
and eight active cores. The considered benchmarks are bitcount, insertsort, and matrix1.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

18 of 23

FFT MD5 SHA
1 core 8 cores 1 core 8 cores 1 core 8 cores

1

2

3

·107

Active cores

M
ax

.C
PU

cy
cl

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure 18. Experiment 8.c: Maximum number of CPU cycles measured with enabled caches for one
and eight active cores. The considered benchmarks are fft, md5, and sha.

Now the minimum performance values are presented. The first six experiments examine the minimal
interference delays for all benchmarks evaluated with disabled/enabled caches under the consideration
of all Read/Write combinations:

• Experiment 9.a - 9.c: Minimal interference delay measured with disabled caches. (see Figures A.1,
A.2, and A.3)

• Experiment 10.a - 10.c: Minimal interference delay measured with enabled caches. (see
Figures A.4, A.5, and A.6)

In Experiments 11.a - 12.c the minimum number of CPU cycles is examined

• Experiment 11.a - 11.c: Minimum CPU cycles with disabled caches. (see Figures A.7, A.8, and
A.9)

• Experiment 12.a - 12.c: Minimum CPU cycles measured with enabled caches. (see Figures A.10,
A.11, and A.12)

4.2.3. Discussion of the Evaluation Results

As shown in Experiments 5.a - 5.c, the benchmarks differ in how they affect the interference delays.
Some are more sensitive than others: MD5 disposes of the highest interference delay, FAC has the lowest
one, and the other benchmarks lie in between. This can be seen as evident, since each benchmark has
its own characteristic in terms of code structure/size, iteration loop, and input data. Moreover, the
number of active cores plays an important role in influencing these delays. The more cores are used,
the larger the interferences are. We found as well that the interference delays correlate closely with the
used type of Read/Write operations. The WS operations generate in general more slowdown than
RS operations. This can be explained by the fact that processing several concurrent write operations
would extensively modify data and has as a result to produce also more interference delays and CPU
time (see Experiment 7.a - 7.c) to achieve coherency. Furthermore, it can be seen from experiments 6.a -
6.c that enabling caching has a positive impact on increasing cache hits, and thus enables to reduce
overhead delay in the Cache Interconnect. In Experiments 7.a - 7.c, the impact of this delay reduction
on the CPU time was also considered. As expected, the result reveal a good reduction of CPU time,
since the coherency was maintained more quickly than with disabled caching and therefore no extra
effort is needed from the CPU. Similarly to the maximum delays, the minimum delays in Experiments
9.a - 12.c were investigated and the same conclusion as above was drawn.

5. Related Work

As timing performance is becoming increasingly important in modern multicore systems, there have
been great interests in the real-time research community to analyze memory related interference delay

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

19 of 23

for creating more predictable real-time systems. At the beginning, many computer scientists treat the
cost to access memory as a constant. They regard the main memory as a single shared resource by the
cores [18] [19] [20] [21]. However, modern COTS-based multicore systems are composed of complex
memory components and the memory access cost is far from being a simple constant, since it can
change drastically depending on the parameters set by the memory controller to activate components
in the system.
The methodology presented in this study differs from state of the art approaches in two fundamental
points: 1) we do not consider the main memory as a single shared resource by the cores, and 2)
it is not limited to a specific memory component. Moreover, our methodology is software-based,
generic, and applicable to any kind of COTS-based multicore Systems. Thus, we want to compare
it to approaches that employ similar constraints. The methodology closest to us is [22]. The authors
propose an analytical model to examine interference delay in modern multicore systems. Their analysis
is based on simulations with assumed non-blocking caches and a DRAM controller that prioritizes
reads over writes. However, as these assumptions are not always realistic, they cannot be used to
analyze precisely interference delay as we do in this work. Our analysis, in contrast, is conducted
on a real COTS multicore platform with a set of carefully designed synthetic benchmarks as well as
TACLeBench benchmarks. Moreover, we consider different testing scenarios to generate memory
requests at runtime.

6. Conclusion

This is the first study on analyzing memory interference delay in the LayerScape QorIQ LS2085A
platform. Through micro- and macro-benchmarking, the paper has shown that enabled caching
produces less overhead delay than with disabled caching. This is due to the impact of cache hits
which eliminates the need to contact the main memory frequently. The paper also experimentally
demonstrates that the memory interference delay does not only correlate with the number of used
cores, but also with the used type of Read/Write operations. The WS operations generate more
slowdown than RS operations. This is explained by the fact that processing several concurrent write
operations modifies extensively data and has as a result to produce more interference delays and
CPU time. The analysis results in this study can be used in future research designed to estimate more
accurately WCETs in industrial multicore scenarios.

References

1. N. Semiconductors, “Ls2085a/ls2088a reference design board errata,” Board Errata, vol. Rev. 1, no. 27, pp.
1–27, April 2017.

2. N. Semiconductors, “Qoriq ls2085a/ls2088a reference design board getting started guide: Supports
ls2085a/ls2088ardb revision f and earlier,” Getting Started Guide, vol. Rev. 1, no. 29, pp. 1–29, March
2017.

3. N. Semiconductors, “Design board reference manual,” QorIQ LS2085A/LS2088A Reference, vol. Rev. 1, no.
113, pp. 1–113, March 2017.

4. ARM, Programmer’s Guide for ARMv8-A, version 1.0 ed. ARM manual, 2015.
5. ARM, ARMv8 Instruction Set Overview, prd03-genc-010197 15.0 ed. ARM Manual, 2014.
6. ARM, ARM Cortex-A57 MPCore Processor, revision: r1p1 ed. http://www.arm.com: Technical Reference

Manual, 2013.
7. ARM, ARM Architecture Reference Manual for ARMv8-A, revision: 09-2017 ed. ARMv8-A Reference Manual,

2017.
8. ARM, Bare-metal Boot Code for ARMv8-A Processors, version 1.0 ed. ARM Application Note, 2017.
9. G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of multicore processors,” IEEE Signal Processing Magazine,

vol. 26, no. 6, pp. 26–37, November 2009.
10. N. Semiconductors, “Qoriq ls2045a and ls2085a,” Communications Processors, vol. LS2FAMILYFS REV 4, no. 2,

pp. 1–2, 2014.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

20 of 23

11. S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, and P. Sewell, “Modelling the
armv8 architecture, operationally: Concurrency and isa,” SIGPLAN Not., vol. 51, no. 1, pp. 608–621, Jan.
2016. [Online]. Available: http://doi.acm.org/10.1145/2914770.2837615

12. A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Supersingular isogeny diffie-hellman key exchange
on 64-bit arm,” IEEE Transactions on Dependable and Secure Computing, vol. PP, no. 99, pp. 1–1, 2017.

13. A. Antras, C. Gorgovan, J. Garside, J. Goodacre, and M. Luján, “Hypermambo-x64: Using virtualization to
support high-performance transparent binary translation,” SIGPLAN Not., vol. 52, no. 7, pp. 228–241, Apr.
2017. [Online]. Available: http://doi.acm.org/10.1145/3140607.3050756

14. H. Seo, Z. Liu, Y. Nogami, J. Choi, and H. Kim, “Binary field multiplication on armv8,” Security and
Communication Networks, vol. 9, no. 13, pp. 2051–2058, 2016, sec.1462. [Online]. Available: http://dx.doi.org/
10.1002/sec.1462

15. A. Antras, C. Gorgovan, J. Garside, and M. Luján, “Low overhead dynamic binary translation on arm,”
SIGPLAN Not., vol. 52, no. 6, pp. 333–346, Jun. 2017. [Online]. Available: http://doi.acm.org/10.1145/
3140587.3062371

16. J. Nowotsch, “Interference-sensitive worst-case execution time analysis for multi-core processors,”
doctoralthesis, Universität Augsburg, 2014.

17. H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoeberl, R. B. Sorensen,
P. Wägemann, and S. Wegener, “TACLeBench: A Benchmark Collection to Support Worst-Case Execution
Time Research,” in 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016), ser.
OpenAccess Series in Informatics (OASIcs), M. Schoeberl, Ed., vol. 55. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1–2:10. [Online]. Available: http://drops.dagstuhl.
de/opus/volltexte/2016/6895

18. Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst case analysis of dram latency in multi-requestor systems,” in
2013 IEEE 34th Real-Time Systems Symposium, Dec 2013, pp. 372–383.

19. S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access scheduling,” SIGARCH
Comput. Archit. News, vol. 28, no. 2, pp. 128–138, May 2000. [Online]. Available: http://doi.acm.org/10.
1145/342001.339668

20. A. Schranzhofer, J. Chen, and L. Thiele, “Timing analysis for tdma arbitration in resource sharing systems,”
in 2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium, April 2010, pp. 215–224.

21. G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo, “Memory-centric scheduling for multicore hard
real-time systems,” Real-Time Systems, vol. 48, no. 6, pp. 681–715, Nov 2012. [Online]. Available: https:
//doi.org/10.1007/s11241-012-9158-9

22. H. Yun, R. Pellizzon, and P. K. Valsan, “Parallelism-aware memory interference delay analysis for cots
multicore systems,” in 2015 27th Euromicro Conference on Real-Time Systems, July 2015, pp. 184–195.

Appendix Further Results

BINARYSEARCH FAC PRIME
1 core 8 cores 1 core 8 cores 1 core 8 cores

0.5

1

1.5

·105

Active cores

M
in

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

BM/WS. BM/RS.

Figure A.1. Experiment 9.a: Minimal interference delay measured with disabled caches for one and
eight active cores. The considered benchmarks are binarysearch, fac, and prime.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://doi.acm.org/10.1145/2914770.2837615
http://doi.acm.org/10.1145/3140607.3050756
http://dx.doi.org/10.1002/sec.1462
http://dx.doi.org/10.1002/sec.1462
http://doi.acm.org/10.1145/3140587.3062371
http://doi.acm.org/10.1145/3140587.3062371
http://drops.dagstuhl.de/opus/volltexte/2016/6895
http://drops.dagstuhl.de/opus/volltexte/2016/6895
http://doi.acm.org/10.1145/342001.339668
http://doi.acm.org/10.1145/342001.339668
https://doi.org/10.1007/s11241-012-9158-9
https://doi.org/10.1007/s11241-012-9158-9
http://dx.doi.org/10.20944/preprints201809.0223.v1

21 of 23

BITCOUNT INSERTSORT MATRIX1
1 core 8 cores 1 core 8 cores 1 core 8 cores

1

2

3

4

5

·106

Active cores
M

in
.I

nt
er

fe
re

nc
e

D
el

ay
pe

r
C

or
e

[c
yc

le
s]

BM/WS. BM/RS.

Figure A.2. Experiment 9.b: Minimal interference delay measured with disabled caches for one and
eight active cores. The considered benchmarks are bitcount, insertsort, and matrix1.

FFT MD5 SHA
1 core 8 cores 1 core 8 cores 1 core 8 cores

0.5

1

1.5

2

2.5

·109

Active cores

M
in

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

BM/WS. BM/RS.

Figure A.3. Experiment 9.c: Minimal interference delay measured with disabled caches for one and
eight active cores. The considered benchmarks are fft, md5, and sha.

BINARYSEARCH FAC PRIME
1 core 8 cores 1 core 8 cores 1 core 8 cores

1,000

1,500

2,000

2,500

Active cores

M
in

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

BM/WS. BM/RS.

Figure A.4. Experiment 10.a: Minimal interference delay measured with enabled caches for one and
eight active cores. The considered benchmarks are binarysearch, fac, and prime.

BITCOUNT INSERTSORT MATRIX1
1 core 8 cores 1 core 8 cores 1 core 8 cores

0

1

2

3

4
·105

Active cores

M
in

.I
nt

er
fe

re
nc

e
D

el
ay

pe
r

C
or

e
[c

yc
le

s]

BM/WS. BM/RS.

Figure A.5. Experiment 10.b: Minimal interference delay measured with enabled caches for one and
eight active cores. The considered benchmarks are bitcount, insertsort, and matrix1.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

22 of 23

FFT MD5 SHA
1 core 8 cores 1 core 8 cores 1 core 8 cores

1

2

3

·107

Active cores
M

in
.I

nt
er

fe
re

nc
e

D
el

ay
pe

r
C

or
e

[c
yc

le
s]

BM/WS. BM/RS.

Figure A.6. Experiment 10.c: Minimal interference delay measured with enabled caches for one and
eight active cores. The considered benchmarks are fft, md5, and sha.

BINARYSEARCH FAC PRIME
1 core 8 cores 1 core 8 cores 1 core 8 cores

0.4

0.6

0.8

1

1.2

1.4
·105

Active cores

M
in

.C
PU

cy
cl

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure A.7. Experiment 11.a: Minimum number of CPU cycles measured with disabled caches for one
and eight active cores. The considered benchmarks are binarysearch, fac, and prime.

BITCOUNT INSERTSORT MATRIX1
1 core 8 cores 1 core 8 cores 1 core 8 cores

0

1

2

3

4

5

·106

Active cores

M
in

.C
PU

cy
lc

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure A.8. Experiment 11.b: Minimum number of CPU cycles measured with disabled caches for one
and eight active cores. The considered benchmarks are bitcount, insertsort, and matrix1.

FFT MD5 SHA
1 core 8 cores 1 core 8 cores 1 core 8 cores

0.5

1

1.5

2

2.5

·109

Active cores

M
in

.C
PU

cy
cl

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure A.9. Experiment 11.c: Minimum number of CPU cycles measured with disabled caches for one
and eight active cores. The considered benchmarks are fft, md5, and sha.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

23 of 23

BINARYSEARCH FAC PRIME
1 core 8 cores 1 core 8 cores 1 core 8 cores

0

500

1,000

1,500

2,000

2,500

Active cores
M

in
.C

PU
cy

cl
es

pe
r

C
or

e
BM/WS. BM/RS.

Figure A.10. Experiment 12.a: Minimum number of CPU cycles measured with enabled caches for one
and eight active cores. The considered benchmarks are binarysearch, fac, and prime.

BITCOUNT INSERTSORT MATRIX1
1 core 8 cores 1 core 8 cores 1 core 8 cores

0

1

2

3

4

·105

Active cores

M
in

.C
PU

cy
cl

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure A.11. Experiment 12.b: Minimum number of CPU cycles measured with enabled caches for one
and eight active cores. The considered benchmarks are bitcount, insertsort, and matrix1.

FFT MD5 SHA
1 core 8 cores 1 core 8 cores 1 core 8 cores

1

2

3

·107

Active cores

M
in

.C
PU

cy
cl

es
pe

r
C

or
e

BM/WS. BM/RS.

Figure A.12. Experiment 12.c: Minimum number of CPU cycles measured with enabled caches for one
and eight active cores. The considered benchmarks are fft, md5, and sha.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2018 doi:10.20944/preprints201809.0223.v1

http://dx.doi.org/10.20944/preprints201809.0223.v1

	Introduction
	Architectural Description
	Overview and Memory Hierarchy
	Cache Coherent Interconnect
	Cortex-A57
	Instruction Fetch
	Instruction Decode
	Instruction Dispatch
	Integer Execute
	Load/Store Engine
	L2 Memory System

	System Control
	Register Allocation
	Processing Instructions
	Enabling/Disabling Caches
	I/O interfaces
	Synchronization Mechanisms
	Primitive Instructions
	Barriers
	Mutexes

	Evaluation
	Micro-Benchmarking
	Evaluation Setup
	Evaluation Results
	Discussion of the Evaluation Results

	Comparative Benchmarking
	Extended Setup
	Evaluation Results
	Discussion of the Evaluation Results

	Related Work
	Conclusion
	References
	Further Results

