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ABSTRACT 
An SIR (Susceptible – Infected – Removed) mathematical model for the transmission dynamics of the 
Transfusion –Transmitted Malaria (TTM) model with optimal control pair )(1 tu and )(2 tu  was developed and 
studied in this research work. The model Transfusion –Transmitted Malaria disease – free equilibrium and 
endemic equilibriums points were determined. The model exhibited two equilibriums; disease-free and 
endemic equilibrium. It was shown that the disease – free equilibrium was locally asymptotically stable if the 
associated basic reproduction numbers 0R  is less than unity while the disease persists if 0R  is greater than 
unity. The global stability of the Transfusion –Transmitted Malaria model at the disease – free equilibrium 
was established using the comparison method. The optimality system was derived and an optimal control 
model of blood screening and drug treatment for the Transfusion –Transmitted Malaria model was 
investigated. Conditions for the optimal control were considered using Pontryagin’s Maximum Principle and 
solved numerically using the Forward and Backward Finite Difference Method (FBDM). Numerical results 
obtained are in perfect agreement with our analytical results.  
 
Key words: Malaria, Transfusion-Transmitted, Basic Reproduction number, Stability, Equilibrium, Optimal 
Control 

1.0 INTRODUCTION 
Transfusion – transmitted malaria (TTM) was first documented in 1911 [5]. The global incidence and 
occurrence of TTM based on available data indicates that over hundred cases are reported annually, mostly 
restricted to endemic countries [2]. The chances of TTM due to donor blood in Sub Saharan African 
countries is increased due to malaria prevalence in donor blood sample [8]. In countries where malaria is 
endemic, differentiating cases of TTM from natural infection still remain a challenge as malaria infection 
occurrence after transfusion may be as a result of either natural infection (infection through bites from an 
infected female anopheles mosquito) or transfusion transmitted (TT). This explains the reason the number of 
TTM cases in endemic countries is under-reported. Acquisition of malaria parasite due to donor exposure is 
an increasing problem as a result in global travelling and immigration. Thus, it is more challenging to 
develop an optimal strategy to reduce the risk of TTM in endemic countries without unnecessary exclusion 
of blood donation which remain a subject of debate. In [10, 11], a general overview of current strategies in 
non-endemic countries was considered. The strict donor deferral system which is based on travel history of 
individual has been adopted by most countries, However, this strategy is not optimal due to many healthy 
donors are differed which may result in donation loss because lengthy deferrals may discourage the donors 
from coming back [5]. Consequently, the optimal control strategy for a given country or location may vary 
according to the background level of malaria risk faced by the donor and the recipient population viz-a-viz 
the resources available. Thus, we aim to study in this work mathematical analysis of transfusion – 
transmitted malaria TTM) model with optimal control 
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2.0 Model Formation 
We formulate the mathematical model for the Transfusion –Transmitted Malaria by considering the 
dynamical system of equation with optimal control analysis for human population only. The human 
population is divided into three sub-groups: Susceptible-Infected –Removal. Thus, we assume that the 
population of human is constant. Our model also includes the rate of transfusion of infected blood and 
transmitted rate of the disease with malaria induced death rate  
 For our dynamical equations, we define the following variables and parameters as follows:  
 
Parameters and Variables Description 

 
       Susceptible human population 

 
       Infected human population 

 
       Recovered human population 

 
       Rate of transfusion of infected blood with plasmodium to 
       Susceptible humans 
 

 
        Recovery rate of humans 

 
        Rate of transmission of the diseases 

 
        Recruitment rate 

 
        Natural death rate of humans 

 

        Malaria induced death rate 

 
Table 1: Description of variables and parameters of the model 

The dynamical equations for the transfusion – transmitted malaria model are given as follows: 
 
 

                                                                                                              
                                                                                          (1) 
 
 
 
 
 
 
 

With the following assumptions: 
(1) Transmission of the plasmodium is via transfusion of blood to blood contact of infected blood  
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with plasmodium to a susceptible individual          
(2) Due to the assumption made in (1), the Vector population is excluded       
(3) Susceptible individual become infected upon blood to blood contact of infected blood  

with plasmodium 

The flow diagram for the model is given in Figure 1:       
 

       

                                     

               

Figure 1: Flow-chart of the transfusion –transmitted malaria model showing movements amongst susceptible, 
infected and recovered compartments. 

3.0 MODEL ANALYSIS                                                           
System (1) is resolved by non-dimensionalizing the variables as follow by setting  : 
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Substituting equation (2) and (3) into (1) yields 
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3.1 The Population Dynamics of the Model 

Let  )(tN   represent the total human population.Thus 
)()()()( tRtItStN             (5) 

Differentiating (5) with respect to t give  

  IRISbtN   )(
 

At disease free we obtain  
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btNtN  )()( 
           (6) 

Thus as t , the total human population reach a constant value given as 


btN )(             (7) 

3.2 Positivity of solution 

For the Transfusion –Transmitted Malaria model of equation (4) to be epidemiologically well posed, we need 
to show that all solution with non-negative initial conditions will remain non – negative, for all 0t . 

Theorem 3.1: Let: 3
 Ra with
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Proof: From the first differential equation of system (1), 
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Integrating both sides 
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Similar reasoning can be used for other differential equations of equation (4) hence, it follows that the 
Transfusion –Transmitted Malaria model is positive and bounded with a unique solution. 

3.3 The Local Stability of Disease-free Equilibrium, 0P  
System (4) has a disease-free equilibrium (DFE) obtained by setting the right-hand side of equation (4) to 
zero, given by 
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                                                                                                                 (8)  

The Jacobian Matrix of equation (4) about (8)  is  
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So that the eigenvalues  are real and given by )1)((,, 0321  R  
Introducing now the basic reproduction number 0R : 
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The expression in (9) was obtained using the next generation matrix approach by finding the dominant 
eigenvalues of the matrix 1FV where 
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So that: 
(a) If 10 R , then the eigenvalues are all negative then 0P is locally asymptotically stable. 
(b) If 10 R , then two eigenvalues are negative and one is positive, then 0P is unstable. 

The above result is summarized in the following theorem 
Theorem 3.2: The disease - free equilibrium (DFE) 0P  of equation (4) is locally asymptotically stable if 

10 R  and unstable if 10 R . 

3.4 Global Stability of Disease - Free Equilibrium (DFE)  
There are conditions for global asymptotic stability (GAS) of the disease – free equilibrium to be established, 
one of such condition is maintaining a constant population size. Observe that the model (4) will maintain a 
constant population size with time given by 


btN )(   

The global stability could be proved by several methods. The Lyapunov method has been used by several 
researchers, but here, the comparison approach as described in Lashmkantham et.al [6] will be used. The 
following theorem proves the global stability of the (DFE). 
Theorem 3.3: Assuming that the system of equation (4) describes a human population, then the (DFE) 0P  of 
(2) is globally asymptotically stable (GAS) if 10 R , otherwise unstable. 

Proof: 
Using the comparison approach, the rate of change of the infected and recovered compartments of equation 
(4) can be written as  
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Where F and V retain their original meaning, according to Castillo- Chaves and song [3], all eigenvalues of 

 VF   have negative real root i.e.  1 ,   102  R . It follows that 2 is real and negative 
provided 10 R . Hence, the linearized differential inequality (10) is stable whenever 10 R . Consequently, 

   0,0, RI  as t evaluating system (4) at 0 RI  makes 

bS   for 10 R . Hence, the disease free 

equilibrium 0P  is globally asymptotically stable (GAS) if 10 R . 
 
3.5 The local asymptotical stability of the endemic equilibrium 
Observe that equation (4) have the endemic equilibrium point *P defined as  ),,( **** RISP   such that  
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The eigenvalues of (11) are given as  1 and )1()( 00
2

0  RbRRg                         (12) 
It follows that )(g will have two real negative roots if 10 R by Descartes rule of sign, hence all 
eigenvalues of (8) are real and negative if 10 R .which implies that the endemic equilibrium point *P is 
locally asymptotically stable. The foregoing discussion is summarized as follows: 

Theorem 3.4: The endemic equilibrium point *P of system (4) is locally asymptotically stable if 10 R   
otherwise unstable. 

3.6 Impact of Transfusion Rate    on Malaria Transmission 
To analyze the effect of transfusion rate on malaria, we begin by expressing 0R in terms of   as follows: 
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Differentiating )(0 R , partially with respect to  leads to  
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If equation (14) is greater than zero, then an increase in transfusion rate result in an increase in the number of 
malaria cases. However, if equation (14) is equal to zero, then the transfusion rate  does not have any 
significant effect on the transmission dynamics of malaria. 

3.7 Analysis of Optimal Control 
This section focus on the optimal control analysis of model equation (4), using the Pontryagin’s Maximum 
Principle [9] to analyze and determine the necessary conditions for the optimal control of transfusion –
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transmitted malaria. Time dependent preventive and treatment controls are introduced into the model (4) to 
determine the optimal strategy for controlling the disease. Thus, we have  
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Our aim is to minimize the number of susceptible humans to malaria due to TT, infected humans with 
malaria and the cost of applying preventive and treatment controls )(1 tu and )(2 tu . Thus, we consider the 
objective functional 

 dtuwuwtIwtSwuuJ
ft
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132121 )()(),(                                                              (16) 

The control function, )(1 tu  and )(2 tu  are bounded, Lebesque integrable functions. The controls )(1 tu  and 
)(2 tu denotes the effects on preventing transfusion of infected blood with plasmodium through effective 

blood screening and treatment of malaria infected individuals respectively. The coefficients M , A and B are 
the balancing cost factors of the three parts of the objective function while ft is the final time. 

We then seek to find an optimal control, )(1 tu  and )(2 tu  such that  
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where 
u ( :, 21 uu are measurable with, 10,10 21  uu  is the control set.  

Considering the conditions that an optimal solution must satisfy as it was given by Pontryagin Maximum 
Principle [9], this principle helps to convert (15) and (16) to a minimization problem with respect to the 
controls )(1 tu and )(2 tu on a point-wise Hamiltonian H defined thus, 
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where 21, and 3 are the adjoint variables (co-state variables) 
Theorem 3.5: Consider an optimal controls 21,  uu  and solutions of S, I, R with the corresponding state 
system (15) and (16) that minimizes ),( 21 uuJ over u. Then there exist adjoint variables 21, and 
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Proof: 
Corollary 4.1 of Fleming and Rishel [4] establish the existence of an optimal control due to the convexity of 
the integrand of J with respect to )(1 tu and )(2 tu , a priori boundedness of the state variable solutions and the 
Lipschitz property of the state system with respect to the state variables. The differential equations governing 
the adjoint variables are obtained as follows: 
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Solving for 1
u and 2

u , subject to the constraints , the characterization (20) and (21) can be derived as 
follows: 
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By standard control arguments involving the bounds on the controls, we have that 
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where 2,1i . Conclusively we can re-write (24) as  
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4.0 NUMERICAL SIMULATIONS AND DISCUSSION OF RESULTS 
The numerical solutions are illustrated using MAPEL 18 program with computation times of 3.52s on a 
windows 7 operating system. The optimality system, consist of the state system, adjoint system, initial 
conditions for the state system and the transversality conditions for the adjoint system. The state systems are 
solved by the forward finite difference scheme using the current iterations solutions of the state equations. 
The adjoint systems are solved by the backward finite difference scheme using the current iterations 
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solutions of the state equations because of the transversality conditions. Then the controls are updated by 
using a convex combination of the previous controls and the value from the characterization (20) and (21). 
Thus, the process is repeated and the iterations are stopped at the final time ft . The table of parameter 
descriptions and values used in the numerical simulation of the model are given in Table 2.  

One of the ways of controlling the spread of malaria disease is through blood screening of donors; however, 
lack of information or ignorance may affect the impact blood screening can have on malaria transmission.  
The behaviour of the total human population was investigated over time in Figure 2. It was observed for 
threshold parameter 10 R , the asymptotic nature of the population was established. The number of 
susceptible individuals increases with time and infected humans recovered while the infected humans’ 
decreases asymptotically over time. However, for 10 R , the unstable nature of the population became 
evident as depicted in Figure 3.  

Consequently, optimal control strategies using the combination of screening donor’s blood  tu1  and 
treatment for those infected  tu2  were used on the model to control the transmission of malaria. The 
following scenarios were considered: 

Parameters  Baseline value                             Source 

 
0.1       Assumed 

 
       0.5                      [7] 

 
0.01         [7] 

 
1.0         Assumed 

 
    1/(70x365)                            [1] 

 

0.01         [1] 

Table 2: Values  of Parameters for system (4) 

(a) Optimal control using Screening of donor’s blood  tu1  and treatment  tu2  
 In this case, the two controls are used to optimize the objective function J . It was observed in Figure 4 that 
the combination of both controls resulted in significant decrease in the number of infected humans (green 
solid line) as against the drastic increase observed in the uncontrolled case (red dotted line). 

(b) Optimal control using treatment  tu2  only 
Here, the objective function J  was optimized using control  tu2  while the control on blood screening was 
set to zero. It was observed that number of infected humans showed significant reduction while there is an 
increase in the number of infected humans in the uncontrolled case as shown in Figure 5 

. 
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(c) Optimal control using Screening of donor’s blood  tu1  only 
The objective functional J  was optimized in this case by setting the control on treatment  tu2  to zero. The 
result of this strategy clearly underline that screening of blood before transfusion is carried out is important 
as the number of infected humans that would have been infected with malaria reduces as a result of blood 
screening while the number of infected individuals increases as a result of no blood screening as depicted in 
Figure 6. 

 
Figure 2: The graph of the total human population for 10 R  

 
Figure 3: The graph of the total human population for 10 R  
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Figure 4: The variation of proportion of malaria infected population using  tu1  and  tu2  as controls 

 
 

 
Figure 5: The variation of proportion of malaria infected population using  tu2  as control 
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Figure 6: The variation of proportion of malaria infected population using  tu1  as control 

 
5.0 CONCLUSION 
In this study, we used a mathematical model to examine the Transfusion – transmitted malaria (TTM) on the 
spread of malaria. Although screening of donor’s blood is not the only means of controlling the disease, we 
demonstrated that blood screening of donor’s has a positive impact in reducing the disease burden. The 
derivative of the reproduction number 0R  with respect to rate of transfusion of infected blood  revealed that 
more individual is likely to become infected as it has a positive impact on 0R , this led to the introduction of 
controls  tu1  and  tu2  in the optimal control model. The control model was analyzed using Pontryagin’s 
Maximum Principle. The result of the analysis revealed that the combination of using both controls yielded 
the best result. 
Conclusively, models must be developed to include information on human nature and behavior in order to 
give realistic estimates on malaria dynamics. Lack of screening donor’s blood may affect the eradication of 
malaria especially in malaria endemic regions. 
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