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Abstract: The lightcone gauge is a set of what are called the observational coordinates adapted to
our past lightcone. We develop this gauge by producing a perturbed spacetime metric that describes
the geometry of our past lightcone where observations are usually obtained. We connect the produced
observational metric to the perturbed Friedmann-Lemaître-Robertson-Walker metric in the standard
general gauge or what is the so-called 1+3 gauge. We derive the relations between these perturbations
of spacetime in the observational coordinates and those perturbations in the standard metric approach,
as well as the dynamical equations for the perturbations in observational coordinates. We also calculate
the observables in the lightcone gauge and re-derive them in terms of Bardeen potentials to first order.
A verification is made of the observables in the perturbed lightcone gauge with those in the standard
gauge. The advantage of the method developed is that the observable relations are simpler than in the
standard formalism, and they are expressed in terms of the metric components which in principle are
measurable. We use the perturbed lightcone gauge in galaxy surveys and the calculations of galaxy
number density contrast. The significance of the new gauge is that by considering the null-like light
propagations the calculations are much simpler due to the non-consideration of the angular deviations.
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1. Introduction

Cosmological observable quantities, henceforth simply referred to as observables, encode information
about the state of the Universe at a particular cosmological redshift. In our past lightcone we can
obtain these observables which can give us our connection to the rest of the Universe. Hence a precise
measure of cosmological observables can directly determine the geometry of the observable part of the
spacetime, in the so-called observational approach [1]. Furthermore we can assume a dynamical theory
for the spacetime curvature of the past lightcone, i.e, General Relativity (GR).

The observations are taken so that we can discover what these observations imply about the
large-scale structure of the Universe. The idea was first discussed in [2], and Refs. [3–7] discussed
the construction of the spacetime metric and ways to determine local matter density in the Universe
directly from astronomical observations on our past lightcone as initial data for the field equations,
and later to establish what is called now the lightcone gauge based on an observational coordinates
set. The main aim was to a great extent that cosmology rather be a directly observational subject [3].
Therefore, they bring cosmologically interpretable astronomical observations into a confrontation with
the cosmological theories, to reveal the structure of distant regions in the Universe.

The rest of this paper is organised as follows: In Sec. (2) and (3) we give a brief overview of the
observational coordinates and the metric adapted to our past lightcone, where we needed to construct
our perturbed lightcone gauge (PLG) in Sec.(4), by showing the relations between the perturbations
of spacetime in observational coordinates and those perturbations in the standard metric approach.

∗maye.elmardi@gmail.com

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 September 2018                   doi:10.20944/preprints201809.0187.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Universe 2018, 4, 108; doi:10.3390/universe4100108

http://dx.doi.org/10.20944/preprints201809.0187.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/universe4100108


2 of 19

Sec. (5) is dedicated to the study of the observables of spacetime in the PLG and verified with those
obtained in the standard perturbed gauge. In Sec. (6) we calculate the galaxy number density contrast
using the PLG and we show verification with the standard gauge as well. Finally in Sec. (7) we discuss
the results and give our conclusions.

2. Observational Coordinates

A spacetime consists of a manifoldM with a metric g. We shall assume the spacetime filled with
a perfect fluid of the form

Tµν = ρuµuν + p(gµν + uµuν), uµuµ = −1 , (1)

where Tµν is the stress energy tensor and uµ the average 4-velocity. The first step in constructing a set
of observational coordinates is to identify fundamental observers. The integral curves of the velocity
vector uµ and their normalised 4-velocity, represent the worldlines of these fundamental observers, i.e,
they are comoving with the galaxies. If τ is the proper time along these worldlines, then

uµ =
dxµ

dτ
. (2)

Let us now single out our worldline C, where C is a set of timelike geodesics generated by uµ at the
event attached to us, on Earth. We will introduce the set of observational coordinates xµ =: {w, y, θ̂, φ̂},

Figure 1. Observational coordinates {w, y, θ̂, φ̂} based on the event q on the worldline C. w is the
time of observation; θ̂, φ̂ represent the direction of observation; and y is a measure of distance to the
object observed.

constructed as follows: the coordinate w is the past lightcones of the events on C, generated along our
worldline. It can be normalized by measuring the proper time along the central worldline C (in other
words, w|C = τ |C). By choosing w = w0 (arbitrary) to correspond to the event q here and now, the
null cone generated then will represent the surfaces of events that happened on our past lightcone at
constant w0. Then generically q will be at the vertices of the lightcones where we receive information
and signals from the Universe. Then w is completely determined when w0 has been chosen. The null
geodesic vector field kµ and ν the affine parameter along them, generating the ruling geodesics of these
lightcones, will be written as

k = ∂/∂ν ⇒ kµ = dxµ/dν , (3)
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where
kµ ≡ ∂w/∂xµ = w,µ ⇒ kµkµ = 0 . (4)

This definition necessarily implies that k is hypersurface-orthogonal [8],

kµ∇ν = kν∇µ . (5)

Null geodesic vector fields are orthogonal to the null surfaces and generate the past-directed null
geodesics along the past lightcone, on which w is constant:

kµ∇νkν = 0⇒ w,µk
µ = 0 . (6)

Once the null geodesic vector condition is satisfied at the central worldline, one will find the same affine
parameter in different directions, that is implying

kµu
µ = w,µu

µ ⇔ kµu
µ|c = 1 , (7)

and this shows that the affine parameter ν is uniquely defined geometrically on the null geodesics, and
this defines the central condition. If we specify that ν = 0 on the worldline C, so the event “q” is given
by

w = w0 , ν = 0 . (8)

The coordinate y measures distances down the null geodesics, and so represents both spatial distance
from the worldline C, and time difference from “q”. There are various choices of y that might be suitable
for different purposes, for example [3]:

1. y = ν, the unique affine parameter down the null geodesics through C determined by the central
conditions on C (ν|c = 0,uµkµ|C = 1). The spacetime metric will be simplified, but one loses the
beautiful physical interpretation of observational coordinates;

2. y = rA, the angular distance, i.e, area distance down the null cones from C.
3. y = z, galactic redshift observed from C, imposing y = const. along matter worldlines;
4. y chosen as in one of (1)-(3) on the initial null cone w = w0, and then specified thereafter to be

comoving with the fluid; y,µuµ = 0.

When one of these specific choices has been made, y is uniquely defined on all the null cones. We will
use such a choice of coordinate y as a coordinate comoving with the fluid, and determined by a unique
specification on the initial null cone w = w0. From equations (3) and (4), we will have [3]

kµ = δ0
µ , kµ = dxµ/dν = (1/β)δµ1 ⇒ (1/β) = dy/dν for β > 0 , (9)

where β is some function that determines the relation of the affine parameter ν to the coordinate y. Eq.
(9) shows the change of rate of the coordinate y down the null geodesics relative to the affine parameter
ν. As y → 0, β = const when y is affine parameter; and β → 1 when we choose y = rA. Different values
of y with constant values of ν represent an event at the same distance from q down the null cone in
different directions. The coordinates (θ̂, φ̂) are angles on the “physical” sky. The observer sees the sky
as the superposition of 2-spheres (w0) embedded in the lightcone, then we can redefine θ̂, φ̂ as spherical
coordinates on the celestial sphere with respect to the (physically non-rotating) reference frame eµ1.
They label the geodesics generating the past lightcone (they are constant along such geodesics) [3]. At
a constant surface w

kµθ̂,µ = kµφ̂,µ = 0 . (10)

1 These tetrad vectors eµ are defined through the conditions: (u = e0, u · ei = 0, eiej =δij), and thus satisfy the
parallel propagation along C: ∇ueµ|c = 0, with u the velocity of the comoving geodesic observer.
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They are based on a parallelly propagated orthonormal tetrad eµ [3] along C. Then at a constant w
and ν, we have

lim
ν→0

{
ds2

ν2

∣∣∣∣
w=const
ν=const

}
= dΩ2 = dθ̂2 + sin2 θ̂dφ̂2 . (11)

These coordinates do not necessarily cover all the spacetime, but they do cover that part which is
observable from the worldline C.

3. Observational Metric

The metric components can be obtained from the previous discussions. From Eqs. (4) and (9) we
see that

kµkµ = 0⇒ w,µg
µνw,ν =⇒ g00 = 0 , (12)

kµ = gµνkν ⇒ gµ0 = (1/β)δµ1 , (13)

and thus
gµνgνγ = δµγ ⇒ g0νgνγ = δ0

γ ⇒ g1γ = βδ0
γ . (14)

We can get the general expression for gµν and compute its inverse by introducing new functions for the
non-constrained components. We thus have [3],

gµν =


α β v2 v3
β 0 0 0
v2 0 h22 h23
v3 0 h23 h33

 , gνγ =


0 1/β 0 0

1/β δ σ2 σ3
0 σ2 h33/h −h23/h
0 σ3 −h23/h h22/h

 , (15)

where

h = det(hIJ ) = h22h33 − (h23)
2 , (16)

δ = −(α+ β(v2σ2 + v3σ3))/β2 . (17)

Here we have defined

σ2 = −(v2h33 − v3h23)/βh , (18)
σ3 = − (v3h22 − v2h23) /βh , (19)

where (I, J) ∈ {2, 3}2. The metric form above implies that the surfaces w|const are null surfaces. But
it does not, as it stands, guarantee that these null surfaces are the past lightcones of the geodesic
worldline C. To set this feature, one has to impose some limits on the behaviour of the metric tensor
components near the worldline C [3]. When the coordinate y is taken to be the affine parameter or the
area distance, these essential limits are [3]:

lim
y→0

α = −1, lim
y→0

β = 1, lim
y→0

(vI/y2) = 0, lim
y→0

hIJdx
IdxJ/y2 = dΩ2 . (20)

When this coordinate y is taken to be the last case (4), from what we obtained above, and by making a
coordinate transformation y′ = y′(w, y, θ̂, φ̂),w′ = w, θ̂′ = θ̂, φ̂′ = φ̂, as y → 0, one finds the limits are
found to be [3]

lim
y→0

α = −1 , lim
y→0

β = β0(w,xI ) , lim
y→0

vI = 0 , lim
y→0

hIJdx
IdxJ/y2 = β2

0dΩ2 . (21)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 September 2018                   doi:10.20944/preprints201809.0187.v1

Peer-reviewed version available at Universe 2018, 4, 108; doi:10.3390/universe4100108

http://dx.doi.org/10.20944/preprints201809.0187.v1
http://dx.doi.org/10.3390/universe4100108


5 of 19

These limits we just introduced guarantee the necessary conditions to make the null hypersurfaces to
be the past lightcones of observer of the worldline C. Finally we can say that we have observational
coordinates if and only if the metric tensor components obey Eqs. (15) and (20) [3].

4. Perturbed Lightcone Gauge

The metric in the above mentioned coordinates reads:

ds2 = a2(w− y)
(
−(1 + δα)dw2 + 2(1 + δβ)dwdy+ 2vÎdx

Îdw+ hÎĴdx
ÎdxĴ

)
, (22)

where
(
Î, Ĵ

)
∈ {2, 3}2 with x2 = θ̂ and x3 = φ̂. Also:

hÎĴ = ΩÎĴ +HÎĴ , (23)

with HÎĴ represents the tensor perturbation. We consider a perturbed FLRW spacetime in an arbitrary
gauge. The coordinate system is xµ = (η,χ, θ,φ). The metric in these coordinates reads:

ds2 = a2gµνdx
µdxν = a2(η)

[
−(1 + 2φ)dη2 + 2Bidxidη+ (γij + 2Cij) dxidxj

]
, (24)

where
Cij = −ψγij +∇i∇jE +∇iFj +

1
2hij . (25)

At first order, the coordinate transformation reads:
w = η+ χ+ δw

y = χ+ δy

θ̂ = θ+ δθ̂

φ̂ = φ+ δφ̂ .

(26)

We also define the backward affine parameter along the past lightcone, λ. In the background, we have:

d

dλ
=

1
a2 [∂χ + ∂η ] . (27)

Since we have kµ̂ = a−2(1− δβ)δµ̂y , we can write that

0 = kw =
dη

dλ
+
dχ

dλ
+
dδw

dλ
= kη + k̄χ +

dδw

dλ
. (28)

Therefore:
δw = −

∫
(kη + k̄χ) dλ . (29)

Similarly, using ky = a−2(1− δβ), we get

δy = −
∫ (

δβ

a2

)
dλ . (30)

Using kÎ = 0:
δxÎ = −

∫
kIdλδÎI . (31)
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The Jacobian of the coordinate transformation is given by:

∂xµ̂

∂xν
=


1 + ∂ηδw 1 + ∂χδw ∂θδw ∂φδw

∂ηδy 1 + ∂χδy ∂θδy ∂φδy

∂ηδθ̂ ∂χδθ̂ 1 + ∂θδθ̂ ∂φδθ̂

∂ηδφ̂ ∂χδφ̂ ∂θδφ̂ 1 + ∂φδφ̂

 , (32)

and we can write the inverse as

∂xµ

∂xν̂
= δµν − δ

µ
0 δ

1
ν − ∂νδµ̂ + δ1

ν∂wδ
µ̂ + δµ0 ∂νδy− δ

µ
0 δ

1
ν∂wδy . (33)

With all that, the metric quantities in the PLG system are given by:

δα = 2
[
−φ+ ∂η

∫ (1− δβ
a2 + kη

)
dλ

]
, (34)

vÎ =

[
BI − ∂I

∫ (
kη +

1− δβ
a2

)
dλ− γIJ∂η

∫
kJδĴJ dλ

]
δI
Î

, (35)

HÎĴ = 2
[
CγIJ + γK(I∂J)

∫
kKdλ

]
δI
Î
δJ
Ĵ

. (36)

Note that the equation for δβ is not constraining anything because d
dλ (δy− δw) involves δβ. Actually,

after a bit of algebra it leads to the identity:

2φ+ kχ − 2kη +Bχ = a2kχ . (37)

Using the fact that kη = gηµk
µ, one finds that this identity is exactly satisfied.

The nullity of gyy also leads to a constraint:

kη + kχ =
1
a2

(
nχ(φ+ ψ) +Bχ − nχ∇2E − nχ∇χFχ −

1
2n

χh χ
χ

)
, (38)

which is an identity resulting from the null geodesic equation. We have used the facts that

∂

∂y
|w=cst =

∂

∂η
|χ=cst +

∂

∂χ
|y=cst =

d

dη
, (39)

∂

∂w
|y=cst = −

∂

∂η
|χ=cst , (40)

which means that y mimics the behaviour of the affine parameter along the light ray. Finally, the
nullity of gyÎ leads to:

γIJk
J = −∂I

∫
(kη + kχ) dλ−BI +∇(χ∇I)E +∇(χFI) +

1
2h

χ
I , (41)

which also results from the null geodesic equation.
Therefore, we see that the very definition of the observational coordinates system via the relation

kµ̂ = β−1δµ̂y ensures that our PLG metric has the correct form.

5. Observables in the PLG

We are going to present here the observables that we can measure on our past lightcone. By using
the PLG introduced above, we are going to get a set of observables defined by the PLG parameters.
They are simpler but different in definitions from what we are used to in perturbed FLRW; a justification
has been made between the two gauges.
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5.1. The Redshift of Distant Galaxies in the PLG

Figure 2. A time interval dτ at the observed galaxy is measured as a time interval dw by the
observer.

The redshift of a source crossing the lightcone is the time dilation observed from C(w, y, θ̂, φ̂) of a
source of a proper time τ along its worldlines; crossing our past lightcone is determined by the ratio
dw/dτ along our worldline. The observed redshift z of its emitted light is determined by

1 + z =
λo
λs

=
ac(w)

a(w, y) =
dw

dτ
= uw|s =

1
a
(1 + δα/2) , (42)

where ac(w) is the scale factor along the central worldline C at singular point w0|C (it can be taken
equal to 1 today). Or we can use the expression

1 + z =
(kµuµ)s
(kµuµ)o

, (43)

where we can normalise (kµuµ)o = 1, and we can re-write (43) as

1 + z = (kµu
µ)s, (44)

and using (4) again, we will get
1 + z = (δ0

µu
µ)s = (uw)s . (45)

This shows that in the lightcone gauge the redshift of the source is its 4-velocity, where the 4-velocity
of the source is directly observable because the redshift is directly measurable from the observed source
spectrum.

We will use the Jacobian (32) to transform our above result into the standard model gauge, getting

uw =
∂w

∂η
uη +

∂w

∂xi
ui . (46)

To first order, this can be expanded as

uw =
1

a(w− y)
[
1− φ+ ∂ηδw+ viδ1

i

]
. (47)
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We could decompose vi into scalar and tensor parts as

vi = V i + γij [∇jE′ +Bj ] . (48)

To simplify the discussion, let us concentrate on scalar modes in the longitudinal gauge: E = B = 0.
Then using the expression for δw, and the commutation rules Eq. (122), we obtain

∂ηδw = −
∫ [

∂η

(
φ−ψ
a2

)
+ 2H

(
φ−ψ
a2

)]
dλ . (49)

Hence:
∂ηδw = −

∫
∂η(φ−ψ)

a2 dλ = −
∫
∂η(φ−ψ)dη . (50)

Thus, remembering that in Longitudinal gauge φ = Φ, φ−ψ = Φ + Ψ, and ~V · ~n = vχ we get:

uw =
1

a(η)

[
1−Φ +

∫
∂η (Φ + Ψ) dη+ ~V · ~n

]o
s

, (51)

evaluated from the source s to the observer on the central worldline o. This gives the expected expression
for 1 + z in terms of Bardeen’s potentials.

If we now look at scalars only in a general gauge, using the fact that ∂χ and
∫
dλ commute, we

get, after a bit of algebra:

uw =
1

a(η)

[
1 +H

(
B −E′

)
−Φ +

∫
(Φ + Ψ)′ dη+ ~V · ~n

]o
s

. (52)

Under a general gauge transformation, η → η− T and xi → xi −Li, we have

B −E′ → B −E′ − T , and a(η)→ a(η) [1−HT ] . (53)

Therefore, uw → uw, and the redshift as a whole is indeed gauge invariant, although its background
and first-order parts are manifestly not.

If one includes vectors and tensors, one finds:

uw =
1

a(η)

[
1 +H

(
B −E′

)
−Φ +

∫
(Φ + Ψ)′ dη+ ~V · ~n+

∫ [
~̄Φ · ~n

]′
dη+

1
2

∫
[h(~n,~n)]′ dη

]o
s

.

(54)
We can conclude that the 4-velocity of the observer in the PLG can cover the Sachs-Wolfe (SW) equation
with the scalar contribution, and the so called integrated Sachs-Wolfe term, additional to vector and
tensor contributions to the redshift.

5.2. The Area Distance in the PLG

The shape and size of the image of a source depends on the path taken by the light rays from the
source to the observer through the spacetime by the null geodesics; i.e, it depends on the spacetime
curvature. In fact they are both represented by the metric components hÎĴ , which are in principle,
directly measurable. For an object of known size and shape observed at time w0 and lying at distance
y in the direction θ̂, φ̂ one has [3]

dl2 = hÎĴ (w0, y, θ̂, φ̂)dxÎdxĴ , (55)

where dl represents distance of the object perpendicular to the line of sight, which are known if the size,
shape and orientation of the object are known. The term dxÎ represents the corresponding angular
displacements at the image, which are directly measurable [3]. Comparing the angular measurements
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with the known dimensions, one can deduce hÎĴ . And directly from (55) and (20), we get the area
distance rA given by

rA =

[
det[hIJ ]

sin2 θ̂

] 1
4

, (56)

where

hÎĴ =

(
a2S2(y)(1 +Hθ̂θ̂) a2S2(y)Hθ̂φ̂

a2S2(y)Hθ̂φ̂ a2S2(y)(sin2 θ̂+Hφ̂φ̂)

)
. (57)

For simplicity we express the embedded S(y) in HÎĴ , thus defining the determinant as

det[h] = a4S4(y)(sin2 θ̂+Hφ̂φ̂ + sin2 θ̂Hθ̂θ̂)− a
4S4(y)H2

θ̂φ̂
, (58)

and therefore

rA =

(
a4S4(y)[1 +Hθ̂θ̂ +

1
sin2 θ̂

Hφ̂φ̂]

) 1
4

. (59)

This means the area distance in the PLG can be written in a very simple way as

rA = a((w− y), η)S(y)
[
1 + 1

4H
T

]
, (60)

where HT is the trace, given by Eq. (36), and according to Eq. (124), one can write

HT = 2CII + 2
∫ λ

λs

dλ′∇IkI , (61)

where kI is the null vector from the source position at xs and along the light trajectory to the observer
position at xo. Thus, the preceding equation becomes

HT = −4Ψs − 4H(B −E′) + 2
(ηo − ηs)

∫ ηo

ηs

dη

∫ η

ηs

dη′(η′ − ηs)
[
(∇2 − ni∇2

i −
2
χ
ni∇i)(Φ + Ψ)

−∇2Bin
i −∇(iB

′
j)n

inj +
2
χ
∇(iBj)n

inj +∇2njF
j ′ +∇(iF

′′
j)n

jni − 2
χ
∇(iFj)

′njni

+
2
χ
ninj

1
2h
′
ij −∇2hijn

inj
]

. (62)

Now substituting back in Eq. (60), the area distance is given by

rA(n, η) = a(ηs)(ηo − ηs)
[
1−Ψs −H(B −E′) +

1
2

1
(ηo − ηs)

∫ ηo

ηs

dη(η− ηs)(ηo − η)

×
(
(∇2 − ninj∇i∇j −

2
(ηo − η)

ni∇i)(Φ + Ψ)− ni∇2Bi + ni∇2F ′i −∇(iB
′
j)n

inj

+∇(iF
′′
j)n

jni −∇2hijn
inj − 2

(ηo − η)
(∇(iF

′
j)n

jni + ninj
1
2h
′
ij +∇(iBj)n

inj)

)]
.

(63)

This equation represents the area distance of an object in a general gauge including the vector and
tensor modes contributions in the Friedmann universe, and it is equivalent to the expression of the area
distance in our PLG, see Eq. (60). The double integrals term in Eq. (63) represents the integrated
effects proportional to line-of-sight integrals of the scalar, vector and tensor modes and their time
derivatives.
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5.3. The Luminosity Distance in the PLG

The luminous rays received from a source of area distance rA, observed at redshift z, is defined in
the past-lightcone as

dL =
(
1 + z

)2
rA = a(w− y)S(y)(uw)2

[
1 + 1

4H
T

]
, (64)

from which we can write

dL(n, ηs) =
S(χ)

as(η)

[
1− 2Φo + 2Φs −Ψs +H(B −E

′
) + 2V · n

+2
∫
(Φ + Ψ)′dη−

∫
ninj

(
∇(iF

′
j) +

1
2h
′
ij −∇(iBj)

)
dη

+
1
2

1
(ηo − ηs)

∫ ηo

ηs

dη

∫ η

ηs

dη′(η′ − ηs)
(
(∇2 − ninj∇i∇j −

2
(ηs − η)

ni∇i)(Φ + Ψ)

−∇2Bin
i −∇(iB

′
j)n

inj +
2

(ηs − η)
∇(iBj)n

inj +∇2njF
j ′ + njni∇(iF

′′
j)

− 2
(ηs − η)

∇(iF
′
j)n

jni +
2

(ηs − η)
ninjh′ij −∇2hijn

inj
)]

. (65)

Relating the above expression to the redshift of the source, therefore

zs = zs + δzs , (66)

where we can easily write

δzs = (1 + zs)

[
Ψo −Ψs +H(B −E

′
) + V · n−

∫ ηo

ηs

ni∇i(Φ + Ψ)dη

−
∫ ηo

ηs

ninj
(
∇(iF

′
j) +

1
2h
′
ij −∇(iBj)

)
dη

]
. (67)

And we can assume that [9]

dL(n, ηs) = dL(n, η(zs)) ≡ dL(n, zs) , (68)

by taking the Taylor expansion

dL(n, zs) = dL(n, zs)−
dL(n, zs)
dzs

|z=z δzs . (69)

Then the redshift luminosity distance is given by [10]

dL(n, zs)
dzs

|z=z = (1 + zs)
−1dL +H−1

s +O(1) , (70)

with zs + 1 = 1/a(ηs) at the background. This leads to

dL(n, zs)
dzs

|z=z = (1 + zs)

[
− (ηo − ηs +H−1

s )

][
Ψo −Ψs +H(B −E

′
) + V · n

−
∫ ηo

ηs

ni∇i(Φ + Ψ)dη−
∫ ηo

ηs

ninj
(
∇(iF

′
j) +

1
2h
′
ij −∇(iBj)

)
dη

]
.

(71)
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Then the redshift luminosity distance will be given as

dL(n, zs) = (1 + zs)

[
(ηo − ηs) + [(ηo − ηs)−H−1

s ]Ψo − [2(ηo − ηs)−H−1
s ]Ψs

+2(ηo − ηs)Φs −H−1
s H(B −E′) + [(ηo − ηs)−H−1

s ]V · n + 2
∫ ηo

ηs

dηΦ

+

∫ ηo

ηs

dη(ηs − η)ni∇i(−3Φ + Ψ) + [(ηo − ηs)−H−1
s ]

∫ ηo

ηs

ni∇i(−Ψ + Φ)dη

+ninjH−1
s

∫ ηo

ηs

(
∇iF ′j +

1
2h
′
ij −∇iBj

)
dη

+
1
2

∫ ηo

ηs

dη(η− ηs)(ηo − η)
(
[∇2 − ninj∇i∇j ](Φ + Ψ)−∇2ni(Bi − F ′i )

−ninj [∇(i B
′
j) −∇(iF

′′
j)] − n

inj∇2hij −
2

ηo − η
[∇(iF

′
j) +

1
2h
′
ij +∇(iBj)]n

inj
)]

.

(72)

This is the famous expression of the redshift luminosity distance in a perturbed Friedmann universe
in general gauge, as a function of the measured source redshift zs and its direction n. It contains the
angular and redshift fluctuations of the luminosity distance or what is called “gravitational redshift" in
the first line apart from the background contribution. The second line can be the terms due to peculiar
motion of the observer and emitter (Doppler terms). The third and fourth lines collect integrated
effects proportional to line-of-sight integrals of Ψ and its time derivative, and the fifth and last line
represents the lensing term with ∇2Ψ ∝ δρ. This equation is obtained in [11,12], and is equivalent to
our expression of luminosity distance in PLG, Eq. (64), which we expressed in one single line in terms
of the metric components, which in principle measurable quantity.

6. Galaxy Surveys

The large-scale cosmic structure contains lots of information about the global properties of our
Universe, and by analysing maps of galaxies we can probe the initial conditions of the Big Bang and its
physical processes that have operated subsequently [13,14]. Statistical measurements of galaxy motions
and clustering with the weak gravitational lensing, provide some of the strongest evidence to date that
Einstein’s GR is an accurate description of gravity on cosmological scales.
Galaxies are the building blocks which define the large-scale distribution of visible matter in the
Universe and it can be used to trace the underlying dark matter distribution. Without dark matter,
galaxy formation would occur substantially later in the Universe than it is observed. After this all dark
matter ripples could grow freely, forming seeds into which the baryons could later fall. Such information
requires a combination of the galaxies’ location in three dimensions and distance information from its
redshift [15].

6.1. The Galaxy Number Count with the PLG

Suppose one counts the galaxies seen in a solid angle dΩ0 around the direction of observation
(θ̂, φ̂), down to a distance y. An increment from y −→ y+ dy will result in including dN new galaxies
in the count, where dN is the number of galaxies detected in a volume dV of size as (dy, dθ̂, dφ̂) around
a point on our past lightcone

dV = (r2
AdΩ0)(u

µkµdν) . (73)

If the number density of galaxies at the position y is n, then (n dV ) is the number of galaxies that will
be contained in this volume. We will write dN in the form

dN = fmdV , (74)
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where fm is the selection function representing the fraction of galaxies in dV that are actually detected
and included in the number count; one can estimate fm from knowledge of the galactic brightness
distribution and spectrum, the area distance rA and redshift z. In general, fm will depend on
w, y, θ̂ and φ̂. The number count of galaxies in a box of size (dy, dθ̂, dΦ̂) around a point on our past
lightcone can also be calculated as

dN = fmr
2
A(1 + z)dΩ0βdy , (75)

where dν = βdy, and β = a2(1 + δβ). If y has been chosen to be an observable quantity, then dN
is directly measurable. As z and rA are known, one can estimate the selection function fm, which
depends on rA, z, the galaxy properties and the observational limits and selection effects. Therefore, in
principle, one could determine the quantity β in terms of known quantities.

The geometric properties of spacetime play a role in the determination of the distribution of galaxies.
Nevertheless the observed redshift and position of galaxies are affected by the matter fluctuations
and the gravity waves between the source galaxies and the observer. Therefore the volume element
constructed using the observed redshift and observed angle is different from the real physical volume
occupied by the observed galaxies. The observed flux and redshift of the source galaxies are also different
from their intrinsic properties. Therefore, the observed galaxy fluctuation field contains additional
contributions arising from the distortion in observable quantities and these include tensor contributions
as well as numerous scalar contributions [16]. Therefore, the observed galaxy number density is affected
by perturbations given the total number of observed galaxies, and it contains additional contributions
from the distortions in the observable quantities, compared to the standard description that galaxies
simply trace the underlying matter distribution.

6.2. The Perturbation of Galaxy Number Counts ∆

The number count of an overdensity galaxy number count is what we can measure when we divide
the map of galaxy surveys with beams at fixed redshift and solid angle. By counting the galaxies in
each pixel separately we can study the fluctuation of the galaxy number and the distribution of dark
matter. The number of overdensity galaxies in one pixel can be given by

∆ =
N − N̄
N̄

= b · δρ
ρ

= b · δ . (76)

The number count ∆ is an observable quantity; it relates the number of the galaxies in each pixel to
the average numbers of the galaxies N̄ , and the distribution of dark matter δ and its bias b. Galaxy
formation is a local process and its relation to the underlying matter density should be well defined and
gauge invariant. The observable quantities such as observed galaxy counting should be independent of
a choice of the gauge condition. The large-scale distribution of galaxies, the density fluctuation δ(x, t)
which we calculate in a given Friedmann background, is not gauge invariant, this is “the cosmological
gauge problem” [17]. Since it depends on the background Friedmann universe we compare the observed
ρ(x, t) with [18].

δ(x, t) ≡ ρ(x, t)− ρ̄(t)
ρ̄(t)

. (77)

In order to fix this problem, one has to consider individual observational effects like the redshift space
distortions [19,20], the Alcock-Pacinski [21] or lensing [18,22].

For unbiased distribution, ρ̄ is the mean galaxy density, i.e., ρ̄ = 〈ρ〉 . Determining the spectrum
in terms of directly observable quantities compares with determining gauge-invariant expression. The
redshift density perturbation can be written as

δz(n, z) = ρ(n, z)− 〈ρ〉(z)
〈ρ〉(z)

. (78)
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Using the fact that ρ = N/V , and with a little of algebra, we can get [18]

δz(n, z) = N(n, z)− 〈N〉(z)
〈N〉(z)

− δV (n, z)
V (z)

, (79)

where the physical survey volume density per redshift bin per solid angle can be written as a background
part in a homogeneous world and a fluctuated quantity, since the solid angle and the redshift bin are
distorted between the source and the observer:

V (n, z) = V (z) + δV (n, z) . (80)

The perturbation in the number density of galaxies is an observed quantity, and the volume perturbation
also can be measured with other tracers than galaxies, and it is therefore measurable by itself and hence
gauge invariant. Therefore they are gauge-invariant quantities. And hence δz(n, z) is gauge invariant.
We can re-write Eq. (79) as

∆(n, z) = N(n, z)− 〈N〉(z)
〈N〉(z)

= δz(n, z) + δV (n, z)
V (z)

, (81)

which is a gauge-invariant expression.

The Computation of δz(n, z) in the PLG:

The computation of δz(n, z) to first order will get

δz(n, z) =
ρ(n, z)− ρ(z)

ρ(z)
, (82)

knowing that ρ(n, z) = ρ(z) + δρ(n, z), and using the fact that z = z + δz then Eq. (82) yields, to
first order

δz(n, z) = δ(n, z)− dρ

dz

δz(n, z(η))
ρ(z)

, (83)

where δρ(n,z)
ρ(z)

= δ(n, z), and by using dρ
dz = −3 ρ

1+z the matter fluctuation (at the observed redshift) is
given by

δz(n, z) = δ(n, z) + 3δz(n, z(η))
(1 + z)

. (84)

Since 1 + z = (1 + z̄)(1 + δα/2), and δz = (1 + z̄) 1
2δα. Then one can re-write Eq. (84) as

δz(n, z) = δ(n, z) + 3
2δα . (85)

Here we relate the perturbation variables in direction n at redshift z to their unperturbed position
and time η. z = z(η) is the redshift of the background universe that we measure on and δz is the
redshift perturbation to this universe, δz(n, z) = δ(n, z) in a uniform-redshift frame δz = 0. It is gauge
invariant since is defined by observable quantities, where the time slicing is set by the observed redshift
z, rather than by an arbitrary choice of coordinate systems or gauge conditions as for δ(n, z) and
differs in its value contingent upon the gauge choice [23]. Moreover, by solving the background relation
z = z(η), we can write

ρ(n, z(η)) = ρ(η) + δρ(n, η) . (86)

Note that ρ(z) = ρ(z + δz) deviates to first order from ρ(z). Both δz and δρ depend on the chosen
background and are, hence, gauge dependent; however their combination in Eq. (83) must turn out to
be gauge invariant as it is in principle observable.
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The Volume Distortion in the PLG:

The volume perturbation δV
V should be gauge invariant, because it is, in principle, a measurable

quantity given unbiased volume tracers. The differential volume element (seen by a source with
4-velocity uµ) is given by

dV =
√
−gεµναβuµdxνdxαdxβ . (87)

= v(ν,α,β)dxνdxαdxβ , (88)

where v is a volume density, which determines the volume perturbation

δV

V
=
v(z)− v(z)

v(z)
=
δv

v
. (89)

Then the volume perturbation in terms of redshift and sky position is determined by our observation
coordinates (w, y, θ̂, φ̂), and therefore

v =
√
−gε0123u

w ∂y

∂z

∂θ̂

∂θ̂s

∂φ̂

∂φ̂s
+
√
−gε1230u

y ∂w

∂z

∂θ̂

∂θ̂s

∂φ̂

∂φ̂s
, (90)

(91)

where ε has a permutation signature. The transformation matrix from the angles at the source to the
angles at the observer is ∣∣∣∂(θs,ϕs)

∂(θo,ϕo)

∣∣∣ = 1 + ∂δθ

∂θ
+
∂δϕ

∂ϕ
. (92)

In homogeneous and isotropic backgrounds, the geodesics are straight lines, that is θs = θo ,ϕs = ϕo,
but in a perturbed universe, angles are perturbed with respect to each other:

θs = θ0 + δθ , ϕs = ϕo + δϕ . (93)

The angles between the source and the observer are fixed at the PLG. It can be shown that there is no
angular displacement

δθ̂ = δφ̂ = 0 . (94)

That will lead to the volume perturbation being given as

v =
√
−guw ∂y

∂z
−
√
−guy ∂w

∂z
. (95)

(96)

With instant light cone w|const, we get

v =
√
−guw ∂y

∂z
. (97)

Furthermore, from Eq. (22)

√
−g = a4S2 sin(θ)

(
1 + HT

2 + δβ

)
, (98)

and the 4-velocity of the source according to the PLG

u = {(1 + z),nivi} . (99)
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Since dy
dz is the change in comoving distance y with redshift along the photon geodesic, we can re-write

it as
dy

dz
=
dy

dz
− dy

dz

dδz

dz
+
dδy

dz
. (100)

Using the fact that y = χ, we can rewrite the above result as

dy

dz
=

dχ

dz
− dχ

dz

dδz

dz
+
dδy

dz
=

(
dχ

dη
− dχ

dz

dδz

dη
+
dδy

dη

)
dη

dz
. (101)

Here dy/dz is to be understood as the change in co-moving distance y with respect to the redshift
along the photon geodesic. The distinction between z and z is only relevant for background quantities.
Therefore, Eq. (97) will look like

v(z) = a4S2 sin(θ)
(

1 + HT

2 + δβ

)
(1 + z)

(
dχ

dη
− dχ

dz

dδz

dη
+
dδy

dη

)
dη

dz
. (102)

In Eq. (101), the last term contains the redshift-space distortion, which will turn out to be the biggest
correction to the power spectrum [18]. To lowest order along the photon geodesic, with 1+ z = a0

a = 1
a ,

we have
dη

dz
= −aH−1 = −H−1 , (103)

where H is the physical Hubble parameter and H is the comoving Hubble parameter. With all the
above taken into account, the volume element becomes

v(z) = −a4S(y)2 sin(θ)
(

1 + HT

2 + δβ

)(
1 + 1

2δα
)(

dχ

dη
− 1
H(1 + z)

dδz

dη
+
dδy

dη

)
H−1 , (104)

or
v(z) =

a4S(y)2 sin(θ)
H

(
−1 + 1

H(1 + z)

∂δz

∂y
− ∂δy

∂y
− HT

2 − δβ − 1
2δα

)
, (105)

where we have used the relations (116). Furthermore, we introduce the volume density as

δv

v
=
v(z)− v(z)

v(z)
, (106)

where
v(z) = v(z) +

dv(z)

dz
δz(n, z) . (107)

To obtain the fluctuation of v just subtract the unperturbed part v(z) from v of Eq. (105) (and
additional 1/a factor coming from the background part of [1+z] term)

v(z) =
S(y)2 sin(θ)
(1 + z)4H

, (108)

and thus
v(z) = v(z)

(
1 +

[
2

S(y)H
− 4 + H

′

H2

]
δz

1 + z

)
. (109)

Putting all of these together, we obtain the volume density fluctuations given by

δv

v
=

(
1

H(1 + z)

∂δz

∂y
− ∂δy

∂y
− HT

2 − δβ +

[
2

S(y)H
+
H′

H2 − 1
]
δα

2

)
. (110)

And since from Eq. (30) we can conclude

∂δy

∂y
=
dδy

dη
= −δβ , (111)
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then

δv

v
=

(
1

H(1 + z)

∂δz

∂y
− HT

2 +

[
2

S(y)H
+
H′

H2 − 1
]
δα

2

)
. (112)

With S(y) = y = (ηo − ηs) in flat space, and δz = 1
2 (1 + z)δα, one can then write

∆(n, z) = δ(n, z) + 1
2H

∂δα

∂y
− HT

2 +

[
2
yH

+
H′

H2 − 1
]
δα

2 . (113)

This is the expression for the density redshift perturbation in observational coordinates using the
observational metric, and as indicated does not include unmeasurable monopole terms or a dipole term
(niVi)o that usually arises by the perturbation at the observer position. Moreover it does not depend
on the peculiar velocity of observer and emitter, and we do not need to compute the deviation vectors
that relate the perturbed geodesic to the unperturbed one. It only depends on quantities in terms of
the perturbed metric and in principle all can be measurable.

Eq. (113) is a gauge-invariant expression, the first term we have discussed it earlier, the second
term contains the Doppler term, the integrated Sachs-Wolfe, the gravitational redshift and the
redshift-space distortion. The third term contains the lensing distortion and time delay, and the last
term contains the redshift perturbation of the volume.

When we apply the gauge transformations into the density fluctuations to the equivalent expression
in general gauge. The upcoming result is already obtained in [16,22,23]:

∆(n, z) = Dg −Ψ−H(B −E′) + 1
H

[
Ψ′ + ∂χVχ −

(
∂χF

′
χ +

1
2h
′
χχ −∂χBχ

) ]
+

[
2
yH

+
H′

H2

][
−Φ +H(B −E′) + Vχ +

∫ ηo

ηs

(Φ + Ψ)′dη−
∫ ηo

ηs

(
∂χF

′
χ +

1
2h
′
χχ − ∂(χBχ)

)
dη

]
− 1
ηo − ηs

∫ ηo

ηs

(η′ − ηs)∆Ω

(
(Φ + Ψ)−Bχ + F ′χ −

1
2hχχ

)
dη′ .

(114)

Dg is density fluctuation on the uniform curvature hypersurface

Dg ≡ δ + 3(1 +w)(ψ) = δlong − 3(1 +w)Ψ , (115)

where δlong is the density perturbations in the longitudinal gauge. Eq. (114) represents the
gauge-invariant redshift density fluctuation using a FLRW metric. The H−1∂χΨ term is the
gravitational redshift. The light emitted from a galaxy has to pass via that potential field and reach
the observer. In so doing, the photon has to lose some of its own energy and hence become redshifted.
That will result in changing the redshift of the beam. The term H−1∂χ(Vχ) is the redshift space
distortion due to the galaxies’ peculiar velocity relative to the observer line of sight, and this is
considered the largest signal correction on the intermediate scales [18]. The middle line comes from the
redshift perturbation of the volume, and it contains a Doppler term; it also contains the ordinary and
integrated Sachs-Wolfe terms. The third line (the integral) is the lensing distortion which corresponds
to the change in the solid angle causing radial and angular volume distortions and time delay [24–26];
it is relevant especially on large scales. The rest of the terms have very small relativistic effects.

The standard Newtonian description of the galaxy power spectrum breaks down and the general
relativistic description is therefore essential for understanding the observed galaxy power spectrum and
deriving correct constraints from these measurements. The relativistic effects progressively become
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significant at low angular multipoles at high redshifts z ≥ 2, where the relativistic effects are dominant
and significant on the horizon scale but they break the symmetry of the correlation function [27]. Due
to these effects ∆ contains additional information δ,V , Φ, Ψ; this can help testing gravity by probing
the relation between density, velocity and gravitational potentials.

7. Conclution

In this paper, a lightcone gauge has been constructed and adapted to observations made on the
null cone using observational coordinates. We developed this gauge by perturbing the lightcone, and
reproducing a new linear perturbed gauge to satisfy us up to first-order calculations of the observables.
We calculated the observables in the so-called lightcone gauge. The calculations of the observables in
the new gauge introduced was much easier than the ones we usually obtain in the standard gauge. And
the most interesting feature in the results of the PLG is that they are a sum of the scalar, vector and
tensor contributions to the standard gauge results.

We then used this perturbed gauge to compute the galaxy number density contrast, which is the
truly measured quantity in large galaxy surveys. Our result contains the relativistic effects that it
has been produced due to the distortions of spacetime. With the use of the PLG we could have them
in terms of the metric components which make it easy to be calculated since we considered null-like
observations; we did not have to worry about deviations on the spatial positions of the galaxy. These
effects do affect our observables and by measuring them we can use the result to test the relations
between the density, velocity and gravitational potentials. Using the PLG gauge was an attempt to
make the measuring of these relativistic effects achievable in the simplest way. Our results will be most
significant for future galaxy survey catalogs like BOSS, DES, Euclid, and of significance to SLOAN-7
data analysis.

8. Appendix

Commuting partial derivatives and integrals

∂

∂y
|w=const. =

∂

∂η
|χ=const. +

∂

∂χ
|y=const. =

d

dη
, (116)

∂

∂w
|y=const. =

∂

∂η
|χ=const. . (117)

Here is an attempt at finding a way to commute partial derivatives and integrals from the observer to
the source. Say we want to calculate ∂ηX where X is first order and is written:

X =

∫
Y dλ. (118)

Then, we have:
d

dλ
X = Y ⇔ (∂χ − ∂η)X = a2Y . (119)

Therefore:
(∂χ − ∂η) ∂ηX = a2∂ηY + 2a2HY , (120)

or equivalently:
d

dλ
∂ηX = ∂ηY + 2HY . (121)

Hence:
∂η

∫
Y dλ =

∫
[∂ηY + 2HY ] dλ . (122)
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Also, we get similarly:
∂χ

∫
Y dλ =

∫
[∂χY ] dλ. (123)

Using these two relations and integrating by parts, we recover d
dλ

∫
Y dλ = Y . Finally:

∂I

∫
Y dλ =

∫
∂IY dλ . (124)
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