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1. INTRODUCTION

Random fixed point theorems are stochastic generalization of a classical fixed point
theorems. Random fixed point theorems for contraction mapping in aPolish space, i.e., a
separable complete metric space, were proved by Špaček [22], Hanš [5,6]. Some random
fixed point theorems play amain role in developing theory of random differential and
random integral equations (see, [2, 8, 15]). In 1996, Mukhejea [16] proved the random
fixed point theorem of Schauder’s type in otomic probability measure space. In 1984,
Sehgal and Waters [20] proved the random fixed point theorem of the classical Rothe’s
fixed point theorem. The random fixed point theory and applications developed very
rapidly (see, Bharucha-Reid [3], Itoh [7], Beg and Shahzad [1], Li [14], Kumam et
al. [10–13], Nieto [17]).

In 2012, Samet et al. [19] introduced a new concept of α − ψ−contractive type and
α−admissible mappings and establish fixed point theorems for such mappings in com-
plete metric spaces. Afterwards Karapinar and Samet [9] introduced the concepts of

§ Corresponding author: poom.kum@kmutt.ac.th (P. Kumam).
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generalized α − ψ−contractive type mapping. In 2013, Salimi et al. [18] modified the
notion of α−admissible and α− ψ−contractive mappings and established certain fixed
point theorems. Our results are proper generalizations of the recent results in [9, 19].

Rencently, Tchier and Vetro [21] introduced the concepts of random α−admissible
and random α−ψ−contractive mappings and established random fixed point theorems.

The purpose of this paper is to prove some random fixed point theorems for gener-
alized random α − ψ−contractive mappings in a Polish space and, by using our main
results, we show the existence of random solutions of second order random differential
equation.

2. PRELIMINARIES

We denote the Borel σ−algebra on a metric space M by B(M). Let (Ω,Σ) be a
measurable space with Σ a σ−algebra of subsets of Ω. So that by Σ× B(M) we mean
the smallest σ−algebra on Ω × M containing all the sets A × B (with A ∈ Σ and
B ∈ B(M)).

Definition 2.1. Let (Ω,Σ) be a measurable space, M and N be two metric spaces.
A mapping f : Ω ×M → N is called Carathéodory if, for all m ∈ M, the mapping
ω → f(ω,m) is (Σ, B(N))−measurable (Σ−measurable for short) and, for all ω ∈ Ω,
the mapping m→ f(ω,m) is continuous.

Theorem 2.2. [4] If (Ω,Σ) is a measurable space, M is a separable metric space,
N is a metric space, and f : Ω × M → N is a Carathéodory mapping, then f is
Σ×B(M)−measurable.

Corollary 2.3. [4] If (Ω,Σ) is a measurable space, M is a separable metric space, N
is a metric space, and f : Ω×M → N is a Carathéodory mapping, and u : Ω → M is
Σ−measurable, then mapping ω → f(ω, u(ω)) is a Σ−measurable mapping from Ω into
N.

Definition 2.4. [4] Let (Ω,Σ) be a measurable space, M a separable metric space
and N a metric space. A function f : Ω × M → N is said to be superpositionally
measurable ( sup-measurable for short), if for all u : Ω → M is Σ−measurable, the
function ω → f(ω, u(ω)) is Σ−measurable from Ω into N.

Remark 2.5. [4] Corollary 2.3 says that a Carathéodory function is sup-measurable.
Also, every Σ×B(M)−measurable functions f : Ω×M → N is sup-measurable.

Definition 2.6. A mapping f : Ω×M →M ys called random operator whenever, for
any x ∈ M, f(·, x) is Σ−measurable. So, a random fixed point of f is Σ−measurable
mapping z : Ω×M such that z(ω) = f(ω, z(ω)) for all ω ∈ Ω.

Lemma 2.7. Let M,N be two locally compact metric spaces. A mapping f : Ω×M → N
is Carathéodory if and only if the mapping ω → r(ω)(·) = f(ω, ·) is Σ−measurable from
Ω to C(M,N) (i.e., the space of all continuous functions from M into N endowed with
the compact-open topology).

Let Ψ be the family of all nondecreasing functions ψ : [0,+∞)→ [0,+∞) such that∑+∞
n=1 ψ

n(t) < +∞ for each t > 0, where ψn denote the nth iterate of ψ.

Lemma 2.8. For every nondecreasing function ψ : [0,+∞) → [0,+∞), the following
implication holds:

∀t > 0, lim
n→+∞

ψn(t) = 0 =⇒ ψ(t) < t.
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Definition 2.9. Let T : Ω×M → M and α : Ω×M ×M → [0,+∞). We say that T
is a random α−admissible if

u, v ∈M, ω ∈ Ω, α(ω, u, v) ≥ 1 =⇒ α(ω, T (ω, u), T (ω, v)) ≥ 1.

Definition 2.10. Let (Ω,Σ) be a measurable space, (M,d) be a separable metric space,
and T : Ω×M →M be a given mapping. We say that T is a random α−ψ−contractive
mapping if there exist functions α : Ω ×M ×M → [0,+∞) and ψω ∈ Ψ, ω ∈ Ω, such
that

α(ω, u, v)d(T (ω, u), T (ω, v)) ≤ ψω(d(u, v)),

for all u, v ∈M and ω ∈ Ω such that α(ω, u, v) ≥ 1.

3. Main Results

Definition 3.1. Let T : Ω×M → M and α, η : Ω×M ×M → [0,+∞). We say that
T is a random α−admissible with respect to η if

u, v ∈M, ω ∈ Ω, α(ω, u, v) ≥ η(ω, u, v)⇒ α(ω, T (ω, u), T (ω, v)) ≥ η(ω, T (ω, u), T (ω, v)).

Note that if we take η(ω, u, v) = 1, then this definition reduces to Definition 2.9.

Definition 3.2. Let (Ω,Σ) be a measurable space, (M,d) be a separable space, and
T : Ω ×M → M be a given mapping. We say that T is a generalized random α −
ψ−contractive mapping if there exist functions α, η : Ω × M × M → [0,+∞) and
ψω ∈ Ψ, ω ∈ Ω, such that

α(ω, u, v) ≥ η(ω, u, v)⇒ d(T (ω, u), T (ω, v)) ≤ ψω(O(ω, (u, v))), (3.1)

where

O(ω, (u, v)) = max

{
d(u, v),

d(u, T (ω, u)) + d(v, T (ω, v))

2
,
d(u, T (ω, v)) + d(v, T (ω, u))

2

}
for all u, v ∈M and ω ∈ Ω.

Theorem 3.3. Let (Ω,Σ) be a measurable space, (M,d) be a Polish space, T : Ω×M →
M and α, η : Ω×M ×M → [0,+∞). The hypotheses are the following:

(H1) T is a random α−admissible with respect to η.
(H2) there exists a measurable mapping u0 : Ω→M such that, for all ω ∈ Ω.

α(ω, u0(ω), T (ω, u0(ω))) ≥ η(ω, u0(ω), T (ω, u0(ω))).

(H3) T is a Carathéodory mapping.
(H4) T is a generalized random α− ψ−contractive mapping.

Then T has a random fixed point, that is, there exists ζ : Ω → M is measurable such
that T (ω, ζ(ω)) = ζ(ω) for all ω ∈ Ω.

Proof. Hypothese (H2) ensures that there exists a measurable mapping u0 : Ω → M
such that

α(ω, u0(ω), T (ω, u0(ω))) ≥ η(ω, u0(ω), T (ω, u0(ω))),

for all ω ∈ Ω. Define the sequence {un(ω)} in M by

un(ω) = T n(ω, u0(ω)) = T (ω, un−1(ω)) for all n ∈ N ∪ {0}, ω ∈ Ω.

If un(ω) = un+1(ω) for all n ∈ N∪ {0}, for all ω ∈ Ω, then ζ(ω) = un(ω) is a random
fixed point of T.
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Assume that un(ω) 6= un+1(ω) for all n ∈ N∪{0}, for one ω ∈ Ω. Since T is a random
α−admissible with respect to η (H1) and α(ω, u0(ω), T (ω, u0(ω))) = η(ω, u0(ω), T (ω, u0(ω)))
we have

α(ω, u1(ω), u2(ω)) = α(ω, T (ω, u0(ω)), T 2(ω, u0(ω)))

≥ η(ω, T (ω, u0(ω)), T 2(ω, u0(ω))) = η(ω, u1(ω), u2(ω)).

Continuing this process, we get

α(ω, un(ω), un+1(ω)) ≥ η(ω, un(ω), un+1(ω)) for all n ∈ N ∪ {0}, ω ∈ Ω. (3.2)

So, by (3.2) and hypothesis (H4) with u = un−1(ω), v = un(ω), we get

d(T (ω, un−1(ω)), T (ω, un(ω))) ≤ ψω(O(ω, (un−1(ω), un(ω)))).

On the other hand,

O(ω, (un−1(ω), un(ω))) = max

{
d(un−1(ω), un(ω)),

d(un−1(ω), T (ω, un−1(ω))) + d(un(ω), T (ω, un(ω)))

2
,

d(un−1(ω), T (ω, un(ω))) + d(un(ω), T (ω, un−1(ω)))

2

}
= max

{
d(un−1(ω), un(ω)),

d(un−1(ω), un(ω)) + d(un(ω), un+1(ω))

2
,

d(un−1(ω), un+1(ω))

2

}
≤ max

{
d(un−1(ω), un(ω)),

d(un−1(ω), un(ω)) + d(un(ω), un+1(ω))

2

}
≤ max{d(un−1(ω), un(ω)), d(un(ω), un+1(ω))},

which implies

d(un(ω), un+1(ω)) ≤ ψω(max{d(un−1(ω), un(ω)), d(un(ω), un+1(ω))}).
Now, if max{d(un−1(ω), un(ω)), d(un(ω), un+1(ω))} = d(un(ω), un+1(ω)) for all n ∈ N,

then

d(un(ω), un+1(ω)) ≤ ψω(max{d(un−1(ω), un(ω)), d(un(ω), un+1(ω))})
= ψω(d(un(ω), un+1(ω)))

< d(un(ω), un+1(ω)),

which is a contradiction. Hence, for all n ∈ N, we have

d(un(ω), un+1(ω)) ≤ ψωd(un−1(ω), un(ω)).

By induction, we have

d(un(ω), un+1(ω)) ≤ ψnωd(u0(ω), u1(ω)).
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Fix ε > 0, and let N ∈ N such that∑
n≥N

ψωd(un(ω), un+1(ω)) < ε for all n ∈ N.

Also, let n,m ∈ N with m > n ≥ N. Then, by the triangular inequality, we get

d(un(ω), um(ω)) ≤
m−1∑
k=n

d(uk(ω), uk+1(ω))

≤
m−1∑
k=n

ψkω(d(u0(ω), u1(ω)))

≤
∑
n≥n(ε)

ψnω(d(u0(ω), u1(ω)))

< ε.

The argument show that the sequence {un(ω)} is a Cauchy sequence. Since (M,d) is
complete, there exists ζ : Ω → M such that un(ω) → ζ(ω) as n → +∞ for all ω ∈ Ω.
Since T is a Carathéodory mapping (hypothesis(H3)), it follows that un is measurable
for all n ∈ N and that un+1(ω) = T (ω, un(ω))→ T (ω, ζ(ω)) as n→ +∞ for all ω ∈ Ω.
By the uniqueness of the limit, we get ζ(ω) = T (ω, ζ(ω)), that is, ζ(ω) is a random fixed
point of T. Note that ζ is a measurable since it is a limit of a sequence of measurable. �

By taking η(ω, u, v) = 1, ∀ω ∈ Ω, u, v ∈ M in Theorem 3.3, we have the following
result.

Corollary 3.4. Let (Ω,Σ) be a measurable space, (M,d) be a Polish space, T : Ω×M →
M and α : Ω×M ×M → [0,+∞). The hypotheses are the following:

(H1) T is a random α−admissible.
(H2) there exists a measurable mapping u0 : Ω→M such that, for all ω ∈ Ω.

α(ω, u0(ω), T (ω, u0(ω))) ≥ 1.

(H3) T is a Carathéodory mapping.
(H4) T is a generalized random α− ψ−contractive mapping.

Then T has a random fixed point, that is, there exists ζ : Ω → M is measurable such
that T (ω, ζ(ω)) = ζ(ω) for all ω ∈ Ω.

Theorem 3.5. Let (Ω,Σ) be a measurable space, (M,d) be a Polish space, T : Ω×M →
M and α : Ω×M ×M → [0,+∞). The hypotheses are the following:

(G1) T is a random α−admissible with respect to η.
(G2) there exists a measurable mapping u0 : Ω→M such that, for all ω ∈ Ω.

α(ω, u0(ω), T (ω, u0(ω))) ≥ η(ω, u0(ω), T (ω, u0(ω))).

(G3) T is a sup-measurable.
(G4) T is a generalized random α− ψ−contractive mapping.
(G5) If {un(ω)} is a sequence in M such that

α(ω, un(ω), un+1(ω)) ≥ η(ω, un(ω), un+1(ω))

for all ω ∈ Ω, for all n ∈ N ∪ {0} and un(ω)→ u(ω) as n→ +∞, then

α(ω, un(ω), u(ω)) ≥ η(ω, un(ω), u(ω)),

for all ω ∈ Ω, for all n ∈ N ∪ {0}.
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Then T has a random fixed point, that is, there exists ζ : Ω → M is measurable such
that T (ω, ζ(ω)) = ζ(ω) for all ω ∈ Ω.

Proof. A similar reasoning as in the proof of Theorem 3.3 gives us that the sequence
{un(ω)} is a Cauchy sequence for all ω ∈ Ω. This means that there exists ζ : Ω → M
such that un(ω)→ ζ(ω) as n→ +∞ for all ω ∈ Ω. On the other hand, from (3.2) and
hypothesis (G5), we have

α(ω, un(ω), ζ(ω)) ≥ η(ω, un(ω), ζ(ω)) for all n ∈ N ∪ {0}, ω ∈ Ω. (3.3)

Now, using the triangle inequality (3.3) and (G4), we get

d(T (ω, ζ(ω)), ζ(ω)) ≤ d(T (ω, ζ(ω)), T (ω, un(ω))) + d(un+1(ω), ζ(ω))

≤ ψω(d(ζ(ω), un(ω))) + d(un+1(ω), ζ(ω)).

Taking the limit as n→ +∞ and since ψω is continuous at t = 0, we have

d(T (ω, ζ(ω)), ζ(ω)) = 0,

that is, T (ω, ζ(ω)) = ζ(ω) for all ω ∈ Ω. The hypothesis that T is sup-measurable
implies that un is measurable for all n ∈ N and hence ζ is measurable. Thus ζ is a
random fixed point of T. �

4. Application to ordinary random differential equations

We consider the following two-point boundary value problem of second order random
differential equation:−

d2u

dt2
(ω, t) = f(ω, t, u(ω, t)), t ∈ [0, 1],

u(ω, u) = u(ω, 1) = 0
(4.1)

for all ω ∈ Ω, we have f : Ω× [0, 1]×R→ R has certain regularities and Ω is nonempty.
By a random solution of system (4.1), we mean a measurable mapping u : Ω →

C([0, 1],R) satisfying (4.1), where C([0, 1],R) denote the space of all continuous func-
tions defined on [0, 1]. The space C([0, 1],R) endowed with the metric

d∞(x, y) = ‖x− y‖∞.
In this section, we prove a theorem producing the existence of random soution of

system (4.1).
Let (Ω,Σ) be a measurable space. Let f : Ω × [0, 1] × R → R be a Carathéodory

function, which means that ω 7→ f(ω, t, u) is measurable for all (t, u) ∈ [0, 1] × R and
(t, u) 7→ f(ω, t, u) is continuous for all ω ∈ Ω.

Then consider the integral operator F : Ω× C([0, 1],R)→ C([0, 1],R) defined by

F (ω, u)(t) =

∫ 1

0

G(t, s)f(ω, s, u(s))ds, (4.2)

for all u ∈ C([0, 1],R) and ω ∈ Ω, where G : R × R → R is continuous function, and
g : Ω× [0, 1]× R→ R is a Carathéodory function.

Remark 4.1. F is a random operator from Ω × C([0, 1],R) into C([0, 1],R. In fact,
given u ∈ C([0, 1],R) since f is a Carathéodory function for s ∈ [0, 1] fixed, the function
h : Ω× [0, 1]→ R, defined by h(ω, t) = G(t, s)f(ω, s, u(s)), is Carathéodory. By Lemma
2.7, the integral in (4.2) is limit of a finite sum of measurable functions. So, the mapping
ω → F (ω, u) is measurable, and hence F is a random operator.
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Remark 4.2. Let h : Ω× [0, 1]×R→ R be a Carathéodory function, u ∈ C([0, 1],R),
and let {un} ⊂ C([0, 1],R) be a sequence convergent to u. Then there exists an interval
[a, b] ⊂ R such that un(s), u(s) ∈ [a, b] for all s ∈ [0, 1]. The continuity of the function
h(ω, ·, ·) in [0, 1] × R for fixed ω ∈ Ω ensures that the function h(ω, ·, ·) is uniformly
continuous in [0, 1]× [a, b].

The hypotheses are the following:

(i) For each ω ∈ Ω, there exist ψω ∈ Ψ and θ : Ω × R × R → R such that if
θ(ω, a, b) ≥ 0 for all a, b ∈ R, then for every t ∈ [0, 1], we have

|f(ω, t, a)− f(ω, t, b)|

≤ ψω

(
max

{
|a(t)− b(t)|, 1

2
[|a(t)− F (ω, a(t))|+ |b(t)− F (ω, b(t))|],

1

2
[|a(t)− F (ω, b(t))|+ |b(t)− F (ω, a(t))|]

})
.

(ii) There exists a measurable mapping u0 : Ω → C([0, 1],R) such that, for all
ω ∈ Ω, we have

θ(ω, u0(ω)(t), F (ω, u0(ω))(t)) ≥ 0 for all t ∈ [0, 1]

(iii) For each ω ∈ Ω and for all t ∈ [0, 1], u, v ∈ C([0, 1],R), we have

θ(ω, u(t), v(t)) ≥ 0⇒ θ(ω, F (ω, u)(t), F (ω, v)(t)) ≥ 0.

(iv)
∫ 1

0
G(t, s)ds ≤ 1 for all t ∈ [0, 1] and s ∈ [0, 1].

Theorem 4.3. If hypotheses (i)− (iv) hold, then the random integral operator F has a
random fixed point.

Proof. For fixed ω ∈ Ω we show that F (ω, ·) is continuous. Indeed, consider a sequence
{un} ∈ C([0, 1],R) with un → u ∈ C([0, 1],R) as n → +∞. By Remark 4.2, there
exists [a, b] ⊂ R such that un(s), u(s) ∈ [a, b] for all s ∈ [0, 1]. In addition, the functions
f(ω, ·, ·) is uniformly continuous in [0, 1]× [a, b]. Thus, for fixed ε > 0, there exists δ > 0
such that

|f(ω, s1, u1)− f(ω, s2, u2)| < ε,

for all s1, s2 ∈ [0, 1] and u1, u2 ∈ [a, b] such that |s1 − s2|+ |u1 − u2| < δ.
Now, let n(δ) ∈ N such that ‖un − u‖∞ < δ whenever n ≥ n(δ). Then, for every

n ≥ n(δ), we have

|f(ω, s, un(s))− f(ω, s, u(s))| < ε.

Consequently, for t ∈ [0, 1] and n ≥ n(δ), we have

|F (ω, un)(t)− F (ω, u)(t)| ≤
∫ 1

0

|G(t, s)||f(ω, s, un(s))− f(ω, s, u(s))|ds

≤ ε

⇒ ‖F (ω, un)− F (ω, u)‖∞ ≤ ε.

So, d∞(F (ω, un), F (ω, u)) → 0 as n → +∞ ⇒ F (ω, ·) is a continuous operator for
each fixed ω ∈ Ω.

Thus, by Remark 4.2, F : Ω× C([0, 1],R)→ C([0, 1],R) is a Carathéodory function.
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Next step is to show that the integral operator F satisfies a generalized random
α−ψ−contractive type condition as in (H4). So, for each ω ∈ Ω and all u, v ∈ C([0, 1],R)
such that θ(ω, u(t), v(t)) ≥ 0 for all t ∈ [0, 1], we prove that

d∞(F (ω, u), F (ω, v)) ≤ ψω(O(ω, (u, v)))

where

O(ω, (u, v)) = max

{
d(u, v),

d(u, F (ω, u)) + d(v, F (ω, v))

2
,
d(u, F (ω, v)) + d(v, F (ω, u))

2

}
.

Indeed, let ω ∈ Ω be fixed, and u, v ∈ C([0, 1],R) be such that θ(ω, u(t), v(t)) ≥ 0 for
all t ∈ [0, 1], then

|F (ω, u)(t)− F (ω, v)(t)|

=

∣∣∣∣ ∫ 1

0

G(t, s)[f(ω, s, u(s))− f(ω, s, v(s))]ds

∣∣∣∣
≤
∫ 1

0

G(t, s)|f(ω, s, u(s))− f(ω, s, v(s))|ds

≤
∫ 1

0

G(t, s)

[
ψω

(
max

{
|u(s)− v(s)|, 1

2

[
|u(s)− F (ω, u(s))|+ |v(s)− F (ω, v(s))|

]
,

1

2

[
|u(s)− F (ω, v(s))|+ |v(s)− F (ω, u(s))|

]})]
ds

≤
∫ 1

0

G(t, s)

[
ψω

(
max

{
|u(s)− v(s)‖, 1

2

[
‖u(s)− F (ω, u(s))‖+ ‖v(s)− F (ω, v(s))‖

]
,

1

2

[
‖u(s)− F (ω, v(s))‖+ ‖v(s)− F (ω, u(s))‖

]})]
ds

=

(∫ 1

0

G(t, s)ds

)
ψω

(
max

{
|u(s)− v(s)‖, 1

2

[
‖u(s)− F (ω, u(s))‖+ ‖v(s)− F (ω, v(s))‖

]
,

1

2

[
‖u(s)− F (ω, v(s))‖+ ‖v(s)− F (ω, u(s))‖

]})
≤ ψω

(
max

{
|u(s)− v(s)‖, 1

2

[
‖u(s)− F (ω, u(s))‖+ ‖v(s)− F (ω, v(s))‖

]
,

1

2

[
‖u(s)− F (ω, v(s))‖+ ‖v(s)− F (ω, u(s))‖

]})
.

Then

‖F (ω, u)− F (ω, v)‖

≤ ψω

(
max

{
|u(s)− v(s)‖, 1

2

[
‖u(s)− F (ω, u(s))‖+ ‖v(s)− F (ω, v(s))‖

]
,

1

2

[
‖u(s)− F (ω, v(s))‖+ ‖v(s)− F (ω, u(s))‖

]})
.

Let α : Ω× C([0, 1],R)× C([0, 1],R)→ [0,+∞) be function given as

α(ω, u, v) =

{
1 if θ(ω, u(t), v(t)) ≥ 0 for all t ∈ [0, 1],

0 otherwise
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for all ω ∈ Ω. So, for all u, v ∈ C([0, 1],R) with α(ω, u, v) ≥ 1, we get

‖F (ω, u)− F (ω, v)‖∞

≤ ψω

(
max

{
|u(s)− v(s)‖∞,

1

2

[
‖u(s)− F (ω, u(s))‖∞ + ‖v(s)− F (ω, v(s))‖∞

]
,

1

2

[
‖u(s)− F (ω, v(s))‖∞ + ‖v(s)− F (ω, u(s))‖∞

]})
,

which means that F is a generalized random α− ψ−contractive integral operator.
Note thar, for each ω ∈ Ω and all t ∈ [0, 1], u, v ∈ C([0, 1],R), we have

α(ω, u, v) ≥ 1

⇒ θ(ω, u(t), v(t)) ≥ 0 for all t ∈ [0, 1]

⇒ θ(ω, F (ω, u)(t), F (ω, v)(t)) ≥ 0

α(ω, F (ω, u), F (ω, v)) ≥ 1,

which means that F is a random α−admissible integral oprator.
All of the hypotheses of Corollary 3.4 are satisfied, and hence the mapping F has a

random fixed point. �

Acknowledgments

The first author thanks for the support of Petchra Pra Jom Klao Doctoral Scholarship
for Ph.D. program of King Mongkut’s University of Technology Thonburi (KMUTT).
This work was completed while the first author visit Prof. Juan Mart́ınez-Moreno at
University of Jaén, Jaén, Spain. The authors thank very much Prof. Juan Mart́ınez-
Moreno for his hospitality and support.

References

[1] I. Beg and N. Shahzad. Random fixed points of random multivalued operators on Polish spaces.
Nonlinear Anal., 20(7):835–847, 1993.

[2] A. T. Bharucha-Reid. Random integral equations. Academic Press, New York-London, 1972. Math-
ematics in Science and Engineering, Vol. 96.

[3] A. T. Bharucha-Reid. Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc.,
82(5):641–657, 1976.

[4] Z. Denkowski, S. Migorski, and N. S. Papageorgiou. An introduction to nonlinear analysis: theory.
Kluwer Academic Publishers, Boston, MA, 2003.
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