IMPORTANCE OF HIGH-RISK HUMAN PAPILLOMAVIRUS INFECTION DETECTION IN FEMALE RENAL TRANSPLANT RECIPIENTS IN THE FIRST YEAR AFTER TRANSPLANTATION

Maksims Cistjakovs, Alina Sultanova, Olga Jermakova, Liba Sokolovska, Svetlana Chapenko,

²Baiba Lesina-Korne, ¹Rafail Rozental, Modra Murovska, ¹Ieva Ziedina.

August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Latvia

¹Scientific Laboratory of Transplantology, Riga Stradins University, Riga, Latvia

²Gynecology and Maternity Unit, Pauls Stradins Clinical University Hospital, Riga, Latvia

Correspondence information: Maksims Cistjakovs, Ratsupites street 5, LV-1067, Riga, Latvia (maksims.cistjakovs@rsu.lv).

Article type: Research article

doi:10.20944/preprints201809.0143.v1

ABSTRACT

OBJECTIVES: Most of human papilomavirus (HPV) infections are "cleared" by the

immune system, however, in cases of immune system suppression infections could lead

to development of malignancies. The aim of this study was to find out the frequency of HR-

HPV infection in early period after renal transplantation in recipients receiving

immunosuppressive therapy and to follow the progression of the infection up to one year.

METHODS: 43 female renal recipients and 79 practically healthy female individuals as a

control group were enrolled in this investigation. For the detection of HPV infection patients'

samples (blood and vaginal swabs) where collected two weeks after transplantation with

following collection of six months and one year. Different polymerase chain reactions

for HR-HPV genomic sequences detection and ELISA kit for detection of anti-HPV IgG

antibodies were used.

RESULTS: In this study we show that frequency rate of HR-HPV infection has increased

by the one year after transplantation from early stage of immumosuppressive therapy (from

24% to 36%). Also increase of HR-HPV load was detected over the time, showing the highest

median viral load at sixth month after transplantation.

CONCLUSIONS: From the obtained data follows that it is very important to carefully

monitor patients receiving immunosuppression therapy on progression of HR-HPV.

Keywords: human papillomaviruses; immunosuppression; renal recipients.

INTRODUCTION

Human papillomavirus (HPV) infections remain one of the major global burden even despite of very active use of vaccination. Prevalence rate of HPV in East Europe is about 21.4% which is much higher in comparison with the global prevalence of 11.7% [1]. Such high prevalence rate could be related with absence of HPV screening program and low vaccination uptake because of poor knowledge on HPV infection among population [2,3].

Based on association with cervical cancer and precursor lesions, HPV can be classified as high-risk (HR-HPV) and low-risk (LR-HPV) oncogenic types [4,5]. LR-HPV types, such as HPV 6 and 11, can cause common genital warts or benign hyper-proliferative lesions with very limited tendency to malignant progression, while infection with HR-HPV types, highlighting HPV 16 and 18, is associated with the occurrence of pre-malignant and malignant cervical lesions [6].

Most of HPV infections are "cleared" by the immune system and do not result in clinical diseases in healthy individuals, however, in cases of immune system suppression infections could lead to development of malignancies [7].

Considering that from one side immunosuppressive therapy has improved long-term graft and patient survival after renal transplantation, from the other side it increases the cumulative occurrence of (pre)malignancies, especially those associated with viral infections [8–10]. Declined cell-mediated immunity caused by the use of immunosuppressive therapy as the result could increase risk for HPV related anogenital (pre)malignancies in renal transplant recipients, especially in countries where the prevalence of HPV is high. Previous studies have shown dramatic increase of HR-HPV infection up to 27% [11,12].

THE OBJECTIVE of this study was to find out the frequency of HR-HPV infection in early period after renal transplantation in Latvian recipients and to follow the progression of the infection up to one year.

METHODS

43 female renal recipients (median age of 48; IQR = 39-58), who received kidney allograft during 2013-2015 and 79 practically healthy female individuals (median age of 48; IQR = 42-57), who were visiting gynaecologist for preventive examination, as a control group were enrolled in this investigation. For the early detection of HPV infection patients' samples (whole blood and vaginal swabs) where collected two weeks after transplantation with following collection of six months and one year to receive data on later periods. Chronic glomerulonephritis (7%), hypertensive nephropathy (21%), chronic interstitial nephritis (26%) and polycystic kidney disease (26%) were the most common reasons for the subsequent transplantation. All patients had received induction immunosuppression therapy with monoclonal or polyclonal antibodies and steroid bolus course. Initially immunosuppressive therapy consisted of glucocorticoids (Prednizolone tapered down to 5 mg per day during study period), anti-proliferative drugs (Cell-cept ® 2 g per day, tapered down to 1g per day if leucopenia appered) and calcineurin inhibitors (once per day tacrolimus with through level 7-10 ng/ml during first 3 months after surgery and 5-8 ng/ml thereafter or microemulsified formulation of ciclosporine with through level 150-250 ng/ml during first 3 months after surgery and therafter 100-200 ng/ml for patients transplanted in 2013).

Aliquots of 200 μ l blood plasma were collected from EDTA peripheral blood samples for further serological tests. Blood plasma samples and cervical swab samples were stored at -70 0 C.

DNA from cervical swab samples was extracted using phenol-chloroform method.

Beta (β) -globin PCR with appropriate primers was used to determine the quality of isolated DNA [13].

Polymerase chain reaction (PCR) with consensus primers MY9/MY11 was used for initial detection of high range HPV types (HR-HPV and LR-HPV types) [14], HPV High Risk Screen Real-TM Quant commercial qPCR kit (Sacace, Italy) - for quantitative detection of 12 types of HR-HPV (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59) and HPV typing with semiquantitative viral load determination was done with the AnyplexTM II HPV28 kit (Seegene, South Korea) in recipients' cervical swab DNA samples.

ELISA commercial kit (MyBioSource, USA) was used to detect IgG class antibodies against HR-HPV L1-capsids' protein in recipients' plasma (presence of these antibodies is associated with HR-HPV clearance) [15,16].

All statistical calculations and graphs were performed using GraphPad Prism software version 6.0 for Windows (GraphPad Software, San Diego, CA, USA). To test whether the collected data are normally distributed, the D'Agostino and Pearson, Anderson-Darling and ShapiroWilk normality tests were applied. Statistical differences in the prevalence of HPV infection were assessed by using Fisher's exact test. Statistical differences in viral load comparison was used Mann–Whitney U test. Because most of the data was distributed not normally, results are expressed as median and interquartile range (IQR) as dispersion characteristic, and p-value less than 0.05 (p< 0.05) was considered as statistically significant. Pearson and Spearman tests were used for correlation analysis.

The study was approved by the Ethics Committee of Riga Stradins University, and written consent was obtained from all patients.

RESULTS

Presence of HPV sequences detected by PCR with MY9/11 consensus primers

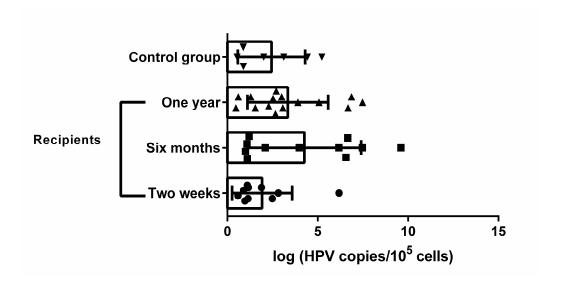
Recipients

Initial PCR results with consensus primers MY9/11 had shown that almost all recipients (42/43; 98%) were positive on HPV genomic sequences in cervical swab DNA samples. In 28/43 (65%) recipients' cervical swab samples viral DNA was detected two weeks after transplantation, in 25 of them viral DNA had been preserved and in 8 (total 33 recipients; 77%) additional recipients presence of HPV genomic sequences in cervical swab DNA samples appeared (total 33/43 recipients; 77%) six months after transplantation. One year after transplantation 24 recipients were still positive on HPV genomic sequences in cervical swab DNA samples (17/24 were positive after two weeks and 6 months after transplantation and another 7 recipients were positive only after time period of 6 months).

Control group

Frequency rate of HPV sequences in control group's cervical swabs DNA samples was found significantly lower (38% [30/79] vs 65% [28/43, two weeks] or 77% [33/43, six months] or 72% [31/43, one year], p < 0.05).

Presence of HR-HPV sequences detected by two commercial real-time PCR kits


Recipients

All HPV positive samples were tested on the presence of HR-HPV types using the Anyplex™ II HPV28 kit (Seegene, South Korea) and viral load was detected using HPV High Risk Screen Real-TM Quant commercial qPCR kit (Sacace, Italy).

Overall HR-HPV genomic sequences were found in 65% (28/43) of recipients. In early period after transplantation (two weeks) HR-HPV presence was detected in 24% (10/43) of recipients. In the following time periods, six months and one year, HR-HPV frequency increased till 26% and 36%, respectively (Figure 1). The highest HR-HPV median load was detected on the sixth months after transplantation in comparison to two weeks and one year period (3.98 log copies/10⁵ cells, IQR: 1.10-6.66 versus 1.15 log copies/10⁵ cells, IQR: 0.95-2.57 and 2.70 log copies/10⁵ cells, IQR: 1.55-5.07 [Figure 2]).

Figure 1. Presence of HR-HPV genomic sequences in recipients' group cervical swab DNA samples two weeks, six months and one year after transplantation in comparison with control group.

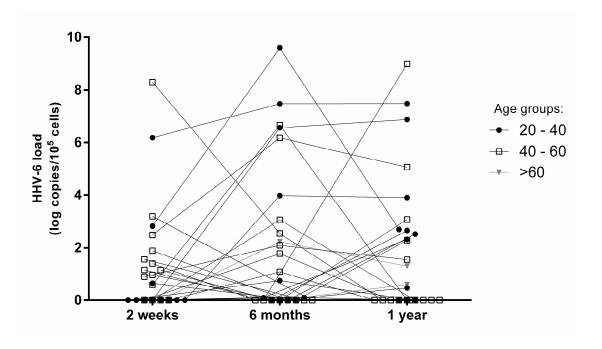
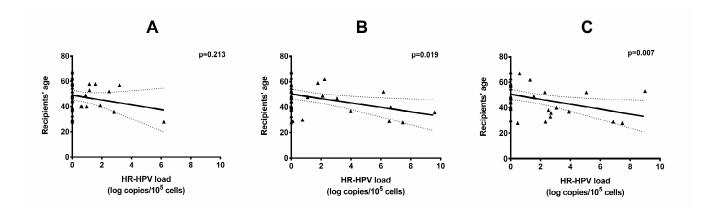


Figure 2. HR-HPV median log copies detected in recipients' group cervical swab DNA samples two weeks, six months and one year after transplantation in comparison with control group.


Among the recipients following HR-HPV types were detected: 16, 18, 31, 33, 35, 51, 56, 66, 68 and 73. The most dominant detected type was HPV-18 – in 14/42 recipients (33%) - in comparison with HPV-56 (8/42, 19%), HPV-16 (7/42, 17%), HPV-35 (7/42, 17%), HPV-51 (6/42, 14%), HPV-68 (5/42, 12%), HPV-33 (3/42, 7%), HPV-73 (2/42, 5%), HPV-66 (1/42, 2%) and HPV-31 (1/42%, 2%), however without statistical significance.

After stratification of patients' data by three age groups showed that patients in age from 20 till 40 were with higher HR-HPV loads in the period of six months after transplantation in

comparison to patients of age over 40 years (Figure 3). Statistical analysis showed that there is correlation between age and HR-HPV load in period of six months and one year after transplantation (Figure 4).

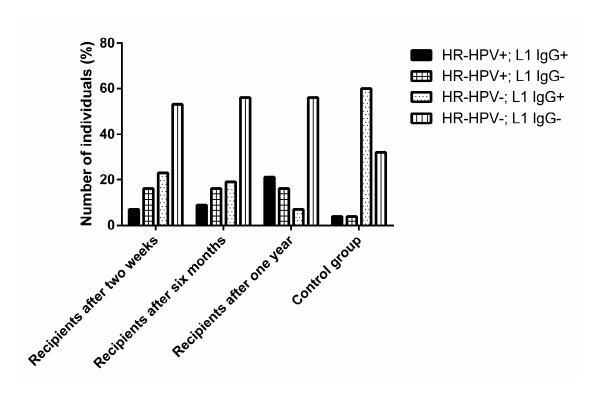
Figure 3. HR-HPV load (log copies/10⁵cells) detected in each recipients' cervical swab DNA samples two weeks, six months and one year after transplantation.

Figure 4. HR-HPV load (log copies/10⁵cells) and age correlation two weeks (**A**), six months (**B**) and one year (**C**) after transplantation.

Control group

Among control group HR-HPV infection was determined in 7/79 (8%) women with the significantly lower frequency than in recipients' group (two weeks - 23%; p=0.05, six months - 26%; p=0.01 and one year - 36%; p<0.01).

Although, median HR-HPV load was higher than in recipients' group two weeks after transplantation (2.01 log copies/10⁵ cells, IQR: 0.88-4.43 vs 1.15 log copies/10⁵ cells, IQR: 0.95-2.57, respectively [Figure 2]).


Following HR-HPV types were detected: 16, 31, 33, 45 and 59.

Presence of IgG antibodies against HR-HPV

IgG antibodies against HR-HPV were detected in 15/43 (35%) recipients, where 10 recipients were positive during all three checking periods, two recipients only at two week period, another one was positive during first two periods and negative at one year after transplantation, as well as one recipient was positive during the last two periods and one recipient was positive only after one year post transplantation. Two recipients who became negative on HR-HPV IgG antibodies were receiving Rituximab - B lymphocytes' suppressor.

Plasma samples received from control group had shown significantly higher frequency rate of antibodies against HR-HPV (51/79, 65%, p<0.01).

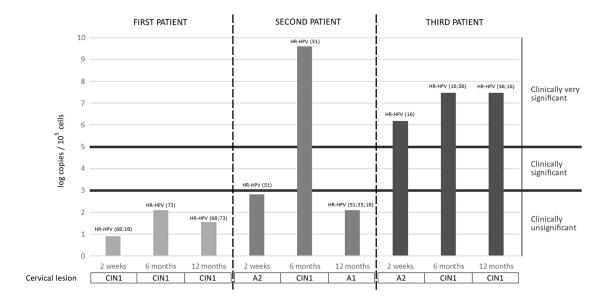

Interestingly, number of the recipients positive for both, HR-HPV sequences and antibodies, was increasing over the time and number of recipients positive for antibodies only was decreased (Figure 5).

Figure 5. Comparison of HR-HPV genomic presence in cervical swab DNA samples together with presence of anti- HR-HPV L1 IgG antibodies in recipients' group of different testing time points compared with control group.

Histological results

Presence of cervical intraepithelial neoplasia (CIN) in one recipient was detected on the second week after transplantation. After six months additionally two recipients developed CIN I and after one year period in one out of three recipients with CIN I cytology results were normal. In all DNA sample obtained from cervical swabs of recipients with CIN high HR-HPV loads were detected and in two of them co-infection with several HPV types (on the second week - 1st recipient: HPV-68+HPV-18; 0.9 log copies/10⁵ cells; on the sixth month - 1st recipient: HPV-73; 2.1 log copies/10⁵ cells, 2nd recipient: HPV-51; 9.6 log copies/10⁵ cells, 3rd recipient: HPV-16+HPV-56; 7.47 log copies/10⁵ cells; after one year - 1st recipient: HPV-68+HPV-73; 1.55 log copies/10⁵ cells, 2nd recipient: HPV-51+HPV-35+HPV-18; 2.7 log copies/10⁵ cells [cytology results: normal], 3rd recipient: HPV-16+HPV-56; 7.48 log copies/10⁵ cells) (Figure 4). Antibodies against HR-HPV among these three recipients during all three testing points were detected only in the 1st recipient's plasma samples - other two recipients were antibody negative (Figure 6).

Figure 6. Progression of CIN development in three recipients over the time in comparison to HR-HPV load with qPCR result interpretation provided by manufacturers' protocol (Sacace, Italy).

Cytology results of other recipients had shown normal epithelium or such pathologies like atrophy, colpitis and cervicitis.

Among control group individuals any CIN case was detected, however, one individual with very high HPV-16 load atypical squamous cells of unknown significance (A2-ASCUS) were ascertained.

DISCUSSION

HPV persistent infection is strongly associated with development of cervical cancer [17]. Despite of development of new vaccines and increased use of them worldwide, HR-HPV infections remain one of the major global burden. This could be related with several circumstances like low uptake of vaccine in some countries and absence of HPV screening programs, as well as, that nowadays vaccines do not provide defense from all HPV types. In Latvia HPV vaccination as routine immunization approach was included in the National Health Care Program in 2010, however, uptake of the vaccine is shown to be not sufficient [3].

The HPV clearance from host's organism requires an adequate immune response, therefore, immunocompromised individuals could be in the risk group of HPV persistent infection development [18]. Because of received immunosuppressive therapy, renal allograft recipients in particular are at high risk of developing persistent infection and HPV associated cancer [19]. Another crucial factor that has an effect on the HPV infection is the recipients median age - 48,

IQR= 39-58. This means that they were not vaccinated, because, as was written above, HPV vaccination was included in Latvian National Health Care Program in 2010 and should be done in childhood till the age of 15.

Results of this research show significantly higher frequency rate of HR-HPV infection in renal transplant recipients even in early period after transplantation (two weeks - 24%; p=0.05, six months - 26%; p=0.01 and one year - 36%; p<0.01) in comparison with control group (8%). These results show the growing tendency of HR-HPV infection frequency over the time in female recipients receiving immunosuppressive therapy which indicates they are in the risk group for HPV persistent infection development and possible development of cervical cancer.

Fact that the highest level of HR-HPV load was detected in recipients' DNA samples six months after transplantation in comparison with control group (median 3.98 log copies/10⁵ cells, IQR: 1.10-6.66 against 2.01 log copies/10⁵ cells, IQR: 0.88-4.43) is another evidence showing immunosuppression as a high risk factor of development of HPV persistent infection. The increase of HR-HPV viral load detected in recipients' samples from two week to six months (from 1.15 log copies/10⁵ cells, IQR: 0.95-2.57 to 3.98 log copies/10⁵ cells, IQR: 1.10-6.66, p<0.07) could be related to deepening of immune system suppression because the mean CD4/CD8 ratio has dropped from 1.95±1.07 till 1.51±0.87. However, it is not clear why median viral load has started to decrease on the one year period after transplantation (till 2.70 log copies/10⁵ cells, IQR: 1.55-5.07). It may be related to slight lowering of immunosuppressive drugs dosages.

Significant correlation between age of recipients and HR-HPV load was found only in period of six months and one year after transplantation (Figure 4), which is another evidence of immunosuppressive therapy major impact on HR-HPV infection progression as in these periods of time recipients' immunosuppression reaches maximum effect. Also, in recipients'

group of age between 20 and 40 were found higher viral loads and together with correlation results indicate that this group could be in higher risk of HR-HPV persistent infection development which plays an important role in cervical cancer development (Figure 3-4).

Higher frequency rate of IgG antibodies against HR-HPV L1 capsid protein in control group rather than in recipients' group (65% vs 35%, p<0.05) is another evidence that immunosupression plays important role in development of persistent HR-HPV infection. Also, in some recipients who had received Rituximab, which inhibit B lymphocytes' activity, absence of previously detected antibodies against HR-HPV in early period after transplantation - is found. It could indicate on crucial role of immunosuppressive therapy, including Rituximab, in suppression of humoral immune response against HPV infection.

Interesting finding is that 14% of recipients who were previously negative for the presence of HR-HPV genomic sequences but positive for the presence of antibodies against HR-HPV L1 protein became positive for viral sequences in the next observation period after transplantation (Figure 5). This could indicate on HR-HPV reactivation and supports hypothesis that HPV could has latent phase. It is still not clear how HPV creates latency, only on the mouse model had been shown that as long as it remains in basal layer's stem cells, viral replication does not occur but HPV become active only in differentiated cells [20]. In the case of HPV latent infection presence of virus-specific antibodies could not be considered as a marker of HPV clearance [21]. To evaluate development of HPV infection within time more specific markers which could indicate on the HPV latency need to be found.

Presence of cervical intraepithelial neoplasia is detected only in recipients' group and in all three cases HR-HPV infection is found. Also, high viral loads are detected in those patients (9.6, 7.48 and 2.1 log copies/10⁵ cells). In these cases two facts should be pointed out: 1) in one recipient with high HPV load (9.6 log copies/10⁵ cells) six months after transplantation

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 September 2018 doi:10.20944/preprints201809.0143.v1

after one year period clearance of CIN I followed with viral load decrease to 2.7 log copies/10⁵

cells is found: 2) another recipient shows presence of CIN I during all three testing points with

the low viral load (0.9, 2.1 and 1.55 log copies/10⁵ cells) and is also positive for antibodies

against HR-HPV. First fact is showing that HR-HPV load could be useful marker in

progression of HPV associated CIN development. Second fact points out on the presence of

antibodies as a positive marker which indicates on the lowering of HPV load.

In this study we show that frequency rate of HR-HPV infection has increased by the one year

after transplantation from early stage of immunosuppressive therapy (from 24% to 36%).

Together with increase in viral load (highest median is detected on sixth months after

transplantation, 3.98 log copies/10⁵ cells, IQR: 1.10-6.66) these results indicate that renal

transplant female recipients are at high risk of development HPV associated cervical

intraepithelial neoplasia of different grade and possibly even cervical cancer. Therefore, all

female recipients need to be more carefully monitored (twice a year during first two years after

surgery) for HPV infection and development of CIN from the beginning of immunosuppressive

treatment application. The presence of several cases of CIN I in recipients' group but not in

control group could support this statement. Early detection of HR-HPV infection in female

renal transplant recipients could help to prevent development of cervical cancer in the future.

ACKNOWLEDGMENTS

Funding: This work was supported by Riga Stradins University grant RSU ZP 12/2013

Disclosure: The authors declare no conflicts of interest.

REFERENCES:

- 1. Bruni, L.; Diaz, M.; Castellsagué, X.; Ferrer, E.; Bosch, F. X.; de Sanjosé, S. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. *J. Infect. Dis.* **2010**, *202*, 1789–1799, doi:10.1086/657321.
- 2. Vaccarella, S.; Franceschi, S.; Zaridze, D.; Poljak, M.; Veerus, P.; Plummer, M.; Bray, F. Preventable fractions of cervical cancer via effective screening in six Baltic, central, and eastern European countries 2017-40: a population-based study. *Lancet Oncol.* **2016**, 17, 1445–1452, doi:10.1016/S1470-2045(16)30275-3.
- 3. Patel, H.; Pčolkina, K.; Strazdina, K.; Viberga, I.; Sherman, S. M.; Tincello, D. G.; Redman, C. W.; Rezeberga, D.; Moss, E. L. Awareness of HPV infection and attitudes toward HPV vaccination among Latvian adolescents. *Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet.* **2017**, *137*, 138–144, doi:10.1002/ijgo.12117.
- 4. Burd, E. M. Human papillomavirus and cervical cancer. *Clin. Microbiol. Rev.* **2003**, *16*, 1–17.
- Muñoz, N.; Bosch, F. X.; de Sanjosé, S.; Herrero, R.; Castellsagué, X.; Shah, K. V.; Snijders, P. J. F.; Meijer, C. J. L. M.; International Agency for Research on Cancer Multicenter Cervical Cancer Study Group Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 2003, 348, 518– 527, doi:10.1056/NEJMoa021641.
- 6. Coscia, M. F.; Monno, R.; Ballini, A.; Mirgaldi, R.; Dipalma, G.; Pettini, F.; Cristallo, V.; Inchingolo, F.; Foti, C.; de Vito, D. Human papilloma virus (HPV) genotypes prevalence in a region of South Italy (Apulia). *Ann. Ist. Super. Sanita* **2015**, *51*, 248–251, doi:10.4415/ANN 15 03 14.
- 7. Brendle, S. A.; Bywaters, S. M.; Christensen, N. D. Pathogenesis of infection by human papillomavirus. *Curr. Probl. Dermatol.* **2014**, *45*, 47–57, doi:10.1159/000355963.
- 8. Buell, J. F.; Gross, T. G.; Woodle, E. S. Malignancy after transplantation. *Transplantation* **2005**, *80*, S254-264.
- 9. Lutz, J.; Heemann, U. Tumours after kidney transplantation. *Curr. Opin. Urol.* **2003**, *13*, 105–109, doi:10.1097/01.mou.0000058633.64616.c6.
- 10. Genzer, O.; El-Sayegh, S. E.; Kleiner, M. J.; Castellanos, M. R. Male human papillomavirus infection post-kidney transplant: an overlooked disease. *Transplant. Res.* **2012**, *1*, 21, doi:10.1186/2047-1440-1-21.
- 11. Meeuwis, K. a. P.; Hilbrands, L. B.; IntHout, J.; Slangen, B. F. M.; Hendriks, I. M. P.; Hinten, F.; Christiaans, M. H. L.; Quint, W. G. V.; van de Kerkhof, P. C. M.; Massuger, L. F. a. G.; Hoitsma, A. J.; van Rossum, M. M.; Melchers, W. J. G.; de Hullu, J. A. Cervicovaginal HPV infection in female renal transplant recipients: an observational, self-sampling based, cohort study. *Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg.* 2015, *15*, 723–733, doi:10.1111/ajt.13053.
- 12. Hinten, F.; Hilbrands, L. B.; Meeuwis, K. a. P.; IntHout, J.; Quint, W. G. V.; Hoitsma, A. J.; Massuger, L. F. a. G.; Melchers, W. J. G.; de Hullu, J. A. Reactivation of Latent HPV Infections After Renal Transplantation. *Am. J. Transplant. Off. J. Am. Soc. Transpl. Surg.* **2017**, *17*, 1563–1573, doi:10.1111/ajt.14181.
- 13. Vandamme, A. M.; Fransen, K.; Debaisieux, L.; Marissens, D.; Sprecher, S.; Vaira, D.; Vandenbroucke, A. T.; Verhofstede, C. Standardisation of primers and an algorithm for HIV-1 diagnostic PCR evaluated in patients harbouring strains of diverse geographical origin. The Belgian AIDS Reference Laboratories. *J. Virol. Methods* **1995**, *51*, 305–316.
- 14. Şahiner, F.; Kubar, A.; Gümral, R.; Ardıç, M.; Yiğit, N.; Şener, K.; Dede, M.; Yapar, M. Efficiency of MY09/11 consensus PCR in the detection of multiple HPV infections.

- *Diagn. Microbiol. Infect. Dis.* **2014**, *80*, 43–49, doi:10.1016/j.diagmicrobio.2014.03.030.
- 15. Stanley, M. Immunobiology of HPV and HPV vaccines. *Gynecol. Oncol.* **2008**, *109*, S15-21, doi:10.1016/j.ygyno.2008.02.003.
- 16. Skiba, D.; Mehlhorn, G.; Fasching, P. A.; Beckmann, M. W.; Ackermann, S. Prognostic significance of serum antibodies to HPV-16 L1 virus-like particles in patients with invasive cervical cancer. *Anticancer Res.* **2006**, *26*, 4921–4926.
- 17. Stanley, M. A.; Pett, M. R.; Coleman, N. HPV: from infection to cancer. *Biochem. Soc. Trans.* **2007**, *35*, 1456–1460, doi:10.1042/BST0351456.
- 18. Hibma, M. H. The immune response to papillomavirus during infection persistence and regression. *Open Virol. J.* **2012**, *6*, 241–248, doi:10.2174/1874357901206010241.
- 19. Reusser, N. M.; Downing, C.; Guidry, J.; Tyring, S. K. HPV Carcinomas in Immunocompromised Patients. *J. Clin. Med.* **2015**, *4*, 260–281, doi:10.3390/jcm4020260.
- 20. Gravitt, P. E.; Winer, R. L. Natural History of HPV Infection across the Lifespan: Role of Viral Latency. *Viruses* **2017**, *9*, doi:10.3390/v9100267.
- 21. Stanley, M. HPV immune response to infection and vaccination. *Infect. Agent. Cancer* **2010**, *5*, 19, doi:10.1186/1750-9378-5-19.