

Review

Silicon Photonic Biosensors Using Label-Free Detection

Enxiao Luan ^{1,*}, Hossam Shoman ¹, Daniel M. Ratner ², Karen C. Cheung ¹ and Lukas Chrostowski ¹¹ Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada; hoshoman@ece.ubc.ca (H.S.); kcheung@ece.ubc.ca (K.C.C); lukasc@ece.ubc.ca (L.C.)² Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195-5061, USA; dratner@uw.edu (D.M.R.)

* Correspondence: eluan@ece.ubc.ca; Tel.: +1-778-952-8807

Abstract: Thanks to advanced semiconductor microfabrication technology, chip-scale integration and miniaturization of lab-on-a-chip components, silicon-based optical biosensors have made significant progress for the purpose of point-of-care diagnosis. In this review, we provide an overview of the state-of-the-art in evanescent field biosensing technologies including interferometer, microcavity, photonic crystal, and Bragg grating waveguide-based sensors. Their sensing mechanisms and sensor performances, as well as real biomarkers for label-free detection, are exhibited and compared. We also review the development of chip-level integration for lab-on-a-chip photonic sensing platforms, which consist of the optical sensing device, flow delivery system, optical input and readout equipment. At last, some advanced system-level CMOS-chip packaging examples are presented, indicating the commercialization potential for the low cost, high yield, portable biosensing platform leveraging CMOS processes.

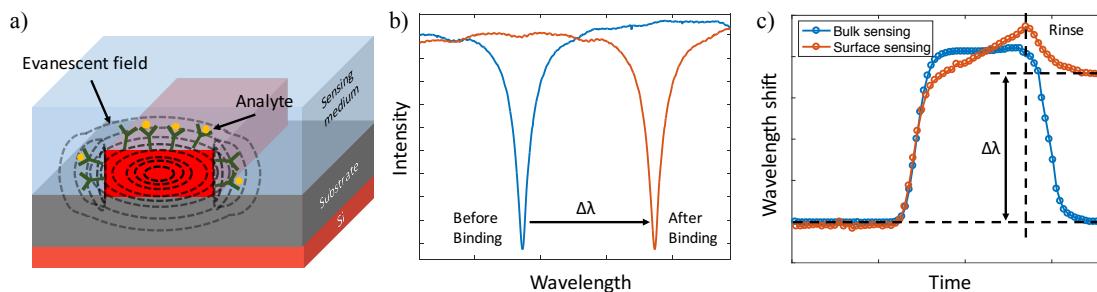
Keywords: silicon photonics, evanescent optical field sensor, label-free SOI biosensor, Mach-Zehnder interferometer, ring resonator, photonic crystal, Bragg grating, sub-wavelength grating, lab-on-a-chip, microfluidics

1. Introduction

Medical diagnostics have come to play a critical role in healthcare by providing early detection and diagnosis of disease [1], improving timely and appropriate care [2], protecting the safety of medical products such as blood for transfusion [3], and reducing healthcare costs [4]. Most diagnostic systems have been designed to meet the requirements of well-funded clinical laboratories in highly regulated environments, but do not address the need of the majority of patients and caretakers in the developing world with inadequate healthcare facilities and clinical laboratories [5]. For instance, the enzyme-linked immunosorbent assay (ELISA), which has been the gold-standard method in biomarker detection and validated for more than 40 years, can obtain an ultra-low detection limit (~ 1 pM) [6]. However, this method is based on a label-based approach which delays results, adds to costs due to specialized reagent requirements, and needs complex micro-evaluations using large, automated analyzers. Therefore, highly sensitive, fast and economic techniques of analysis are desired for both developing and developed countries for point-of-care (POC) diagnostic applications to improve access to cost-effective healthcare technologies.

The development of practical biosensors is one of the most promising approaches to satisfy the growing demand for effective medical diagnostic technologies [7]. Since the first oxygen electrode biosensor demonstrated by Clark in 1956 [8], scientists and engineers have made significant progress in the field of biosensing techniques, which has subsequently been adopted into clinical practice. By 2020, the global biosensors market size is anticipated to reach USD 21.17 billion, among which optical biosensors are identified as the most lucrative technology segment [9]. This represents just a fraction of the estimated USD 72 billion worldwide markets for in vitro diagnostics (IVD). There are a variety of techniques that have been successfully employed for optical measurements, such as emission, absorption, fluorescence,

35 refractometry, and polarimetry [10]. Evanescent field detection is the primary detection principle of many
36 optical biosensors [10]. Due to the sensitivity to changes in the local refractive index (RI) within the evanescent
37 field surrounding the device, evanescent field biosensors such as Surface Plasmon Resonance (SPR) or planar
38 waveguide based sensors have attracted growing interest for sensitive, real-time, and label-free biomolecular
39 detection [11]. Wavelength (or phase) interrogation and intensity interrogation are two common interrogation
40 configurations applied among these transducers.


41 Several technologies are available for the fabrication of photonic biosensors, and the well-developed
42 silicon photonic integrated circuits (PICs) technology is one of the most promising [12]. Due to the
43 compatibility with complementary metal-oxide semiconductor (CMOS) foundry processes, silicon PICs
44 can be manufactured with great efficiency at high volume [13]. Moreover, the high refractive index contrast
45 between silicon and silicon dioxide, or other surrounding media, enables the development of miniaturized
46 compact sensing devices, with the additional possibility of fabricating multiple sensors on one single chip
47 [10]. Meanwhile, silicon photonics are excellent transducers for continuous and quantitative label-free
48 biosensing [14,15], which can directly respond to affinity interactions between analyte and receptor molecules
49 in real-time. Hence, numerous silicon photonic sensing devices, such as Mach-Zehnder interferometers
50 (MZIs) [16,17], microring resonators (MRRs) [18,19], microdisk resonators [20,21], Bragg grating resonators
51 [22,23], and one-dimensional (1D) or two-dimensional (2D) photonic crystals (PhCs) [24,25] have been
52 developed over the past decades for biosensing diagnostic applications.

53 This paper reviews the literature on label-free integrated (i.e., not SPR) photonic biosensors over the last
54 20 years. An overview of the main planar integrated optical sensing configurations for label-free detection
55 is presented, emphasizing the description of these structures and corresponding sensing mechanisms.
56 Several performance-improving approaches, such as using slot, thinner or suspended waveguides, and 1.31
57 μm wavelength light sources, as well as advanced strategies by employing sub-wavelength grating (SWG)
58 waveguides and the Vernier effect method, are also introduced. A brief summary of experimental validations
59 of biomarkers and their respective detection limits (*D*Ls) is listed to illustrate their dynamic ranges of sensing
60 and limitations therein. To address system operations for lab-on-a-chip diagnosis, approaches for optofluidic
61 and optoelectronic integrations on the silicon-on-insulator (SOI) substrate are mentioned including their
62 advantages and disadvantages. Finally, examples of some state-of-the-art packaged on-CMOS sensing
63 platforms are reported, showing a promising prospect for the development of fully integrated, portable,
64 lab-on-a-chip biosensing architectures for multiplexed label-free diagnostics.

65 2. Theory and Structures

66 2.1. Evanescent Field Sensing Principle

67 Leveraging the silicon-on-insulator (SOI) platform, silicon photonic biosensors rely on near-infrared
68 light confined in nanometer-scale silicon wires (known as waveguides) to sense molecular interaction events.
69 The portion of the light's electrical field traveling outside of the waveguide is referred to as the evanescent field,
70 which can interact with the surrounding volume to create an external RI sensitive region (Figure 1a). When
71 target molecules bind to receptors at the waveguide's surface, the accumulation of molecules with a different
72 refractive index changes the external RI and perturbs the evanescent field, which then further influences the
73 behavior of the guided light in the waveguide [26]. By monitoring the coupling and/or propagation properties
74 of the output light, analytes of interest can be detected in real-time (Figure 1b) [27]. Since the evanescent field
75 decays exponentially with a decay length ranging from a few tens to a few hundreds of nanometers into the
76 bulk medium, the sensing signal of an analyte captured within the decay length shows a significant difference
77 compared to the signal of an analyte floating far away from the surface [15]. Thus, based on the response
78 of the evanescent field sensor, we can distinguish the target molecules immobilized on the surface (surface
79 sensing) from those remaining in bulk solution (bulk sensing), as presented in Figure 1c.

Figure 1. Principle of the evanescent field detection for a silicon photonic biosensor. (a) The evanescent field (dashed lines) around the waveguide is sensitive to the RI change caused by biological binding events at the waveguide's surface. (b) Optical transmission spectra of the sensor before (blue curve) and after (red curve) the analyte interaction, resulting in a wavelength shift ($\Delta\lambda$). (c) Sensorgrams of the sensor in bulk (blue curve) and surface (red curve), where the signals are recorded as a function of time.

Several figures of merit are widely used for the evaluation of sensor performance, such as selectivity, reproducibility, stability, sensitivity, and resolution (detection limit). Selectivity describes the ability of a sensor to detect a target analyte in a sample containing other admixtures, which is the main consideration for the bioreceptor selection; reproducibility is the ability to generate identical responses for repetitive experimental setups, which provides high reliability and robustness for the signal; stability refers to the degree of susceptibility to ambient disturbances around the sensing system, which can affect the precision and accuracy of the sensor [28]. Sensitivity (S) and detection limit (DL) are two performance criteria we would like to focus on in this review since they have stronger correlation with their sensor geometries. In evanescent field sensors, sensitivity is determined by the strength of interactions between matter and the fraction of light in solution or at the surface [15]. According to the status of target molecules, two specific types of sensitivities are defined in biosensing applications: (1) bulk sensitivity (S_{bulk}), which takes into account RI changes of the waveguide's entire cladding, and (2) surface sensitivity (S_{surf}), which assesses RI changes within the first few tens to hundreds of nanometers above the surface [26]. For the bulk sensitivity, it is defined as the slope of wavelength (or phase) shift versus the change of refractive index unit (RIU), and the shift is described by [29]:

$$\frac{\Delta\lambda}{\lambda} \text{ (or)} \frac{\Delta\phi}{\phi} = K \cdot \frac{\Delta n_{\text{fluid}}}{n_g} \cdot \frac{\partial n_{\text{eff}}}{\partial n_{\text{fluid}}}, \quad (1)$$

where λ is the wavelength and ϕ is the phase of the input light, K is the sensor structure constant (varies depending on the configuration of the sensor), n_{fluid} is the RI of the analyte solution, and n_{eff} and n_g are the mode's effective and group indices. From Equation 1, the wavelength (or phase) shift is mainly contributed by the shift in the solution's RI (Δn_{fluid}), the dispersion (n_g) of the material and waveguide, and the mode's effective index change ($\partial n_{\text{eff}}/\partial n_{\text{fluid}}$) caused by the slight change of the mode profile [29]. The bulk sensitivity is defined as:

$$S_{\text{bulk}} = \frac{\Delta\lambda \text{ (or)} \Delta\phi}{\Delta n_{\text{fluid}}}. \quad (2)$$

As for the surface sensitivity, the definition is slightly different from the bulk one by replacing the solution's RI (n_{fluid}) with the thickness of a homogeneous adlayer on the surface (t_{adlayer}). Therefore, the expressions for the wavelength (or phase) shift and surface sensitivity are [30]:

$$\frac{\Delta\lambda}{\lambda} \text{ (or)} \frac{\Delta\phi}{\phi} = K \cdot \frac{\Delta t_{\text{adlayer}}}{n_g} \cdot \frac{\partial n_{\text{eff}}}{\partial t_{\text{adlayer}}}, \quad (3)$$

$$S_{\text{surf}} = \frac{\Delta\lambda \text{ (or)} \Delta\phi}{\Delta t_{\text{adlayer}}}, \quad (4)$$

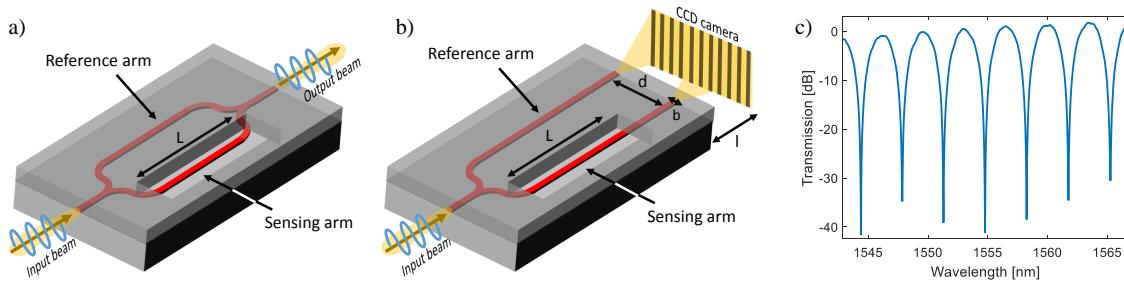
respectively. From Equation 3 and 4, $\partial n_{\text{eff}}/\partial t_{\text{adlayer}}$ is highly dependent on the refractive index of the adlayer material: a high RI analyte can lead to a significant effective index variation and wavelength shift even with a

82 thin adlayer at the surface. Thus, surface sensitivity is usually defined for a specific molecule of interest and is
83 not suitable for a general comparison among sensors operated with different biosensing assays.

The detection limit (DL) is typically specified as the minimum RI (or smallest mass) change necessary to cause a detectable change in the output signal, and defined as follows:

$$DL = \frac{3\sigma}{S} \quad (5)$$

84 where σ is the system noise floor, and S is the bulk or surface sensitivity. Since σ depends on the experimental
85 setup and readout instrumentation, this DL is also regarded as the system detection limit (sDL). For an
86 evanescent field label-free biosensor, DL can be specified in three units: (1) DL in units of refractive index
87 units (RIU) aims to characterize the sensing capability in bulk solution, which offers a rough comparison
88 among different sensors, (2) DL in units of pg/mm^2 and (3) in units of ng/mL aim to characterize the sensing
89 capability at sensor's surface by using surface mass density and sample concentration, respectively [15]. Due
90 to the correlation among these DL s, the sensing capability of optical biosensors based on different bioassays
91 can be investigated and compared.


92 2.2. Optical Biosensor Configurations

93 We select the following representative optical structures that have been reported in the literature and
94 widely used as silicon photonic label-free biosensors at the operating wavelength of visible and near-infrared
95 light.

96 2.2.1. Interferometer Based Biosensors

97 Interferometer-based biosensors constitute one of the most sensitive integrated-optic approaches by
98 combining two very sensitive methods: waveguiding and interferometry techniques [31]. In a conventional
99 interferometric biosensor, the guided light is split by a Y-junction into two single-mode waveguide paths,
100 one of which containing the sample is regarded as a sensing arm and the other one is used as a reference
101 arm. The evanescent field of the sensing arm interacts with the sample and senses the RI change at the
102 surface, resulting in an optical phase shift. After a certain distance, the beams recombine again and cause a
103 constructive or destructive interference at the output (as shown in Figure 2c), where the intensity modulation
104 corresponds to the RI difference between sample and reference arms.

105 Young and Mach-Zehnder interferometers are the most common formats for interferometric sensing
106 techniques [27,31,32]. Since the first double-slit experiment by Thomas Young in 1801 [33], and the
107 demonstration of the phase shift detection between two collimated beams by Ludwig Zehnder [34] and
108 Ernst Mach [35] in 1891 and 1892, Young and Mach-Zehnder interferometric configurations have been
109 exploited in biosensors successfully. Although both of these interferometers utilize Y-junctions to split the
110 coherent, single mode and polarized light at the input, the output recombination of Young interferometers
111 (YIs) is not realized like MZIs (Figure 2a) by another on-chip Y-junction. Instead, the interference light in YIs
112 is projected on a screen or CCD camera in an off-chip way, as shown in Figure 2b.

Figure 2. Interferometric biosensors. (a) Illustration of a typical Mach-Zehnder interferometer. The light is split into two arms (sensing and reference) and recombined at the output by on-chip Y-junctions. The degree of interference is proportional to the RI variation taking place on the sensing arm. (b) Illustration of a classic Young interferometer. Rather than using Y-junctions to rejoin the split beams, the light is projected from two closely spaced secondary sources onto a CCD camera, resulting in an interference pattern. (c) Measured interferogram of a typical MZI device after normalization by eliminating the insertion loss.

In case of a MZI sensor, the output intensity (I_{out}) is a periodically oscillating function of the phase change difference ($\Delta\phi$) of the beams from two arms with the following expression [36]:

$$I_{\text{out}} = I_{\text{sen}} + I_{\text{ref}} + 2\sqrt{I_{\text{sen}}I_{\text{ref}}}\cos(\Delta\phi + \Delta\phi_0) \quad (6)$$

where I_{sen} and I_{ref} are the intensity of the light passing through the sensing and reference arms of the MZI, respectively, and $\Delta\phi_0$ is the initial phase difference due to the unbalance of the two arms. The phase difference caused by the variation of the effective index (Δn_{eff}) at the wavelength λ is calculated as:

$$\Delta\phi = \frac{2\pi}{\lambda}\Delta n_{\text{eff}}L \quad (7)$$

where L is the effective detection length of the sensing arm. As for the YI sensor, since not a single intensity, but an interference pattern (so-called interferogram) is detected at the output, the optical path length difference from two secondary sources is varying along the propagation direction (y-axis) [31]. Thus, Equation 6 should be rewritten for YI sensors as [37]:

$$I_{\text{out}}(y) = \frac{\sin^2(b\pi y/\lambda l)}{(b\pi y/\lambda l)^2} \left[I_{\text{sen}} + I_{\text{ref}} + 2\sqrt{I_{\text{sen}}I_{\text{ref}}}\cos\left(\frac{\lambda l}{2\pi d}y + \Delta\phi + \Delta\phi_0\right) \right] \quad (8)$$

where b , d and l are the width of a single slit, the distance of two secondary sources and the distance from sources to the detector surface, respectively (as shown in Figure 2b). In this case, the phase difference is expressed as:

$$\Delta\phi = \frac{2\pi}{\lambda}(xd/l - \Delta n_{\text{eff}}L) \quad (9)$$

where x denotes the position of the interferogram on the camera. The fringe pattern moves laterally at the output. The sensitivity of interferometric sensors is defined as the change in phase caused by the change in RIU of the cladding above the sensing arm. According to Equation 7 and Equation 9, a longer interaction length (L) in the sensing arm can increase the sensitivity [38]. However, due to the cosine-dependent intensity function of the interferometric curve, the intensity response is non-linear: a higher signal change at the quadrature point is observed than the one near the curve extreme of the cosine function. Moreover, false positive signals occur when input source fluctuations or temperature variations happen, which strongly influence the reliability of the interferometric sensor, especially with long sensing arms [39]. Thus, additional modulation approaches are usually needed to tune the phase difference between the arms for interferometer sensors.

The first biosensing application using integrated MZIs was reported by Heideman et al. in the early 1990s [40,41]. Since then, remarkable progress has been achieved in the development of MZI sensors. Different

125 configurations with a variety of fabrication materials from Si_3N_4 [41,42], SiO_2 [43], Si [44,45] to polymers
 126 [46,47], and even liquid [48] were employed successfully, showing a *DL* down to $10^{-6} \sim 10^{-7}$ RIU. In parallel,
 127 chip-integrated YIs have also shown the ability of biomolecule measurement, yielding a comparable *DL* to
 128 the MZI sensor [49,50]. In 2000, a follow-up work by Brandenburg et al. reduced the *DL* of YI sensors to $9 \times$
 129 10^{-8} RIU by employing silicon oxynitride as waveguides [51]. Seven years later, Ta_2O_5 -based YIs have been
 130 reported by Schmitt et al. to further improve the sensing ability, with the lowest published *DL* of 9×10^{-9}
 131 RIU [52]. Moreover, polymeric materials were also applied to YI sensors in the last few years, which offer a
 132 low-cost, mass-produced manufacturing method with a satisfactory sensitivity [53,54].

133 More recently, Lechuga et al. have introduced a BiModal waveguide (BiMW) interferometer for
 134 biosensing applications [39,55,56]. Instead of splitting the beam into different arms, the light excites two
 135 different modes by a step-junction, and molecular interactions are monitored by the bimodal section. Due to
 136 the difference of modal overlap with the analyte, phase changes in two modes introduced by the RI change are
 137 distinct, leading to the interference between the two guided modes. The reported *DL* of the BiMW sensor is as
 138 low as 2.5×10^{-7} RIU [55] comparable to other interferometric sensors. However, these devices usually need
 139 a large footprint, around 5 to 10 mm in length, which limits the density of on-chip sensors for multiplexable
 140 detections.

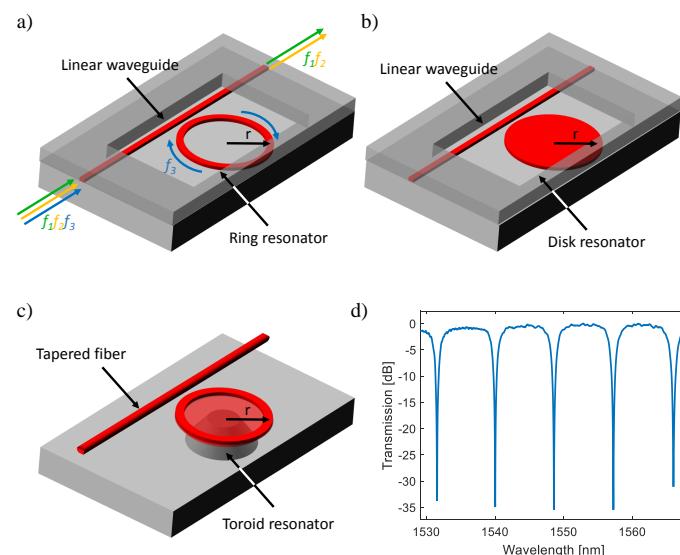
141 2.2.2. Resonant Microcavity Based Biosensors

Optical microcavity resonators have been investigated as an emerging sensing technology due to their potential for highly-compact sensing arrays. In a microcavity resonator structure, incident light propagating in an input waveguide or tapered fiber is coupled into the microcavity via the evanescent field. Then, coupled light passes through the cavity in the form of whispering gallery modes (WGMs) or circulating waveguide modes with multiple round-trips, resulting in optical interference at specific wavelengths of light, as shown in Figure 3d by the resonant condition:

$$\lambda = \frac{2\pi r \cdot n_{\text{eff}}}{m} \quad (10)$$

142 where λ is the resonant wavelength, r is the radius of the resonator, n_{eff} is the resonator effective refractive index, and m is an integer. The positions of resonant peaks are related to the RI near the resonator surface 143 and shift due to the change of n_{eff} , which can be monitored by scanning the wavelength or by measuring the 144 intensity at a single wavelength.

Unlike interferometric biosensors, the interaction of light and analyte is no longer determined by the length of the sensing waveguide, but rather by the characteristic time of the energy stored inside the resonator, which is characterized by the quality factor (Q-factor) [15]. Q-factor describes the photon lifetime in the resonator and represents the number of oscillations before the energy has decayed to 37% (1/e). Therefore, Q-factor incorporates the distributed loss of a resonator and is approximated by dividing the resonant wavelength by its full width at half maximum (FWHM) [29]:


$$Q = \omega \frac{\epsilon}{\partial \epsilon / \partial t} = \frac{2\pi n_g \cdot 4.34}{\lambda \cdot \alpha_{(\text{dB/m})}} \approx \frac{\lambda}{\Delta \lambda_{\text{FWHM}}} \quad (11)$$

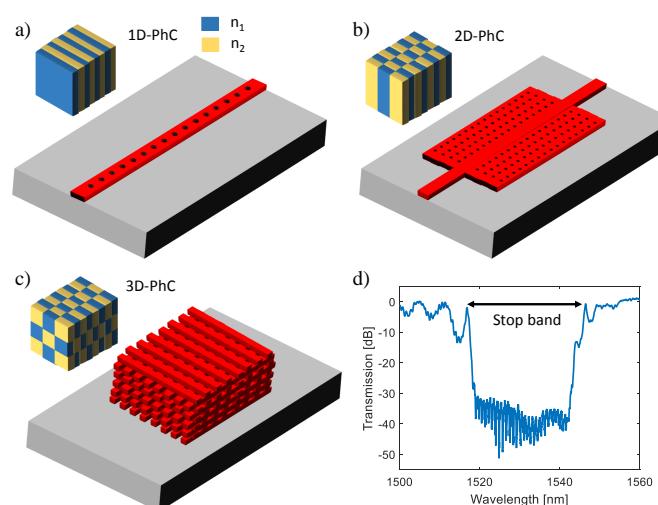
where ω is the resonant frequency, ϵ is the energy of the resonant mode, n_g is the group index, α is the total distributed loss in the resonator, and $\Delta \lambda_{\text{FWHM}}$ is the FWHM bandwidth of the resonance peak. A higher Q-factor indicates that light stays in the resonator longer and interacts more with the analyte. Moreover, White et al. have proved that having a high Q-factor is advantageous in reducing the noise of the sensor (σ), which further improves the *DL* [57]. As mentioned before, the *DL* (or *sDL*) relies much on the measurement system including curve fitting methods and limitations from light sources or detectors, which makes it difficult to have an objective comparison between sensors with different assays and experimental systems [58]. As a consequence, intrinsic detection limit (*iDL*) was introduced as a substitute for resonant sensors, which is only dependent on intrinsic characteristics, i.e., the resonance linewidth, and defined by [59]:

$$iDL = \frac{\lambda}{Q \cdot S} \quad (12)$$

146 where λ , Q , and S are the sensor's resonant wavelength, quality factor, and sensitivity, respectively. By
 147 replacing S with S_{bulk} or S_{surf} , the bulk or surface iDL can be represented.

148 Several types of planar resonant microcavity-based configurations have been implemented so far for
 149 biosensing since the introduction from two theoretical papers in 2001 [60,61], such as microring (MRR) [62],
 150 microdisk [63] and microtoroid [64] shaped resonators (Figure 3). Similar to interferometers, microcavity
 151 resonators can be made of Si_3N_4 [65,66], SiO_2 [67,68], Si [18,69], and polymer [70,71] as well. Although
 152 resonator-based biosensors enable dense on-chip integration and offer a similar DL of $10^{-5} \sim 10^{-7}$ RIU
 153 [18,72], their Q -factors (except toroid resonators) are relatively low especially with water cladding (around
 154 10^4) due to the high optical loss, such as side-wall scattering, bend radiation, mode mismatch and material
 155 absorption [73]. Microsphere-based ring resonators [74,75] and capillary-based opto-fluidic ring resonators
 156 (OFRR) [76] have been recently introduced, supporting improved Q -factors over 10^6 with DLS on the order of
 157 10^{-7} RIU, and applied in a wide sensing range from pesticide [77], cancer [78], to bacteria [79]. However, due
 158 to three-dimensional architectures, these devices are not suitable for on-chip fabrication and microfluidics
 159 integration. Beside
 160 with nanometer p

Figure 3. Planar resonant microcavity biosensors. (a) Illustration of a conventional MRR sensor. By using a bus waveguide, guided light is coupled into the resonator at a frequency corresponding to the resonant condition. (b) Illustration of a microdisk resonator sensor. (c) Illustration of a microtoroid resonator sensor. This structure is coupled by a low-loss tapered fiber, exhibiting an ultrahigh Q -factor over 10^8 [80]. (d) Measured transmission spectrum of a conventional MRR device after normalization.


161 2.2.3. Photonic Crystal Based Biosensors

162 Porous silicon (PSi) has been applied as the optical sensor for the detection of chemicals and molecular
 163 interactions since 1997 [81]. By using electrochemical etching of crystalline silicon in HF-based solutions,
 164 as well as physical, physicochemical, Chemical and electrochemical post-procedures, various PSi layers
 165 have been developed and established [82]. Thanks to their porous nature of PSi architectures, an extremely
 166 high surface area within a small volume is achieved with narrow optical reflectivity features, which offers
 167 a decreased DL with enhanced sensitivities compared to Fabry-Perot based optical sensors [83]. Photonic
 168 crystals (PhC) and Bragg reflectors are two main configurations developed by PSi for biosensing purpose. In
 169 this review, we focus on the next generation of PSi sensors, waveguide-based PhC and Bragg devices appeared
 170 around 2009 [84,85], which provide more optical confinement and guidance within their planar waveguides.

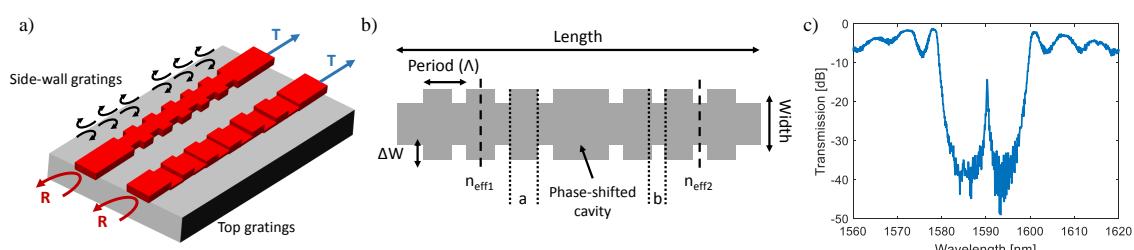
171 A photonic crystal (PhC) waveguide consists of periodically repeating arrays of dielectric structures,
 172 forming periodic variations in the refractive index. The periodicity is on the order of the optical wavelength

173 and stops a range of wavelengths propagating through the PhC, resulting in a photonic bandgap on the
 174 transmission (or reflection) spectrum presented in Figure 4d. By introducing a defect into the PhC structure,
 175 a defect mode at a particular wavelength is formed and resonantly confined in the defect region, which
 176 leads to a sharp peak within the bandgap. Due to the strong optical confinement, light is concentrated in a
 177 minimal volume near the defect, enabling an intense light-matter interaction area. A tiny volume of analytes
 178 immobilized surrounding the defect can induce a noticeable shift of the resonance wavelength and provide a
 179 measurable response. Hence, in the past ten years, PhC based biosensors are regarded as a promising and
 180 novel technology that has gained much attention [86–88].

181 The periodicity of a PhC structure can vary from one-dimensional (1D), two-dimensional (2D) to
 182 three-dimensional (3D). One-dimensional PhCs are the most straightforward architecture analyzed by Lord
 183 Rayleigh as early as 1887. These structures consist of different material layers with high and low refractive
 184 indices alternatively (Figure 4a) and are usually fabricated by layer-by-layer deposition, spin coating, or
 185 photolithography methods [89]. In 1987, Yablonovitch [90] and John [91] reported the detailed research on
 186 PhCs separately, proposing the concept of photonic bandgaps in 2D and 3D structures. 2D and 3D PhCs
 187 exhibit their periodicity in two and three spatial directions as shown in Figure 4b and 4c, which need complex
 188 manufacturing techniques like photolithography, etching, and particle self-assembly, etc [89]. Although the
 189 complexity of the manufacturing process of 1D PhC devices is low, a well-collimated beam is usually required

190 **Figure 4.** Illustration of photonic crystals in (a) 1D, (b) 2D, (c) 3D conformations. Insert: Schematic
 191 representation of each format showing the periodic arrangements, different colors represent materials with
 192 different indices. (d) Measured transmission spectrum of a uniform PhC device after normalization.

193 PhC biosensors were first developed using TiO_2 -coated polymer gratings by Cunningham et al.
 194 in the early 2000s, offering an inexpensive manufacturing technique on plastic films [93–95]. At the
 195 same time, Si-based PhC devices in the SOI platform were also investigated and have developed rapidly
 196 leveraging electron beam lithography (e-beam) technology, including 1D PhC [96–98], 2D PhC [25,86] based
 197 architectures, for biomolecule detections. Chow et al. demonstrated an ultra-compact PhC sensor with a
 198 sensing area of $10 \mu\text{m}^2$, enabling a DL of better than 2×10^{-3} RIU and a Q -factor of 400 in 2004 [86]. Later in
 199 2010, Skivesen et al. achieved an improved DL of 6.75×10^{-4} RIU by tracking sharp fringes appearing in the
 200 slow-light regime near the edge of the guided band [99]. In the same year, Kang et al. increased the sensing
 201 surface area to the defect region of PhCs by introducing multiplehole defects (MHDs), showing an enhanced
 202 sensitivity compared to PhCs with single hole defects (SHDs) [100,101]. Qin et al. incorporated the concept of
 203 MHDs to the slow-light MZI-based biosensor, showing a thirteen-fold higher bulk sensitivity than traditional
 204 MZI biosensors of 115000 rad/RIU-cm [102]. Lo et al. announced an optical biosensor based on a 1D-PhC


204 microring resonator (PhCR) with enhanced detection sensitivity in 2017 [103]. By introducing the 1D PhC
 205 geometry in a MRR's waveguide, the light-matter interaction is strongly improved since the PhCR can detect
 206 the presence of analyte both inside 1D holes and on the top surface [103].

207 Compared to interferometric or other resonant biosensors, PhC sensors tend to have lower sensitivities
 208 ranging from 10^{-2} to 10^{-4} RIU. However, PhC sensors can be readily integrated onto a chip with high density,
 209 and are suitable for detection with extremely limited sample volumes (on the order of femtoliter). Therefore, a
 210 new trend of PhC sensor development is to achieve multi-analyte detection capability on a single chip. Several
 211 1D and 2D PhC-based sensor arrays were developed [85,104–106]. In 2017, Zhang et al. designed a highly
 212 sensitive on-chip multichannel sensor array by integrating eight 1D PhC cavities connected by additional
 213 bandgap filters, showing improvements in size, integration density, sensitivity, and ease of fabrication [107].

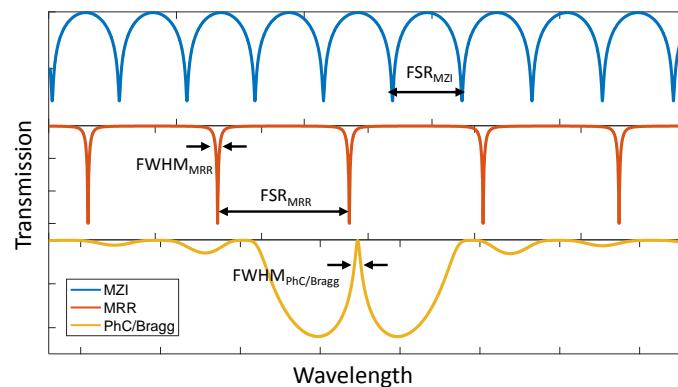
214 2.2.4. Bragg Grating Based Biosensors

The Bragg grating, a fundamental component for the purpose of wavelength selection, has been investigated for use in optical communications, such as filters, semiconductor lasers and fibers for a long time [73], and recently into biosensing applications [22,108]. Similar to 1D photonic crystals, a Bragg grating is a structure with a periodic modulation of the effective RI in the propagation direction of the optical mode, as shown in Figure 5. By alternating the material with different indices or physical dimensions (known as the corrugation) of the waveguide, the desired index modulation is achieved. A reflection of the guided light occurs at each index-changed boundary as presented in Figure 5a, and the repeated modulations of the effective index multiply the distributed reflection, resulting in a stop band at one specific wavelength in the transmission spectrum, where light is strongly reflected. The center wavelength of the stop band, namely the

215
 216
 217

Figure 5. Bragg grating biosensors. (a) Illustration of two types of Bragg grating devices with side-wall or top gratings. R and T are the grating's reflection and transmission. The 180° arrows represent the numerous reflections throughout the grating. (b) Schematic of a phase-shifted Bragg grating device. Λ is the period, ΔW is the width of the corrugation, a or b and $n_{\text{eff}1}$ or $n_{\text{eff}2}$ are the length and the effective index of the high or low index section. (c) Measured transmission spectrum of a phase-shifted Bragg grating device after normalization.

218 Fiber Bragg gratings (FBGs) have attracted a great deal of attention in recent years for biosensing
 219 applications, due to the low price and ease of signal transmission of fiber materials. In order to improve
 220 the sensing performance, numerous studies have been attempted to expose the evanescent field from
 221 the fiber core, such as side-polishing or surface-etching strategies, achieving a *DL* down to $10^{-5} \sim 10^{-6}$
 222 RIU [110–112]. Recent advances in Bragg gratings have led to the on-chip integration realized in the SOI
 223 platform, firstly demonstrated by Murphy et al. in 2001 [113]. A theoretical demonstration of biosensing
 224 capability of SOI-based Bragg gratings was announced by Passaro et al. in 2008 [114]. By periodically
 225 etching the top surface of the silicon waveguide, a submicrometer integrated optical Bragg grating sensor is
 226 proposed with a simulated *DL* of approximately 10^{-4} RIU [114]. One year later, Jugessur et al. developed a


uniform Bragg grating biosensor integrated with microfluidics for RI index sensing by using vertical grating side-edges proving potential for lab-on-a-chip applications [22]. Prabhathan et al. proposed the concept of a phase-shifted vertical side wall gratings for biosensing in the same year with a theoretical DL of 8.1×10^{-5} RIU [23]. In 2013, Fard et al. fabricated and characterized the strip-waveguide based phase-shifted Bragg grating in the SOI platform, and the Q -factor was measured to be 27600, which led to a experimental iDL of 9.3×10^{-4} RIU [115].

2.3. Section summary

Figure 6 summarizes the simulated transmission spectra of previously described optical configurations in the field of silicon photonic biosensors. As a concept illustration, we only consider the intrinsic losses in each device. As shown in Figure 6, MZI (blue curve) and MRR (red curve) sensors present periodic spectra. The spacing between optical wavelengths of two consecutive transmitted optical intensity minima is defined as the free spectral range (FSR) and given by:

$$\Delta\lambda_{\text{FSR}} = \frac{\lambda^2}{n_g \cdot \Delta L} \quad (14)$$

where λ is the wavelength of the light source, n_g is the waveguide group index, and ΔL is the length difference of two arms in the MZI or the perimeter of the MRR. As for the transmission spectrum of the PhC or Bragg grating (yellow curve), due to the existence of the defect or phase-shifted cavity, a sharp FSR-free resonant peak appears in the middle of the stop band with a narrow FWHM corresponding to the high Q -factor. By interrogating the wavelength (phase) shift or intensity change of these peaks in the transmission plots, the RI change caused by the analyte within the evanescent field can be monitored in real-time.

Figure 6. Simulated transmission spectra of different optical configurations, including MZI (blue curve), MRR (red curve), defected PhC or phase-shifted Bragg grating (yellow curve) sensors. The optical insertion loss caused by input and output coupling devices has been eliminated. The full width at half maximum (FWHM) indicates the optical wavelength width of the resonant peak at which the transmitted intensity is equal to half (-3 dB) of its maximum value.

Generally, compared to other geometries, the MZI-based optical sensor is one of the simplest configurable devices with better sensitivities that scale with the length of the sensing arm. As described in Equation 1 and 3, the sensor structure constant K in a feedback-based (such as MRRs) sensor is 1; whereas in an feedforward-based (such as MZIs) sensor, K equals to $L_1/(L_1 - L_2)$ where L_1 and L_2 are waveguide lengths of sensing and reference arms, respectively. That can be derived by introducing the perturbation theory [116]: a small perturbation factor q employed into the sensing system leads to the propagation constant change of the waveguide ($\Delta\beta_q$), thus changes the wavelength of the resonant condition or destructive interference in resonator or interferometer sensors. Further changes in the propagation constant happen due to the

wavelength shift ($\Delta\beta_\lambda$). In the MRR-based sensor, phase changes of one round-trip in the cavity before (ϕ_1) and after (ϕ_2) the perturbation q follow:

$$\phi_1 = \beta L = \phi_2 = (\beta + \Delta\beta_q + \Delta\beta_\lambda)L = 2m\pi \quad (15)$$

where L is the resonant cavity length, β is the initial propagation constant, and m is an integer. After the derivation of λ , we get:

$$\Delta\lambda_{\text{MRR}} = \frac{\lambda \cdot \Delta n_{\text{eff}}}{n_g}. \quad (16)$$

In the case of MZI-based sensors, phase changes due to the destructive interference between two arms are described (only the sensing arm is influenced by q):

$$\phi_1 = \beta_1 L_1 - \beta_2 L_2 = \phi_2 = (\beta_1 + \Delta\beta_{1,q} + \Delta\beta_{1,\lambda})L_1 - (\beta_2 + \Delta\beta_{2,\lambda})L_2 = (2m-1)\pi \quad (17)$$

where $\Delta\beta_{1,q}$ is the propagation constant change caused by q in the sensing arm, β_1 and β_2 are initial propagation constants, L_1 and L_2 are waveguide lengths, and $\Delta\beta_{1,\lambda}$ and $\Delta\beta_{2,\lambda}$ are propagation constants change due to λ of sensing and reference arms, respectively. It can be shown that:

$$\Delta\lambda_{\text{MZI}} = \frac{\lambda \cdot \Delta n_{\text{eff}} L_1}{n_{g1} L_1 - n_{g2} L_2} \approx \left(\frac{L_1}{L_1 - L_2} \right) \frac{\lambda \cdot \Delta n_{\text{eff}}}{n_g}. \quad (18)$$

Therefore, the sensitivity is independent of the physical size in a MRR-based sensor, but scales with the length ratio between the sensing arm and arm difference in a MZI-based counterpart, as presented below:

$$S_{\text{MRR}} = \frac{\Delta\lambda_{\text{MRR}}}{\Delta n_{\text{add}}} = \frac{\lambda}{n_g} \left(\frac{\partial n_{\text{eff}}}{\partial n_{\text{add}}} \right), \quad (19)$$

and

$$S_{\text{MZI}} = \frac{\Delta\lambda_{\text{MZI}}}{\Delta n_{\text{add}}} = \left(\frac{L_1}{L_1 - L_2} \right) \frac{\lambda}{n_g} \left(\frac{\partial n_{\text{eff}}}{\partial n_{\text{add}}} \right) = \frac{2\pi L_1}{\lambda} \left(\frac{\partial n_{\text{eff}}}{\partial n_{\text{add}}} \right) = \frac{\Delta\phi_{\text{MZI}}}{\Delta n_{\text{add}}}. \quad (20)$$

In terms of the detection limit, the concept of intrinsic DL has been mentioned for MRR-based sensors in Equation 12, which only depends on the silicon photonic device itself. From Ref. [14], the FWHM of the resonance spectrum for an all-pass MRR is:

$$\Delta\lambda_{\text{FWHM}} = \frac{(1 - ra) \lambda^2}{\sqrt{ra} \cdot n_g \pi L} \quad (21)$$

where a is the single-pass amplitude transmission ($a^2 = \exp(-\alpha \cdot L)$, and α is the power attenuation [1/cm]), and r is the self-coupling coefficient. The iDL of a MRR-based sensor is achieved by combining Equation 11, 12 and 19:

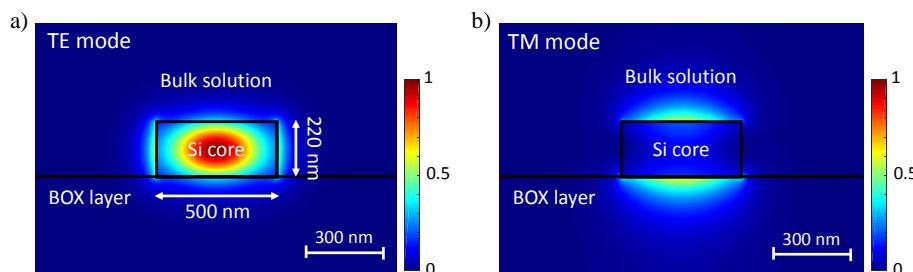
$$iDL_{\text{MRR}} = \frac{\Delta\lambda_{\text{FWHM}}}{S} = \frac{(1 - ra) \lambda}{\sqrt{ra} \cdot \pi L} \left(\frac{\partial n_{\text{add}}}{\partial n_{\text{eff}}} \right). \quad (22)$$

However, for MZI-based sensors, no such metrics are proposed. That is due to the sinusoidal shape of the interferometric spectrum, which fixes the linewidth of the FWHM to be half of the FSR and is independent of the loss. Hence, in a MZI-based sensor, if we derive in the same way, iDL is only related to its sensitivity, i.e., to the length of its sensing arm (L_1):

$$iDL_{\text{MZI}} = \frac{\lambda}{2L_1} \left(\frac{\partial n_{\text{add}}}{\partial n_{\text{eff}}} \right). \quad (23)$$

240 Disadvantages such as large footprint, high-temperature sensitivity, and the need for additional
 241 modulation methods hinder the development of on-chip interferometric sensing arrays. Resonator-based
 242 sensors, like MRRs, microdisks, PhCs and Bragg gratings, are more suitable for the integrated sensing platform
 243 with a high density due to their small sizes. Different from MRRs, PhCs and Bragg gratings have a high Q -factor
 244 due to the elimination of bending (mode and radiation) losses, thus an improved iDL , even though their

245 sensitivities are comparable. Although silicon-based architectures have been successfully applied for the
 246 detection of cell secretions [117], virus [118], protein biomarkers [11], and nucleic acids successfully [119,120],
 247 a lower detection limit with a higher sensitivity is still required for current clinical diagnostic tests [121].

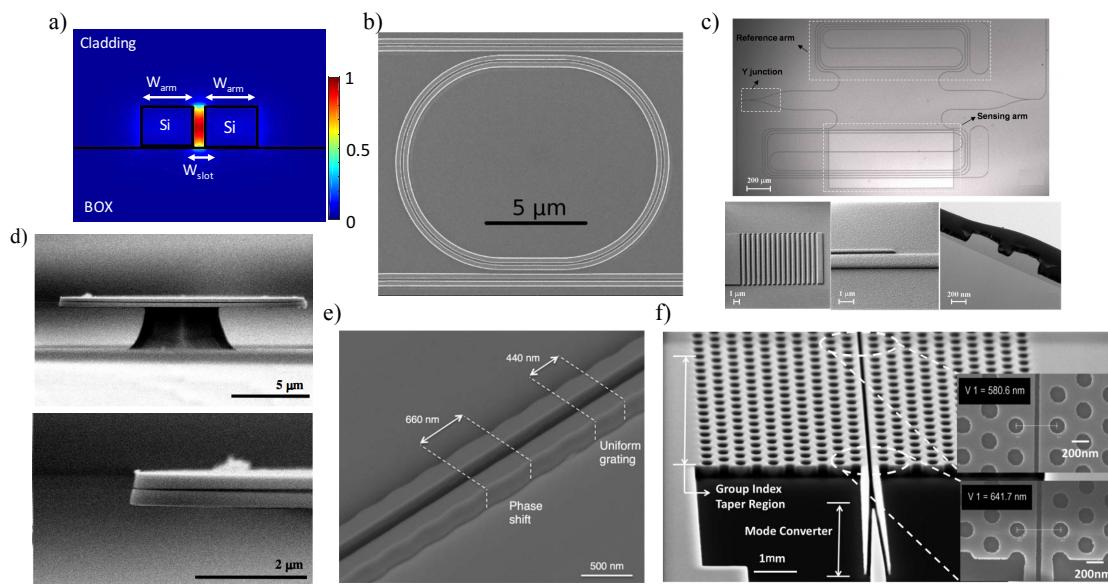

248 3. Performance-Improving Strategies

249 In this section, we outline early and emerging strategies in the development of SOI-based biosensor
 250 performance, including the use of new geometries of optical waveguides, and different polarizations or
 251 wavelengths of light sources. Furthermore, an overall performance metrics comparison is presented at the
 252 end, which includes proposed sensing architectures with or without their performance improved strategies.

253 3.1. Fundamental Approaches

254 3.1.1. Transverse Magnetic Mode

255 Due to the large evanescent field component traveling above the waveguide, optical sensors in the
 256 quasi-transverse magnetic (TM) mode present an improved sensitivity to that of the quasi-transverse electric
 257 (TE) mode at 1.55 μm in conventional 220 nm-thick SOI waveguides [44,122]. Figure 7 below shows the
 258 electric field intensity distributions of the TE and TM modes propagating in a 220 \times 500 nm waveguide. Most
 259 of the field intensity is above and beneath the waveguide core (in the cladding and substrate) in the TM
 260 mode, offering a higher light-matter interaction strength. Moreover, the TM mode also experiences less
 261 scattering loss, which is usually caused by sidewall roughness, compared to the TE mode [30]. Because of
 262 these unique properties of TM mode based waveguides, a large number of evanescent field biosensors have
 263 been attempted in the TM mode for higher susceptibility to RI changes.


Figure 7. Illustration of electric field intensity distributions of the (a) TE and (b) TM modes in a 200 \times 500 nm silicon waveguide at 1550 nm wavelengths. The Si waveguide core ($n_{\text{eff}} = 3.47$) is exposed to the surrounding medium with a refractive index of 1.33 above a 2 μm thick buried oxide layer (BOX) with a refractive index of 1.44.

264 For the MZI configuration, Densmore et al. have made many contributions in surface biosensing by
 265 introducing TM polarized light [17,45,123]. These TM mode based MZI biosensors achieved a minimum
 266 detectable mass of ~ 10 fg of streptavidin [17] and ~ 0.5 fg of anti-rabbit IgG [45], respectively. In 2008,
 267 Zinoviev et al. developed a MZI-based biosensor by using Si_3N_4 , where the lowest *DL* in the variation of the
 268 RI for the TM polarization is found to be 10^{-7} RIU [12]. Similarly, TM mode based resonant microcavities
 269 have been investigated as alternatives to their TE mode counterparts. An investigation of silicon MRR based
 270 biosensor arrays is reported by Xu et al. in 2010 with an experimental sensitivity of 135 nm/RIU; binding
 271 interactions between complementary IgG protein pairs was monitored with a concentration down to 20 pM
 272 by utilizing TM-polarized light [124]. Fard et al. reported a sensitivity enhanced TM mode MRR biosensor by
 273 decreasing the thickness of silicon waveguides to 150 nm, resulting in sensitivities as high as 270 nm/RIU and
 274 437.5 pm/nm for bulk and surface analytes [19]. In 2013, Grist et al. introduced Si-based microdisk resonators
 275 for label-free biosensing, and experimental results showed sensitivities of 26 nm/RIU and 142 nm/RIU, and
 276 *Q*-factors of 3.3×10^4 and 1.6×10^4 for the TE and TM modes, respectively [21].

277 3.1.2. Slot Waveguides

278 A slot-waveguide device consists of two high index rails separated by a low index slot [65]. Because of
279 the high concentration of the electric field intensity within the slot, slot-waveguide based structures stand
280 out for the potential to enhance sensitivity for optical biosensors. As presented in Figure 8a, light is strongly
281 confined in the slot region. Thus, compared to conventional waveguides, a stronger light-matter interaction
282 can be obtained in this region, leading to an improved sensitivity. Also, slot-waveguide based structures are
283 also CMOS compatible which enables miniaturization and integration for a lab-on-a-chip platform with low
284 cost [38,125].

285 In 2005, Baehr-Jones et al. designed, fabricated and characterized MRRs based on slot-waveguide
286 geometries in SOI materials [126]. Two years later, Barrios et al. pioneered the development of slot-waveguide
287 biosensors by using Si_3N_4 -based MRRs with a slot width of 200 nm for both the waveguide and resonator
288 [127]. A highly improved bulk sensitivity of 212 nm/RIU with a *Q*-factor of 1800 and *DL* of 2×10^{-4} RIU
289 is achieved [127]. In 2010, an integrated optical Si_3N_4 slot-waveguide MRR sensor array was reported by
290 Carlborg et al. for multiplexed label-free biosensing, yielding a bulk *DL* of 5×10^{-6} RIU and a surface mass
291 density *DL* of 0.9 pg/mm² [65]. In the same year, Claes et al. presented a double-bus MRR comprised of
292 SOI-based slot-waveguides with 104 nm slot width (Figure 8b), a sensitivity of 298 nm/RIU and *DL* of $4.2 \times$
293 10^{-5} RIU are obtained for changes in the RI of the top cladding [128]. In 2016, Taniguchi et al. developed
294 MRR biosensors with silicon nitride slot waveguides due to the lower temperature coefficient, achieving
295 a detection of prostate specific antigen (PSA) with the *DL* of 1×10^{-8} g/mL, which is the concentration
296 strongly suspicious for prostate cancer [129]. In the same year, Zhang et al. investigated a racetrack all-pass
297 slot-waveguide MRR showing a V-shaped resonant spectrum modulated by the classical frequency comb,
298 by tracking the spectrum envelope wavelength shift, and an ultra-high sensitivity up to 1300 nm/RIU is
299 received [130]. However, the sensing strategy is based on the wavelength-sensing critical coupling condition,
300 which makes the sensitivity very wavelength dependent. A horizontal slot waveguide configuration was
301 proposed by Barrios for Si-based microdisk resonator biosensors for the TM polarization in 2006, showing an
302 expected *Q*-factor of 15000 with a minimum *DL* of 3×10^{-8} RIU [131]. Four years later, Lee et al. followed up
303 that concept and demonstrated a horizontal air-slot microdisk resonator for label-free biosensing based on
304 silicon nitride as shown in Figure 8d; a *Q*-factor of 7000 is obtained in the TM mode with a *DL* of 30 ng/mL
305 for biotin-streptavidin interactions [132]. Kim et al. reported a luminescent horizontal air-slot microdisk
306 resonator sensor based on silicon-rich nitride (SRN) in the 800-nm wavelength range; a surface sensitivity of
307 4.79 nm/(\mu m-mL) is achieved by introducing biotin-streptavidin model [133].

Figure 8. (a) Cross-section of the electric field intensity distribution of a slot-waveguide immersed in water. (b) Top-view scanning electron microscope (SEM) image of the slot-waveguide-based MRR. Figure adapted with permission from Ref. [128]. (c) Microscopic and SEM images of the MZI biosensor with a slot-waveguide sensing arm. Figure adapted with permission from Ref. [134]. (d) SEM images of the fabricated slot disk after the whole sensing process. Figure adapted with permission from Ref. [132]. (e) SEM image showing a phase-shifted Bragg grating sensor, the spacing with the phase shift is 600 nm, corresponding to 1.5 times the grating period. Figure adapted with permission from Ref. [135]. (f) SEM images of fabricated PC slot-waveguide device, showing a slot entirely across the device. Figure adapted with permission from Ref. [136].

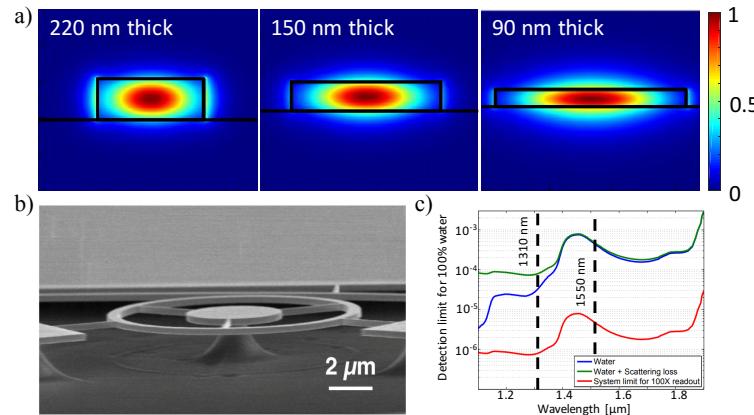
Slotted PhCs combine the advantages of light confinement in the slot waveguide with the temporal confinement of light by a PhC in a single structure, offering more light interactions with the analyte [137]. Di Falco et al. reported a sensitivity improved (over 1500 nm/RIU) label-free biosensor by applying a PhC to slot geometry with a high Q -factor of 50000 and DL of 7.8×10^{-6} RIU in 2009 [138]. Jágerská et al. and Lai et al. (Figure 8f) expanded the application of slotted PhCs for gas detections, obtaining a DL of 10^{-5} RIU for a variety of gases [139] and a methane concentration of 100 ppm [136], respectively.

Plenty of work has been reported by using MZI devices with slotted sensing arms for the pursuit of a high sensitivity. In 2012, Tu et al. presented an athermal MZI biosensor based on Si_3N_4 slot waveguides (see Figure 8c); the measured bulk sensitivity and DL reach $1730(2\pi)/\text{RIU}$ and 1.29×10^{-5} RIU, respectively [134]. One year later, they followed up the investigation for biosensing by using a biotin-streptavidin binding model system, and demonstrated a DL down to 1 pg/mL of streptavidin solutions [140]. Furthermore, they also investigated the biosensor for specific detection by employing the methylation of death-associated protein kinase (DAPK) gene, showing a discriminated concentration as low as 1 nM [140]. In 2015, Sun et al. developed a MZI sensor employing an ultra-compact double-slot hybrid plasmonic (DSHP) waveguide as an active sensing arm [141]. By introducing a DSHP waveguide with two open nano-slots between a high-index Si ridge and two silver strips, a high optical confinement with low propagation loss was achieved, showing a sensitivity as high as 1061 nm/RIU [141].

Recently, Wang et al. presented a slot-waveguide based biosensor using phase-shifted Bragg gratings [135]. As presented in Figure 8e, the Bragg gratings with sidewall corrugations created a sharp resonant peak within the stop band by introducing a phase shift. A salt solutions assay demonstrated a sensitivity of 340 nm/RIU and Q -factor of 1.5×10^4 , enabling a low iDL of 3×10^{-4} RIU [135].

329 3.1.3. Thinner Waveguides

330 Using thinner waveguides can lead to a lower optical confinement of the guided mode, resulting in a
331 deeper penetration of the evanescent field into the surrounding medium, as seen in Figure 9a. Thus, more
332 field overlap with biomolecules at the waveguide's surface is achieved. In 2006, Densmore et al. theoretically
333 demonstrated that thinner SOI waveguides have higher sensitivities over devices both to bulk homogeneous
334 solutions and thin adsorbed biomolecule layers [44]. Afterward, Fard et al. investigated an ultra-thin TE
335 MRR sensor using the smallest available thickness (90 nm) offered by multi-project wafer (MPW) foundries,
336 obtaining a sensitivity over 100 nm/RIU with the *iDL* on the order of 5×10^{-4} RIU [142]. Moreover, due
337 to the index of the water cladding decreasing with rising temperature which is opposite to the Si core and
338 SiO₂ substrate materials, ultra-thin TE MRR sensors show increased stability in the presence of temperature
339 variations as compared to the traditional 220 nm thick sensors [142].


340 3.1.4. Suspended Waveguides

341 Another method to enhance the overlap between the evanescent field and analyte is introducing
342 suspended waveguides, by replacing the BOX substrate with lower-index materials (e.g., air and water).
343 In 2000, Veldhuis et al. theoretically proposed that the sensing performance can be improved by using a
344 suspended silicon waveguide technology, where the sensitivity is enhanced by a factor of 1.35 [143]. After that,
345 many suspended sensors were reported successively leveraging the SOI platform. Wang et al. demonstrated
346 an ultra-small suspended microdisk with a radius of 0.8 μm sitting on a SiO₂ pedestal for optical sensing,
347 presenting a measured sensitivity of 130 nm/RIU in 2013 [144]. Soon later, a suspended TM-MRR biosensor to
348 increase the surface binding area and light-matter interaction was reported by Hu et al. (Figure 9b), showing a
349 near 3-fold increased response to bulk RI changes (290 nm/RIU) and 2-fold increased response to the capture
350 of targets at the surface as compared to conventional MRRs on SiO₂ (102 nm/RIU) [145]. Taha et al. recently
351 developed a centimeter-scale MZI sensor based on SOI platform by introducing a fully suspended waveguide
352 as the sensing arm, obtaining a bulk sensitivity of 740 nm/RIU with a corresponding *iDL* of $\sim 4 \times 10^{-5}$ RIU
353 [146].

354 3.1.5. 1310 nm Light Sources

355 For label-free biosensing, one way to improve the limits of detection of silicon photonic sensors for
356 medical diagnostic applications is enhancing the intrinsic sensor performance [30]. According to Equation 12,
357 *iDL* shows a reciprocal relation to its *Q*-factor and *S*. Thus, having a large *Q*-factor or sensitivity value can
358 effectively improve the *iDL*. The *Q*-factor can be interpreted as the total distributed loss of the device based
359 on Equation 11, and the loss originates from waveguide scattering, material absorption (waveguide and
360 analyte), waveguide radiation, mode mismatch, etc [29]. Among them, water absorption is the predominant
361 loss for silicon photonic biosensors at 1550 nm wavelengths since many analytes of interest are found in
362 aqueous solutions. Kou et al. observed that water absorption is approximately 10 times lower around 1310
363 nm wavelengths compared to 1550 nm ones [147]. By assuming an ideal Fabry-Perot cavity with the light
364 traveling entirely in the water, where no other loss mechanism exists, a fundamental limit for water-based
365 sensors was calculated by Chrostowski et al., showing an intrinsic limit of detection of 2.4×10^{-4} RIU at 1550
366 nm and 2.4×10^{-5} RIU at 1310 nm, respectively in Figure 9c [29].

367 Various silicon photonic biosensors for 1310 nm wavelengths have been reported by Schmidt et al. in
368 2014, including MRRs in the TE and TM modes, and Bragg gratings in the TM mode [30]. Experimental
369 characterizations result in a measured *Q*-factor of 8389, bulk sensitivity of 90 nm/RIU, and *iDL* of $1.49 \times$
370 10^{-3} RIU for the TE mode MRR, and a *Q*-factor of 33463, bulk sensitivity of 113 nm/RIU, and *iDL* of $3.47 \times$
371 10^{-4} RIU for the TM mode MRR. For TM mode Bragg gratings, a high *Q*-factor of 76320 with a bulk sensitivity
372 of 106 nm/RIU and *iDL* of 1.62×10^{-4} RIU is achieved. In 2016, Melnik et al. investigated a MZI biosensor
373 based on polyimide waveguides at the central wavelength of 1310 nm for human immunoglobulin G (hIgG)
374 detection, allowing detecting concentrations down to 3.1 nM and 100 pM by label-free and labeled methods,
375 respectively [148].

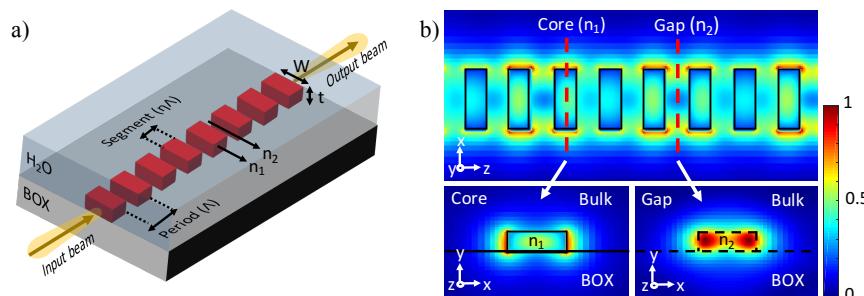
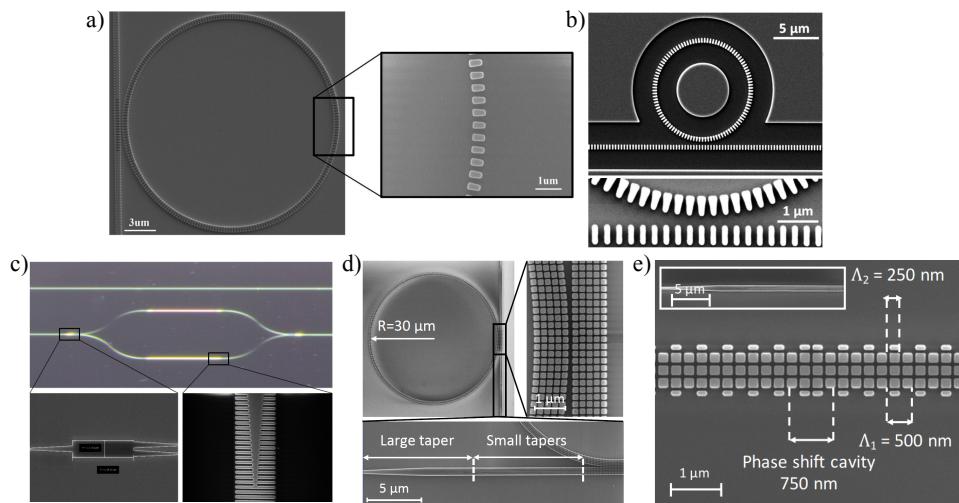


Figure 9. (a) Electric field intensity distributions of a TE mode for 90, 150 and 220 nm thick silicon cores. Figure adapted with permission from Ref. [30]. (b) Tilted SEM image of an MRR after suspension. The MRR is supported by trusses with a width of 100 nm and a height of 260 nm. Figure adapted with permission from Ref. [145]. (c) Fundamental *DL* plots for water-based sensors at 1310 and 1550 nm wavelengths. Highest predicted *DL* for water absorption limited sensing is presented (blue line). Waveguide scattering is added and assumed to contribute 5 dB/cm loss at 1550 nm, and scale as $1/\lambda^4$ at other wavelengths (green line). Finally, the *sDL* is shown (red line) with a wavelength readout precision 100-fold better than the resonator linewidth. Figure adapted with permission from Ref. [29].

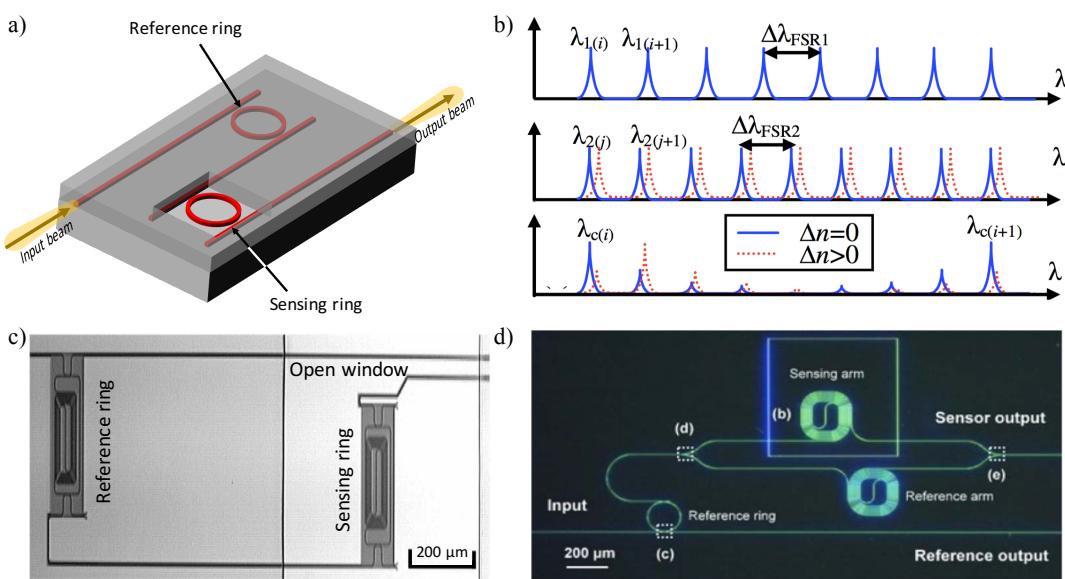
376 3.2. Advanced Approaches


377 3.2.1. Sub Wavelength Grating Waveguides

378 A novel and appealing strategy, which allows customizing optical properties by varying the waveguide
 379 geometry, is using sub-wavelength gratings (SWG) [149]. Since the first demonstrations of an optical
 380 waveguide with an SWG metamaterial core by the National Research Council of Canada (NRC) in 2006
 381 [150–152], SWG waveguides have attracted intense research interest due to their unique potentials to control
 382 light propagation in planar waveguides, and been considered to be critical components for developing
 383 the next generation of optical communication, biomedical, quantum and sensing technologies [153,154].
 384 Although similar to Bragg gratings, SWG waveguides also consist of the periodic structure of their core,
 385 the period (Λ) is much smaller than the Bragg condition, i.e., $\Lambda \ll \lambda/(2n_{\text{eff}})$. Thus, a true lossless mode is
 386 supported in SWG waveguides because the reflection and diffraction effects are suppressed [155]. The SWG
 387 waveguide core is commonly fabricated by interleaving the high index block (n_1) with low index materials
 388 (n_2), such as SiO_2 , SU-8, air or water, as one period (a few hundred nanometers in length), as shown in
 389 Figure 10a. By having a reduced mode effective index step, the guided light propagates in SWG waveguides
 390 similar to the one in conventional waveguides but with a large extended modal area, which releases more
 391 optical mode into the evanescent field. Moreover, as shown in Figure 10b, most of the light is concentrated in
 392 the low-index region which offers direct light-matter contact. Thus, compared to the conventional waveguide,
 393 the sensing performance of an SWG waveguide-based biosensor is highly enhanced.

Figure 10. SWG waveguide geometry and simulation results. (a) Schematic of an SWG waveguide. W is the waveguide width, t is the thickness, Λ is the SWG period, and η is the duty cycle which determines the length of Si blocks. n_1 and n_2 represent high and low refractive indices. (b) The top and cross-sectional views of the electric field intensity distribution of an SWG waveguide. The cross-sections are in the middle of the Si block and gap, respectively.

394 In 2014, Wangüemert-Pérez et al. proposed the application of SWG waveguides for biosensing and
 395 employed a Fourier-type 2D vectorial simulation tool to analyze the sensing performance by varying the duty
 396 cycle, achieving sensitivities of 0.83 RIU/RIU (the change in the n_{eff} of the waveguide mode upon a change
 397 in the RI of the cover) and 1.5×10^{-3} RIU/nm (or for an increase in the thickness of the adsorbed layer) for
 398 bulk and surface sensing [156]. After that, Chen's [157–159] and Chrostowski's [160–163] groups pioneered
 399 the development of SWG waveguide-based biosensors in the SOI platform. Donzella et al. demonstrated
 400 SOI-based SWG optical MRRs for integrated optics and sensing in 2015, showing the first time that SWG-based
 401 resonators with no upper cladding can achieve sensitivities exceeding 383 nm/RIU in water and 270 nm/RIU
 402 in air [160]. A follow-up work was reported by Flueckiger et al. (Figure 11a) by introducing NaCl dilutions and
 403 a typical protein bioassay to the SWG MRR sensor, achieving a bulk sensitivity of 490 nm/RIU with a system
 404 DL of 2×10^{-6} RIU [161]. However, one serious drawback of SWG-based MRR sensors is the relatively low
 405 Q-factor with the upper cladding removed, which is in the range of 1000 ~ 6000 [160]. Trapezoidal silicon
 406 pillars, as reported by Wang et al., can reduce the bend loss by creating an asymmetric effective refractive
 407 index profile in the microring (as shown in Figure 11b), yielding a Q-factor as high as 11500 with a radius of 5
 408 μm , 4.6 times of that (~ 2800) offered by a conventional SWG [157]. By utilizing a trapezoidal-shaped SWG
 409 core, an enhanced sensing capability was analyzed and characterized by Yan et al., obtaining a high Q-factor
 410 of 9100, bulk sensitivity of 440.5 nm/RIU and surface sensitivity of 1 nm/nm with iDL of 3.9×10^{-4} [158]. To
 411 further improve the DL value, Huang et al. theoretically and experimentally optimized an SWG racetrack
 412 resonator in the TM mode to obtain a maximum Q-factor of 9800 and bulk sensitivity of 430 nm/RIU in water,
 413 which corresponds to a 32.5% improved iDL of 3.71×10^{-4} RIU compared to conventional TE-polarized SWG
 414 sensors [159]. Recently, Luan et al. developed two sensitivity enhanced SWG-based multi-box waveguide
 415 biosensors by merging slot and SWG structures, as presented in Figure 11d and 11e [162,163]. The expanded
 416 optical mode and the multiplied surface area for analyte interactions offer a highly improved light-matter
 417 contact at the sensor's surface, thus resulting in a bulk sensitivity of 580 nm/RIU and surface sensitivity of
 418 ~ 1900 pm/nm, respectively [162]. As shown in Figure 11c, SWG waveguides were also integrated into the
 419 MZI-based biosensor as the sensing arm by Sumi et al. in 2017. The device, with the sensing arm's length of
 420 100 μm , is designed to operate at an operating wavelength of 1550 nm in the TE mode with a length-dependent
 421 scalable sensitivity of 931 rad/RIU/mm [164].


Figure 11. (a) SEM images of a fabricated SWG MRR with waveguide geometry: $W = 500$ nm, $\Lambda = 250$ nm, $t = 220$ nm, and $\eta = 0.7$. Figure adapted with permission from Ref. [161]. (b) SEM images of a 5 μ m radius trapezoidal silicon pillars based SWG MRR, and a high magnification of the coupling region. Figure adapted with permission from Ref. [157]. (c) Microscopic and SEM images of the fabricated MZI device with an SWG waveguide based sensing arm. Figure adapted with permission from Ref. [164]. (d) SEM images of a multi-box MRR ($r = 30$ μ m, $W = 1200$ nm, $t = 220$ nm, $\Lambda = 240$ nm and $\eta = 75\%$) with five rows. Figure adapted with permission from Ref. [162]. (e) SEM images of a 3-row multi-box phase-shifted Bragg grating sensor with 500 nm Bragg period (Λ_1), 250 nm SWG period (Λ_2), and 120 nm wide corrugations. Figure adapted with permission from Ref. [163].

422 3.2.2. Vernier Effect Based Systems

The Vernier effect is a method commonly used in calipers and barometers to enhance the accuracy of instrument measurements by overlapping two scales with different periods, of which one slides along the other one. The overlap between lines of the two scales is used to perform the measurement. Recently, Vernier-principle based sensors have been investigated in the SOI platform by cascading two or more optical devices with different FSR values, where one has the upper cladding removed and represents the RI sensor (as seen in Figure 12a). Due to the different FSRs between the sensing and reference (filter) devices, a spectral response with a major peak plus some minor peaks will be presented at the output. As shown in Figure 12b, the major peaks are located at the overlapped peaks of these devices, showing a Vernier FSR of the least common multiple of total FSR values, and the height of major peaks is determined by the amount of overlap. When the RI above the sensing device changes, the major peak shifts ($\Delta\lambda_{\max}$) discretely which equals to an integer multiple of the reference device's FSR ($\Delta\lambda_{\text{FSR}}^{\text{ref}}$), i.e., $\Delta\lambda_{\max} = m\Delta\lambda_{\text{FSR}}^{\text{ref}}$ [165]. In this way, the Vernier effect cascaded sensor system yields an ultra-high sensitivity which is given by [165]:

$$S = (\lambda_{\text{maj}}/n_{\text{eff}}) \left[\frac{\Delta\lambda_{\text{FSR}}^{\text{ref}}}{(\Delta\lambda_{\text{FSR}}^{\text{ref}} - \Delta\lambda_{\text{FSR}}^{\text{sen}})} \right] = MS_0 \quad (24)$$

423 where λ_{maj} is the wavelength of the major peak, $\Delta\lambda_{\text{FSR}}^{\text{ref}}$ and $\Delta\lambda_{\text{FSR}}^{\text{sen}}$ are the FSRs of reference and sensing
 424 devices respectively, and S_0 is the actual sensitivity of the single sensing device. Thus, the sensitivity of the
 425 optical sensor based on Vernier effect cascaded devices is M times improved than that of a single device,
 426 without requiring a narrow linewidth tunable light source or a high-resolution readout system. The trade off
 427 is that the readout is quantized thus potentially limiting the minimum detection limits.

Figure 12. (a) Illustration of the Vernier effect sensing system consisting of two cascaded MRRs with different FSRs. The sensing ring is exposed to RI changes in its environment, while the reference ring is covered by the cladding. (b) Illustrations of calculated transmission spectra of the reference device ($\Delta\lambda_{FSR1}$), sensing device ($\Delta\lambda_{FSR2}$), and cascaded system, respectively. Red-dashed lines represent transmission spectra after an RI change above the sensing device, showing an amplified wavelength shift in the cascaded system. Figure adapted with permission from Ref. [165] (c) Microscopic image of the two cascaded MRRs sensing device fabricated in SOI with an opening at the second MRR. Their footprint is reduced by folding the cavity. Figure adapted with permission from Ref. [166]. (d) Microscopic image of the cascaded MZI and MRR sensor with an opening at the sensing arm of the MZI. Figure adapted with permission from Ref. [167].

428 Earlier, the Vernier principle was applied to the design of integrated tunable lasers [168] and filters
 429 [169,170]. In 2009, Dai et al. proposed a sensing system that consists of two cascaded MRRs, theoretically
 430 showing a two orders higher sensitivity (on the order of 10^5 nm/RIU) than that of a regular single-ring sensor
 431 due to the Vernier effect, and a *DL* highly related to the FSRs difference [165]. In parallel, He's group pioneered
 432 in investigating cascaded MRR sensors according to the Vernier effect theoretically and experimentally in
 433 the TE [171] and TM [172] modes, yielding sensitivities of 1300 nm/RIU and 24300 nm/RIU, respectively. In
 434 2010, Claes et al. developed cascaded MRRs with very large roundtrip lengths presented in Figure 12c where
 435 FSRs difference is smaller than the FWHM of resonance peaks, and introduced a fitting procedure to reduce
 436 the smallest detectable wavelength shift, obtaining a experimental sensitivity as high as 2169 nm/RIU and
 437 *DL*, which is no longer limited by the $\Delta\lambda_{FSR}^{\text{ref}}$, of 8.3×10^{-6} RIU [166]. One year later, Hu et al. employed a
 438 suspended MRR for sensing by removing the SiO₂ underneath, yielding a sensitivity up to 4.6×10^5 nm/RIU
 439 and *DL* of 4.8×10^{-6} RIU [173]. In 2012, Passaro et al. introduced a Vernier effect sensing system for gas
 440 detection leveraging slot-waveguide based MRR as the sensing device; a sensitivity of the order of 10^5 nm/RIU
 441 and *DL* as low as 10^{-5} RIU are achieved for detecting methane and ethane in the air [174]. Moreover, a three
 442 cascaded MRRs sensing system was reported in 2017 by Liu et al. with a high sensitivity of 5866 nm/RIU; the
 443 measurement range which used to be limited by the FSR of the sensing ring obtains a 24.7-fold increment
 444 compared with traditional cascaded MRRs [175].

445 The concept of sensitivity enhancement by employing MZIs to Vernier effect sensing systems was
 446 theoretically demonstrated by La Notte et al., by replacing the sensing MRR with a MZI. The proposed sensor
 447 is considered to reach an ultra-high sensitivity theoretically over 1000 μm/RIU and a very low *DL* of 10^{-6} RIU
 448 [176]. In 2014, Jiang et al. demonstrated an ultra-high sensitivity Si biosensor based on cascaded MZI and
 449 MRR with the Vernier effect (see Figure 12d). Experimental results indicate a sensitivity of 21500 nm/RIU for
 450 MZI-ring sensor, 7.5 times higher than that (2870 nm/RIU) of a single MZI sensor [167].

451 3.3. *Sensitivities Comparison*

452 A sensor performance results comparison in the field of silicon photonic biosensors is presented in
453 Table 1 along with different architectures as well as strategies to improve the *S* and *DL* values. Due to
454 un-unified units of *DL* among different articles, bulk sensitivities in the unit of wavelength (or phase) shift per
455 refractive index change are estimated from the results in the publications to serve as a comparison criterion.
456 Moreover, other parameters and performance metrics such as light polarization and wavelength, system and
457 intrinsic detection limits, and *Q*-factor are also presented.

458 3.4. *Section summary*

From the experimental results presented in Table 1, bulk sensitivities are enhanced in sensing configurations applied by performance-improving strategies. However, their detection limit values show no growth but a downward trend for slot and SWG waveguide-based sensors. That matches well with the recently published work by Kita et al., who found out that sensor performance of slot and SWG waveguides are not truly better than strip waveguide for sensing [179]. By proposing a dimensionless figure of merit:

$$459 FOM = \frac{\Gamma_{\text{clad}}}{\alpha_s \cdot \lambda} \quad (25)$$

460 where Γ_{clad} is the optical confinement factor ($\Gamma_{\text{clad}} = \frac{\partial n_{\text{eff}}}{\partial n_{\text{clad}}}$), and α_s is the scattering loss per unit length,
461 both modal confinement and roughness scattering loss are taken into account for the comparison of various
462 waveguide geometries by the authors. The model predicts that properly engineered TM-polarized strip
463 waveguides claim the best performance compared to slot and SWG-based waveguides owing to their reduced
464 propagation loss and longer accessible optical-path length [179]. Therefore, for the purpose of sensor
465 performance enhancement (both sensitivity and detection limit), more efforts are required to decrease the
466 scattering loss for sidewall-roughness sensitive waveguides, such as slot and SWG geometries.

466 4. Label-Free Detection

467 Generally, two approaches for optical detection are employed by most biosensors: label-based detection
468 and label-free detection. In labeled detection, a label is defined as an additional molecule that is chemically
469 or temporarily attached to the immobilized target to enhance the quantitative signal. Examples include, but
470 are not limited to, a dye molecule (chromophore), a fluorescent tag, or an enzyme. This labeling process
471 can achieve an ultra-low *DL* (on the order of sub-parts-per-trillion) and provide additional specificity via
472 secondary amplifications [26]. However, it requires sophisticated reagent selection and pairing, in addition to
473 reagent modification including synthesis and purification, which potentially changes intrinsic properties of
474 the capture probe and/or target molecules [180] and dramatically increases the cost and complexity of the
475 assays. Moreover, due to the need for additional steps to perform label-based detection, it is ill-suited for
476 real-time kinetic monitoring. To contrast, label-free detection has emerged as an appealing alternative to
477 labeled detection, utilizing native molecular properties such as molecular weight (MW), RI, and molecular
478 formal charge (FC) for target molecule monitoring. Label-free detection is not without its own drawbacks, as
479 the method is only capable of providing sensitive and specific detection if non-specific binding (NSB) is low,
480 or if the assay has sufficient controls to subtract the contribution of NSB. Additionally, label-free detection
481 requires sufficient signal to be generated upon binding for the sensor to differentiate signal from noise; this
482 can limit label-free detection for certain applications with especially low molecular weight target species, or
483 targets that do not readily interact with specific capture probes/chemistries. Even with these limitations, a
484 large number of biosensors designed for label-free detection have been investigated in the recent research
485 literature [181–183], largely because the method greatly simplifies assays, can reduce both the time and
486 number of steps required, and eliminates experimental uncertainty induced by the labeling process [184].
487 Additionally, label-free detection is highly amenable to the real-time kinetic evaluation of molecular binding
488 and rapid quantification of analytes.

Table 1. Performance metrics comparison of selected optical biosensors (WG = waveguide, λ_{Wl} = wavelength, $1.55 \mu\text{m}$ where not specified).

Sensor Type	Sensor Configuration	Strategy	Optical Mode	Q-factor ($\times 10^3$)	Bulk Sensitivity (RIU $^{-1}$)	System Detection Limit (RIU)	Intrinsic Detection Limit (RIU)
Interferometer	MZI	Vernier	TE	N/A	2.15×10^4 nm	N/A	N/A [167]
	Suspended		TE	N/A	740 nm	N/A	4×10^{-5} [146]
	Slot		TE	N/A	$1730 \times 2\pi$ rad	1.29×10^{-5}	N/A [134]
	$1.31 \mu\text{m}$ WG		TE	N/A	$540 \times 2\pi$ rad	N/A	N/A [148]
	N/A		TM	N/A	$460 \times 2\pi$ rad	3.3×10^{-5}	N/A [17]
	N/A		TE	N/A	$300 \times 2\pi$ rad	N/A	N/A [44]
	N/A		TM	N/A	4.6×10^5 nm	N/A	4.8×10^{-6} [173]
	Vernier		TM	15	2.43×10^4 nm	N/A	N/A [172]
	Vernier		TE	20	1.3×10^3 nm	5.05×10^{-4}	N/A [171]
	Slot/critical coupling		TE	6	1.3×10^3 nm	N/A	$< 10^{-4}$ [130]
Microcavity	Ring	Vernier	TE	2.6	580 nm	N/A	1.02×10^{-3} [162]
	Slot/critical coupling		TE	7	490 nm	2×10^{-6}	5.5×10^{-4} [161]
	Multi-box SWG		TM	9.8	429 nm	N/A	3.71×10^{-4} [159]
	SWG		TM	0.33	298 nm	4.2×10^{-5}	1.59×10^{-2} [128]
	SWG		TE	12	290 nm	N/A	N/A [145]
	Slot		TM	4.5	270 nm	N/A	1.2×10^{-3} [19]
	Suspended		TM	10.1	200 nm	N/A	7.5×10^{-4} [19]
	Thin WG		TE	24	133 nm	N/A	5×10^{-4} [142]
	N/A		TM	33.5	113 nm	N/A	1.49×10^{-3} [30]
	Thin WG		TM	9.8	91 nm	N/A	3.5×10^{-4} [30]
Disk	$1.31 \mu\text{m}$ WG		TE	15	38 nm	N/A	2.7×10^{-3} [30]
	$1.31 \mu\text{m}$ WG		TM	16	142 nm	N/A	6.8×10^{-4} [21]
	N/A		TM	0.1	130 nm	8×10^{-4}	1.18×10^{-1} [144]
	N/A		TE	33	26 nm	N/A	1.8×10^{-3} [21]
	Slot		TE	50	1.5×10^3 nm	7.8×10^{-6}	2.07×10^{-5} [138]
	N/A		TE	0.4	200 nm	2×10^{-3}	1.88×10^{-2} [86]
	N/A		TE	11.5	160 nm	N/A	8.75×10^{-5} [177]
	Ring-slot		TE	174	815 nm	N/A	1×10^{-5} [178]
	Slot		TE	3	130 nm	7×10^{-5}	4×10^{-3} [104]
	N/A		TE	6.2	610 nm	N/A	4×10^{-4} [163]
Photonic crystal	2D	Phase-shifted	Multi-box SWG	TE	15	340 nm	3×10^{-4} [135]
	1D		Slot	TM	76	106 nm	1.6×10^{-4} [30]
			Slot	N/A	76	59 nm	9.3×10^{-4} [115]
			Slot	N/A	27.6	182 nm	N/A [22]
Bragg grating	Uniform		TE	N/A	N/A	N/A	N/A [22]

489 Since the first label-free optical biosensor was commercialized in 1990 by Biacore, Inc. [10], an entire
 490 field has arisen developing new platforms for label-free biosensing, driven largely by the appeal of addressing
 491 the unmet need in medical diagnostics, biosensing, and environmental/biohazard/threat monitoring. Among
 492 the new transducers, optical devices based on the SOI platform are among the most promising. Their highly
 493 compact footprint, allowing simultaneous multiplexed detection on a single chip, and low fabrication cost in
 494 high volumes with CMOS-compatible processes, make them cheap enough to be considered fully disposable.
 495 Table 2 gives an overview of a wide variety of exemplary target analytes, arranged in descending molecular
 496 weight, that have been detected using label-free SOI-based biosensors, as well as their reported *D*Ls. This
 497 survey demonstrates that SOI-based optical biosensors have a wide detection range for analytes with MWs
 498 on the order of kilodalton (kDa). For large molecules like micrometer-sized cells and bacteria on the order
 499 of megadalton (MDa) or higher, their sizes may exceed the evanescent field range of the sensor and cause
 500 an invalid result. For small molecules (normally less than 500 Da), a detectable signal is difficult to achieve,
 501 especially for low concentrations, due to the low sensitivity or high noise level of SOI-based sensors.

Table 2. Overview of selected biomolecules that have been detected by optical sensors using label-free method (CFU = colony-forming unit, HAU = hemagglutination unit, VP = viral particle).

Biological Material	Target	Weight	Sensor Type	Waveguide Material	Detection Limit
Cell Virus	<i>E. coli</i> O157:H7	1 pg	MRR	Hydex	10^5 CFU/mL [68]
	Avian influenza virus	542 MDa	MZI	Si ₃ N ₄	5×10^{-4} HAU/mL [185]
	Herpes simplex virus	96 MDa	YI	Si ₃ N ₄	850 VP/mL [186]
	Bean pod mottle virus	7 MDa	MRR	Si	1.43 pM [118]
	Human papillomavirus	5 MDa	PhC	Si	1.4 nM [187]
Protein	Immunoglobulin G	150 kDa	PhC	Si	1 ng/mm ² [85]
			MZI	Polymer	3.1 nM [148]
			Vernier MRR	Si	47.3 nM [188]
	(Strept)avidin	55-68 kDa	MZI	SiO _x N _y	2.14 π /nm [189]
			PhC	Si	2.5 fg [25]
			PhC	Si	344 pm/nm [190]
			Slot MZI	Si ₃ N ₄	18 fM [140]
			PhC	Si	49 fM [191]
			MRR	Si	60 fM [72]
			MRR-MZI	Si	20 pM [192]
Nucleic acid			MRR	SiO ₂ /Si _x N _y	0.1 nM [62]
			MRR	Si	0.15 nM [18]
			Slot disk	SiN _x	0.55 nM [132]
	Human serum albumins	67 kDa	YI	Si ₃ N ₄	20 fg/mm ² [193]
			MRR	Si	3.4 pg/mm ² [194]
	Prostate specific antigen	28 kDa	MRR	Si	0.4 nM [195]
			Slot MRR	SiN	1.79 nM [129]
	C-reactive protein	25 kDa	MZI	Si _x N _y	84 fM [196]
			MRR	Si	0.4 nM [121]
			MZI	SiN	0.78 nM [197]
Small molecule	RNA	7-40 kDa	MRR	Si	53 fM [198]
			MRR	Si	150 fM [199]
			Slot MZI	Si ₃ N ₄	1 nM [200]
	DNA	7-12 kDa	MZI	Si ₃ N ₄	300 pM [201]
			Slot MZI	Si ₃ N ₄	1 nM [140]
			MRR	Si	1.95 nM [119]
			PhC	Si	19.8 nM [202]
Small molecule	Gentamicin	478 Da	MRR	Hydex	100 nM [68]
	biphenyl-4-thiol	186 Da	PhC	Si	0.1 nM [203]
			PhC	Si ₃ N ₄	N/A [204]

502 5. Optical Sensing System Integration

503 To satisfy the need for system operations towards clinical and home healthcare diagnosis, integration
 504 is one of the key challenges to be solved [205]. The SOI platform is appealing since it offers the potential
 505 of optical component integration onto the same substrate. In recent years, massive amount of efforts have
 506 been made to integrate multiple functions to chip-scale silicon PICs, such as on-chip fluidic handling and
 507 optical analysis, as well as data processing [206]. These integrated sensing architectures show the ability

508 for a high-density, lab-on-a-chip, and portable biosensing platform in the application of POC medical
509 diagnosis. Here we review research directed towards the integration of microfluidics, lasers, sensing devices
510 and photodetectors (PDs) on Si substrates for biosensing applications.

511 *5.1. Optofluidic Integration*

512 Microfluidic systems have been regarded as an essential tool for modern biosensing research due
513 to outstanding advantages such as low sample consumption, *in-situ* manipulation, short analysis time,
514 controlled transportation, and high throughput [207,208]. Recently, a synergy technique called optofluidics
515 has emerged, which integrates microfluidics and photonic architectures to enhance each entity's function
516 and performance [209]. Introducing optofluidics to silicon photonic biosensing systems not only combines
517 fluid and light for improved sensing capability and simplification of microsystems but satisfies the function of
518 on-chip, label-free, real-time detections. In addition, optofluidic sensors are extremely suitable for evanescent
519 field RI detection, since the change of RI scales with the analyte bulk concentration or surface density, rather
520 than the number of molecules in total [209].

521 Polydimethylsiloxane (PDMS) has become the most popular material in the academic microfluidics
522 community since it is inexpensive, easy to fabricate, flexible, optically transparent, and biocompatible
523 [210]. More importantly, PDMS material can be permanently bound to SiO₂ substrates after oxygen plasma
524 treatment [211], which provides a simple and fast approach to build leakage-free microfluidic channels on
525 SOI-based sensors. Many silicon photonic devices including MZIs [102,192], MRRs [162] and PhCs [104,203,
526 208] have employed PDMS microfluidic systems mounted on top as a convenient optofluidic delivery method
527 for analyte detection. However, PDMS also shows some drawbacks. On one hand, PDMS is not suitable for
528 the integration or deposition of electrodes directly on the surface, and has problems such as adsorption of
529 small hydrophobic molecules, swelling in organic solvents, water permeability, and incompatibility under
530 very high-pressure operations [212]. On the other hand, due to the irreversible bonding process, chips are
531 not reusable after mounting the PDMS microfluidic block, and most of the area on the chip only serves as a
532 mechanical support for the fluidic inlet and outlet but not for sensing, which negatively impacts the unit cost
533 [213].

534 Another commercially available material, negative tone photoresist SU-8, has been employed for on-chip
535 optofluidics recently. SU-8 was originally developed as a high-resolution photoresist for the microelectronics
536 industry. Because of its transparency in the near-infrared spectrum and biocompatibility, a thin layer of SU-8
537 coating with microfluidic patterns has been investigated on silicon photonic biosensing systems [45,213],
538 which improves the alignment precision compared to PDMS microfluidics bonding. Furthermore, SU-8
539 can also be used as a cover material for interface passivation of on-chip electrical connections due to
540 its high-resolution patterning and insulation abilities. However, the manufacturing process of the SU-8
541 microfluid requires the use of clean room facility equipment involving complex and numerous processing
542 steps, which hinders mass production at a low price. In addition, variation in conditions such as humidity and
543 SU-8 composition may affect fabrication protocols, contributing to batch-to-batch variability [214]. Other
544 materials such as glass [215], polycarbonate (PC) [216], cyclic olefin copolymer (COC) [217] and epoxy [218]
545 were also reported for the on-chip optofluidic integration.

546 Digital microfluidics is an emerging technology in the field of biosensing by using microdroplets instead
547 of continuous flows. Drops the size of microliter or picoliter can be generated, transported, mixed, and
548 split in miniaturized reaction chambers without moving equipment such as pumps or valves, which offers
549 great potential for pump-free high-throughput liquid handling and avoids on-chip cross-contaminations
550 [219]. Electrowetting is the most commonly used technique for microdroplet actuation, which refers to
551 electric field-induced interfacial tension changes between the liquid and the dielectric layer, resulting in a
552 contact angle change, and thus droplet movement [220]. The integration of SOI-based optical sensors and
553 digital microfluidics has been demonstrated by utilizing MRRs [219,221] and microdisks [222] since 2008,
554 showing comparable sensitivities to their counterparts measured in standard optofluidic systems. Another
555 approach for eliminating pumps and valves has been investigated recently by employing an integrated,
556 microtechnological pumping method. The actuation principle is mainly based on the deflection of a

557 deformable polymer membrane to push the liquid from the reservoir towards the microfluidic channel,
558 where the deflection results from the increased pressure underneath the membrane by the electrolytically
559 generated gas [223]. Geidel et al. showed an integrated microfluidic design consisting of multiple reservoirs
560 and electrochemical pumps for time-controlled delivery, which has been tested and validated by SiN-based
561 MRR biosensors, indicating the possibility of on-chip liquid handling integration for high-level miniaturized
562 optical biosensors [216]. However, the prototype worked with a low sensitivity due to the unselective binding
563 within the cartridge or selective binding exceeding the evanescent field on the MRR, which requires further
564 optimizations for the surface biofunctionalization.

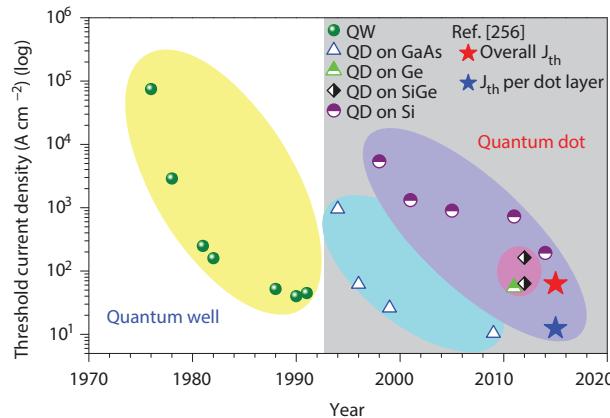
565 5.2. Optoelectronic Integration

566 One of the biggest roadblocks towards the large-scale commercialization of photonic biosensors is the
567 low-cost high-yield integration of light sources to operate reliably whilst consuming minimal power. These
568 goals are usually traded-off against each other with the choice of platform for integrating the light source,
569 the sensor device, and the photodetector (PD) to achieve a complete lab-on-a-chip system. For instance,
570 to benefit from a high-yield and low-cost production, leveraging existing CMOS fabs seems to be the ideal
571 solution. This requires the integration of these three elements on a single Si CMOS-compatible die. However,
572 integrating the active laser source with the passive sensor device and the PD remains a challenge. Several
573 techniques utilized for the chip-scale optoelectronic integration are presented below, and advantages brought
574 as well as challenges faced by each method are highlighted.

575 5.2.1. On-Chip Lasers

576 Driven by the promises lasers on Si hold for optical communication [224], several groups across the world
577 have demonstrated integrated lasers on Si dies implemented using either group IV materials (Si or Ge) or group
578 III/V compounds [225]. While using group IV elements seem to be an appealing and practical solution in terms
579 of cost and portability, existing methods using Si cannot yet render an electrical I/O-based lab-on-a-chip
580 because they rely on optical pumping mechanisms [226,227], making it an unattractive solution at the
581 moment. Electrically-pumped Ge lasers integrated on Si, however, have been demonstrated [228]. Despite its
582 indirect bandgap, straining and n-doping Ge can tailor its bandgap to make it direct [229]. Repercussions of
583 this approach are high threshold currents [228] thus increasing the total power budget of the biosensors.

584 On the other hand, III/V lasers integrated on Si have been demonstrated with a much higher efficiency
585 in comparison to Ge, thanks to their direct bandgap and superior gain characteristics. While monolithic
586 integration of III/V compounds on Si seems to be the optimum solution for ease of portability and highest
587 density integration, the biggest bottleneck towards the direct monolithic growth of III/V compounds on Si lies
588 in the lattice and thermal expansion coefficient mismatch between the Si material and III/V compounds [225].
589 To solve this problem, three main approaches have been demonstrated to integrate III/V lasers on Si chips:
590 (1) direct mounting, (2) hybrid approaches through direct and indirect bonding heterogeneous integration,
591 and (3) monolithic integration using sophisticated growth techniques.


592 Direct mounting includes flip-chip bonding using solder bumps through edge-coupled III/V to Si
593 waveguides [230–232] or through vertical coupling using SiO₂-SiO₂ bonding techniques [233,234]. The main
594 advantage this method brings is the independent growth of III/V materials on its native substrate, thus
595 benefiting from the merits of a III/V compound as a gain medium. In addition, the solder bumps provide
596 a means to dissipate the generated heat from the III/V die to the Si substrate leveraging its high thermal
597 conductivity [235]. Furthermore, with a rigorous design of spot-size convertors and accurate alignment,
598 high wall-plug efficiency (WPE, the ratio of the output optical to input electrical power), up to 35% [236]
599 can be achieved. The laser's cavity can be shared between the III/V gain chip and Si, known as external
600 cavity lasers (ECLs). ECLs allow for the independent control over the laser's properties such as the linewidth
601 [237], wavelength tuning [238], and stabilization using on-Si chip electrical control [73,239,240]. Nevertheless,
602 common issues of direct mounting integration include low efficient end-coupling between the III/V and Si
603 waveguides requiring precise alignment, and degradation in the laser's overall performance due to possible
604 back reflections into the laser source [241]. Even if aligned at the microscale, the process is both costly and

605 tedious [235] which adds to the overall cost of a lab-on-a-chip system making it an expensive solution and
606 limiting its usage for prototyping purposes.

607 An alternative and more efficient way of integrating III/V gain materials on Si substrates is through
608 indirect (using metal or polymer layers) or direct bonding techniques [225,242], commonly referred to as
609 hybrid or heterogeneous integration. The biggest advantage of heterogeneous integration above direct
610 mounting is that it does not require the precise alignment at the microscale, since the III/V active layers
611 are lithographically aligned with high precision. Direct bonding can be achieved using Oxygen plasma
612 at low temperatures. This was first demonstrated by Bowers et al. [243,244], and due to it being a
613 cost-effective solution, this work resulted in a startup, Aurion Inc. that was later acquired by Juniper
614 Networks [245,246]. Direct bonding has the advantage of not requiring the addition of any extra layers, and
615 lasers formed this way can achieve low threshold currents [225]. Indirect bonding, on the other hand, was
616 demonstrated using metal-assisted adhesive bonding [247–249], whereas others have used polymers such as
617 divinylsiloxane-bis-benzocyclobutene (DVS-BCB) [242,250,251]. While metals provide better heat dissipation
618 due to their high thermal conductivity, polymers are more straightforward to fabricate and unlike metals, do
619 not absorb light. Polymers, however, have the disadvantage of having a high thermal resistance thus localizing
620 heat. To mitigate its effects, Roelkens has fabricated polymers with < 50 nm thickness, thus reducing its effect
621 in localizing the heat [242]. The same group have extended this technique and demonstrated light sources
622 at a various wavelength for biosensing applications [252]. This makes heterogeneous integration a scalable
623 technique that enables dense integration of III/V in SOI platforms, thus reducing the potential costs of a
624 lab-on-a-chip system. Furthermore, ECLs can be implemented in the hybrid approach, thus leveraging the
625 merits that ECLs brings [238].

626 There are several monolithic approaches for integrating III/V lasers and active devices on Si substrates.
627 Epitaxial layer overgrowth (ELOG) is one way to overcome the formation of threading dislocations that arise
628 due to the lattice and thermal expansion mismatch between III/V and Si materials [253]. The process is yet
629 more complicated in comparison to the formerly mentioned techniques.

630 While the choice of III/V integration method on Si directly influence the overall laser's performance, the
631 choice of the III/V active gain medium physical structure is equally important. For instance, to achieve a
632 low-power and reliable (avoiding overheating) operation, the WPE of the laser should be maximized. The
633 WPE or the conversion efficiency is a crucial figure of merit in a laser design, which is dependent upon
634 the threshold current, electron density and the internal losses in the laser's cavity. These parameters are
635 dependent upon the band structure of the chosen active gain medium, which is engineered by physically
636 restricting the electrons motion to form double heterostructure (DH), quantum well (QW), quantum wire
637 (QWR) or quantum dot (QD) structures. Among the various structures reported, QDs stand out as they offer
638 superior properties compared to their counterparts DHs, QWs, or QWRs as shown in Figure 13. Thanks to
639 the tight electron confinement, thus increasing the optical gain dependence on the current density, which
640 reduces the transparency current and makes the threshold current density temperature insensitive [254].
641 Motivated by lowering the threshold current and making a temperature insensitive laser, Dingle and Henry
642 proposed the QD laser back in 1976 [255]. Since its analysis by Arakawa and Sakaki in 1982 [256], a plethora
643 of applications on-Si platform has leveraged the merits QD lasers brought [257–260]. Perhaps, one of the
644 main reasons behind the proliferation of QDs lies in its minimal sensitivity to defects [261], which drew
645 increased attention and allowed for the growth of III/V QDs on Si [262]. This is very promising, however, its
646 compatibility with CMOS processes remains controversial [73]. Recently, researchers at University College
647 London [263] demonstrated electrically pumped III/V QD lasers on Si with superior characteristics, such as a
648 low threshold current density of 62.5 A/cm^2 , room temperature output power of $> 105 \text{ mW}$, and over several
649 months of reliable continuous operation, giving an estimated failure of over ten years of operation. This holds
650 great promises towards the high-volume practical realization of low-cost photonic biosensors.

Figure 13. Historical development of low-dimensional heterostructure lasers, showing the record threshold current densities. The blue and red stars indicate the threshold values achieved in Ref. [263] for a single and multiple QD layers, respectively. Figure adapted with permission from Ref. [263].

651 5.2.2. On-Chip Detectors

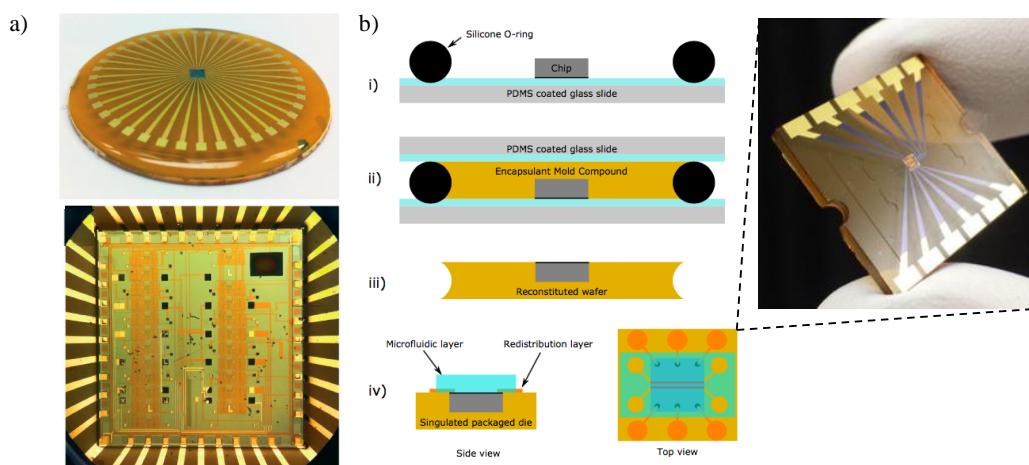
652 For a lab-on-a-chip system with electrical I/Os, an on-chip photodetector is required to convert the light
 653 signal for further processing. There are several on-Si PDs implemented either using III/V compounds, or
 654 using group IV elements such as Si or Ge. The choice of PDs depends on the detection wavelength of interest.
 655 Wang et al. have heterogeneously integrated III/V PDs on Si substrate for operation at a wavelength of $2\text{ }\mu\text{m}$
 656 [252]. Other techniques explored include thermo-electric PDs [252,264]. However, across the C-band, besides
 657 III/V compounds [242], Ge and Si could be used for photodetection. The main advantages of using Si or Ge is
 658 their ease of fabrication with a CMOS fab. Despite Si's transparency at the C-band, doping Si can increase
 659 the Si waveguide's sensitivity to incoming light across the C-band either due to surface states [265], or due to
 660 the introduction of mid-band-gap defect states [265–268]. Si-based defect-mediated PDs, however, suffer
 661 from either low responsivities or large photoconductive gain at the expense of a much larger dark current
 662 [267], which is undesirable for biosensing applications. Ge-based PDs, however, have superior characteristics.
 663 Recent results showed Ge on Si PDs with a high responsivity of 0.74 A/W and low dark currents of less than 4 nA [269]. Their integration into an on-chip biosensor was also demonstrated in Ref [213], and its performance
 664 was analyzed. These characteristics make Ge-based PDs ideal for biosensing at a wavelength of $1.3\text{ }\mu\text{m}$ or
 665 $1.5\text{ }\mu\text{m}$ in the SOI platform.

667 5.3. Readout

For conventional evanescent field biosensing techniques, two aforementioned methods are usually employed for the quantitative detection of analytes at the sensor's surface in real-time: the first one is monitoring the wavelength (or phase) shift in the transmission spectrum through scanning the input light source wavelength, which allows a large dynamic range for sensors; the other one is detecting the transmission intensity change caused by shifts at a fixed wavelength and providing precise detection with a very small concentration of analytes [270,271]. Both of these spectral domain approaches require precise optical spectrum scanning and processing systems, such as a wavelength-tunable laser, high-resolution photodetector or optical spectrum analyzer. Correspondingly, two types of spectral noise sources, wavelength noise and intensity noise, are categorized: wavelength noise ($\sigma_{\text{wavelength}}$) is mainly generated from the light source wavelength shift and thermally influenced fluctuations of the sensor; whereas intensity noise ($\sigma_{\text{intensity}}$) is caused by light source intensity fluctuations, the variation of input coupling, and PD noise [272]. Another important factor, the spectral resolution ($\sigma_{\text{resolution}}$) of the system setup, can also limit the precision of the spectral location, which highly depends on the measurement setup, i.e., the laser or the optical readout. Therefore, the total noise variance in the sensing system can be approximated by summing all the individual noise variances [57]:

$$3\sigma = 3\sqrt{\sigma_{\text{wavelength}}^2 + \sigma_{\text{intensity}}^2 + \sigma_{\text{resolution}}^2}. \quad (26)$$

668 Several approaches can be applied to improve the system noise for silicon photonic sensors. As mentioned
669 before, Q -factor plays an important role in determining the DL of a sensor. That is because having a high
670 Q -factor (narrow FWHM) can filter the spectral noise effectively and lead to a low spectral deviation from the
671 actual extremum [57]. Another one is introducing optical spectrum curving fitting, which is a powerful tool to
672 enhance the spectral resolution. Taking into account of the entire spectrum, a fitting process can improve the
673 eventual signal-to-noise ratio (SNR) by \sqrt{N} , where N is the total number of data points in the spectrum [29].
674 By applying this algorithm to silicon photonic biosensors, a wavelength measurement precision much smaller
675 than both the light source linewidth and the peak FWHM is achieved [272], with a factor of approximately 10
676 to 10^3 [59]. Therefore, the system DL with an improved linewidth in the spectrum readout can greatly enhance
677 sensor performance as compared to the intrinsic DL using the peak linewidth according to Equation 5 and 12.


678 Recently, Wang et al. proposed a biosensing scheme using a coupled-resonator optical-waveguide
679 (CROW) in the SOI platform, where a series of coupled MRRs cause a specific spatial domain scattering
680 pattern by applying a fixed wavelength to excites the CROW [270]. Based on the captured intensity of the
681 light-scattering of each MRR, the whole structure intensity pattern dependent on the RI change above the
682 CROW is presented as the readout scheme by the imaging camera. By introducing different concentrations of
683 NaCl solutions to an 8-MRR CROW sensor, a bulk sensitivity of ~ 752 RIU $^{-1}$ and DL of $\sim 6 \times 10^{-6}$ RIU are
684 achieved [270]. Although no spectrum scanning system is needed in this design for the sensor's excitation
685 and detection, the simultaneous imaging system still impedes the goal of the low cost, portable development.

686 5.4. State-Of-The-Art CMOS-Chip Packaging

687 Compared to traditional benchtop sensors and instrumentation, biosensors that rely on CMOS processes
688 offer lower cost, lower power and smaller size with a high-density on-chip sensing array [273]. In terms
689 of lab-on-a-chip monitoring, the primary challenge is the integration of sensing arrays interfaced with
690 fluid samples and electrical interconnects for data processing on CMOS substrates. Furthermore, die-level
691 CMOS substrates are always millimeter-sized which obstructs the on-chip microfluidics and electrical
692 interconnections integration for high-throughput.

693 To overcome these difficulties, several post-CMOS approaches have been investigated as system-level
694 packaging to implement electronic and biological detection functions. Fluid barrier materials, such as
695 PDMS, epoxy, SU-8, oxide/nitride, and parylene, have been employed for integrating CMOS chips with
696 microfluidics. Li et al. reported a chip-in-package process utilizing wire bonding technology for the die-level
697 on-CMOS biosensor integration [274]. By depositing a 2- μ m-thick parylene layer as the insulating coating,
698 the biosensor is enabled for operations in liquid with a good functionality of CMOS electronics [274]. Huang
699 et al. developed a lab-on-CMOS platform for electrochemical microsystems by using oxide/nitride/oxide
700 (ONO) passivation layers, which allows the functional integrity of multi-channel microfluidic structures
701 and on-CMOS electrodes [275]. For the size disparity between the CMOS chip and on-chip microfluidics,
702 die-level CMOS chips have been encapsulated into a substrate carrier which enlarges the surface area for
703 further processes. In 2014, Datta-Chaudhuri et al. presented a simple packaging method for die-level
704 CMOS foundry-fabricated chips, which are embedded in epoxy handle wafer for a level, enlarged surface,
705 allowing subsequent post-processing and microfluidic integration [276]. Parylene-C was selectively exposed
706 to the surface for the passivation of electrical connections. As shown in Figure 14a, due to the flat surface
707 around the chip, good electrical continuity of fan-out metal traces from the chip to the edge of the wafer
708 is achieved, enabling the subsequent off-chip data communication [276]. Similar approaches have been
709 considered for PICs. Laplatine et al. developed a novel system-level architecture by embedding the individual
710 photonic-electronic die into a 2-inch epoxy wafer, with electrical interconnects and microfluidic channels
711 based on a lab-scale Fan-Out Wafer-Level-Packaging process (FOWLP) presented in Figure 14b [213]. SU-8
712 was selected for the microfluidic channels patterning as well as electrical connections passivation. By
713 characterizing on-chip Ge PD components in the photovoltaic mode, they demonstrated an approach for
714 biomolecule detections even with a low optical power [213]. In addition, sensor performance was also
715 characterized by introducing standard NaCl solutions and bio-sandwich assays to FOWLP-packaged chips. A
716 bulk sensitivity of 220 nm/RIU is achieved, close to the sensing capability of the passive counterpart [277].

717 Similarly, a CMOS-compatible epoxy chip-in-carrier process was developed by Lin et al. [278]. By introducing
 718 a planar screen-printed silver ink metallization technique with mounted multichannel PDMS microfluidics on
 719 the device's surface, electrochemical and microfluidic experiments were evaluated by interconnect resistance
 720 measurements, showing high effectiveness for lab-on-CMOS applications to achieve desired capability with
 721 high yield and low material and tool cost [278].

Figure 14. (a) Images of the die-embedded epoxy handle wafer with thin-film Au connections fan-out from the chip to the edge, and close-up view around the die. Figure adapted with permission from Ref. [276]. (b) Schematic of lab-scale FOWLP, and image of the $16 \times 16 \text{ mm}^2$ packaged CMOS die after singulation. Figure adapted with permission from Ref. [213].

722 6. Conclusions

723 Over the past two decades, silicon photonics technology has attracted enormous attention and research
 724 effort in optoelectronic integration to impact multiple application areas. Leveraging the mature CMOS
 725 manufacturing technology, Si-based optical biosensing platforms have experienced huge breakthroughs
 726 in chip-scale integration and miniaturization for hand-held, label-free bio-diagnosis with high-volume
 727 production at low cost. By monitoring perturbations of the guided light in the waveguide, target molecules
 728 that change the RI in the vicinity of the sensor can be detected in real-time, showing a significant sensing
 729 capability down to sub-femtomolar. Moreover, some of the Si-based biosensing architectures have even been
 730 commercialized for label-free detection by companies such as Axela, Inc., Corning, Inc., and Genalyte, Inc.,
 731 through employing optical gratings, microplates, and microresonators into the sensing platform. However,
 732 due to the challenge of the monolithic integration on Si substrate, achieving a complete chip-scale integration
 733 of the portable biosensing platform for POC diagnosis requires further development. Compared to very
 734 commercially-mature label-free biosensing technique, i.e., SPR, the Si-based sensing approach still needs an
 735 improvement in sensitivity for label-free detection of small molecule analytes to fulfill the market demand.
 736 Thanks to the intensive research effort throughout the world, we firmly believe that true lab-on-a-chip,
 737 portable biosensing devices will be realized and revolutionize global healthcare.

738 **Acknowledgments:** The authors would like to acknowledge support from the CMC Microsystems, Natural Sciences and
 739 Engineering Research Council of Canada (NSERC), MITACS Accelerate program, and NSERC CREATE Silicon Electronic
 740 Photonic Integrated Circuits (SiEPIC) research training program. Enxiao Luan received the support from the China
 741 Scholarship Council (CSC) for four years study at the University of British Columbia.

742 **Conflicts of Interest:** The authors declare no conflict of interest.

743 References

1. Wulfkuhle, J.D.; Liotta, L.A.; Petricoin, E.F. Early detection: proteomic applications for the early detection of cancer. *Nature reviews cancer* **2003**, *3*, 267.

746 2. McDermott, U.; Downing, J.R.; Stratton, M.R. Genomics and the continuum of cancer care. *New England Journal*
747 *of Medicine* **2011**, *364*, 340–350.

748 3. Snyder, E.L.; Stramer, S.L.; Benjamin, R.J. The safety of the blood supply—time to raise the bar. *N Engl J Med* **2015**,
749 *372*, 1882–1885.

750 4. Dhawan, A.P.; Heetderks, W.J.; Pavel, M.; Acharya, S.; Akay, M.; Mairal, A.; Wheeler, B.; Dacso, C.C.; Sunder, T.;
751 Lovell, N.; others. Current and future challenges in point-of-care technologies: A paradigm-shift in affordable
752 global healthcare with personalized and preventive medicine. *IEEE journal of translational engineering in health*
753 *and medicine* **2015**, *3*, 1–10.

754 5. Yager, P.; Domingo, G.J.; Gerdes, J. Point-of-care diagnostics for global health. *Annu. Rev. Biomed. Eng.* **2008**,
755 *10*, 107–144.

756 6. Arlett, J.; Myers, E.; Roukes, M. Comparative advantages of mechanical biosensors. *Nature nanotechnology* **2011**,
757 *6*, 203.

758 7. Mascini, M.; Tombelli, S. Biosensors for biomarkers in medical diagnostics. *Biomarkers* **2008**, *13*, 637–657.

759 8. Clark, L. Monitor and control of blood and tissue oxygen tensions: Transactions of the American Society for
760 Artificial Internal Organs, v. 2 **1956**.

761 9. At, J. Business Prospects and Future Scope of Biosensors Market in Medical Device Industry.
762 <http://prsync.com/grand-view-research-inc/business-prospects-and-future-scope-of-biosensors-market-in-medical-device-industry-1211986/>, 2016. Accessed: 2018-4-24.

764 10. Lechuga, L.M. Optical biosensors. *Comprehensive analytical chemistry* **2005**, *44*, 209–250.

765 11. Washburn, A.L.; Gunn, L.C.; Bailey, R.C. Label-free quantitation of a cancer biomarker in complex media using
766 silicon photonic microring resonators. *Analytical chemistry* **2009**, *81*, 9499–9506.

767 12. Zinoviev, K.; Carrascosa, L.G.; Sánchez del Río, J.; Sepúlveda, B.; Domínguez, C.; Lechuga, L.M. Silicon photonic
768 biosensors for lab-on-a-chip applications. *Advances in Optical Technologies* **2008**, *2008*.

769 13. Soref, R. The past, present, and future of silicon photonics. *IEEE Journal of selected topics in quantum electronics*
770 **2006**, *12*, 1678–1687.

771 14. Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.;
772 Van Thourhout, D.; Baets, R. Silicon microring resonators. *Laser & Photonics Reviews* **2012**, *6*, 47–73.

773 15. Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A
774 review. *analytica chimica acta* **2008**, *620*, 8–26.

775 16. Schipper, E.; Brugman, A.; Dominguez, C.; Lechuga, L.; Kooyman, R.; Greve, J. The realization of an integrated
776 Mach-Zehnder waveguide immunosensor in silicon technology. *Sensors and Actuators B: Chemical* **1997**,
777 *40*, 147–153.

778 17. Densmore, A.; Xu, D.X.; Janz, S.; Waldron, P.; Mischki, T.; Lopinski, G.; Delâge, A.; Lapointe, J.; Cheben, P.;
779 Lamontagne, B.; others. Spiral-path high-sensitivity silicon photonic wire molecular sensor with
780 temperature-independent response. *Optics letters* **2008**, *33*, 596–598.

781 18. De Vos, K.; Bartolozzi, I.; Schacht, E.; Bienstman, P.; Baets, R. Silicon-on-Insulator microring resonator for sensitive
782 and label-free biosensing. *Optics express* **2007**, *15*, 7610–7615.

783 19. TalebiFard, S.; Schmidt, S.; Shi, W.; Wu, W.; Jaeger, N.A.; Kwok, E.; Ratner, D.M.; Chrostowski, L. Optimized sensitivity
784 of Silicon-on-Insulator (SOI) strip waveguide resonator sensor. *Biomedical optics express* **2017**, *8*, 500–511.

785 20. Armani, A.M.; Kulkarni, R.P.; Fraser, S.E.; Flagan, R.C.; Vahala, K.J. Label-free, single-molecule detection with
786 optical microcavities. *science* **2007**, *317*, 783–787.

787 21. Grist, S.M.; Schmidt, S.A.; Flueckiger, J.; Donzella, V.; Shi, W.; Fard, S.T.; Kirk, J.T.; Ratner, D.M.; Cheung, K.C.;
788 Chrostowski, L. Silicon photonic micro-disk resonators for label-free biosensing. *Optics express* **2013**,
789 *21*, 7994–8006.

790 22. Jugessur, A.; Dou, J.; Aitchison, J.; De La Rue, R.; Gnan, M. A photonic nano-Bragg grating device integrated with
791 microfluidic channels for bio-sensing applications. *Microelectronic Engineering* **2009**, *86*, 1488–1490.

792 23. Prabhathan, P.; Murukeshan, V.; Jing, Z.; Ramana, P.V. Compact SOI nanowire refractive index sensor using phase
793 shifted Bragg grating. *Optics express* **2009**, *17*, 15330–15341.

794 24. Mandal, S.; Serey, X.; Erickson, D. Nanomanipulation using silicon photonic crystal resonators. *Nano letters* **2009**,
795 *10*, 99–104.

796 25. Lee, M.; Fauchet, P.M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection.
797 *Optics express* **2007**, *15*, 4530–4535.

798 26. Schmidt, S. Enhancing the performance of silicon photonic biosensors for clinical applications. PhD thesis, University of Washington, 2017.

799 27. Washburn, A.L.; Bailey, R.C. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. *Analyst* **2011**, *136*, 227–236.

800 28. Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. *Essays in biochemistry* **2016**, *60*, 1–8.

801 29. Chrostowski, L.; Grist, S.; Flueckiger, J.; Shi, W.; Wang, X.; Ouellet, E.; Yun, H.; Webb, M.; Nie, B.; Liang, Z.; others. Silicon photonic resonator sensors and devices. *Laser Resonators, Microresonators, and Beam Control XIV*. International Society for Optics and Photonics, 2012, Vol. 8236, p. 823620.

802 30. Schmidt, S.; Flueckiger, J.; Wu, W.; Grist, S.M.; Fard, S.T.; Donzella, V.; Khumwan, P.; Thompson, E.R.; Wang, Q.; Kulik, P.; others. Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing. *Biosensing and Nanomedicine VII*. International Society for Optics and Photonics, 2014, Vol. 9166, p. 91660M.

803 31. Kozma, P.; Kehl, E.; Ehrentreich-Förster, E.; Stamm, C.; Bier, F.F. Integrated planar optical waveguide interferometer biosensors: A comparative review. *Biosensors and Bioelectronics* **2014**, *58*, 287–307.

804 32. Fernández Gavela, A.; Grajales García, D.; Ramirez, J.C.; Lechuga, L.M. Last advances in silicon-based optical biosensors. *Sensors* **2016**, *16*, 285.

805 33. Young, T. I. The Bakerian Lecture. Experiments and calculations relative to physical optics. *Philosophical transactions of the Royal Society of London* **1804**, *94*, 1–16.

806 34. Zehnder, L. *Ein neuer interferenzrefraktor*; Springer, 1891.

807 35. Mach, L. Ueber einen interferenzrefraktor. *Zeitschrift für Instrumentenkunde* **1892**, *12*, 89.

808 36. Jenkins, F.; White, H. Fundamentals of Optics. MacGraw Hill Book Company. *New York* **1957**, pp. 211–231.

809 37. Jenkins, F.; White, H. The Double Slit. MacGraw Hill Book Company. *New York* **1957**, pp. 311–327.

810 38. Estevez, M.C.; Alvarez, M.; Lechuga, L.M. Integrated optical devices for lab-on-a-chip biosensing applications. *Laser & Photonics Reviews* **2012**, *6*, 463–487.

811 39. Dante, S.; Duval, D.; Sepúlveda, B.; González-Guerrero, A.B.; Sendra, J.R.; Lechuga, L.M. All-optical phase modulation for integrated interferometric biosensors. *Optics express* **2012**, *20*, 7195–7205.

812 40. Heideman, R.; Kooyman, R.; Greve, J. Development of an optical waveguide interferometric immunosensor. *Sensors and Actuators B: Chemical* **1991**, *4*, 297–299.

813 41. Heideman, R.; Kooyman, R.; Greve, J. Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor. *Sensors and Actuators B: Chemical* **1993**, *10*, 209–217.

814 42. Heideman, R.; Lambeck, P. Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. *Sensors and Actuators B: Chemical* **1999**, *61*, 100–127.

815 43. Crespi, A.; Gu, Y.; Ngamsom, B.; Hoekstra, H.J.; Dongre, C.; Pollnau, M.; Ramponi, R.; van den Vlekkert, H.H.; Watts, P.; Cerullo, G.; others. Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. *Lab on a Chip* **2010**, *10*, 1167–1173.

816 44. Densmore, A.; Xu, D.X.; Waldron, P.; Janz, S.; Cheben, P.; Lapointe, J.; Delge, A.; Lamontagne, B.; Schmid, J.; Post, E. A silicon-on-insulator photonic wire based evanescent field sensor. *IEEE Photonics Technology Letters* **2006**, *18*, 2520–2522.

817 45. Densmore, A.; Vachon, M.; Xu, D.X.; Janz, S.; Ma, R.; Li, Y.H.; Lopinski, G.; Delâge, A.; Lapointe, J.; Luebbert, C.; others. Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. *Optics letters* **2009**, *34*, 3598–3600.

818 46. Shew, B.; Cheng, Y.; Tsai, Y. Monolithic SU-8 micro-interferometer for biochemical detections. *Sensors and Actuators A: Physical* **2008**, *141*, 299–306.

819 47. Mathesz, A.; Fábián, L.; Valkai, S.; Alexandre, D.; Marques, P.V.; Ormos, P.; Wolff, E.K.; Dér, A. High-speed integrated optical logic based on the protein bacteriorhodopsin. *Biosensors and Bioelectronics* **2013**, *46*, 48–52.

820 48. Dumais, P.; Callender, C.L.; Noad, J.P.; Ledderhof, C.J. Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer. *Optics express* **2008**, *16*, 18164–18172.

821 49. Brandenburg, A.; Henninger, R. Integrated optical Young interferometer. *Applied optics* **1994**, *33*, 5941–5947.

822 50. Brandenburg, A. Differential refractometry by an integrated-optical Young interferometer. *Sensors and Actuators B: Chemical* **1997**, *39*, 266–271.

823 51. Brandenburg, A.; Krauter, R.; Künzel, C.; Stefan, M.; Schulte, H. Interferometric sensor for detection of surface-bound bioreactions. *Applied Optics* **2000**, *39*, 6396–6405.

851 52. Schmitt, K.; Schirmer, B.; Hoffmann, C.; Brandenburg, A.; Meyrueis, P. Interferometric biosensor based on
852 planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. *Biosensors and*
853 *Bioelectronics* **2007**, *22*, 2591–2597.

854 53. Wang, M.; Uusitalo, S.; Liedert, C.; Hiltunen, J.; Hakalahti, L.; Myllylä, R. Polymeric dual-slab waveguide
855 interferometer for biochemical sensing applications. *Applied optics* **2012**, *51*, 1886–1893.

856 54. Hiltunen, M.; Hiltunen, J.; Stenberg, P.; Aikio, S.; Kurki, L.; Vahimaa, P.; Karioja, P. Polymeric slot waveguide
857 interferometer for sensor applications. *Optics Express* **2014**, *22*, 7229–7237.

858 55. Zinoviev, K.E.; González-Guerrero, A.B.; Domínguez, C.; Lechuga, L.M. Integrated bimodal waveguide
859 interferometric biosensor for label-free analysis. *Journal of Lightwave Technology* **2011**, *29*, 1926–1930.

860 56. Duval, D.; González-Guerrero, A.B.; Dante, S.; Osmond, J.; Monge, R.; Fernández, L.J.; Zinoviev, K.E.; Domínguez,
861 C.; Lechuga, L.M. Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics
862 and grating couplers. *Lab on a Chip* **2012**, *12*, 1987–1994.

863 57. White, I.M.; Fan, X. On the performance quantification of resonant refractive index sensors. *Optics express* **2008**,
864 *16*, 1020–1028.

865 58. Flueckiger, J. Enhancing the performance of silicon photonics biosensors. PhD thesis, University of British
866 Columbia, 2017.

867 59. Yoshie, T.; Tang, L.; Su, S.Y. Optical microcavity: sensing down to single molecules and atoms. *Sensors* **2011**,
868 *11*, 1972–1991.

869 60. Blair, S.; Chen, Y. Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities.
870 *Applied Optics* **2001**, *40*, 570–582.

871 61. Boyd, R.W.; Heebner, J.E. Sensitive disk resonator photonic biosensor. *Applied Optics* **2001**, *40*, 5742–5747.

872 62. Ksendzov, A.; Lin, Y. Integrated optics ring-resonator sensors for protein detection. *Optics letters* **2005**,
873 *30*, 3344–3346.

874 63. Krioukov, E.; Klunder, D.; Driessens, A.; Greve, J.; Otto, C. Sensor based on an integrated optical microcavity. *Optics*
875 *letters* **2002**, *27*, 512–514.

876 64. Armani, A.M.; Vahala, K.J. Heavy water detection using ultra-high-Q microcavities. *Optics Letters* **2006**,
877 *31*, 1896–1898.

878 65. Carlborg, C.F.; Gylfason, K.B.; Kaźmierczak, A.; Dortu, F.; Polo, M.B.; Catala, A.M.; Kresbach, G.M.; Sohlström, H.;
879 Moh, T.; Vivien, L.; others. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free
880 assays in labs-on-chips. *Lab on a Chip* **2010**, *10*, 281–290.

881 66. Kazmierczak, A.; Dortu, F.; Schrevens, O.; Giannone, D.; Vivien, L.; Marris-Morini, D.; Bouville, D.; Cassan, E.;
882 Gylfason, K.B.; Sohlström, H.B.; others. Light coupling and distribution for $\text{Si}_3\text{N}_4/\text{SiO}_2$ integrated multichannel
883 single-mode sensing system. *Optical Engineering* **2009**, *48*, 014401.

884 67. Yalcin, A.; Popat, K.C.; Aldridge, J.C.; Desai, T.A.; Hryniwicz, J.; Chbouki, N.; Little, B.E.; King, O.; Van, V.; Chu, S.;
885 others. Optical sensing of biomolecules using microring resonators. *IEEE Journal of Selected Topics in Quantum*
886 *Electronics* **2006**, *12*, 148–155.

887 68. Ramachandran, A.; Wang, S.; Clarke, J.; Ja, S.; Goad, D.; Wald, L.; Flood, E.; Knobbe, E.; Hryniwicz, J.; Chu, S.;
888 others. A universal biosensing platform based on optical micro-ring resonators. *Biosensors and Bioelectronics*
889 **2008**, *23*, 939–944.

890 69. Ciminelli, C.; Dell'Olio, F.; Conteduca, D.; Campanella, C.; Armenise, M. High performance SOI microring resonator
891 for biochemical sensing. *Optics & laser technology* **2014**, *59*, 60–67.

892 70. Chao, C.Y.; Fung, W.; Guo, L.J. Polymer microring resonators for biochemical sensing applications. *IEEE journal of*
893 *selected topics in quantum electronics* **2006**, *12*, 134–142.

894 71. Girault, P.; Lorrain, N.; Poffo, L.; Guendouz, M.; Lemaitre, J.; Carré, C.; Gadonna, M.; Bosc, D.; Vignaud, G. Integrated
895 polymer micro-ring resonators for optical sensing applications. *Journal of Applied Physics* **2015**, *117*, 104504.

896 72. Iqbal, M.; Gleeson, M.A.; Spaugh, B.; Tybor, F.; Gunn, W.G.; Hochberg, M.; Baehr-Jones, T.; Bailey, R.C.; Gunn, L.C.
897 Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation.
898 *IEEE Journal of Selected Topics in Quantum Electronics* **2010**, *16*, 654–661.

899 73. Chrostowski, L.; Hochberg, M. *Silicon photonics design: from devices to systems*; Cambridge University Press, 2015.

900 74. Hanumegowda, N.M.; Stica, C.J.; Patel, B.C.; White, I.; Fan, X. Refractometric sensors based on microsphere
901 resonators. *Applied Physics Letters* **2005**, *87*, 201107.

902 75. Vollmer, F.; Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. *Nature*
903 *methods* **2008**, *5*, 591.

904 76. Zhu, H.; White, I.M.; Suter, J.D.; Fan, X. Phage-based label-free biomolecule detection in an opto-fluidic ring
905 resonator. *Biosensors and Bioelectronics* **2008**, *24*, 461–466.

906 77. Yang, G.; White, I.M.; Fan, X. An opto-fluidic ring resonator biosensor for the detection of organophosphorus
907 pesticides. *Sensors and Actuators B: Chemical* **2008**, *133*, 105–112.

908 78. Gohring, J.T.; Dale, P.S.; Fan, X. Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator
909 biosensor. *Sensors and Actuators B: Chemical* **2010**, *146*, 226–230.

910 79. Ren, H.C.; Vollmer, F.; Arnold, S.; Libchaber, A. High-Q microsphere biosensor-analysis for adsorption of rodlike
911 bacteria. *Optics Express* **2007**, *15*, 17410–17423.

912 80. Hunt, H.K.; Soteropoulos, C.; Armani, A.M. Bioconjugation strategies for microtoroidal optical resonators. *Sensors*
913 **2010**, *10*, 9317–9336.

914 81. Lin, V.S.Y.; Motesharei, K.; Dancil, K.P.S.; Sailor, M.J.; Ghadiri, M.R. A porous silicon-based optical interferometric
915 biosensor. *Science* **1997**, *278*, 840–843.

916 82. Harraz, F.A. Porous silicon chemical sensors and biosensors: A review. *Sensors and Actuators B: Chemical* **2014**,
917 *202*, 897–912.

918 83. Pacholski, C. Photonic crystal sensors based on porous silicon. *Sensors* **2013**, *13*, 4694–4713.

919 84. Zlatanovic, S.; Mirkarimi, L.W.; Sigalas, M.M.; Bynum, M.A.; Chow, E.; Robotti, K.M.; Burr, G.W.; Esener, S.; Grot, A.
920 Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration.
921 *Sensors and Actuators B: Chemical* **2009**, *141*, 13–19.

922 85. Pal, S.; Guillermain, E.; Sriram, R.; Miller, B.L.; Fauchet, P.M. Silicon photonic crystal nanocavity-coupled
923 waveguides for error-corrected optical biosensing. *Biosensors and Bioelectronics* **2011**, *26*, 4024–4031.

924 86. Chow, E.; Grot, A.; Mirkarimi, L.; Sigalas, M.; Girolami, G. Ultracompact biochemical sensor built with
925 two-dimensional photonic crystal microcavity. *Optics letters* **2004**, *29*, 1093–1095.

926 87. Rindorf, L.; Jensen, J.B.; Dufva, M.; Pedersen, L.H.; Høiby, P.E.; Bang, O. Photonic crystal fiber long-period gratings
927 for biochemical sensing. *Optics Express* **2006**, *14*, 8224–8231.

928 88. Yang, D.; Tian, H.; Ji, Y. High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode
929 cavity for refractive index sensing. *Applied optics* **2015**, *54*, 1–5.

930 89. Baker, J.E.; Sriram, R.; Miller, B.L. Two-dimensional photonic crystals for sensitive microscale chemical and
931 biochemical sensing. *Lab on a Chip* **2015**, *15*, 971–990.

932 90. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. *Physical review letters*
933 **1987**, *58*, 2059.

934 91. John, S. Strong localization of photons in certain disordered dielectric superlattices. *Physical review letters* **1987**,
935 *58*, 2486.

936 92. Lee, M.R.; Fauchet, P.M. Nanoscale microcavity sensor for single particle detection. *Optics letters* **2007**,
937 *32*, 3284–3286.

938 93. Cunningham, B.; Li, P.; Lin, B.; Pepper, J. Colorimetric resonant reflection as a direct biochemical assay technique.
939 *Sensors and Actuators B: Chemical* **2002**, *81*, 316–328.

940 94. Cunningham, B.; Qiu, J.; Li, P.; Lin, B. Enhancing the surface sensitivity of colorimetric resonant optical biosensors.
941 *Sensors and Actuators B: Chemical* **2002**, *87*, 365–370.

942 95. Cunningham, B.T.; Laing, L. Microplate-based, label-free detection of biomolecular interactions: applications in
943 proteomics. *Expert review of proteomics* **2006**, *3*, 271–281.

944 96. Chan, S.; Fauchet, P.; Li, Y.; Rothberg, L.; Miller, B. Porous silicon microcavities for biosensing applications. *physica
945 status solidi (a)* **2000**, *182*, 541–546.

946 97. Chan, S.; Horner, S.R.; Fauchet, P.M.; Miller, B.L. Identification of gram negative bacteria using nanoscale silicon
947 microcavities. *Journal of the American Chemical Society* **2001**, *123*, 11797–11798.

948 98. Ouyang, H.; Christophersen, M.; Viard, R.; Miller, B.L.; Fauchet, P.M. Macroporous silicon microcavities for
949 macromolecule detection. *Advanced Functional Materials* **2005**, *15*, 1851–1859.

950 99. García-Rupérez, J.; Toccafondo, V.; Bañuls, M.J.; Castelló, J.G.; Grisol, A.; Peransi-Llopis, S.; Maquieira, Á. Label-free
951 antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime.
952 *Optics Express* **2010**, *18*, 24276–24286.

953 100. Kang, C.; Weiss, S.M. Photonic crystal with multiple-hole defect for sensor applications. *Optics express* **2008**,
954 *16*, 18188–18193.

955 101. Kang, C.; Phare, C.T.; Vlasov, Y.A.; Assefa, S.; Weiss, S.M. Photonic crystal slab sensor with enhanced surface area.
956 *Optics express* **2010**, *18*, 27930–27937.

957 102. Qin, K.; Hu, S.; Retterer, S.T.; Kravchenko, I.I.; Weiss, S.M. Slow light Mach-Zehnder interferometer as label-free
958 biosensor with scalable sensitivity. *Optics letters* **2016**, *41*, 753–756.

959 103. Lo, S.M.; Hu, S.; Gaur, G.; Kostoulas, Y.; Weiss, S.M.; Fauchet, P.M. Photonic crystal microring resonator for
960 label-free biosensing. *Optics express* **2017**, *25*, 7046–7054.

961 104. Mandal, S.; Erickson, D. Nanoscale optofluidic sensor arrays. *Optics Express* **2008**, *16*, 1623–1631.

962 105. Zou, Y.; Chakravarty, S.; Zhu, L.; Chen, R.T. The role of group index engineering in series-connected photonic
963 crystal microcavities for high density sensor microarrays. *Applied physics letters* **2014**, *104*, 141103.

964 106. Zhou, J.; Huang, L.; Fu, Z.; Sun, F.; Tian, H. Multiplexed simultaneous high sensitivity sensors with high-order mode
965 based on the integration of photonic crystal 1×3 beam splitter and three different single-slot PCNCs. *Sensors*
966 **2016**, *16*, 1050.

967 107. Zhang, L.; Fu, Z.; Sun, F.; Wang, C.; Tian, H. Highly sensitive one chip eight channel sensing of ultra-compact
968 parallel integrated photonic crystal cavities based on silicon-on-insulator platform. *Lasers and Electro-Optics*
969 Pacific Rim (CLEO-PR), 2017 Conference on. IEEE, 2017, pp. 1–2.

970 108. Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.; Askins, C.; Putnam, M.; Friebele, E.J. Fiber grating
971 sensors. *Journal of lightwave technology* **1997**, *15*, 1442–1463.

972 109. Wang, X. Silicon photonic waveguide Bragg gratings. PhD thesis, University of British Columbia, 2013.

973 110. Schroeder, K.; Ecke, W.; Mueller, R.; Willsch, R.; Andreev, A. A fibre Bragg grating refractometer. *Measurement*
974 *Science and technology* **2001**, *12*, 757.

975 111. Lowder, T.L.; Gordon, J.D.; Schultz, S.M.; Selfridge, R.H. Volatile organic compound sensing using a surface-relief
976 D-shaped fiber Bragg grating and a polydimethylsiloxane layer. *Optics letters* **2007**, *32*, 2523–2525.

977 112. Guo, T.; Liu, F.; Liang, X.; Qiu, X.; Huang, Y.; Xie, C.; Xu, P.; Mao, W.; Guan, B.O.; Albert, J. Highly sensitive detection
978 of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings. *Biosensors and*
979 *Bioelectronics* **2016**, *78*, 221–228.

980 113. Murphy, T.E.; Hastings, J.T.; Smith, H.I. Fabrication and characterization of narrow-band Bragg-reflection filters in
981 silicon-on-insulator ridge waveguides. *Journal of lightwave technology* **2001**, *19*, 1938.

982 114. Passaro, V.M.; Loiacono, R.; D'Amico, G.; De Leonardi, F. Design of Bragg grating sensors based on submicrometer
983 optical rib waveguides in SOI. *IEEE Sensors Journal* **2008**, *8*, 1603–1611.

984 115. Fard, S.T.; Grist, S.M.; Donzella, V.; Schmidt, S.A.; Flueckiger, J.; Wang, X.; Shi, W.; Millspaugh, A.; Webb, M.;
985 Ratner, D.M.; others. Label-free silicon photonic biosensors for use in clinical diagnostics. *Silicon Photonics VIII*.
986 International Society for Optics and Photonics, 2013, Vol. 8629, p. 862909.

987 116. Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. *Photonic crystals: molding the flow of light*; Princeton
988 university press, 2011.

989 117. Luchansky, M.S.; Bailey, R.C. Silicon photonic microring resonators for quantitative cytokine detection and T-cell
990 secretion analysis. *Analytical chemistry* **2010**, *82*, 1975–1981.

991 118. McClellan, M.S.; Domier, L.L.; Bailey, R.C. Label-free virus detection using silicon photonic microring resonators.
992 *Biosensors and Bioelectronics* **2012**, *31*, 388–392.

993 119. Qavi, A.J.; Mysz, T.M.; Bailey, R.C. Isothermal discrimination of single-nucleotide polymorphisms via real-time
994 kinetic desorption and label-free detection of DNA using silicon photonic microring resonator arrays. *Analytical*
995 *chemistry* **2011**, *83*, 6827–6833.

996 120. Qavi, A.J.; Bailey, R.C. Multiplexed detection and label-free quantitation of MicroRNAs using arrays of silicon
997 photonic microring resonators. *Angewandte Chemie* **2010**, *122*, 4712–4715.

998 121. Luchansky, M.S.; Washburn, A.L.; McClellan, M.S.; Bailey, R.C. Sensitive on-chip detection of a protein biomarker
999 in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and
1000 sub-micron beads. *Lab on a Chip* **2011**, *11*, 2042–2044.

1001 122. Sepúlveda, B.; Armelles, G.; Lechuga, L. Magneto-optical phase modulation in integrated Mach-Zehnder
1002 interferometric sensors. *Sensors and Actuators A: Physical* **2007**, *134*, 339–347.

1003 123. Densmore, A.; Xu, D.X.; Janz, S.; Waldron, P.; Lapointe, J.; Mischki, T.; Lopinski, G.; Delâge, A.; Schmid, J.; Cheben, P.
1004 Sensitive label-free biomolecular detection using thin silicon waveguides. *Advances in optical technologies* **2008**,
1005 *2008*.

1006 124. Xu, D.X.; Vachon, M.; Densmore, A.; Ma, R.; Janz, S.; Delâge, A.; Lapointe, J.; Cheben, P.; Schmid, J.; Post, E.; others.
1007 Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free
1008 biosensor arrays. *Optics Express* **2010**, *18*, 22867–22879.

1009 125. Barrios, C.A. Optical slot-waveguide based biochemical sensors. *Sensors* **2009**, *9*, 4751–4765.

1010 126. Baehr-Jones, T.; Hochberg, M.; Walker, C.; Scherer, A. High-Q optical resonators in silicon-on-insulator-based slot
1011 waveguides. *Applied Physics Letters* **2005**, *86*, 081101.

1012 127. Barrios, C.A.; Gylfason, K.B.; Sánchez, B.; Griol, A.; Sohlström, H.; Holgado, M.; Casquel, R. Slot-waveguide
1013 biochemical sensor. *Optics letters* **2007**, *32*, 3080–3082.

1014 128. Claes, T.; Molera, J.G.; De Vos, K.; Schacht, E.; Baets, R.; Bienstman, P. Label-free biosensing with a
1015 slot-waveguide-based ring resonator in silicon on insulator. *IEEE Photonics journal* **2009**, *1*, 197–204.

1016 129. Taniguchi, T.; Hirowatari, A.; Ikeda, T.; Fukuyama, M.; Amemiya, Y.; Kuroda, A.; Yokoyama, S. Detection of
1017 antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G. *Optics Communications* **2016**,
1018 *365*, 16–23.

1019 130. Zhang, W.; Serna, S.; Le Roux, X.; Vivien, L.; Cassan, E. Highly sensitive refractive index sensing by fast detuning
1020 the critical coupling condition of slot waveguide ring resonators. *Optics letters* **2016**, *41*, 532–535.

1021 131. Barrios, C.A. Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator. *IEEE
1022 Photonics Technology Letters* **2006**, *18*, 2419–2421.

1023 132. Lee, S.; Eom, S.C.; Chang, J.S.; Huh, C.; Sung, G.Y.; Shin, J.H. Label-free optical biosensing using a horizontal
1024 air-slot SiN_x microdisk resonator. *Optics express* **2010**, *18*, 20638–20644.

1025 133. Kim, G.; Shin, J.H. Luminescent silicon-rich nitride horizontal air-slot microdisk resonators for biosensing. *IEEE
1026 Photonics Technology Letters* **2016**, *28*, 2331–2334.

1027 134. Tu, X.; Song, J.; Liow, T.Y.; Park, M.K.; Yiying, J.Q.; Kee, J.S.; Yu, M.; Lo, G.Q. Thermal independent silicon-nitride
1028 slot waveguide biosensor with high sensitivity. *Optics express* **2012**, *20*, 2640–2648.

1029 135. Wang, X.; Flueckiger, J.; Schmidt, S.; Grist, S.; Fard, S.T.; Kirk, J.; Doerfler, M.; Cheung, K.C.; Ratner, D.M.;
1030 Chrostowski, L. A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide. *Journal of
1031 biophotonics* **2013**, *6*, 821–828.

1032 136. Lai, W.C.; Chakravarty, S.; Wang, X.; Lin, C.; Chen, R.T. On-chip methane sensing by near-IR absorption signatures
1033 in a photonic crystal slot waveguide. *Optics letters* **2011**, *36*, 984–986.

1034 137. Scullion, M.G.; Krauss, T.F.; Di Falco, A. Slotted photonic crystal sensors. *Sensors* **2013**, *13*, 3675–3710.

1035 138. Di Falco, A.; O'faolain, L.; Krauss, T. Chemical sensing in slotted photonic crystal heterostructure cavities. *Applied
1036 physics letters* **2009**, *94*, 063503.

1037 139. Jágerská, J.; Zhang, H.; Diao, Z.; Le Thomas, N.; Houdré, R. Refractive index sensing with an air-slot photonic
1038 crystal nanocavity. *Optics letters* **2010**, *35*, 2523–2525.

1039 140. Liu, Q.; Tu, X.; Kim, K.W.; Kee, J.S.; Shin, Y.; Han, K.; Yoon, Y.J.; Lo, G.Q.; Park, M.K. Highly sensitive Mach-Zehnder
1040 interferometer biosensor based on silicon nitride slot waveguide. *Sensors and Actuators B: Chemical* **2013**,
1041 *188*, 681–688.

1042 141. Sun, X.; Dai, D.; Thylén, L.; Wosinski, L. High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder
1043 interferometer with a double-slot hybrid plasmonic waveguide. *Optics express* **2015**, *23*, 25688–25699.

1044 142. Fard, S.T.; Donzella, V.; Schmidt, S.A.; Flueckiger, J.; Grist, S.M.; Fard, P.T.; Wu, Y.; Bojko, R.J.; Kwok, E.; Jaeger,
1045 N.A.; others. Performance of ultra-thin SOI-based resonators for sensing applications. *Optics express* **2014**,
1046 *22*, 14166–14179.

1047 143. Veldhuis, G.; Parriaux, O.; Hoekstra, H.; Lambeck, P. Sensitivity enhancement in evanescent optical waveguide
1048 sensors. *Journal of lightwave technology* **2000**, *18*, 677.

1049 144. Wang, X.; Guan, X.; Huang, Q.; Zheng, J.; Shi, Y.; Dai, D. Suspended ultra-small disk resonator on silicon for optical
1050 sensing. *Optics letters* **2013**, *38*, 5405–5408.

1051 145. Hu, S.; Qin, K.; Kravchenko, I.I.; Retterer, S.T.; Weiss, S.M. Suspended micro-ring resonator for enhanced
1052 biomolecule detection sensitivity. *Frontiers in Biological Detection: From Nanosensors to Systems VI*. International
1053 Society for Optics and Photonics, 2014, Vol. 8933, p. 893306.

1054 146. Taha, A.M.; Paredes, B.; Khilo, A.; Dahlem, M.S. SOI-based centimeter-scale Mach-Zehnder interferometers for
1055 fluid sensing. *Integrated Optics: Devices, Materials, and Technologies XXI*. International Society for Optics and
1056 Photonics, 2017, Vol. 10106, p. 101060N.

1057 147. Kou, L.; Labrie, D.; Chylek, P. Refractive indices of water and ice in the 0.65- to 2.5- μ m spectral range. *Applied
1058 optics* **1993**, *32*, 3531–3540.

1059 148. Melnik, E.; Bruck, R.; Müellner, P.; Schleiderer, T.; Hainberger, R.; Lämmerhofer, M. Human IgG detection in serum
1060 on polymer based Mach-Zehnder interferometric biosensors. *Journal of biophotonics* **2016**, *9*, 218–223.

1061 149. Kim, J.H.E.; Chrostowski, L.; Bisailon, E.; Plant, D.V. DBR, Sub-wavelength grating, and Photonic crystal slab
1062 Fabry-Perot cavity design using phase analysis by FDTD. *Optics express* **2007**, *15*, 10330–10339.

1063 150. Cheben, P.; Xu, D.X.; Janz, S.; Densmore, A. Subwavelength waveguide grating for mode conversion and light
1064 coupling in integrated optics. *Optics express* **2006**, *14*, 4695–4702.

1065 151. Bock, P.J.; Cheben, P.; Schmid, J.H.; Lapointe, J.; Delâge, A.; Janz, S.; Aers, G.C.; Xu, D.X.; Densmore, A.; Hall, T.J.
1066 Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. *Optics
1067 express* **2010**, *18*, 20251–20262.

1068 152. Cheben, P.; Bock, P.J.; Schmid, J.H.; Lapointe, J.; Janz, S.; Xu, D.X.; Densmore, A.; Delâge, A.; Lamontagne, B.; Hall,
1069 T.J. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar
1070 waveguide multiplexers. *Optics letters* **2010**, *35*, 2526–2528.

1071 153. Halir, R.; Bock, P.J.; Cheben, P.; Ortega-Moñux, A.; Alonso-Ramos, C.; Schmid, J.H.; Lapointe, J.; Xu, D.X.;
1072 Wangüemert-Pérez, J.G.; Molina-Fernández, I.; others. Waveguide sub-wavelength structures: a review of
1073 principles and applications. *Laser & Photonics Reviews* **2015**, *9*, 25–49.

1074 154. Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. *Nature* **2018**,
1075 *560*, 565.

1076 155. Weissman, Z.; Hendel, I. Analysis of periodically segmented waveguide mode expanders. *Journal of lightwave
1077 technology* **1995**, *13*, 2053–2058.

1078 156. Wangüemert-Pérez, J.G.; Cheben, P.; Ortega-Moñux, A.; Alonso-Ramos, C.; Pérez-Galacho, D.; Halir, R.;
1079 Molina-Fernández, I.; Xu, D.X.; Schmid, J.H. Evanescent field waveguide sensing with subwavelength grating
1080 structures in silicon-on-insulator. *Optics letters* **2014**, *39*, 4442–4445.

1081 157. Wang, Z.; Xu, X.; Fan, D.; Wang, Y.; Chen, R.T. High quality factor subwavelength grating waveguide micro-ring
1082 resonator based on trapezoidal silicon pillars. *Optics letters* **2016**, *41*, 3375–3378.

1083 158. Yan, H.; Huang, L.; Xu, X.; Chakravarty, S.; Tang, N.; Tian, H.; Chen, R.T. Unique surface sensing property and
1084 enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides. *Optics
1085 express* **2016**, *24*, 29724–29733.

1086 159. Huang, L.; Yan, H.; Xu, X.; Chakravarty, S.; Tang, N.; Tian, H.; Chen, R.T. Improving the detection limit for on-chip
1087 photonic sensors based on subwavelength grating racetrack resonators. *Optics express* **2017**, *25*, 10527–10535.

1088 160. Donzella, V.; Sherwali, A.; Flueckiger, J.; Grist, S.M.; Fard, S.T.; Chrostowski, L. Design and fabrication of SOI
1089 micro-ring resonators based on sub-wavelength grating waveguides. *Optics express* **2015**, *23*, 4791–4803.

1090 161. Flueckiger, J.; Schmidt, S.; Donzella, V.; Sherwali, A.; Ratner, D.M.; Chrostowski, L.; Cheung, K.C. Sub-wavelength
1091 grating for enhanced ring resonator biosensor. *Optics express* **2016**, *24*, 15672–15686.

1092 162. Luan, E.; Yun, H.; Laplatine, L.; Dattner, Y.; Ratner, D.M.; Cheung, K.; Chrostowski, L. Enhanced sensitivity of
1093 sub-wavelength multi-box waveguide microring resonator label-free biosensor. *IEEE Journal of Selected Topics in
1094 Quantum Electronics* **2018**.

1095 163. Luan, E.; Yun, H.; Laplatine, L.; Flückiger, J.; Dattner, Y.; Ratner, D.; Cheung, K.; Chrostowski, L. Sub-wavelength
1096 multi-box waveguide-based label-free sensors. *Integrated Optics: Devices, Materials, and Technologies XXII*.
1097 International Society for Optics and Photonics, 2018, Vol. 10535, p. 105350H.

1098 164. Sumi, R.; Gupta, N.D.; Das, B.K. Integrated optical Mach-Zehnder interferometer with a sensing arm of
1099 sub-wavelength grating waveguide in SOI. *SENSORS, 2017 IEEE*. IEEE, 2017, pp. 1–3.

1100 165. Dai, D. Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. *Optics Express* **2009**,
1101 *17*, 23817–23822.

1102 166. Claes, T.; Bogaerts, W.; Bienstman, P. Experimental characterization of a silicon photonic biosensor consisting
1103 of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an
1104 improved detection limit. *Optics express* **2010**, *18*, 22747–22761.

1105 167. Jiang, X.; Chen, Y.; Yu, F.; Tang, L.; Li, M.; He, J.J. High-sensitivity optical biosensor based on cascaded
1106 Mach-Zehnder interferometer and ring resonator using Vernier effect. *Optics letters* **2014**, *39*, 6363–6366.

1107 168. Liu, B.; Shakouri, A.; Bowers, J.E. Wide tunable double ring resonator coupled lasers. *IEEE Photonics Technology
1108 Letters* **2002**, *14*, 600–602.

1109 169. Madsen, C.K.; Zhao, J.H. *Optical filter design and analysis*; Wiley New York, 1999.

1110 170. Rabiei, P.; Steier, W.H. Tunable polymer double micro-ring filters. *IEEE Photonics Technology Letters* **2003**,
1111 *15*, 1255–1257.

1112 171. Jin, L.; Li, M.; He, J.J. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators
1113 with vernier effect. *Optics Communications* **2011**, *284*, 156–159.

1114 172. Jiang, X.; Ye, J.; Zou, J.; Li, M.; He, J.J. Cascaded silicon-on-insulator double-ring sensors operating in
1115 high-sensitivity transverse-magnetic mode. *Optics letters* **2013**, *38*, 1349–1351.

1116 173. Hu, J.; Dai, D. Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires. *IEEE*
1117 *Photonics Technology Letters* **2011**, *23*, 842–844.

1118 174. Passaro, V.M.; Troia, B.; De Leonardi, F. A generalized approach for design of photonic gas sensors based on
1119 Vernier-effect in mid-IR. *Sensors and Actuators B: Chemical* **2012**, *168*, 402–420.

1120 175. Liu, Y.; Li, Y.; Li, M.; He, J.J. High-sensitivity and wide-range optical sensor based on three cascaded ring resonators.
1121 *Optics Express* **2017**, *25*, 972–978.

1122 176. La Notte, M.; Passaro, V.M. Ultra high sensitivity chemical photonic sensing by Mach-Zehnder interferometer
1123 enhanced Vernier-effect. *Sensors and Actuators B: Chemical* **2013**, *176*, 994–1007.

1124 177. Huang, L.; Tian, H.; Zhou, J.; Liu, Q.; Zhang, P.; Ji, Y. Label-free optical sensor by designing a high-Q photonic
1125 crystal ring-slot structure. *Optics Communications* **2015**, *335*, 73–77.

1126 178. Li, T.; Gao, D.; Zhang, D.; Cassan, E. High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam
1127 cavity sensors. *IEEE Photonics Technol. Lett.* **2016**, *28*, 689–692.

1128 179. Kita, D.M.; Michon, J.; Johnson, S.G.; Hu, J. Are slot and sub-wavelength grating waveguides better than strip
1129 waveguides for sensing? *arXiv preprint arXiv:1805.03321* **2018**.

1130 180. Syahir, A.; Usui, K.; Tomizaki, K.y.; Kajikawa, K.; Mihara, H. Label and label-free detection techniques for protein
1131 microarrays. *Microarrays* **2015**, *4*, 228–244.

1132 181. Vestergaard, M.; Kerman, K.; Tamiya, E.; others. An overview of label-free electrochemical protein sensors. *Sensors*
1133 **2007**, *7*, 3442–3458.

1134 182. Stern, E.; Klemic, J.F.; Routenberg, D.A.; Wyrembak, P.N.; Turner-Evans, D.B.; Hamilton, A.D.; LaVan, D.A.; Fahmy,
1135 T.M.; Reed, M.A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. *Nature* **2007**,
1136 *445*, 519.

1137 183. Hunt, H.K.; Armani, A.M. Label-free biological and chemical sensors. *Nanoscale* **2010**, *2*, 1544–1559.

1138 184. Cunningham, B.T.; Laing, L.G. Advantages and application of label-free detection assays in drug screening. *Expert*
1139 *opinion on drug discovery* **2008**, *3*, 891–901.

1140 185. Xu, J.; Suarez, D.; Gottfried, D.S. Detection of avian influenza virus using an interferometric biosensor. *Analytical*
1141 *and bioanalytical chemistry* **2007**, *389*, 1193–1199.

1142 186. Ymeti, A.; Greve, J.; Lambeck, P.V.; Wink, T.; van Hövell, S.W.; Beumer, T.A.; Wijn, R.R.; Heideman, R.G.;
1143 Subramaniam, V.; Kanger, J.S. Fast, ultrasensitive virus detection using a Young interferometer sensor. *Nano letters*
1144 **2007**, *7*, 394–397.

1145 187. Pal, S.; Yadav, A.R.; Lifson, M.A.; Baker, J.E.; Fauchet, P.M.; Miller, B.L. Selective virus detection in complex sample
1146 matrices with photonic crystal optical cavities. *Biosensors and Bioelectronics* **2013**, *44*, 229–234.

1147 188. Chen, Y.; Yu, F.; Yang, C.; Song, J.; Tang, L.; Li, M.; He, J.J. Label-free biosensing using cascaded double-microring
1148 resonators integrated with microfluidic channels. *Optics Communications* **2015**, *344*, 129–133.

1149 189. Weisser, M.; Tovar, G.; Mittler-Neher, S.; Knoll, W.; Brosinger, F.; Freimuth, H.; Lacher, M.; Ehrfeld, W. Specific
1150 bio-recognition reactions observed with an integrated Mach-Zehnder interferometer. *Biosensors and Bioelectronics*
1151 **1999**, *14*, 405–411.

1152 190. Buswell, S.; Wright, V.; Buriak, J.; Van, V.; Evoy, S. Specific detection of proteins using photonic crystal waveguides.
1153 *Optics Express* **2008**, *16*, 15949–15957.

1154 191. Zou, Y.; Chakravarty, S.; Kwong, D.N.; Lai, W.C.; Xu, X.; Lin, X.; Hosseini, A.; Chen, R.T. Cavity-waveguide coupling
1155 engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield. *IEEE Journal of Selected*
1156 *Topics in Quantum Electronics* **2014**, *20*, 171–180.

1157 192. Martinsek, I.; Kacik, D. A PDMS microfiber Mach-Zehnder interferometer and determination of nanometer
1158 displacements. *Optical Fiber Technology* **2018**, *40*, 13–17.

1159 193. Ymeti, A.; Kanger, J.S.; Greve, J.; Besselink, G.; Lambeck, P.; Wijn, R.; Heideman, R. Integration of microfluidics
1160 with a four-channel integrated optical Young interferometer immunosensor. *Biosensors and Bioelectronics* **2005**,
1161 *20*, 1417–1421.

1162 194. De Vos, K.; Girones, J.; Claes, T.; De Koninck, Y.; Popelka, S.; Schacht, E.; Baets, R.; Bienstman, P. Multiplexed
1163 antibody detection with an array of silicon-on-insulator microring resonators. *IEEE Photonics Journal* **2009**,
1164 *1*, 225–235.

1165 195. Washburn, A.L.; Luchansky, M.S.; Bowman, A.L.; Bailey, R.C. Quantitative, label-free detection of five protein
1166 biomarkers using multiplexed arrays of silicon photonic microring resonators. *Analytical chemistry* **2009**, *82*, 69–72.

1167 196. Psarouli, A.; Botsialas, A.; Salapatas, A.; Stefanitsis, G.; Nikita, D.; Jobst, G.; Chaniotakis, N.; Goustouridis, D.;
1168 Makarona, E.; Petrou, P.S.; others. Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder
1169 interferometers integrated on silicon chips. *Talanta* **2017**, *165*, 458–465.

1170 197. Martens, D.; Priego, P.R.; Murib, M.S.; Elamin, A.; Gonzalez-Guerrero, A.B.; Stehr, M.; Jonas, F.; Anton, B.; Hlawatsch,
1171 N.; Soetaert, P.; others. Low-cost integrated biosensing platform based on SiN nanophotonics for biomarker
1172 detection in urine. *Analytical Methods* **2018**.

1173 198. Scheler, O.; Kindt, J.T.; Qavi, A.J.; Kaplinski, L.; Glynn, B.; Barry, T.; Kurg, A.; Bailey, R.C. Label-free, multiplexed
1174 detection of bacterial tmRNA using silicon photonic microring resonators. *Biosensors and Bioelectronics* **2012**,
1175 *36*, 56–61.

1176 199. Qavi, A.J.; Bailey, R.C. Multiplexed Detection and Label-Free Quantitation of MicroRNAs Using Arrays of Silicon
1177 Photonic Microring Resonators. *Angewandte Chemie International Edition* **2010**, *49*, 4608–4611.

1178 200. Liu, Q.; Shin, Y.; Kee, J.S.; Kim, K.W.; Rafei, S.R.M.; Perera, A.P.; Tu, X.; Lo, G.Q.; Ricci, E.; Colombel, M.; others.
1179 Mach-Zehnder interferometer (MZI) point-of-care system for rapid multiplexed detection of microRNAs in human
1180 urine specimens. *Biosensors and Bioelectronics* **2015**, *71*, 365–372.

1181 201. Sepúlveda, B.; Del Rio, J.S.; Moreno, M.; Blanco, F.; Mayora, K.; Domínguez, C.; Lechuga, L. Optical biosensor
1182 microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices. *Journal of Optics
1183 A: Pure and Applied Optics* **2006**, *8*, S561.

1184 202. Toccafondo, V.; García-Rupérez, J.; Bañuls, M.; Griol, A.; Castelló, J.; Peransi-Llopis, S.; Maquieira, A. Single-strand
1185 DNA detection using a planar photonic-crystal-waveguide-based sensor. *Optics letters* **2010**, *35*, 3673–3675.

1186 203. Yan, H.; Yang, C.J.; Tang, N.; Zou, Y.; Chakravarty, S.; Roth, A.; Chen, R.T. Specific Detection of Antibiotics by
1187 Silicon-on-Chip Photonic Crystal Biosensor Arrays. *IEEE Sensors Journal* **2017**, *17*, 5915–5919.

1188 204. Romano, S.; Zito, G.; Torino, S.; Calafiore, G.; Penzo, E.; Coppola, G.; Cabrini, S.; Rendina, I.; Mocella, V. Label-free
1189 sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum.
1190 *Photonics Research* **2018**, *6*, 726–733.

1191 205. Schumacher, S.; Nestler, J.; Otto, T.; Wegener, M.; Ehrentreich-Förster, E.; Michel, D.; Wunderlich, K.; Palzer, S.;
1192 Sohn, K.; Weber, A.; others. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. *Lab
1193 on a Chip* **2012**, *12*, 464–473.

1194 206. Xu, D.X.; Schmid, J.H.; Reed, G.T.; Mashanovich, G.Z.; Thomson, D.J.; Nedeljkovic, M.; Chen, X.; Van Thourhout, D.;
1195 Keyvaninia, S.; Selvaraja, S.K. Silicon photonic integration platform—Have we found the sweet spot? *IEEE Journal
1196 of Selected Topics in Quantum Electronics* **2014**, *20*, 189–205.

1197 207. Liu, K.K.; Wu, R.G.; Chuang, Y.J.; Khoo, H.S.; Huang, S.H.; Tseng, F.G. Microfluidic systems for biosensing. *Sensors*
1198 **2010**, *10*, 6623–6661.

1199 208. Wang, Z.; Yan, H.; Chakravarty, S.; Subbaraman, H.; Xu, X.; Fan, D.; Wang, A.X.; Chen, R.T. Microfluidic
1200 channels with ultralow-loss waveguide crossings for various chip-integrated photonic sensors. *Optics letters* **2015**,
1201 *40*, 1563–1566.

1202 209. Fan, X.; White, I.M. Optofluidic microsystems for chemical and biological analysis. *Nature photonics* **2011**, *5*, 591.

1203 210. Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab?
1204 *Microelectronic Engineering* **2015**, *132*, 156–175.

1205 211. Bhattacharya, S.; Datta, A.; Berg, J.M.; Gangopadhyay, S. Studies on surface wettability of poly(dimethyl)siloxane
1206 (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. *Journal of
1207 microelectromechanical systems* **2005**, *14*, 590–597.

1208 212. Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab?
1209 *Microelectronic Engineering* **2015**, *132*, 156–175.

1210 213. Laplatine, L.; Al'Mrayat, O.; Luan, E.; Fang, C.; Rezaiezadeh, S.; Ratner, D.; Cheung, K.; Dattner, Y.; Chrostowski, L.
1211 System-level integration of active silicon photonic biosensors. *Microfluidics, BioMEMS, and Medical Microsystems
1212 XV*. International Society for Optics and Photonics, 2017, Vol. 10061, p. 100610I.

1213 214. Kamande, J.; Wang, Y.; Taylor, A. Cloning SU8 silicon masters using epoxy resins to increase feature replicability
1214 and production for cell culture devices. *Biomicrofluidics* **2015**, *9*, 036502.

1215 215. Lipka, T.; Moldenhauer, L.; Wahn, L.; Trieu, H. Optofluidic biomolecule sensors based on a-Si: H microrings
1216 embedded in silicon-glass microchannels. *Optics letters* **2017**, *42*, 1084–1087.

1217 216. Geidel, S.; Peransi Llopis, S.; Rodrigo, M.; de Diego-Castilla, G.; Sousa, A.; Nestler, J.; Otto, T.; Gessner, T.; Parro,
1218 V. Integration of an optical ring resonator biosensor into a self-contained microfluidic cartridge with active,
1219 single-shot micropumps. *Micromachines* **2016**, *7*, 153.

1220 217. Augel, L.; Berkmann, F.; Latta, D.; Fischer, I.; Bechler, S.; Elogail, Y.; Kostecki, K.; Potje-Kamloth, K.; Schulze, J. Optofluidic sensor system with Ge PIN photodetector for CMOS-compatible sensing. *Microfluidics and Nanofluidics* **2017**, *21*, 169.

1221 218. Hartley, L.; Kaler, K.V.; Yadid-Pecht, O. Hybrid integration of an active pixel sensor and microfluidics for cytometry on a chip. *IEEE Transactions on Circuits and Systems I: Regular Papers* **2007**, *54*, 99–110.

1222 219. Arce, C.L.; Witters, D.; Puers, R.; Lammertyn, J.; Bienstman, P. Silicon photonic sensors incorporated in a digital microfluidic system. *Analytical and bioanalytical chemistry* **2012**, *404*, 2887–2894.

1223 220. Luan, L.; Evans, R.D.; Jokerst, N.M.; Fair, R.B. Integrated optical sensor in a digital microfluidic platform. *IEEE Sensors Journal* **2008**, *8*, 628–635.

1224 221. Luan, L.; Royal, M.W.; Evans, R.; Fair, R.B.; Jokerst, N.M. Chip scale optical microresonator sensors integrated with embedded thin film photodetectors on electrowetting digital microfluidics platforms. *IEEE Sensors Journal* **2012**, *12*, 1794–1800.

1225 222. Luan, L.; Evans, R.; Schwinn, D.; Fair, R.; Jokerst, N. Chip scale integration of optical microresonator sensors with digital microfluidics systems. Lasers and Electro-Optics Society, 2008. LEOS 2008. 21st Annual Meeting of the IEEE. IEEE, 2008, pp. 259–260.

1226 223. Nestler, J.; Morschhauser, A.; Hiller, K.; Otto, T.; Bigot, S.; Auerswald, J.; Knapp, H.; Gavillet, J.; Gessner, T. Polymer lab-on-chip systems with integrated electrochemical pumps suitable for large-scale fabrication. *The International Journal of Advanced Manufacturing Technology* **2010**, *47*, 137–145.

1227 224. Liang, D.; Bowers, J.E. Recent progress in lasers on silicon. *Nat. Photonics* **2010**, *4*, 511–517.

1228 225. Zhou, Z.; Yin, B.; Michel, J. On-chip light sources for silicon photonics. *Light: Science & Applications* **2015**, *4*, e358–e358.

1229 226. Pavesi, L.; Dal Negro, L.; Mazzoleni, C.; Franzò, G.; Priolo, F. Optical gain in silicon nanocrystals. *Nature* **2000**, *408*, 440–444.

1230 227. Rong, H.; Liu, A.; Jones, R.; Cohen, O.; Hak, D.; Nicolaescu, R.; Fang, A.; Paniccia, M. An all-silicon Raman laser. *Nature* **2005**, *433*, 292–294.

1231 228. Camacho-Aguilera, R.E.; Cai, Y.; Patel, N.; Bessette, J.T.; Romagnoli, M.; Kimerling, L.C.; Michel, J. An electrically pumped germanium laser. *Opt. Express* **2012**, *20*, 11316.

1232 229. Liu, J.; Sun, X.; Pan, D.; Wang, X.; Kimerling, L.C.; Koch, T.L.; Michel, J. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. *Opt. Express* **2007**, *15*, 11272.

1233 230. Kato, K.; Tohmori, Y. PLC hybrid integration technology and its application to photonic components. *IEEE J. Sel. Top. Quantum Electron.* **2000**, *6*, 4–13.

1234 231. Friedrich, E.E.L.; Oberg, M.G.; Broberg, B.; Nilsson, S.; Valette, S. Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides. *J. Lightwave Technol.* **1992**, *10*, 336–340.

1235 232. Sasaki, J.; Itoh, M.; Tamanuki, T.; Hatakeyama, H.; Kitamura, S.; Shimoda, T.; Kato, T. Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps. *IEEE Trans. Adv. Packag.* **2001**, *24*, 569–575.

1236 233. Seassal, C.; Rojo-Romeo, P.; Letartre, X.; Viktorovitch, P.; Hollinger, G.; Jalaguier, E.; Pocas, S.; Aspar, B. InP microdisk lasers on silicon wafer: CW room temperature operation at 1.6 μ m. *Electron. Lett.* **2001**, *37*, 222.

1237 234. Hattori, H.T.; Seassal, C.; Touraille, E.; Rojo-Romeo, P.; Letartre, X.; Hollinger, G.; Viktorovitch, P.; Di Cioccio, L.; Zussy, M.; Melhaoui, L.E.; Fedeli, J.M. Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects. *IEEE Photonics Technol. Lett.* **2006**, *18*, 223–225.

1238 235. Mino, S.; Yoshino, K.; Yamada, Y.; Terui, T.; Yasu, M.; Moriwaki, K. Planar lightwave circuit platform with coplanar waveguide for opto-electronic hybrid integration. *J. Lightwave Technol.* **1995**, *13*, 2320–2326.

1239 236. Urino, Y.; Usuki, T.; Fujikata, J.; Ishizaka, M.; Yamada, K.; Horikawa, T.; Nakamura, T.; Arakawa, Y. High-density optical interconnects by using silicon photonics. Next-Generation Optical Networks for Data Centers and Short-Reach Links, 2014.

1240 237. Santis, C.T.; Steger, S.T.; Vilenchik, Y.; Vasilyev, A.; Yariv, A. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms. *Proceedings of the National Academy of Sciences* **2014**, *111*, 2879–2884.

1241 238. Roelkens, G.; Abassi, A.; Cardile, P.; Dave, U.; De Groote, A.; De Koninck, Y.; Dhoore, S.; Fu, X.; Gassend, A.; Hattasan, N.; others. III-V-on-silicon photonic devices for optical communication and sensing. *Photonics. Multidisciplinary Digital Publishing Institute*, 2015, Vol. 2, pp. 969–1004.

1272 239. Lee, J.H.; Lee, D.Y.; Shubin, I.; Bovington, J.; Djordjevic, S.S.; Lin, S.; Luo, Y.; Yao, J.; Cunningham, J.E.; Raj, K.; others. III-V/Si hybrid laser stabilization using micro-ring feedback control. *IEEE Photonics J.* **2016**, *8*, 1–7.

1273 240. Lin, S.; Zheng, X.; Yao, J.; Djordjevic, S.S.; Cunningham, J.E.; Lee, J.H.; Shubin, I.; Luo, Y.; Bovington, J.; Lee, D.Y.; others. Efficient, tunable flip-chip-integrated III-V/Si hybrid external-cavity laser array. *Optics express* **2016**, *24*, 21454–21462.

1274 241. Ohtsubo, J. Feedback Induced Instability and Chaos in Semiconductor Lasers and Their Applications. *Opt. Rev.* **1999**, *6*, 1–15.

1275 242. Roelkens, G. III-V-on-silicon photonic integrated circuits for optical communication and sensing. *Frontiers in Optics* **2016**, 2016.

1276 243. Park, H.; Fang, A.W.; Kodama, S.; Bowers, J.E. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. *Opt. Express* **2005**, *13*, 9460.

1277 244. Fang, A.W.; Park, H.; Cohen, O.; Jones, R.; Paniccia, M.J.; Bowers, J.E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. *Opt. Express* **2006**, *14*, 9203.

1278 245. Welcome Aurrion to Juniper Networks. <https://forums.juniper.net/t5/Engineering-Simplicity/Welcome-Aurrion-to-Juniper-Networks/ba-p/295183>, 2016. Accessed: 2018-7-9.

1279 246. Report, S. Santa Barbara's Aurrion acquired for \$165 million. <https://www.pacbiztimes.com/2016/08/08/santa-barbaras-aurrion-acquired-for-165-million/>, 2016. Accessed: 2018-7-9.

1280 247. Hong, T.; Ran, G.Z.; Chen, T.; Pan, J.Q.; Chen, W.X.; Wang, Y.; Cheng, Y.B.; Liang, S.; Zhao, L.J.; Yin, L.Q.; Zhang, J.H.; Wang, W.; Qin, G.G. A Selective-Area Metal Bonding InGaAsP-Si Laser. *IEEE Photonics Technol. Lett.* **2010**, *22*, 1141–1143.

1281 248. Hong, T.; Li, Y.P.; Chen, W.X.; Ran, G.Z.; Qin, G.G.; Zhu, H.L.; Liang, S.; Wang, Y.; Pan, J.Q.; Wang, W. Bonding InGaAsP/ITO/Si Hybrid Laser With ITO as Cathode and Light-Coupling Material. *IEEE Photonics Technol. Lett.* **2012**, *24*, 712–714.

1282 249. Jhang, Y.H.; Tanabe, K.; Iwamoto, S.; Arakawa, Y. InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding. *IEEE Photonics Technol. Lett.* **2015**, *27*, 875–878.

1283 250. Van Campenhout, J.; Rojo-Romeo, P.; Van Thourhout, D.; Seassal, C.; Regreny, P.; Di Cioccio, L.; Fedeli, J.M.; Baets, R. Thermal Characterization of Electrically Injected Thin-Film InGaAsP Microdisk Lasers on Si. *J. Lightwave Technol.* **2007**, *25*, 1543–1548.

1284 251. Keyvaninia, S.; Muneeb, M.; Stanković, S.; Van Veldhoven, P.J.; Van Thourhout, D.; Roelkens, G. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. *Opt. Mater. Express* **2012**, *3*, 35.

1285 252. Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.C.; Šimonytė, I.; Vizbaras, A.; Vizbaras, K.; Baets, R.; Roelkens, G. III-V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μ m Wavelength Range. *Sensors* **2017**, *17*, 1788.

1286 253. Wang, Z.; Junesand, C.; Metaferia, W.; Hu, C.; Wosinski, L.; Lourdudoss, S. III-Vs on Si for photonic applications—A monolithic approach. *Mater. Sci. Eng. B* **2012**, *177*, 1551–1557.

1287 254. Ustinov, V.M.; Zhokov, A.E.; Zhukov, A.E.; Egorov, A.Y.; Maleev, N.A. *Quantum dot lasers*; Vol. 11, Oxford University Press on Demand, 2003.

1288 255. Dingle, R.; Henry, C.H. Quantum effects in heterostructure lasers, 1976. US Patent 3,982,207.

1289 256. Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. *Applied Physics Letters* **1982**, *40*, 939–941.

1290 257. Mi, Z.; Yang, J.; Bhattacharya, P.; Qin, G.; Ma, Z. High-performance quantum dot lasers and integrated optoelectronics on Si. *Proceedings of the IEEE* **2009**, *97*, 1239–1249.

1291 258. Liu, G.; Stintz, A.; Li, H.; Malloy, K.; Lester, L. Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well. *Electronics Letters* **1999**, *35*, 1163–1165.

1292 259. Bimberg, D.; Grundmann, M.; Ledentsov, N.N. *Quantum dot heterostructures*; John Wiley & Sons, 1999.

1293 260. Deppe, D.G.; Shavritranuruk, K.; Ozgur, G.; Chen, H.; Freisem, S. Quantum dot laser diode with low threshold and low internal loss. *Electronics Letters* **2009**, *45*, 54–56.

1294 261. Mi, Z.; Yang, J.; Bhattacharya, P.; Huffaker, D. Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon. *Electronics Letters* **2006**, *42*, 1.

1295 262. Lee, A.D.; Jiang, Q.; Tang, M.; Zhang, Y.; Seeds, A.J.; Liu, H. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. *IEEE Journal of Selected Topics in Quantum Electronics* **2013**, *19*, 1901107–1901107.

1324 263. Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, I.; others.
1325 Electrically pumped continuous-wave III-V quantum dot lasers on silicon. *Nature Photonics* **2016**, *10*, 307.

1326 264. Stiens, J.; De, C.; Shkerdin, G.; Kotov, V.; Vounckx, R.; Vandermeire, W. Infrared Thermo-Electric Photodetectors. In
1327 *Laser Pulse Phenomena and Applications*; 2010.

1328 265. Baehr-Jones, T.; Hochberg, M.; Scherer, A. Photodetection in silicon beyond the band edge with surface states.
1329 *Opt. Express* **2008**, *16*, 1659.

1330 266. Knights, A.P.; Bradley, J.D.B.; Gou, S.H.; Jessop, P.E. Silicon-on-insulator waveguide photodetector with
1331 self-ion-implantation-engineered-enhanced infrared response. *J. Vac. Sci. Technol. A* **2006**, *24*, 783–786.

1332 267. Jayatilleka, H.; Murray, K.; Guillén-Torres, M.Á.; Caverley, M.; Hu, R.; Jaeger, N.A.F.; Chrostowski, L.; Shekhar, S.
1333 Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters.
1334 *Opt. Express* **2015**, *23*, 25084.

1335 268. Shockley, W.; Read, W.T. Statistics of the Recombinations of Holes and Electrons. *Physical Review* **1952**, *87*, 835–842.

1336 269. Chen, H.; Verheyen, P.; De Heyn, P.; Lepage, G.; De Coster, J.; Balakrishnan, S.; Absil, P.; Yao, W.; Shen, L.; Roelkens,
1337 G.; Van Campenhout, J. -1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for
1338 optical links at 56 Gbps and beyond. *Opt. Express* **2016**, *24*, 4622.

1339 270. Wang, J.; Yao, Z.; Lei, T.; Poon, A.W. Silicon coupled-resonator optical-waveguide-based biosensors using
1340 light-scattering pattern recognition with pixelized mode-field-intensity distributions. *Scientific reports* **2014**,
1341 *4*, 7528.

1342 271. Chao, C.Y.; Guo, L.J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance.
1343 *Applied Physics Letters* **2003**, *83*, 1527–1529.

1344 272. Hu, J.; Sun, X.; Agarwal, A.; Kimerling, L.C. Design guidelines for optical resonator biochemical sensors. *JOSA B*
1345 **2009**, *26*, 1032–1041.

1346 273. Li, H.; Liu, X.; Li, L.; Mu, X.; Genov, R.; Mason, A.J. CMOS electrochemical instrumentation for biosensor
1347 microsystems: a review. *Sensors* **2016**, *17*, 74.

1348 274. Li, L.; Liu, X.; Mason, A.J. Die-level photolithography and etchless parylene packaging processes for on-CMOS
1349 electrochemical biosensors. Circuits and Systems (ISCAS), 2012 IEEE International Symposium on. IEEE, 2012, pp.
1350 2401–2404.

1351 275. Huang, Y.; Mason, A.J. Lab-on-CMOS integration of microfluidics and electrochemical sensors. *Lab on a Chip*
1352 **2013**, *13*, 3929–3934.

1353 276. Datta-Chaudhuri, T.; Abshire, P.; Smela, E. Packaging commercial CMOS chips for lab on a chip integration. *Lab*
1354 *on a Chip* **2014**, *14*, 1753–1766.

1355 277. Laplatine, L.; Luan, E.; Cheung, K.; Ratner, D.M.; Dattner, Y.; Chrostowski, L. System-level integration of active
1356 silicon photonic biosensors using Fan-Out Wafer-Level-Packaging for low cost and multiplexed point-of-care
1357 diagnostic testing. *Sensors and Actuators B: Chemical* **2018**, *273*, 1610–1617.

1358 278. Li, L.; Yin, H.; Mason, A.J. Epoxy Chip-in-Carrier Integration and Screen-Printed Metalization for Multichannel
1359 Microfluidic Lab-on-CMOS Microsystems. *IEEE transactions on biomedical circuits and systems* **2018**.