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Abstract.  [132 words] 
 
During glioblastoma treatment, the pharmaceutical monoclonal antibody to 
VEGF, bevacizumab, has improved quality of life and delayed progression for 
several months but has not, or only marginally prolonged overall survival. In 
2017 several dramatic research papers appeared that are crucial to our 
understanding of glioblastoma vis a vis the mode of action of bevacizumab. As 
a consequence of these papers, a new, potentially more effective, treatment 
protocol can be built around bevacizumab. This is the ADZT Regimen where 
four old drugs are added to bevacizumab. These four are apremilast, marketed 
to treat psoriasis, dapsone, marketed to treat Hansen’s disease, zonisamide, 
marketed to treat seizures, and telmisartan, marketed to treat hypertension. The 
ancillary attributes of each of these drugs has been shown to augment 
bevacizumab. This paper will detail the research data supporting that 
contention.  
__________________________________________________ 
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1. Introduction. 
 
This paper presents the physiological basis of the ADZT Regimen, a new 
proposed augmentation strategy to improve bevacizumab (Avastin ™) effects 
during treatment of glioblastoma. Bevacizumab is a monoclonal 
pharmaceutical antibody directed against vascular endothelial growth factor A 
(VEGF). Initially FDA and EMA approved to treat some forms of macular 
degeneration, it is now also approved for, and commonly used during 
glioblastoma treatment after resection, radiation, and temozolomide. Initial 
clinical studies in glioblastoma showed that bevacizumab delayed time to 
progression, ~ 10 versus ~ 7 months, but no significant difference in overall 
survival of ~ 16 months [1]. Others found similar results [2]. Newer 
bevacizumab regimens with 100 mg/m2/day cycles of temozolomide and 
newer studies of lower bevacizumab doses have indicated some survival 
benefit [3]. Glioblastoma has been an unusually treatment refractory cancer, 
justifying our exploration of unproven but low risk regimens like ADZT.  
 
Multiple clinical trials have attempted, yet failed, to augment bevacizumab in 
prolonging overall survival. For example in 2017 alone, clinical studies adding 
vorinostat, a histone deacetylase inhibitor  [4], adding lomustine [5], adding 
onartuzumab [6], all failed to prolong survival.  
 
Crucial papers appeared in 2017 on the physiology of bevacizumab, each 
giving new data, each independently converging on potential improvements to 
bevacizumab treatment. By using these four older drugs that are available now 
(mid-2018) we might be able to exploit these new insights to improve 
bevacizumab’s effectiveness in treating glioblastoma. The 2017 papers are 
coalesced and integrated to form the ADZT Regimen outlined here. 
 
The four drugs of ADZT Regimen are apremilast - an anti-psoriasis drug, 
dapsone - an antibiotic, zonisamide - an anti-seizure drug, and telmisartan, 
marketed to treat hypertension. Four are cheap, generic, widely available 
drugs, the fourth, apremilast remain proprietary and somewhat expensive. The 
ancillary attributes of each and the physiology of their interactions with 
bevacizumab’s effects are detailed below. None of the ADZT drugs are 
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currently FDA or EMA approved or marketed for use in augmentation of 
bevacizumab. 
 
2. Apremilast. 
 
Introduced to clinical practice in 2004, apremilast is a 461 Da, selective 
phosphodiesterase (PDE) 4 inhibitor. There are over a dozen currently 
recognized isoforms of PDE. The problem with some past studies of pan-PDE 
inhibitors like pentoxifylline was that some PDE inhibitors have substrates that 
result in opposite intracellular effects to other PDE inhibitors. Since PDE4’s 
predominant intracellular role is in catalysing reaction cyclic adenosine 
monophosphate (cAMP) to AMP, apremilast results in increased intracellular 
cAMP. cAMP is synthesized by ATP conversion  to cAMP mediated by 
adenylate cyclase. Multiple pro-inflammatory cytokines are partially inversely 
controlled by intracellular cAMP levels [7, 8]. As intracellular cAMP 
decreases, synthesis and release of TNF-alpha, IL-2, IL-8, and interferon-
gamma tend to increase [7, 8]. 
 
In accord with these theoretical considerations, at 20 mg twice daily apremilast 
reduced IL-6, IL-8, MCP-1 and TNF-alpha in people being treated for psoriasis 
or psoriatic arthritis [8, 9]. Since these cytokines also have been shown to 
participate in glioblastoma growth facilitation we might expect benefit from 
apremilast on this basis alone.  
 
Apremilast is now being used to successfully treat psoriasis [9-11] and 
psoriatic arthritis [12], atopic dermatitis [13], lichen planus, Behçet disease 
[14], ankylosing spondylitis [15], discoid lupus [16], chronic cutaneous 
sarcoidosis [17] and other inflammatory dermatoses.  
 
Apremilast is generally well tolerated with mild nausea, diarrhea and headache 
being the most common side effects. Discontinuation due to side effects was 
5% with placebo, 7% with apremilast [12]. Another PDE4 specific inhibitor, 
rolipram, was investigated in the 1980’s as an antidepressant but development 
stopped due to excessive nausea [18]. Rolipram inhibited growth of A172 and 
U87MG glioblastoma cell lines by a PDE4 mediated path [19]. 
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In March 2017 Ramezani et al published a crucial paper for our next step in 
improving glioblastoma treatment by improving effectiveness of bevacizumab 
[20]. They showed that adding a PDE4 inhibitor, rolipram, to bevacizumab 
enhanced in vitro cytotoxicity and reduced free VEGF in the culture medium 
compared to bevacizumab alone. This finding makes sense in the larger 
context of pro-inflammatory cytokine release generally. 
 
Understanding that VEGF action might also be inversely related to 
intracellular cAMP opens several exciting augmentation paths by which we 
might make bevacizumab more effective in treating glioblastoma. 
Alternatively, diminished free VEGF after rolipram could be a secondary 
effect of previously established reduction of TNF-alpha, IL-8 and other 
cytokines by PDE4 inhibition. 
 
So PDE4 inhibitors have evidence of a) augmentation of bevacizumab effects 
and independent of that, b) anti-glioma growth effects, and c) lower synthesis 
of inflammation-related cytokines secondary to increased intracellular cAMP.  
 
Apremilast would be a low-risk addition to bevacizumab. 
 
3. Bevacizumab   
 
Introduced clinically in 2004, bevacizumab is commonly called an anti-
angiogenic agent, but it should be more accurately termed what it simply and 
literally is - a monoclonal humanized antibody to soluble VEGF. Beyond 
direct vessel effects, bevacizumab strongly suppressed glioblastoma cell 
expression of 130 kDa platelet endothelial cell adhesion molecule and slightly 
reduced proliferation but upregulated matrix metalloproteinase-2 production 
[20]. Also, for example, bevacizumab is cytotoxic (in vitro at least) to VEGF 
synthesizing glioblastoma cells by binding to outer cell membrane bound 
VEGF [21]. 
 
When a glioblastoma progresses while on bevacizumab, survival is under half 
a year [22-24]. Performance status and quality of life usually improve with 
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bevacizumab but often overall survival does not. ADZT aims to address this 
discrepancy.  
 
Distorted, flawed vessels are common in glioblastoma. Pruning of these 
pathologic vessels occurs during bevacizumab treatment with consequent 
reduction of tumor-related brain tissue edema [24]. But an interesting paradox 
occurs here - vessel density and vessel morphological and functional 
abnormality decrease under bevacizumab treatment, yet hypoxia seems to 
increase [25]. 
 
4. Dapsone.      
 
Introduced in the mid-1940’s, dapsone is a 248 Da sulfone antibiotic still in 
wide use. In addition to antibacterial activity in treating Hansen’s disease and 
pulmonary tuberculosis, dapsone has anti-protozoal effects and is used 
currently in treating Plasmodia infections. Unrelated to antibiotic activity, 
dapsone has found some utility in treating neutrophilic dermatoses like bullous 
pemphigoid, dermatitis herpetiformis, and others [33] including the 
neutrophilic rash caused by epidermal growth factor receptor inhibiting drugs 
[34, 35]. In a series of six papers my colleagues and I have amply documented 
the rationale for using dapsone to deprive the tumors of neutrophil-delivered 
VEGF during the treatment of glioblastoma  [36-38].  
 
As predicted in 2015 and in 2016 [34, 35], dapsone was shown to ameliorate 
anti-epidermal growth factor receptor mediated rash in 2017 [39, 40], a rash 
mediated by VEGF containing neutrophils drawn to rash areas by IL-8 during 
erlotinib or cetuximab treatment but countered by dapsone. We therefore 
expect dapsone to augment bevacizumab by reducing neutrophil borne VEGF 
to glioblastomas. 
 
Dapsone has some in vitro anti-glioma activity on its own [41]. 
 
6. Zonisamide   
 
Introduced in 1993, zonisamide is a 212 Da anti-seizure drug with carbonic 
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anhydrase (CA) inhibitory activity that also blocks voltage-sensitive Na+ 
channels and T-type Ca++ channels [42, 43]. There are a dozen CA isoforms. 
In vitro, the CA IX Ki of zonisamide is 5.1 nM [44]. Zonisamide, unique 
among anticonvulsants, also inhibits monoamine oxidase [45]. 
 
CA catalyses reversible hydration of carbon dioxide to bicarbonate and a 
proton (H2O + CO2 ↔ HCO3- + H+). Of the many isoforms of CA active in 
cancer physiology, CA IX is  particularly prominent, including in glioblastoma 
[46-48]. CA IX resides on the outer cell membrane’s exterior.  The resulting 
bicarbonate ion is imported by various pumps such as the Na+/HCO3- 
cotransporter, raising intracellular pH but lowering extracellular pH as the 
proton remains extracellular. This is one of the primary mechanisms generating 
cancer’s [49] - and specifically glioblastoma’s - abnormal extracellular acidic 
milieu.  
 
Concordant with above mechanism of cancer-related extracellular 
acidification, topiramate, an anti-seizure and CA IX inhibiting drug similar to 
zonisamide, increased glioblastoma intracellular pH [50]. 
 
An immunohistochemistry study of grades II, III and IV glioma biopsy tissue 
by Yoo et al found respectively 21%, 33% and 79% having strong CA IX 
expression [48]. Degree of CA IX expression inversely correlated with survival 
in this and in other similar studies [48, 51]. Higher CA IX expression 
facilitates more vigorous in vitro growth of glioblastoma cell lines [52]. In 
clinical disease, differential survival of glioblastoma patients with high CA IX 
expression - 0 of 9 surviving a year - versus those with low CA IX expression - 
9 of 34 patients surviving a year [52] - would alone seem to justify a clinical 
trial of already-marketed and well-tested CA IX inhibitors like acetazolamide, 
topiramate, or zonisamide.  
 
In light of that inverse correlation, conversion of a high CA IX expression 
glioblastoma to a poor CA IX functioning tumor by zonisamide may well 
prolong survival. 
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Both an experimental CA IX inhibitor or temozolomide individually inhibited 
growth of human glioblastoma xenografted in nude mice. The effect was 
synergistic when used together [53]. The FDA approved pan-CA inhibitor 
acetazolamide augmented temozolomide cytotoxicity to glioma cells in vitro 
[54].  
 
Acetazolamide reduces production of cerebrospinal fluid (CSF) and is used 
clinically for this purpose [55], thus forming another potential benefit for use 
of CA IX inhibitors like zonisamide during glioblastoma treatment, in addition 
to potential augmentation of bevacizumab.  
 
Dexamethasone use tends to worsen prognosis in glioblastoma [56] but must 
be used to decrease elevated CSF pressure during the course of glioblastoma. 
Since we expect dapsone and zonisamide will lower need for steroids we might 
see overall survival increase on that account as well. 
 
Acetazolamide is a sulfonamide pan-CA inhibitor in continuous clinical use 
since the 1950’s with demonstrable preclinical anti-glioma activity [57, 58] but 
so far has had no clinical trial in human glioblastoma other than to treat plateau 
waves [59] as far as I was able to determine. Acetazolamide is currently 
clinically used to treat mountain sickness, elevated intraocular pressure, and 
pseudotumor cerebri syndrome [60, 61]. Acetazolamide could be substituted 
for zonisamide in an ADZT-type regimen. 
 
The use of CA IX inhibition with zonisamide (or acetazolamide) would be a 
realization of Koltai’s “repurposed drug combinations targeting this vulnerable 
side [i.e. decreased extracellular pH and need to export increased intracellular 
protons] of cancer development” [62].  
 
Crucially for our intended use of zonisamide, the lower CAIX activity is in a 
given tumor tissue, the more effective bevacizumab becomes [63-70].  
 
6. Telmisartan. 
 
Telmisartan is an angiotensin receptor blocking drug (ARB) with several 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2018                   doi:10.20944/preprints201809.0209.v1

Peer-reviewed version available at Med. Sci. 2018, 6, 84; doi:10.3390/medsci6040084

http://dx.doi.org/10.20944/preprints201809.0209.v1
http://dx.doi.org/10.3390/medsci6040084


9 

unique features that recommend its use in glioblastoma, and particularly in 
combination with bevacizumab. ARBs, like angiotensin converting enzyme 
(ACE) inhibitors, are marketed for a variety of indications,but  prominently 
hypertension. Telmisartan is uniquely lipophilic, has tighter affinity to the 
angiotensin 2 type 1 receptor, and it happens to inhibit PPAR-gamma as well 
[71, 72], all attributes useful during treatment of glioblastoma, and particularly 
in co-administration with bevacizumab. 
 
In 2017 Levin et al suggested adding an ARB or ACE inhibitor to 
bevacizumab based on their retrospective  glioblastoma study showing overall 
survival of ~ 25 months in those receiving low dose bevacizumab plus an ARB 
or ACE inhibitor, compared to ~ 14 months for those receiving low dose 
bevacizumab only  [73]. It should be noted here that this inverse dose-response 
relationship is currently (as of 2018) unexplained and must be a huge hint in 
our efforts to understand how bevacizumab works. 
 
Also in 2017, Menter et al found similar but slightly different results in non-
squamous, non-small cell lung cancer treated with carboplatin and paclitaxel 
with or without bevacizumab. Bevacizumab prolonged survival, as did an 
ACEi or ARB, but increased survival by addition of an ACE inhibitor/ARB to 
bevacizumab did not reach statistical significance for additive effect [74]. 
 
A potential added benefit of adding telmisartan is that it is also a PPAR-
gamma agonist and PPAR-gamma agonism has significant glioblastoma 
growth inhibiting effects [75] 
 
In metastatic colon cancer, those receiving bevacizumab with an ARB had 
longer progression free survival, 8 versus 6 months, and longer overall 
survival, 26 versus 16 months [76]. 
 
7. Conclusions. 
 
This paper outlined past research pointing to potential advantages of adding 
four older drugs concurrently with bevacizumab. The four drugs - apremilast, 
dapsone, zonisamide, telmisartan - are low risk drugs when used individually, 
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are inexpensive, and generally well known and available to physicians 
worldwide.  
 
Below is a bullet-point list of potential or expected benefits of the ADZT 
Regimen during the course of glioblastoma: 
● Lower ICP. 
● Steroid sparing. 
● Augment bevacizumab effect.  
● Provide synergy with temozolomide.  
● Provide inherent anti-glioma effects. 
● Individually have low side effects, low risk. 
 
The ADZT Regimen follows other efforts to improve the anti-glioblastoma 
effects of bevacizumab. Adding the CXCR4 inhibitor plerixafor for example, 
that did not improve survival over bevacizumab alone, but did provide some 
clues as to resistance or circumvention pathways around anti-VEGF effects of 
bevacizumab [77]. As seen in many cancer chemotherapies, exposure of 
glioblastoma to bevacizumab engages tumor growth enhancing compensatory 
pathways in addition to the intended growth inhibition [78]. The ADZT 
Regimen was designed to enhance bevacizumab mediated growth inhibition by 
blocking several of these circumvention pathways.  
___________________________________________________________ 
 
Compliance with Ethical Standards: This work was carried out under the aegis 
of the IIAIGC Study Center, Burlington, Vermont, USA. There was no further 
specific funding. The author has no conflict of interest.  This article does not 
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the authors. 
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