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Abstract: Model-based design has received considerable attention in biological and chemical 
industries over the last two decades. However, the parameter uncertainties of first-principle models 
are critical in model-based design and have led to the development of robustification concepts. 
Various strategies were introduced to solve the robust optimization problem. Most approaches 
suffer from either unreasonable computational expense or low approximation accuracy. Moreover, 
they are not rigorous and do not consider robust optimization problems where parameter correlation 
and equality constraints exist. In this work, we propose a highly efficient f ramework for solving 
robust optimization problems with the so-called point estimation method (PEM). The PEM has a fair 
trade-off between computation expense and approximation accuracy and can be easily extended to 
problems of parameter correlations. From a statistical point of view, moment-based methods are 
used to approximate robust inequality and equality constraints. We also suggest employing the 
information from global sensitivity analysis to further simplify robust optimization problems with a 
large number of uncertain parameters. We demonstrate the performance of the proposed framework 
with two case studies where one is to design a heating/cooling profile for the essential part of a 
continuous production process and the other is to optimize the feeding profile for a fed-batch reactor 
of the penicillin fermentation process. The results reveal that the proposed approach can be used 
successfully for complex (bio)chemical problems in model-based design.

Keywords: robust optimization; uncertainty; point estimation method; equality constraints; 
parameter correlation

1. Introduction20

Intensive competition in (bio)chemical industries increases the requirements for better process
performance. Thus, model-based tools are frequently applied to optimally design (bio)chemical
processes, i.e., to optimize their performance while satisfying relevant system constraints [1,2].
However, external disturbances and system uncertainties might affect the performance of the plants,
which then would deviate from the expected and simulated process characteristics or even result25

in operation failures [3]. The reliability of the designed processes under various conditions and
disturbances is called robustness. Optimization problems that account for process performance and
robustness must be tackled to provide solutions for real plants of industrial scale.
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The concept of robust optimization (RO) was first proposed by [4] and has been extensively
applied to design upstream synthesis units [5,6] and downstream separation units [3,7] for30

bio(chemical) processes. Based on the method for counting parameter uncertainties, the approaches
for RO are categorized into three groups: worst-case [7,8], probability-based [5,6,9], and
possibility-based [10]. The worst-case and possibility-based approaches are a good choice for
crude uncertainty expressions, but the effects are limited because of too conservative results [11].
Probability-based concepts, which include detailed uncertainty information in terms of probability35

density functions (PDFs), are very relevant and have attracted considerable attention in the last
decade [5,6,11]. However, probability-based RO requires methods for uncertainty propagation and
quantification (UQ) which pose obvious challenges in computation efficiency and approximation
accuracy. Thus, the credibility and flexibility of the RO approach are determined by the underlying
numerical UQ methods [4,12].40
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Figure 1. Computational demand (i.e., number of model evaluations) for different methods for
uncertainty quantification with the increasing number of uncertainty parameters.

Various UQ methods for RO can be found in the literature. For instance, [13] used traditional
sampling-based methods, i.e., (quasi) Monte Carlo (MC) simulation. Spectral methods, e.g.,
polynomial chaos expansion [14,15], have also been extensively used for RO [16–18], because of
their adjustable complexity. Moreover, the desired statistical information can be directly calculated
at low computational costs. Gaussian quadrature (GQ), which was developed for solving numerical45

integration [19], is also a common approach for RO. These methods all have specific merits but fall
short in an essential aspect: They all suffer from the deficiency of computational expense. In this
work, we propose the point estimate method (PEM) [2] for probability-based RO, because the PEM
has superior efficiency compared to other UQ methods as illustrated in Fig. 1 and provides workable
accuracy against various cubature methods as concluded by [20] and [21].50

Parameter dependencies, which commonly exist in practical applications [22–24], are generally
not taken into account in RO studies. Recently, this issue has received more attention in the field
of sensitivity analysis [24–26] where parameter correlation has a significant impact on parameter
sensitivities and the resulting probability distributions of the model output [20,27]. Therefore, in
this work, we adapted the PEM by implementing a isoprobabilistic transformation step [28] to55
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include dependent parameters properly. The effect of parameter dependencies on the RO result
is investigated and critically compared with the reference case where parameter dependencies are
neglected.

This paper also provides a holistic framework for probability-based RO with the PEM. The
objective function is robustified by using its first and second statistical moments. The multi-objective60

optimization problem is transferred to a single-objective optimization problem by taking the
weighted sum of these moments [5]. Moreover, we distinguish between hard and soft constraints
where only the latter case needs to be robustified. Soft equality constraints might also be relevant
in the design of (bio)chemical processes but were rarely considered in previous RO studies [29,30].
In this work, we provide a robust formulation for soft inequality and equality constraints and65

investigate their effects on the objective function. With the moments estimated by the PEM,
the second- and fourth-moment methods introduced by [31] for structural reliability analysis are
implemented to approximate the robustified soft constraints. The fourth-moment method has a more
rigorous structure than the second-moment method but requires knowledge about the third and
fourth statistical moments which might be challenging for the PEM as the performance degrades70

for higher-order statistical moments. Therefore, we demonstrate and compare the performance of
the two methods for approximating the robust soft inequality constraints. Additionally, the global
sensitivity analysis technique [32] is utilized to obtain a better understanding of the processes and
provide information for simplifying and constructing the robust optimization problem systematically.

The structure of the paper is organized as follows. Section 2 refers to the basics of75

probability-based RO. The PEM and its extension to arbitrary and correlated parameters are described
in Section 3. Section 4 provides details about robust inequality and equality constraints and
approximation methods. The final structure of probability-based RO is given in Section 5. The
basics of the global sensitivity analysis are given in Section 6. To demonstrate the performance of
the proposed RO framework, two case studies are thoroughly discussed in Section 7: including a80

classic jacket tubular reactor and a fed-batch bioreactor for penicillin fermentation. Conclusions can
be found in Section 8.

2. Background of probability-based robust optimization

This section starts with the problem formulation used throughout the paper and introduces the
general structure of probability-based RO. First-principle models are used to describe the physical85

and chemical effects of (bio)chemical processes mathematically. In the field of process system
engineering, the models typically consist of nonlinear different algebraic equations (DAEs) equal to:

ẋd(t) = gd(x(t), u(t), p), xd(0) = x0, (1)

0 = ga(x(t), u(t), p), (2)

where t ∈ [0, t f ] denotes the time, u ∈ Rnu the control input vector, and p ∈ Rnp the time-invariant
parameter vector. x = [xd, xa] ∈ Rnx is the state vector while xd ∈ Rnxd and xa ∈ Rnxa

are the differential and algebra states, respectively. x0 is the vector of the initial conditions for90

the differential states. Furthermore, two types of functions gd : R(nxd+nxa )×nu×np → Rnxd and
ga : R(nxd+nxa )×nu×np → Rnxa are given, which denote the differential vector field and algebraic
expressions of the model.

Typically, the time-invariant parameters p and initial conditions x0 are not known exactly.
Measurement and process noise give rise to uncertainties in model parameters which are estimated95

through model fitting [2,22,33]. In addition, disturbances from the environment and the accuracy of
the measurement devices give rise to the uncertainty of the initial conditions. As we intend to use
random variables to describe the uncertainties in the parameters and the initial conditions, we define
a probability space (Ω,F , P) with the sample space Ω, σ-algebra F , and the probability measure P.
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θ = [p(ω), x0(ω)] is the vector of random variables which are functions of ω ∈ Ω on the probability100

space and associated with continuous PDFs f(θ) = [ f1(θ1), . . . , fnθ
(θnθ

)] and correlation matrix Σ.
Parameter and initial condition uncertainties result in model-based prediction variations, i.e.,

the outcome of Eqs.(1) and (2) must be considered as random variables, too. Therefore, nominal
(i.e., ignoring given parameter variations) optimal control problems do not give reliable solutions for
realistic processes as a single realization of the uncertain parameters is used [11]. To derive reliable105

solutions for almost all realizations of uncertain parameters, the following RO problem has to be
solved.

Problem 1. Probability-based robust optimization problem

min
x(·),u(·)

E[M(xt f )] + αVar[M(xt f )], (3a)

subject to:

ẋd(t) = gd(x(t), u(t), p), (3b)

0 = ga(x(t), u(t), p), (3c)

xd(0) = x0, (3d)

Pr[hnq(x(t), u(t), p) ≥ 0] ≤ εnq, (3e)

Pr[heq(x(t), u(t), p) 6= 0] ≤ εeq, (3f)

umin ≤ u ≤ umax. (3g)

Here, E[·] and Var[·] denote the mean and the variance of the cost function M(xt f ), respectively,
Pr[·] denotes the probability measure, α denotes a scalar weight factor, εnq and εeq are tolerance110

factors, [umin,umax] are the upper and lower boundaries for the control input vector, and xt f is the state
vector at the end of the time horizontal t f . In detail, M(xt f ) denotes a Mayer objective term that is
used for nominal optimal control problems. We should note that certain reformulations can be made
to consider the optimal Lagrange control problems, too. The two functions hnq : R(nxd+nxa )×nu×np →
Rnnq and heq : R(nxd+nxa )×nu×np → Rneq are used to represent the inequality and equality constraints115

which come from design restrictions, such as temperature limitations. Eqs. (3b) and (3c) are the model
equations that as explained before will be considered as equality constraints as discussed in Section
4.

Problem 1 expresses the general formulation of the RO problem regarding probabilistic
uncertainties. Eq. (3a) gives the robust form of the objective function M(xt f ), where E[M(xt f )]120

and Var[M(xt f )] represent the expected performance and the robustness of the objective function,
respectively. The trade-off between the performance and the robustness is adjusted by the weight
factor α. Eqs. (3e) and (3f) give the robust form of the inequality and equality constraints, respectively.
They ensure that the probability of all constraint violations is less than or equal to a certain tolerance
factor that can be adjusted according to given specifications and safety rules. However, to solve125

Problem 1 practically, we have to address the following two aspects. First, the estimation of the
probabilities of both constraint violations cannot be solved in closed form, and standard numerical
methods might be computationally demanding. Thus, highly efficient approximation routines have
to be applied to ensure representative results. Second, the robust equality constraints in Eq. (3f) are
infeasible and render RO insolvable. These two aspects are discussed and addressed in the following130

section.

3. Point estimate method (PEM)

The point estimate method [34,35] is a sample-based and efficient method for approximating
n-dimensional integrals. It is analog to the concept of the so-called unscented transformation
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presented by [36] but with different deterministic sample points and corresponding weights [34]. The135

PEM has been successfully applied in the field of sensitivity analysis [37] and optimal experimental
design [38–40] to quantify the influence of measurement imperfections on system identification. A
brief introduction to the PEM is given in Section 3.1. The concept of extending the PEM to problems
with arbitrary and correlated parameter uncertainties is presented in Section 3.2.

3.1. Basics of the point estimate method140

The basic principle of the PEM is illustrated in Fig. 2. Here, a nonlinear function k(·) with a
two-dimensional parameter [ξ1, ξ2] and output [y1, y2] is used for demonstration. We assume that
the two parameters have a bivariate standard Gaussian distribution ξ ∼ N (0, I). The probability
distribution of the parameters does not have to be Gaussian and could follow a uniform, beta
distribution or any other parametric distribution – if it is symmetric and independent [40]. First,
nine deterministic sample points, i.e., the cross, circle, and star points in Fig. 2, have been deliberately
generated and used for function evaluations. Finally, the integral term is approximated by a weighted
superposition of these function evaluations equal to:

∫
Iξ

k(ξ) f (ξ)dξ ≈
np

∑
i=1

wik(ξ
s
i ) (4)

where ξs
i denotes the i-th sample point; nξ and np denote the number of random inputs and sample

points, which are equal to two and nine in this example; wi is a scalar weight factor; and f (ξ) is the
PDF of the uncertain parameters.

𝜉1 

𝜉2 

y1 

y2 

Nonlinear function 

𝐲 = 𝐤(𝝃) 

Figure 2. Illustration of the PEM for a nonlinear function y = k(ξ) that has two random inputs and
two random outputs; adapted from [36].

The deterministic sample points used in this work are generated by the first three generator
functions (GF[0], GF[±ϑ], GF[±ϑ,±ϑ]) defined in [34] which leads to an overall number of np =

2d2 + 1 sample points, where d = nξ = nθ . The specific weight factors are used for each generator
function which results in the final approximation scheme:∫

Iξ
k(ξ) f (ξ)dξ ≈

w0k(GF[0]) + w1 ∑ k(GF[±ϑ]) + w2 ∑ k(GF[±ϑ,±ϑ]),
(5)

where ϑ =
√

3, w0 = 1 + d2−7d
18 , w1 = 4−d

18 , w2 = 1
36 [37]. With these factors, Eq. (5) provides suitable

approximations for the integral of functions with moderate nonlinearities [20,34]. In principle, we145

can also adapt the PEM to ensure lower or higher precision, but the proposed setting has the best
trade-off between precision and computational costs [35].
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Algorithm 1 Sampling for correlated random variables

Initialization: Random variables ξ ∼ N (0, I), I ∈ Rd×d; θ have marginal CDFs [F1(θ1), . . . , Fd(θd)]
and correlation matrix Σ ∈ Rd×d;

1: Sample U = [ξ1, · · · , ξN ] with size of N = 2d2 + 1 from ξ and dimension d from Generator
function GF[·];

2: Cholesky decomposition of Σ = LLT , where L is a lower triangular matrix;
3: Correlate the sample, V = LU;
4: Convert the sample to the corresponding cumulative density W = [F(V1), · · · , F(Vd)]

T ;
5: Transform into sample of θ, [θ1, · · · , θN ] = [F−1

1 (W1), · · · , F−1
d (Wd)]

T .

3.2. Sampling strategy for independent/correlated random variables of arbitrary distributions

The proposed PEM is applicable only in the case of independent standard Gaussian distributions
describing the parameter uncertainties. For most practical applications, however, we are confronted150

with problems of arbitrary and correlated probability distributions. Therefore, we extend the PEM
following Proposition 1.

Proposition 2. For two random variables (θ, ξ), where ξ ∼ N (0, I) and θ has an arbitrary distribution, and
the function Φ(·) = F−1

θ (Fξ(·)), the following relation for the integral terms of the nonlinear function k(θ)
holds [20]: ∫

Iθ

k(θ) f (θ)dθ =
∫

Iξ

k(Φ(ξ)) f (ξ)dξ. (6)

Based on Proposition 1, the integral expression with an arbitrary and correlation distribution is
approximated as:

∫
Iθ

k(θ) f (θ)dθ ≈ w0k(Φ(ξ1)) + w1

2d+1

∑
i=2

k(Φ(ξi)) + w2

2d2+1

∑
j=2d+2

k(Φ(ξ j)), (7)

where the samples from the original PEM for ξ are transformed via Φ(·) = F−1
θ (Fξ(·)) to the

corresponding points in θ which can be directly evaluated with function k(·). The joint cumulative
density function (CDF) Fθ(θ) in Φ(·) is typically unknown in practical applications and derived from
marginal CDFs [F1(θ1), . . . , Fd(θd)] and the correlation matrix Σ ∈ Rd×d for the uncertain parameter
θ. Please note that it is actually infeasible to derive an analytical expression for Fθ(θ) and Φ(·) [20].
Thus, we introduce Algorithm 1 adapted from [41] to transform the samples from ξ to θ numerically.
The transformed sample points can be directly used for the approximation scheme:

∫
Iθ

k(θ) f (θ)dθ ≈ w0k(θ1) + w1

2d+1

∑
i=2

k(θi) + w2

2d2+1

∑
j=2d+2

k(θj). (8)

4. Moment method for approximating robust inequality and equality constraints

In this section, we discuss the details of inequality and equality constraints. In Section 4.1, we
categorize the constraints into two special types and discuss the effects of parameter uncertainties on155

the constraints. In Section 4.2 and Section 4.3, robust formulation of soft inequality and soft equality
constraints and methods for approximating the robustified expressions are presented.

4.1. Categorization of the constraints

There are two types of robust inequality and equality constraints: hard and soft constraints [42].
Hard constraints must be satisfied regardless of uncertainties in the RO. Hard constraints ensure that160

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2018                   doi:10.20944/preprints201809.0126.v1

Peer-reviewed version available at Processes 2018, 6, 183; doi:10.3390/pr6100183

http://dx.doi.org/10.20944/preprints201809.0126.v1
http://dx.doi.org/10.3390/pr6100183


7 of 28

optimized results satisfy physical laws. For instance, in Problem 1, equality constraints Eqs. (3b) and
(3c), i.e., the governing equations, are hard constraints as they describe the underlying (bio)chemical
processes and have to be satisfied consistently. Soft constraints, in turn, do not have to be exactly
satisfied under uncertainties. Soft constraints (e.g., Eqs. (3e) and (3f)) are typically imposed by the
designer to restrict the design space and to satisfy additional design specifications. Therefore, soft165

constraints can be satisfied only in a probabilistic manner and might occasionally be violated, i.e.,
an acceptable violation probability has to be defined for RO. Please note that the performance of the
objective function may decrease if a very low violation probability is implemented. Soft constraints
are considerably affected by parameter uncertainties and are investigated in the following section.

4.2. Robust formulation of soft inequality constraints170

Soft inequality constraints do not have to be strictly satisfied but in a probabilistic manner.
Inequality constraints hnq(x(t), u(t), p) ≤ 0 formulated on the probability space are also named
chance constraints [43] and read as:

Pr[hnq(x(t), u(t), p) ≤ 0] ≥ 1− εnq, (9)

where the probability of constraint satisfaction must be higher or equal to 1− εnq. Please note that Eq.
(9) can also be equivalently transformed into Eq. (10) when the probability of a constraint violation is
used:

Pr[hnq(x(t), u(t), p) ≥ 0] ≤ εnq. (10)

The probability of constraint violations is frequently estimated by MC simulations. A large
number of samples are drawn from given parameter distributions, and the samples where the
constraints are violated are counted. MC simulations are straightforward in implementation but
require a considerable number of CPU-intensive model evaluations. The computational burden
might be prohibitive, especially for the iterative nature of the RO. Moment-based approximation175

of failure probabilities has been widely applied in the field of reliability analysis [31], and thus, this
method is used as an alternative concept to approximate the chance constraints in this work. In
addition, it takes the advantage of the proposed PEM for estimating the needed statistical moments.

The basic idea of the moment-based approximation method is to transform the probability
distribution of the constraint functions into some existing distributions, e.g., the frequently used
standard normal distribution ξ ∼ N (0, 1), and to obtain the failure probability based on the
probability. Here, the one-dimensional constraint function −hnq(x(t), u(t), p) with a negative sign
is abbreviated as hnq and used in the following. The isoprobabilistic transform given in Proposition 1
is applied to express the relation between the standard normal distribution and one random variable
with existing distribution as:

ξ = F−1
ξ (Fhnq

(hnq)), (11)

where F−1
ξ indicates the inverse CDF of the standard normal distribution, and Fhnq

indicates the CDF

of hnq. Based on this transformation, the failure probability of the constraint function hnq is equivalent
to the probability of ξ ≤ F−1

ξ (Fhnq
(0)) as shown in Eq. (12). As the CDF of ξ is known analytically,

the failure probability of the constraint function can be determined if F−1
ξ (Fhnq

(0)) is given. However,

the transformation function F−1
ξ (Fhnq

(·)) is typically not available as the CDF of hnq is unknown in
practice. Thus, we aim at transformation rules that are based only on the statistical moments of
hnq [31]:

Pr[hnq(x(t), u(t), p) ≥ 0] = Pr[hnq ≤ 0],

= Pr[ξ ≤ F−1
ξ (Fhnq

(0))].
(12)
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Two representative moment-based approximation methods [31], i.e., the second-moment
method and the fourth-moment method, are used to estimate the failure probability with the first
four statistical moments of the probability distribution of the constraint function hnq, which are
named the mean (µhnq

), variance (σ2
hnq

), skewness (αhnq ,3), and kurtosis (αhnq ,4). The second-moment

method approximates the transformation function with the first two moments as in Eq. (13), while the
fourth-moment method utilizes all four moments and has a more complex structure; see Eq. (14) [31].
The approximations are incorporated in Eq. (12) to calculate the failure probability of the constraints:

F−1
ξ (Fhnq

(0)) = −
µhnq

σhnq

, (13)

F−1
ξ (Fhnq

(0)) = −
3(αhnq ,4 − 1)(

µhnq
σhnq

) + αhnq ,3((
µhnq
σhnq

)2 − 1)√
(9αhnq ,4 − 5α2

hnq ,3
− 9)(αhnq ,4 − 1)

. (14)

The accuracy of the moment-based approximation methods is determined by two factors. The
first factor is the intrinsic approximation error which results from the approximated transformation180

function (Eq. (11)) using a limited number of statistical moments. By definition, the fourth-moment
method has a lower intrinsic approximation error because this method is more rigorously defined
with higher-order statistical moments. The second factor is the estimation error of the statistical
moments, especially the higher-order moments, e.g., skewness and kurtosis. The PEM introduced in
Section 3 is used to calculate the needed statistical moments with considerably lower computational185

costs in comparison to MC simulations. However, the precision of the estimated statistical moments
deteriorates with higher-order statistical moments, because the PEM might fail for highly nonlinear
problems of higher-order terms. Thus, especially the fourth-moment method may suffer from the
estimation error. According to these two sources of approximation errors, it is difficult to determine
which approximation method, i.e., the second- or fourth-moment method, is superior for robust190

process design. Therefore, we further analyze both concepts and investigate their benefits for efficient
and credible robustification strategies in the following section.

4.3. Robust formulation of soft equality constraints

Similar to the inequality constraints, soft equality constraints are considered in a probabilistic
manner for the RO problem and are given as:

Pr[heq(x(t), u(t), p) 6= 0] ≤ εeq (15)

However, Eq. (15) is not directly solvable for most applications as the constraint function heq has a
continuous probability distribution. In other words, the probability of a single point is equal to zero
when the random space is continuous [44]. Thus, we can find that:

Pr[heq(x(t), u(t), p) 6= 0] = 1, (16)

which contradicts Eq. (15) if εeq � 1. Note that we aim to satisfy the equality constraint with high
probability, and thus εeq � 1. Fig. 3a shows an example of the equality constraint in the random195

parameter space. Here, the samples are drawn from their distributions, and the curve shows the
locations where the samples satisfy the constraints.

To solve the RO problem, the robust equality constraints must be relaxed as shown in Fig. 3b.
This idea is analogous to the relaxed margin used in support vector machines (SVMs) which have
been applied extensively in machine learning [45]. We ease the restriction from the constraints by
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𝜃1 

𝜃2 

𝐡𝑒𝑞(𝐱, 𝐮, 𝐩) = 0 

(a)

𝜃1 

𝜃2 

𝛿𝑒𝑞 
𝛿𝑒𝑞 

𝐡𝑒𝑞 𝐱, 𝐮, 𝐩 = 0 

(b)

Figure 3. Illustration of soft equality constraints heq(x, u, p) = 0. For the sake of explanation, a
two-dimensional random space with uncertain parameters θ1 and θ2 is used. Samples satisfying the
constraints are shown by blue-filled circles , while samples that violate the constraints are shown
by red cross-outs . (a) The probability of samples that satisfy the equality constraint (red line ) is
equal to zero for the continuous random space. (b) The equality constraint and its relaxed boundaries
(green dashed line ) with width δeq. The probability of satisfying the equality constraints is given
by the percentage of samples, i.e., , which are located within the boundaries.

admitting that samples can lie within a certain range around the constraints. Based on the relaxation,
the robust equality constraints in Eq. (15) are substituted by:

Pr[−δeq ≤ heq(x(t), u(t), p) ≤ δeq] ≥ 1− εeq, (17)

where δeq indicates the relaxation factor and determines the range of relaxed equality constraints. As
we can see in Fig. 3b and Eq. (17), we have a region rather than a single curve where the constraint is
satisfied. Thus, we can have nonzero probability, and the RO problem becomes solvable. The robust200

equality constraints in Eq. (17) have nearly the same structure as the robust inequality constraints in
Eq. (9). Therefore, the methods described in Section 4.2 can be used to solve Eq. (17) in RO problems
immediately.

As mentioned previously, there is a trade-off between the performance of the objective function
and the satisfaction probability of soft inequality and soft equality constraints. And the relevant205

factors, εnq, εeq and δeq, have to be adapted properly. More details about how to select these factors
are presented with the given case studies in Section 7.

5. Robust optimization with the PEM

The final structure of the solution to the RO problem defined in Problem 1 is summarized in Eq.
(18). Note that F(·) in Eqs. (18h) and (18i) indicates the CDF of a standard Gaussian distribution.210

The PEM is used to estimate the relevant statistical moments to include the effect of parameter
uncertainties. Eqs. (18c) to (18g) are the evaluations of the dynamic system and the constraint
functions for all deterministic sample points that are generated from the probability distributions
of the uncertain model parameter. Based on the evaluations, Eqs. (19a) to (19f) calculate the statistical
moments of the objective function and constraints which are used in Eqs. (18a), (18h), and (18i).215

Although Eqs. (18h) and (18i) demonstrate the approximation with the fourth-moment method, we
can easily switch to the second-moment method by changing the structure from Eq. (14) to Eq. (13).
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min
x(·),u(·)

E[M(xt f )] + αVar[M(xt f )], (18a)

subject to:

i = 1, . . . , 2d2 + 1, m = 1, 2, 3 (18b)

θi = [pi, x0,i]
T , xi = [xd,i, xa,i]

T , xd,i(0) = x0,i, xt f ,i = xi(t f inal), (18c)

ẋd,i(t) = gd(xi(t), u(t), pi), 0 = ga(xi(t), u(t), pi), (18d)

h1,i = −hnq(xi(t), u(t), pi) (18e)

h2,i = heq(xi(t), u(t), pi) + δeq (18f)

h3,i = −heq(xi(t), u(t), pi) + δeq (18g)

F(−
3(αh1,4 − 1)(

µh1
σh1

) + αh1,3((
µh1
σh1

)2 − 1)√
(9αh1,4 − 5α2

h1,3
− 9)(αh1,4 − 1)

) ≤ εnq (18h)

F(−
3(αh2,4 − 1)(

µh2
σh2

) + αh2,3((
µh2
σh2

)2 − 1)√
(9αh2,4 − 5α2

h2,3
− 9)(αh2,4 − 1)

) + F(−
3(αh4,4 − 1)(

µh4
σh4

) + αh4,3((
µh4
σh4

)2 − 1)√
(9αh4,4 − 5α2

h4,3
− 9)(αh4,4 − 1)

) ≤ εeq (18i)

umin ≤ u ≤ umax, (18j)

E[M(xt f )] = w0M(xt f ,1) + w1

2d+1

∑
i=2

M(xt f ,i) + w2

2d2+1

∑
j=2d+2

M(xt f ,j), (19a)

Var[M(xt f )] = w0(M(xt f ,1)− E[M(xt f )])
2 + w1

2d+1

∑
i=2

(M(xt f ,i)− E[M(xt f )])
2

+w2

2d2+1

∑
j=2d+2

(M(xt f ,j)− E[M(xt f )])
2,

(19b)

µhm
= w0hm,1 + w1

2d+1

∑
i=2

hm,i + w2

2d2+1

∑
j=2d+2

hm,j, (19c)

σ2
hm

= w0(hm,1 − µhm
)2 + w1

2d+1

∑
i=2

(hm,i − µhm
)2+

w2

2d2+1

∑
j=2d+2

(hm,j − µhm
)2,

(19d)

αhm ,3 =

w0(hm,1 − µhm
)3 + w1

2d+1
∑

i=2
(hm,i − µhm

)3 + w2
2d2+1

∑
j=2d+2

(hm,j − µhm
)3

σ3
hm

,
(19e)

αhm ,4 =

w0(hm,1 − µhm
)4 + w1

2d+1
∑

i=2
(hm,i − µhm

)4 + w2
2d2+1

∑
j=2d+2

(hm,j − µhnq
)4

σ4
hm

,
(19f)

(19g)
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6. Global sensitivity analysis

Before we apply the robust optimization framework, we briefly introduce the idea of global
sensitivity analysis (GSA). In general, GSA is not mandatory for the robust optimization framework220

but provides useful information for analyzing and optimizing complex systems.
GSA is a valuable tool for determining the impact of each parameter and parameter

combinations on the result of a mathematical model for given parameter variations [40,46–50]. Thus,
GSA determines the most relevant parameters and parameter uncertainties to be considered in RO,
respectively. By focusing on the relevant parameters and neglecting the irrelevant parameter, we can225

reduce the complexity of the RO problem considerably.
As most model parameters, which are identified via experimental data, are correlated, the effect

of parameter correlation has to be considered in GSA. In this work, we present GSA methods that
are capable of problems with independent parameters and problems with dependent parameters.
Although parameter dependence is quite common in industrial applications, studies of GSA with230

dependent parameters have been considered only recently; see [24–26]. Moreover, the GSA concepts
can be categorized into two types: variance-based methods [32,51,52] and moment-independent
methods [53]. For details about the definitions and a critical comparison of these two concepts, the
interested reader is referred to [54].

Total sensitivity 

indices 𝑆𝑇𝑖
𝑖𝑛𝑑

First-order sensitivity 

indices 𝑆𝑖
𝑖𝑛𝑑

Interaction sensitivity 

indices 𝑆𝑖,𝑗,𝑘,….
𝑖𝑛𝑑

Structural total sensitivity 

indices 𝑆𝑇𝑖
𝑈

Structural first-order 

sensitivity indices 𝑆𝑖
𝑈

Correlative total sensitivity 

indices 𝑆𝑇𝑖
𝐶

Total covariance-based 

total sensitivity indices 

𝑆𝑇𝑖
𝑐𝑜𝑣

Structural interaction 

sensitivity indices 𝑆𝑖,𝑗,𝑘,….
𝑈

Correlative first-order 

sensitivity indices 𝑆𝑖
𝐶

Correlative interaction 

sensitivity indices 𝑆𝑖,𝑗,𝑘,….
𝐶

Variance-based 

Sensitivity measure 

(Indepdendent) 

Covariance-based 

Sensitivity measure 

(Correlated) 

Figure 4. Structure of sensitivity measures for independent (left) and correlated (right) parameters.

Although the moment-independent method has a more rigorous definition than the235

variance-based method, the variance-based approach is the standard in GSA and therefore, is
implemented in this work. The structure and types of sensitivity indices used in the variance-based
method are illustrated in Fig. 4. On the left of Fig. 4, the variance-based method defines three
types of sensitivity indices for independent parameters. First-order sensitivity indices Sind

i measure
the main effect of an individual parameter i on the model output, interaction sensitivity indices240

Sind
i,j,k,... measure the dependence of the effect for two or more parameters, and total sensitivity indices

Sind
Ti

are the sum of the main and interactive effects of parameter i. On the right of Fig. 4, new
sensitivity indices are derived from the covariance decomposition of the model output for correlated
parameters. Obviously, they have the same types of sensitivity indices as the independent case but
for three different groups: structural sensitivity indices SU , correlative sensitivity indices SC, and245

total covariance-based sensitivity indices Scov. Structural sensitivity indices reflect the impact of an
individual model parameter or parameter interactions on the model output and are determined by
the model structure. They have the same trend as independent sensitivity indices but with different
magnitudes. The correlative sensitivity indices exclusively show the impact of parameter correlations.
The sum of these indices leads to total covariance-based sensitivity indices Scov that express the250

overall impact of the correlated parameters. In this work, the first-order sensitivity indices Sind
i for the

independent case and the total covariance-based first-order sensitivity indices Scov
i for the correlated
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case are sufficient, because there are few interactions between the uncertain parameters. Values of
the sensitivity indices were utilized as indicators for reducing the complexity of our RO problem as
demonstrated in the design of the penicillin fermentation process.255

7. Case studies

In this section, we demonstrate the performance of the proposed framework with two case
studies. In case study 1, we design an optimal jacket temperature profile for a tubular reactor
considering two uncertain and correlated model parameters. Additionally, a robust equality
constraint for the product temperature at the reactor outlet is assumed to incorporate process260

intensification aspects in the design problem. In case study 2, a penicillin fermentation process is
analyzed as it is of interest in the pharmaceutical industry. A fed-batch bioreactor model is used to
design an optimal feeding profile under parameter uncertainties. GSA is applied to determine the
influence of parameter uncertainties on the process states and to offer a more tractable problem, i.e.,
a reduced number of uncertain model parameters which have to be considered in the robust process265

design.
GSA and the RO problem were solved in MATLAB R©. Parameter sensitivities for the

independent case were calculated with UQLAB [55]. The RO problem for the first case study was
solved by the MATLAB function fmincon, while the RO problem for the second case study, which
is more complex, was solved by the simultaneous approach [56] and implemented in the symbolic270

framework CasADi for numeric optimization [57] using the NLP solver IPOPT [58] and the MA57
linear solver [59].

7.1. Case study 1: a jacket tubular reactor

Design of the essential part of the production process, i.e., a tubular reactor, where an irreversible
first-order reaction Eq. (20) takes place, is considered as the first benchmark case study.

A −→ B + C. (20)

The reactor, which is operated under the steady-state condition, is described by the following
governing equations [30]:

dx1

dz
=

αkin
v

(1− x1)e
γx2

1+x2 , (21)

dx2

dz
=

αkinδ

v
(1− x1)e

γx2
1+x2 +

β

v
(u− x2)., (22)

where z is the relative reactor position, 0 ≤ z ≤ 1. The states x1 and x2 are the dimensionless forms
of the reactant concentration of A and the reactor temperature, respectively. The jacket temperature275

is the control input given in its dimensionless form u = (Tj − Tin)/Tin and is adjusted to meet the
desired performance and robustness requirements. The control input is discretized into 25 equidistant
elements constrained by 280 K and 400 K. The kinetic coefficient αkin and the heat transfer coefficient
β are assumed to be uncertain, i.e., they follow a Gaussian distribution with a standard deviation
of 10 % of their nominal values. The implemented parameter values and operating conditions are280

summarized in Table 1. For additional details of the proposed reactor model, the interested reader
is referred to [30]. The conversion of the reactor C f , as well as the reactor temperature Tr, can be
calculated from their dimensionless form via:

C f (z = 1) = x1(z = 1), (23)

Tr(z) = x2(z)× Tin + Tin. (24)
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Table 1. Parameters for the tubular reactor model

Parameters Unit Nominal Value Uncertainty
x1(0) – 0 –
x2(0) – 0 –
αkin s−1 0.058 N (0.058,0.0058)

β s−1 0.2 N (0.2,0.02)
v m s−1 0.1 –
γ – 16.66 –
δ – 0.25 –

This case study aims to maximize the final conversion of reactant A while fulfilling the given285

constraints on the reactor temperature. In particular, an upper boundary is added to the reactor
temperature to prevent undesired side reactions. The results of the deterministic optimal design are
depicted on the left of Fig. 5. As we can see, the reactor temperature increases rapidly to the upper
boundary to ensure the maximum reaction rate and a final conversion of 0.996, respectively. However,
numerous violations of the temperature boundary occur when the parameter uncertainties are taken290

into account. In contrast to the deterministic process design, a robust optimal design that includes
parameter uncertainties is conducted next. The corresponding results are given on the right of Fig.
5. Here, a weight factor α = 3 and a tolerance value εnq = 1% are used for the robust objective and
inequality constraints. The robust inequality constraints are approximated with the second-moment
method as in Eq. (13). As we can see from the results, the temperature boundary can be satisfied with295

a probability of 99%, at the cost of the reactor performance; i.e., final conversion decreases to 0.985.

7.1.1. Robust design with parameter correlation

Next, we investigate the influence of parameter correlation on the robust process design. We
assign the two uncertain parameters αkin and β the marginal distribution shown in Table 1 and
the additional Pearson correlation coefficient of 0.8. Deterministic sample points for the correlated300

parameters are generated with Algorithm 1 of the modified PEM. The structure of the RO problem is
similar to that for independent parameters with a weight factor α = 3 and a tolerance value εnq = 1%.
Here, too, the second-moment method is applied. In Fig. 6, results for the optimal design with
parameter correlations are given. As we can see, the profile of the jacket temperature has considerable
differences compared to the nominal case; see Fig. 5. Especially, the drop in the jacket temperature305

between position z = 0.5 and z = 0.8 results from the parameter correlation effect.

7.1.2. Performance of the fourth-moment method

Thus far, only the second-moment method is used to approximate the robust inequality
constraints. The resulting confidence intervals of the reactor temperature are illustrated with green
dashed curves in Fig. 5d and 6b. We can observe that the upper boundary of the confidence310

intervals are consistent with the upper limit of the reactor temperature once they approach it.
However, the confidence intervals are approximated by taking into account only the first and second
statistical moments and are not precise if the probability distribution of the reactor temperature is
non-Gaussian. Reference values based on MC simulations with 10000 sample points are summarized
in Table 2. In the case of the second-moment method, the violation probabilities are 4.7% and 3.6%,315

respectively, which exceeds the tolerance value εnq = 1% slightly. The reason for this mismatch is
mainly due to the approximation error of the robust inequality constraints while considering only the
first two statistical moments.

As discussed in Section 4.2, the fourth-moment method uses more statistical information than
the second-moment method and has lower approximation error. The same RO problem is solved320

again with the fourth-moment approach, and the violation probabilities are estimated and listed in
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Figure 5. Results for nominal design (left) and robust design (right). (a) and (b) are the optimal
profiles of the jacket temperature. (c) and (d) are the evolution of the reactor temperature and the 99%
confidence interval (CI). The mean and standard deviation of the conversion of reactant A have value
of [0.996, 0.004] and [0.985, 0.010] for the nominal and robust design, respectively.
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Figure 6. Results for robust design with parameter correlation. (a) optimal jacket temperature profile.
(b) evolution of the reactor temperature and its 99% confidence interval (CI). The mean and standard
deviation of the conversion of reactant A are 0.986 and 0.008, respectively.
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Table 2. The number of constraint violations from 10000 Monte Carlo simulations, where the robust
inequality constraints are approximated by the second- and fourth-moment methods for both designs
with independent and correlated parameters.

Second-moment method Fourth-moment method
Number of Independent Correlated Independent Correlated
violations 470 357 440 385

Probability 0.047 0.036 0.044 0.039

the right of Table 2. However, the expected improvement could not be validated. In fact, the violation
probability for the correlated case increases after the fourth-moment method is applied. The reason
for this unexpected performance is mainly due to the estimation error of higher-order statistical
moments. When we compare the first four statistical moments estimated by the PEM and the MC325

simulations, we can see in Fig. 7 that the PEM provides useful approximations for the first and second
moments and deteriorates considerably for the higher-order moments. The comparison indicates that
the fourth-moment method might not be suitable for the PEM-based robust optimization framework,
especially for industrial applications where the systems might be strongly nonlinear and complex.
Please note that for calculating the n-th statistical moment, not only the function k(ξ) but also330

k(ξ)n has to be approximated which is challenging for all sample-based approximation schemes,
including MC simulations [2]. The fourth-moment approach, in turn, is still a promising way to
approximate probability distributions if the higher-order moments can be estimated accurately, e.g.,
using polynomial chaos expansion or Gaussian mixture density approximation [60]. Based on this
finding, in the following section, we exclusively implement the second-moment method when we335

use the PEM.
Alternatively, one might adjust the tolerance value for the robust inequality constraints to

mitigate the effect of approximation errors when using the second-moment method. The violation
probabilities of the inequality constraints for the robust design with different tolerance values are
given in Fig. 8. As we can see, the probability can achieve 0.01 by setting the tolerance value to340

0.002 for the independent and correlated cases. Fortunately, the average conversion of reactant A was
significantly impacted by changing the tolerance value; see Fig. 8.

7.1.3. Impact of robust equality constraints

Here, we would like to investigate the effect of robust equality constraints that might result from
design specifications. The design of continuous processes follows the trend of process integration and
intensification to reduce energy costs and raw material. For instance, to avoid extra cooling expenses
for a downstream process, we integrate the heat management into the reactor design directly. To this
end, a terminal equality constraint is added to lower the outlet temperature to the value of the inlet
temperature:

|Tr(z = 1)− Tr(z = 0)| = 0. (25)

With this additional soft equality constraint, there exists a trade-off between maximizing the reactant
conversion while minimizing the temperature difference. First, the results of the reactor design where345

we neglect parameter uncertainties are given in Fig. 9a. The jacket temperature drops sharply to its
lower limit for the second half of the reactor, and the outlet temperature returns exactly to 340 K.
Consequently, the reactant conversion decreases almost 2% compared to the nominal design without
the equality constraint (Fig. 5). Next, the effect of parameter uncertainties on the nominal design
is illustrated in Fig. 9b with the green dotted line. Because of limited space, we mainly consider350

the case where uncertain parameters are correlated. In this case, a strong violation of inequality
and equality constraints exists and has to be managed properly. The robust optimization framework
proposed in Section 5 is used to solve this problem. An identical setting (α = 3 and εnq = 1%)
is used for the objective function and inequality constraints here. Different scenarios with different
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Figure 7. A comparison of the first four statistical moments estimated with the point estimate method
(PEM) and Monte Carlo (MC) simulations for the reactor temperature in case study 1. Std is the
abbreviation of standard deviation.
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Figure 8. The violation probability of the reactor temperature (Pro) and the average conversion of the
reactant A (Con) from designs with different tolerance values. Ind and Cor represent the results for
independent and correlated cases.
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relaxation factors δeq and tolerance factors εeq are used to demonstrate the effect of robust equality355

constraints on the process performance. Values for the relaxation factors and results are summarized
in Fig. 10. We can see that the probability distribution of the outlet temperature narrows quickly
once we reduce the relaxed region and violation probability while the performance of the reactor (the
reactant conversion) deteriorates considerably. The process engineer has to decide on the trade-off
between product performance and energy expense. Note that the robust inequality constraints in360

these scenarios are always satisfied and thus, are not explicitly shown here.
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Figure 9. Results for the nominal design with terminal equality constraints. (a) optimal jacket
temperature profile. (b) evolution of the reactor temperature with its 99% confidence interval (CI).
The mean and standard deviation of the conversion of reactant A are 0.980 and 0.016, respectively.

7.2. Case study 2: fed-batch bioreactor for fermentation of penicillin

The performance of the PEM-based robust optimization framework is also demonstrated with a
fermentation process as illustrated in Fig. 11. Fermentation processes have received great interest in
the pharmaceutical industry, and in this study, we try to optimize the penicillin fermentation [61]. To
this end, we design a feeding substrate profile that ensures the optimal performance and robustness
of the bioreactor. A fed-batch reactor model is used based on the following assumptions: 1) ideal
mixing of all components in the bioreactor, 2) isothermal condition in the reactor, and 3) the effect of
the oxygen transfer can be neglected by considering an upper limitation on the biomass and substrate
concentrations. The mathematical model for the fermentation process reads as:

dX
dt

= µX− F
V

X (26)

dS
dt

= − µ

Yx
X−

θp

Yp
X−mxX +

F
V
(S f − S) (27)

dP
dt

= θpX− KP− F
V

P (28)

dV
dt

= F, (29)

where the state variables, X, S, P and V, indicate the concentrations of the biomass, substrate, product
and volume of components in the reactor, respectively. The feeding stream of the substrate has a
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Figure 10. The average conversion of reactant A and the probability density function of the outlet
temperature for four scenarios that have different relaxation factors δeq and tolerance factors εeq. 1:
δeq = 5, εeq = 10%, 2: δeq = 5, εeq = 1%, 3: δeq = 2, εeq = 10%, 4: δeq = 2, εeq = 1%.

Medium

Substrate

Mixing

Heat Sterilization

Sterile Air

Air Compressor

Air Filtration

Exhaust
Air Filtration

Storage

Downstream Process: 
Removal Biomass, Extraction,
Crystallization, Drying

Optimal feeding profile

Cooling

Cooling

Figure 11. Scheme of a fermentation process with a fed-batch bioreactor.
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Table 3. Nominal values of the model parameters and the initial conditions for the fed-batch model

Parameters Unit Nominal Value Parameters Unit Nominal Value
µm 1/h 0.11 mx 1/h 0.029
Kx – 0.006 S f g/L 400
θm 1/h 0.004 t h 0–80
Kp g/L 0.0001 X(0) g/L 1
Ki g/L 0.1 S(0) g/L 0.5
K 1/h 0.01 P(0) g/L 0
Yx – 0.47 V(0) L 250
Yp – 1.2

constant concentration S f and a time-dependent flow rate F. The specific growth rate of the biomass
µ and the product θp is represented by the substrate inhibition kinetic with the following form:

µ =
µmS

S + KxX
(30)

θp =
θmS

S + Kp + S2/Ki
. (31)

The initial conditions of the state variables and the nominal value of the other kinetic parameters are
listed in Table 3. Further details about the model are given in [61].

First, the process is optimized assuming that all parameters are estimated precisely; i.e.,365

parameter uncertainties are neglected. The goal is to maximize the final concentration of product
P on a fixed time range while the concentration of biomass X and substrate S should be below 40
g/L (limited by the oxygen transfer capacity) and 0.5 g/L (to avoid side reactions) for the entire
time horizon, respectively [62]. The control variable F is parametrized with 100 elements which are
bounded within the range of [0,10]. The resulting dynamic optimization problem is solved with the370

nominal value of all parameters, and the results are shown in Fig. 12. Here, the feed rate of the
substrate is adjusted to keep the substrate concentration equal to 0.5 g/L at which the maximum
growth rate of the biomass is achieved at the beginning. After the biomass concentration reaches
its upper limit, the substrate concentration drops nearly to zero to cease the self-reproduction of the
biomass. Moreover, the substrate is still fed with a low rate that is consumed by the biomass to375

produce the desired product.
However, due to imperfect measurement data and because of model simplifications, the first nine

model parameters are uncertain and might be correlated. Based on the results given in [63], we assign
the nine parameters with a multivariate normal distribution, where their marginal distributions have
mean values equal to the nominal values and standard deviations equal to 10% of the nominal values.380

To investigate the effect of parameter correlations, two situations are analyzed: 1) The parameter
correlations are neglected, and the correlation matrix Σ is set to an identity matrix; 2) the correlation
coefficients of µm, θm, Yx, and mx in Σ are set to 0.95. The effect of imprecise model parameters
on the process performance is also shown in Fig. 12 with the blue dotted lines. Strong violation
of the constraints and large variation of the product quality are observed, and thus, the parameter385

uncertainty has to be considered in the process design for robustness. Please note that the negative
confidence interval (CI) of the substrate concentration stems from the assumption that the CIs are
symmetric and directly derived from the mean and variance of the states.

7.2.1. Global sensitivity analysis

Before solving the RO problem for the fermentation process, we want to decrease its390

computational cost by deciding which parameters are not relevant and can be neglected in the robust
process design. Thus, the corresponding time-dependent sensitivity indices of the parameters are
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Figure 12. (a) Feeding profile, evolution of the (b) biomass, (c) substrate and (d) product obtained
from the nominal design, where the parameter uncertainties are neglected. In turn, the blue dotted
lines illustrate the effect of the parameter uncertainties.
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calculated for the biomass and substrate concentrations in addition to the product concentration at
the final time point, i.e., for those quantities involved in either the objective function or the constraints
of the optimization problem. Figs. 13a, 13c, and 14a show the sensitivity results for the independent395

case. As we can see, the biomass and product concentrations are strongly affected by parameters
µm, θm, Yx, and mx, while the other parameters have a minor impact. Moreover, by summing up
the first-order sensitivity indices, the interaction among the parameters are negligible. Next, we
calculate the correlative (SC) and total covariance-based (Scov) first-order sensitivity regarding the
biomass, substrate, and product concentration; see Figs. 13b, 13d, and 14b. Here, we do not show400

the results for the structural sensitivity indices and all the total sensitivity indices. The reason is
that the model structure does not change with the existence of parameter correlations, and thus,
the structural sensitivity indices and parameter interactions are similar to those for the independent
case. Nevertheless, an evident effect of parameter correlations on the sensitivity analysis result can
be observed from the figures: They have a completely different trend compared to the independent405

case. The sensitivity results from the correlated case also suggest considering the uncertainties
and correlations from µm, θm, Yx, and mx for the RO problem. By using the information from the
sensitivity analysis, we significantly reduce the number of required PEM points for the RO problem.
The number of model evaluations for each optimization iteration decreases from 2× 92 + 1 = 163
to 2× 42 + 1 = 33 for the independent and correlated cases. Finally, the performance of RO with410

parameter uncertainties of identified sensitive is studied in the following section.

7.2.2. Robust optimization

The RO is solved with the framework proposed in Section 5. To this end, a weight factor α = 3
and a tolerance value εnq = 1% are used for the robust objective and inequality constraints. The PEM
points for RO are generated only for the sensitive parameters identified via GSA, i.e., four parameters415

are considered. First, the RO is solved for the simplifying assumption of the independent parameters
using the same uncertainty setting of the previous case study. The evolution of the mean and 99%
CIs for the biomass and the substrate are illustrated in Fig. 15. The biomass accumulates rapidly
until its CI approaches the upper boundary to maximize the productivity while the CI of the substrate
remains at its upper boundary at the beginning and decreases to a low value to activate the production420

phase. However, the result of the RO while ignoring parameter dependencies is too conservative.
The effect of parameter dependencies is shown in Fig. 16 for the previous optimized setting, i.e.,
assuming independent parameters. The shape of the CIs of the biomass and the substrate are quite
different from those in Fig. 15 and do not reach their upper boundaries which leave some space
for improvement. Therefore, we repeat the RO considering the parameter dependencies accordingly425

and plot the results in Fig. 17. As we can see, the CIs of both biomass and substrate concentration
reach the upper boundaries and are less conservative compare to the results in Fig. 16.The optimized
feeding profile of the substrate for the independent and correlated cases are compared in Fig. 18a.
The substrate for the correlated case is fed with a higher rate and descended a bit earlier than that
for the independent scenario. The PDFs of the product concentrations at the final time point shown430

in Figs. 16 and 17 are compared in more detail in Fig. 18b. The product concentration is improved
considerably as the dashed curve, which represents the parameter dependency case, is a bit narrowed
and shifted to higher concentration.

As mentioned, the negative CIs of the substrate concentration in all the figures are due to the
assumption of symmetric distributions of the states. This also indicates that the CIs might not be435

accurate, and thus, we validate them by checking the number of constraint violations from 10000
Monte Carlo simulation for the independent and correlated cases, where the corresponding optimal
feeding profiles are applied. The results are listed in Table 4. As we can see from the second row, the
violation frequencies are higher than our expectation, εnq = 1% = 100

10000 , especially for the substrate
concentration. Although the violation frequencies might be acceptable for industrial applications, we440

can improve the RO credibility by using a smaller tolerance factor as introduced in Section 7.1.2. The
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Figure 13. Sensitivity results of the nine parameters on the biomass and substrate concentrations
for the independent case (a) first-order sensitivity indices for the concentration of biomass X, (b)
first-order sensitivity indices for the concentration of substrate S, and correlated case (c) total
covariance-based first-order sensitivity indices for biomass X, (d) total covariance-based first-order
sensitivity indices for substrate S.
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Figure 14. Sensitivity results of nine parameters on the final product concentrations for the
independent (a) and correlated (b) case.
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results are shown in the third row of Table 4. All violation numbers are improved, while we slightly
lower the reactor performance regarding the penicillin productivity. Please note that the violation
numbers can be further improved by also adapting the tolerance factor.
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Figure 15. Evolution of the mean and 99% confidence interval (CI) of the biomass and substrate
concentrations for the robust design of the fed-batch bioreactor, where the uncertain parameters are
independent. The feeding profile from the robust design with independent uncertain parameters is
applied.
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Figure 16. Evolution of the mean and 99% confidence interval (CI) of the biomass and substrate
concentrations for the robust design of the fed-batch bioreactor, where the uncertain parameters are
correlated. The feeding profile from the robust design with independent uncertain parameters is
applied.

8. Conclusions445

Uncertainties in (bio)chemical processes pose difficulties in process design and necessitate
the development of robust optimization strategies. Most robustification concepts, however, are
limited by either their computational expense or their approximation accuracy. Moreover, standard
robustification strategies do not cover the implementation of processes with soft equality constraints
and parameter dependencies which are quite common in practical applications. In this work, we450

proposed a new framework for solving robust optimization problems using the point estimate
method. A sampling strategy derived from an isoprobabilistic transformation was used to include
parameter correlations. We also introduced methods including fourth-order statistical moments to
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Figure 17. Evolution of the mean and 99% confidence interval (CI) of the biomass and substrate
concentrations for the robust design of the fed-batch bioreactor, where the uncertain parameters are
correlated. The feeding profile from the robust design with correlated uncertain parameters is applied.
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Figure 18. Results for the robust design of the fed-batch bioreactor, where the uncertain parameters are
either independent or correlated. (a) control sequence for substrate feeding, and (b) final concentration
of the product, respectively.

Table 4. The number of constraint violations from 10000 Monte Carlo simulations, where the tolerance
factor εnq = 1% and εnq = 0.14% for both designs with independent and correlated parameters. The
performance indicates the mean value of the production concentration at the end.

independent correlated
εnq = 1% X 146 35

S 572 554
performance 3.63 3.76
εnq = 0.14% X 19 2

S 378 369
performance 3.53 3.67
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approximate robust equality and inequality constraints. In addition, we used the outcome of the
global sensitivity analysis in the robust design to lower the computational demand considerably.455

Two case studies, which include chemical and biological production processes, were used
to demonstrate the performance of the proposed framework. The first case study attempts to
maximize the conversion of a reactant while simultaneously satisfying the constraints on the reactor
temperature of a tubular reactor, which is an essential process unit in continuous production
processes. The proposed method can successfully give the trade-off between performance and460

robustness for the reactor under parameter uncertainties. We observed an evident influence of
parameter correlation on the designed control profile and confidence regions of the system states.
The performance of the second- and fourth-moment methods for approximating the robust inequality
constraints was also examined. The fourth-moment method has a more rigorous structure compared
to the second-moment approach. However, the performance of the fourth-moment method is limited465

by the accuracy of the PEM. Thus, we concluded that the second-moment method might be more
favorable in this particular case. Furthermore, the approximation error could be compensated
by using more conservative tolerance values, which resulted in slight deterioration of the reactor
performance. To save energy costs, we also added an equality constraint to the outlet temperature.
The robust equality constraint had to be relaxed deliberately to be solvable. The process performance470

deteriorated dramatically with lower relaxation factors. The second example is the optimal design of
a bioreactor for a penicillin fermentation process. Global sensitivity analysis was used successfully
to determine the relevant parameters and to ease the computational expense of the framework. This
is extremely useful for large-scale problems with a high number of uncertain parameters. Moreover,
the effect of parameter correlations on the results was also observed. Here, the PEM still performs475

reasonably for this complex problem and retains a relatively low computational cost.
In conclusion, the proposed framework provides a comprehensive strategy for robust

optimization problems and covers features that were not considered in previous works. However,
some limitations are worth noting. The PEM might fail in estimating higher-order statistical
moments, especially for systems with strong nonlinearities. This is also the main reason why480

the performance of the fourth-moment method did not provide the expected improvement in
robustification. Alternatively, the precision of the PEM could be increased, or different methods for
uncertainty quantification might be studied. Future work will focus on this issue.
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