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Abstract: The central promise of personalized medicine is individualized treatments that target 13 
molecular mechanisms underlying the physiological changes and symptoms arising from disease. 14 
We demonstrate a bioinformatics analysis pipeline as a proof-of-principle to test the feasibility and 15 
practicality of comparative transcriptomics to classify two of the most popular in vivo diet-induced 16 
models of coronary atherosclerosis, apolipoprotein E null mice and New Zealand White rabbits. 17 
Transcriptomics analyses indicate the two models extensively share dysregulated genes albeit with 18 
some unique pathways. For instance, while both models have alterations in the mitochondrion, the 19 
biochemical pathway analysis revealed, Complex IV in the electron transfer chain is higher in mice, 20 
whereas the rest of the electron transfer chain components are higher in the rabbits. Several fatty 21 
acids anabolic pathways are expressed higher in mice, whereas fatty acids and lipids degradation 22 
pathways are higher in rabbits. This reflects the differences between two translational models of 23 
atherosclerosis. This study validates transcriptome analysis as a potential method to precisely 24 
identify altered cellular and molecular pathways in atherosclerotic disease, which can be used to 25 
individualize treatment even in the absence of genetic data. 26 
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 30 

1. Introduction 31 

 Precision medicine is the ability to classify individuals according to their underlying 32 
susceptibility, prognosis, or targeting potential treatment response. Unlike DNA sequencing 33 
technology that focuses on the genome, RNA sequencing produces the snapshot of the full 34 
transcriptome, and has the capability to fulfill precision medicine to classify patients at both 35 
molecular and cellular levels. Development of RNA sequencing pipelines is important for 36 
implementation of transcriptomics as precision medicine [1], which can be used successfully to 37 
classify patient attributes and predict therapeutic response and ultimate outcomes. Classifying 38 
patients based on symptoms is limited because symptoms often arise from numerous origins or 39 
multimodal pathways, as the case with atherosclerosis. 40 

Atherosclerosis is a costly disease in the United States, at $9 billion per year in hospitals stays 41 
[2], and its related morbidities, such as heart attack and stroke, totaling for $43.5 billion of total 42 
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hospital costs per year [3,4]. Atherosclerosis is a silent disease as initially there are no symptoms as 43 
the artery narrows from the gradual accumulation of plaques, which consist mainly of fat, 44 
cholesterol and calcium, and often harbor bacteria [5]. While its etiology is complex, inflammation, 45 
arising either from lifestyle factors like stress, obesity, illness, or allergens, is currently proposed as 46 
one of the initial triggers for atherosclerosis [6]. The current working model suggests plaques may 47 
build up in the arterial epithelial wall after damage; these plaques harden, narrowing the arteries 48 
and restricting blood flow. As oxygenated blood flow decreases over time, by middle age symptoms 49 
begin to emerge, depending upon the location of atherosclerotic plaques, which provoke stroke, 50 
peripheral artery disease, kidney problems, heart disease and coronary artery disease [5]. While the 51 
exact cause underlying atherosclerosis is unknown, there are many associated risk factors that 52 
increase its likelihood because of damage inflicted to arterial epithelial lining. These risk factors are 53 
smoking tobacco products, diet, age, family history and genotype [7-9]. Notably, many of factors are 54 
related to metabolism and energy regulation, such as excessive body weight, obesity, elevated 55 
circulating glucose from either insulin resistance, pre-diabetes, and diabetes, suggesting that energy 56 
balance and regulation is a necessary, but not critical, component in triggering atherosclerosis [10]. 57 
In fact, as childhood obesity rates have risen during past few decades, likewise the incidence of 58 
atherosclerosis in youth increased [11]. 59 

Current research focuses on the molecular, cellular, and physiological origins of 60 
atherosclerosis and its pathology. Fundamental questions focus on environmental and genetic 61 
triggers proximal and ultimate causes inducing artery damage, the development of plaques and its 62 
dynamic remodeling that may lead to rupture and formation of blood clots. These vascular events 63 
cause two of the major morbidities and mortalities consequences of atherosclerosis, ischemic stroke 64 
and heart attack. Given the complex, multimodal disease, one needs reliable model systems to 65 
replicate and experimentally test concepts and new therapeutics based on emerging knowledge of 66 
the integrated systems underlying it ultimate cause and proximal mechanisms inducing it pathology 67 
and symptomology.  68 

Biomedical researchers in both clinical and basic settings need to choose models that 69 
recapitulate the specific characteristics of disease, and its pathology, under scientific scrutiny. 70 
Transcriptomics is a robust method to measure the common and unique pathways among different 71 
translational models. Depending upon the hypothesis and biomedical question, researchers need to 72 
choose a model system to detect changes in the target molecular and cellular pathways. Thus, 73 
transcriptomics can classify individual and simultaneously facilitate discovery, testing, and 74 
validation of new therapeutics for patients with specific characteristics at cellular and molecular 75 
levels one needs to choose a system to detect changes in the target molecular, cellular and 76 
physiological pathways. 77 

We developed a resource guide for transcriptomics and bioinformatics to use gene expression 78 
levels to substantiate biochemical, biological, cellular, molecular, and physiological changes across 79 
clinical, experimental, and model systems [1]. In this current study, we employed our guide as a 80 
proof-of-principle example for suitability, feasibility, and practicality of comparative transcriptomics 81 
to detect and evaluate gene expression overlap to reveal both common and unique biological, 82 
cellular, and molecular pathways and gene networks in a translational model between two species, 83 
apolipoprotein E (Apoe) null mice and New Zealand White rabbits, of coronary atherosclerosis 84 
induced by high fat and high cholesterol diets. 85 
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2. Materials and Methods 86 
2.1. Experimental models 87 

2.1.1. Mice 88 

RNA-seq data used in this study were published (BioProject ID: PRJNA371776; [12]), and we 89 
used control mouse samples only (experiment IDs: SRX2544726, SRX2544727, SRX2544728). The 90 
following brief description of samples is from the original report [12]. The male mice have mixed 91 
genetic background of C57BL/6J, C57BL/6N, 129S4 and FVB/N due to breeding in of multiple 92 
transgenes and floxed alleles, and their genotype is Col15a1wt/wt, Myh11-CreERT2, 93 
ROSA26-STOPflox-eYFP, Apoe-/-. Six-week-old male mice were treated with tamoxifen to induce 94 
CreERT2 translocation to the nucleus in Myh11-CreERT2-expressing tissues, where it excises the stop 95 
in ROSA26-STOPflox-eYFP [13] locus allowing for expression of YFP. Absence of Apoe (from 96 
B6.129P2-Apoetm1Unc/J, Jax® Mice Stock No: 2052) leads to marked increase in total plasma cholesterol 97 
levels that are unaffected by age or gender [14], which makes B6.129P2-Apoetm1Unc/J mice a popular 98 
model in atherosclerosis research. Mice were placed on a Western diet consisting of 21% milk fat and 99 
0.15% cholesterol for 18 weeks. Mice were euthanized by CO2 inhalation, and their brachiocephalic 100 
arteries, aortic arch, and carotid arteries dissected and flash frozen in liquid nitrogen. Total RNA 101 
was extracted using TRIzol, and sequencing library prepared using Illumina kit with ribosomal 102 
reduction and strand specificity. 103 

2.1.2 Rabbits 104 

RNAseq data were published (BioProject ID: PRJNA274427; [15]). In our study, we used high 105 
fat, high cholesterol-fed New Zealand White (NZW) rabbits aorta RNAseq data only (experiment 106 
IDs: SRX864779, SRX864780, SRX864782, SRX864783) [15]. Briefly, four NZW rabbits were fed with a 107 
cholesterol-rich diet containing 0.3% cholesterol and 3% soybean oil for 16 weeks. Aortic arches were 108 
collected for RNA extraction. For the library preparation, 3 μg total RNA was used. Library 109 
preparation was performed with the TruSeq RNA LT V2 Kit. 110 

There was no information about the sex of the animals for these RNAseq data. To identify sex, 111 
we used the genomic sequence from OryCun2.0 genome assembly harboring Xist gene, and an EST 112 
(CU464548) from rabbit pre-implantation embryo SSH library [16] corresponding to the transcript of 113 
Y-chromosome-linked Ddx3y gene, to query rabbit RNAseq datasets using SRA BLAST [17]. The 114 
gene, Ddx3y, being Y-linked, is expressed exclusively in males, whereas Xist is expressed from 115 
inactive X-chromosome in females [18]. All four datasets contained Ddx3y reads (average 350 reads 116 
per dataset), and did not contain reads corresponding to Xist. From these data, we concluded all four 117 
RNAseq datasets were for aortic arches from male rabbits. 118 

2.2 RNA-seq analysis 119 

2.2.1 Overall transcriptomics strategy 120 
Our analysis (Figure 1) is based on a collection of robust, publicly available tools for deep 121 

transcriptome analysis; most were created to be used by researchers with only moderate 122 
bioinformatics experience. We provide detailed description of each step below. 123 

2.2.2 Genome alignments 124 
FASTQ sequence data were downloaded from the European Nucleotide Archive (ENA; 125 

https://www.ebi.ac.uk/ena). Sequence alignments were performed using RNA STAR [19] tool from 126 
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Figure 1. Gene Expression Analysis Pipeline. RNAseq data for each biological replicate of mouse and rabbit aortas were
aligned to the GRCm38 (mouse) and OryCun2.0 (rabbit) genome assemblies using STAR [19]. Datasets of splice sites for
alignment of spliced reads were obtained from ENSEMBL. Gene expression data were extracted from the files of aligned
reads using featureCounts [21], normalized to CPM values, and quality control of replicates was performed with ClustVis
[23]. Expression data for 15,179 established orthologous genes were extracted, and analyzed in two ways. In the first
approach, we categorized all orthologs by expression status into three groups, expressed in mouse, expressed in rabbit, or
expressed in both species. In the second approach, transformed expression data were used to test differences in gene
expression levels between mice and rabbits. 

127 

within Galaxy platform [20]. Reads were aligned to the respective reference genomes (GRCm38, 128 
a.k.a. mm10, for mouse data; OryCun2.0 for rabbit data) using the following parameters: RNA STAR 129 
version: 2.6.0b; single-end or paired-end reads: paired; gene model (gff3, gtf) file for splice junctions: 130 
yes (see below); length of the genomic sequence around annotated junctions: 100; count number of 131 
reads per gene: false; additional output parameters (formatting and filtering): no; other parameters: 132 
default. Gene model files for splice junctions, i.e. coordinates of known mouse and rabbit transcripts 133 
(in GTF format), were downloaded from ENSEMBL ftp site (release 92). To calculate gene 134 
expression, we counted the numbers of reads aligned to regions flagged as exons in GTF files using 135 
the program featureCounts [21] version 1.6.0.6 from within Galaxy using the following parameters: 136 
gene annotation file: yes; output format: Gene-ID "\t" read-count; create gene-length file: False; 137 
count fragments instead of reads: Disabled; only allow fragments with both reads aligned: False; 138 
exclude chimeric fragments: True; GFF feature type filter: exon; GFF gene identifier: gene_id; report 139 
on feature level: False; allow read to contribute to multiple features: False; count multi-mapping 140 
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reads/fragments: Enabled; assign fractions to multi-mapping reads: True; minimum mapping 141 
quality per read: 12; minimum bases of overlap: 30. 142 

2.2.3 Data normalization and quality control 143 
To account for the impacts depth of sequencing, which affects read numbers of individual 144 

transcripts, we use normalized expression data, specifically counts per million (CPM) [22], to 145 
perform quality comparison of datasets. To calculate CPM values, we used the following formula: 146 

Eg,s = 1,000,000 × Cg,s / Ts 147 
where Eg,s is a CPM value of a gene in a biological replicate; Cg,s is the number of reads mapping to all 148 
exons of this gene in this biological replicate; Ts is the total number of reads aligned (anywhere in the 149 
genome) from this biological replicate (i.e., the number of aligned reads in RNASTAR output 150 
“binary alignment map” bam files). This procedure also transforms data from counts to continuous 151 
scale. 152 

For quality control, we used ClustVis [23], a tool for clustering of complex data such as RNAseq, 153 
based on principal component analysis, and visualization of results. Any samples that fall outside of 154 
95% confidence interval on two-dimensional PCA plot are flagged as outliers and removed from 155 
further analysis. 156 

2.2.4 Data filtering and transformation 157 
RNAseq data requires a cutoff threshold to avoid numerous false positives caused by 158 

over-dispersed values at the low CPM values and we used a cutoff of 5 CPM, corresponding to a 2 159 
FPKM threshold typically used in RNAseq analysis pipelines [22]. To filter out the genes with 160 
extreme low expression, specifically less than 5 CPM expression, we use average CPM values for a 161 
gene across all mice, and again for rabbit, samples. The union of two gene lists was used for further 162 
analysis. For data transformation, we use logarithm to the base of 2 for the CPM values. To avoid the 163 
logarithm of zero exception, all zero values are replaced with a minimal non-zero value in a given 164 
RNAseq dataset [24] (i.e., CPM value corresponding to the read count of 1). For calculating Z-scores, 165 
we used the formula 166 

zg,s = (xg,s - µ)/σ 167 
where xs,g is a logarithm to the base of 2 of the CPM value of a gene (g) in a sample (s), and µ and σ 168 
are the average and standard deviation, respectively, of the logarithm to the base of 2 for geometric 169 
means of CPM values for each gene across all mouse or rabbit samples [25,26]. 170 

2.3 Establishment of mouse-to-rabbit orthology. 171 

To establish phylogenetic relationship among mouse and rabbit genes, we have downloaded all 172 
mouse protein sequences, and all rabbit protein sequences, from ENSEMBL ftp site (release 92) [27]. 173 
We used ENSEMBL as a source because each protein sequence in ENSEMBL is cross-annotated to a 174 
corresponding gene, which ensures precise ID mapping. Using reciprocal BLAST approach, we 175 
performed 1) BLASTP comparison of each rabbit protein to all mouse proteins, 2) extracted the top 176 
result in each search (i.e., mouse protein which is a potential homolog) and compared it to all rabbit 177 
proteins, 3) extracted the top result in this search, 4) translated protein IDs to ENSEMBL gene IDs. 178 
BLAST analysis was performed using a stand-alone NCBI BLAST+ package (version 2.7.1) for 179 
Windows [28]. One-to-one homology indicates orthology, and mouse and rabbit genes were flagged 180 
as orthologs, if and only if, the genes in steps 1) and 3) above were the same, and no mouse gene in 181 
step 2) paired with more than one rabbit gene. Finally, each ENSEMBL gene ID of a mouse ortholog 182 
was converted to Mouse Genome Informatics (MGI; [29]) gene ID using MGI Batch Search tool [30]. 183 
We established 15,179 orthologous pairs among mouse and rabbit genes (Supplementary Table 1). 184 
Expression data for these 15,179 orthologs were used in all comparative studies. 185 
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2.4 Statistical and Gene/Pathway Enrichment Analyses. 186 

2.4.1 Categorization by expression status 187 

To split genes in three groups by their expression status (present in mouse only, present in 188 
rabbit only, or present in both species), we generated the list of genes that are expressed at a level of 189 
at least 5 CPM in at least one species (averaged across samples). Within this list, genes which were 190 
expressed at the level of 5 CPM or higher in mice, but less than 5 CPM in rabbits, were categorized as 191 
“mouse-only”; genes expressed at the level of 5 CPM and higher in both species were categorized as 192 
“common”; and the rest were categorized as “rabbit-only”. 193 

2.4.2 Statistical analysis of gene expression differences 194 

To compare two different animal models of atherosclerosis using data from different 195 
laboratories, RNAseq data were normalized and transformed as described above. For gene 196 
expression analysis, we used t-test module of scipy.stats [31] in Python on z-score data to find 197 
significant expression differences. To control for multiple testing, we used Benjamini-Hochberg 198 
correction [32] implemented in StatsModels package for Python [33]. For downstream analysis, 199 
genes with FDR q < 0.1 and t-test p < 0.01 were considered significantly different. 200 

2.4.3 Visual Annotation Display (VLAD) analysis 201 

VLAD, accessible via MGI web portal, is a powerful tool to find common functional themes in 202 
the lists of genes by analyzing statistical over- or underrepresentation of ontological annotations 203 
[34]. Currently, users can choose among Gene Ontology (GO) [35] and Mammalian Phenotype 204 
Ontology (MP) [36] annotations for mouse genes, Gene Ontology annotations for human genes, or 205 
upload a file of own annotations (in open biomedical ontology [37] ‘obo’ format). Unlike other 206 
packages for ontological enrichment, VLAD allows analysis of more than one query (i.e., several lists 207 
of genes may be analyzed and visualized simultaneously), as well as permits user to provide own 208 
“universe set”, i.e. gene list to test queries. For our studies, the “universe set” was the list of all 209 
orthologous gene pairs (Supplementary Table 1). For GO analysis, we searched for 210 
overrepresentation among terms with experimental evidence (i.e., codes EXP, “Inferred from 211 
experiment”; IDA, “Inferred from direct assay”; IMP, “Inferred from mutant phenotype”; TAS, 212 
“Traceable author statement”). For MP categories, we searched only among terms with the following 213 
evidence codes: IMP, “inferred from mutant phenotype”; TAS, “stated by author”; and EE, “shown 214 
by experimental evidence”. 215 

2.6 BioCyc analysis 216 

BioCyc is a collection of Pathway/Genome Databases (PGDBs), which link biochemical 217 
pathways, reactions, and compounds with genes and proteins on the species level, as well as 218 
software tools to analyze these connections [38]. We used MouseCyc database [39] available on MGI 219 
portal to analyze gene lists via Metabolism → Cellular Overview → Omics Viewer tool of 220 
MouseCyc. 221 

3. Results 222 
3.1. Overall statistics of datasets. 223 

On average, 80% of rabbit reads, and 90% of mouse reads, aligned to OryCun2.0 and GRCm38 224 
assemblies, respectively (Supplementary Table 2). Lower alignment rate for rabbit samples is likely 225 
due to incomplete coverage of the genome in OryCun2.0 assembly. Of 53,801 mouse genes 226 
represented in the mouse GTF file, 29,338 genes had coverage of at least one read in at least two of 227 
the three RNASeq datasets. For rabbit data, of 23,669 genes, 16,307 had coverage of at least one read 228 
in at least two of the four RNASeq datasets. Count data for each sample and species (Supplementary 229 
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Figure 2. Principal Component Analysis of gene expression data. Principal
components were calculated by singular-value decomposition. X axis 
(Principal Component 1) and Y axis (Principal Component 2) account for
61.9% and 13% of variation, respectively. Prediction ellipses denote 
probability at 0.95, a new observation from the same group will fall inside
the ellipse. N = 7 gene expression datasets. 

Figure 3. Categorization of genes by expression
status. Among orthologs expressed at an
average ≥5 CPM threshold in at least one
species, 7,172 genes were designated as
“common”; 1,337 genes whose expression was
above threshold in mice, but below threshold in
rabbits were designated as “mouse-only”; and
1,218 genes whose expression was above
threshold in rabbits, but below threshold in
mice were designated as “rabbit-only”. 

Tables 3 and 4) were filtered to include 230 
only orthologous genes between 231 
mouse and rabbit species, because this 232 
step allows direct comparison 233 
between the models of atherosclerosis. 234 
Count data for each gene were 235 
normalized to the total number of 236 
aligned reads per sample, and count 237 
per million (CPM) values were used to 238 
quality control these RNAseq samples 239 
using ClustVis [23]. As expected, this 240 
analysis (Figure 2) revealed largest 241 
variability among data (Principal 242 
Component 1) arising from species 243 
differences, while Principal 244 
Component 2 mainly reflects 245 
variability among biological replicates. 246 
We detected no outliers among the 247 
samples and proceeded with further 248 
analysis. 249 
3.2. Categorization of gene expression. 250 

RNAseq data tend to be over-dispersed at very low 251 
CPM values, and requires certain cutoff threshold to avoid 252 
numerous false positives [22]. We chose a cutoff of 5 CPM, 253 
which approximately corresponds to 2 FPKM threshold 254 
typically used in RNAseq analysis pipelines. When applied 255 
to data, we were able to categorize genes in three distinct 256 
groups (Figure 3), those whose expression is present in 257 
mice and absent in rabbits (1,337 genes); those with 258 
common expression (7,172 genes); and those present in 259 
rabbits but absent in mice (1,218 genes). The fact that 75% 260 
of genes are common reflects similarity of gene expression 261 
programs in the aortas between these two models of 262 
atherosclerosis. Complete list of categorized genes is in 263 
Supplementary Table 5. 264 

To identify meaningful pathways among common and 265 
species-specific lists, we analyzed the lists for enrichment of 266 
specific Gene Ontology annotations using VLAD 267 
application [34] (Figure 4A-C). We identified a total of 472 268 
significantly overrepresented Biological Process, 167 269 
Cellular Component, and 21 Molecular Function categories 270 
(p < 0.01, q < 0.1; Supplementary Table 6). Most of the 271 
overrepresented Biological Process and Cellular Component categories (428 and 99, respectively), 272 
and all Molecular Function categories, were from the common expression group. All top 25 273 
categories in Biological Process category are related to “GO:0008152 Metabolic process” category, 274 
being either more specific, descendant metabolic related-categories or regulators of these metabolic 275 
processes (Figure 4A). Interestingly, among common genes in this category, one-third are associated 276 
with the “MP:0002127 abnormal cardiovascular system morphology” phenotype (see below), which 277 
is significantly higher than expected. Among top Cellular Component categories, several were for 278 
species-specific groups. Surprisingly, among mouse-only genes, categories “GO:0097458 neuron 279 
part” and “GO:0044456 synapse part”, were significantly overrepresented (Figure 4B). Seventeen of 280 
these genes (Add2, Cacna1b, Dagla, Kcna1, Ldlr, Mapk10, Mapt, Ngf, Ngfr, Nrcam, Nrxn1, Prom1, Scg2, 281 
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Snap25, Syt1, Uchl1, Uhmk1) are also associated with “MP:0002127 abnormal cardiovascular system 282 
morphology” category. Moreover, corresponding mouse-only genes were also enriched in 283 
“GO:0022008 neurogenesis” category, its descendants, and related processes, such as “GO:0007411 284 
axon guidance” and “GO:0048812 neuron projection morphogenesis” (Supplementary Table 6). 285 
Among rabbit-only genes, the overrepresented category is “GO:0005739 mitochondrion” and its 286 
descendants (Figure 4B, Supplementary Table 6). 287 

We have also explored Mammalian Phenotype (MP) Ontology annotations using the same 288 
strategy (Figure 5). A total of 1,049 MP categories were significantly overrepresented, again most of 289 
them (1,000) were in the common genes group (Supplementary Table 7). As expected, “MP:0005385 290 
cardiovascular system phenotype” and it’s descendant category, “MP:0002127 abnormal 291 
cardiovascular system morphology” discussed above, were among top 25 overrepresented 292 

Figure 4. Gene Ontology (GO) enrichment analysis for mouse, rabbit, and common using categorization of expression levels.
For each GO module, Biological Process (A), Cellular Component (B) and Molecular Function (C), only the top 25 significant
terms with lowest p-values are shown. The box size reflects its relative statistical significance with the largest box with the
lowest p value and the colored bar within the box indicates the proportion of contribution to a specific gene set (purple:
Rabbit, red: Mouse, blue: Common). Arrows connecting boxes represent different types of relationship among GO terms. For
more detail and interactive module, see Supplemental Table 6 and Supplemental HTML1. 
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categories (Figure 5) found no significantly overrepresented MP categories among rabbit-only genes. 293 
Among mouse-only genes, we again found MP categories related to neuronal function, such as 294 
“MP:0005386 behavior/neurological phenotype”, “MP:0003633 abnormal nervous system 295 
physiology”. Due to the nature of hypergeometric statistical test employed by VLAD, in both GO 296 
and MP analyses, broad gene categories tend to dominate the top tiers of low p, low q values and 297 
more narrow, descendent gene categories tend to be located lower on the list. For example, 7 genes 298 
are currently annotated to the category “MP:0011572 abnormal aorta bulb morphology” (Fbn1, Lox, 299 
Lrp1, Smarca4, Tgfb2, Tgfbr1, Tgfbr2), and all 7 genes are present in the common group of genes; 300 
however, because of relatively high p and q, this category may be easily overlooked in its 995th 301 

Figure 5. Mammalian Phenotype (MP) ontology enrichment analysis for mouse, rabbit, and common using categorization
expression levels. For each MP category only the top 25 significant terms with lowest p-values are shown. The box size reflects
its relative statistical significance with the largest box with the lowest p value and the colored bar within the box indicates the
proportion of contribution to a specific gene set (purple: Rabbit, red: Mouse, blue: Common). Arrows connecting boxes
represent different types of relationship among MP terms. For more detail and interactive module, see Supplemental Table 7
and Supplemental HTML2. 
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Figure 7. Data transformation from raw counts to Z-scores. Mouse and 
rabbit raw count data (A) for genes with average ≥5 CPM expression in
at least one species were normalized to CPM value (B), CPM values
were log2-transformed (C), with a CPM value corresponding to 1 read
was added to all zero values (a.k.a. “pseudo count” [24]); z-scores (D) 
were calculated using geometric means from log2-transformed data for 
individual gene expression levels in mouse and rabbit datasets. 

position when sorted by p-value despite being statistically significant (Supplementary Table 7). The 302 
whole continuum of overrepresented categories can be further explored in the provided interactive 303 
html files (GO: Supplementary HTML1; MP: Supplementary HTML2). 304 

To identify potential differences in biochemical pathways affected, we analyzed the mouse-only 305 
and rabbit-only genes using MouseCyc, a database and tool for biochemical pathway analysis and 306 
visualization [39] (Figure 6). This analysis 307 
reveals mouse-only genes are involved in 308 
mitochondrial electron transfer chain 309 
(specifically cytochrome b), fatty acids 310 
and lipids degradation, and fatty acids 311 
and lipids biosynthesis. Rabbit-only 312 
genes are more prominent in glycolysis, 313 
γ-glutamyl cycle, and several nucleosides 314 
and nucleotides biosynthesis pathways. 315 

 316 
3.3. Differential gene expression 317 

To discover quantitative changes in 318 
gene expression between mouse and 319 
rabbit models of atherosclerosis, mouse 320 
and rabbit count data for genes with 321 
average ≥5 CPM expression in at least 322 
one species were normalized to CPM 323 
value, except for a count of 1 read was 324 
added to all zero count values (a.k.a. a 325 
“pseudo count” [24]); CPM values were 326 
log2-transformed, and z-scores were 327 
calculated against mouse and rabbit 328 

Figure 6. MouseCyc, enrichment tool for biochemical pathway analysis and visualization, using gene expression levels for
mouse vs. rabbit samples. The tool depicts all the reactions and pathways with mouse only genes in red, and rabbit-only
genes in purple. 
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Figure 8. Subtraction plots of z-score means between
mouse and rabbit samples for expression of
individual genes. Similar number of genes were
expressed in species-specific manner, rabbits
(purple, 1,441 genes) vs. mouse (red, 1,587 genes, p <
0.01, FDR q < 0.1). Genes with no significant
difference in species expression between were
designated as common (blue, 6,699 genes). 

references for gene expression, which were 329 
log2-transformed geometric means of individual gene 330 
expression levels (CPM) in mouse and rabbit datasets, 331 
respectively (Figure 7). This procedure accounts for 332 
potential differences in sequencing depth between 333 
samples (Figure 7A) and changes the distribution of 334 
gene expression values from approximately negative 335 
binomial (Figure 7B) to normal (Figure 7C), and then 336 
harmonizing resulting distributions (Figure 7D) for 337 
further statistical testing. Gene expression levels were 338 
compared using t-test, and corrected for multiple 339 
testing. Subtraction products of z-score means between 340 
mouse and rabbit samples serve as the quantitative 341 
measures of the difference in expression of individual 342 
genes. This procedure revealed 1,441 genes were 343 
expressed relatively higher in rabbits, while 1,587 genes 344 
were expressed higher in mice (p < 0.01, FDR q < 0.1; 345 
Figure 8, Supplementary Table 5). The 6,699 genes with 346 
no significant difference in expression between mice 347 
and rabbits were designated as common. 348 

GO enrichment analysis (Figure 9 A-C) revealed 225 significantly overrepresented Biological 349 
Process, 101 Cellular Component, and 12 Molecular Function categories (p < 0.01, q < 0.1). Of these, 350 
89 Biological Process categories were overrepresented among genes expressed at higher levels in 351 
mice; no overrepresented Biological Process categories were found for rabbit; 136 categories were 352 
overrepresented among common genes. Among overrepresented Cellular Component categories, 58 353 
were for common genes, and 20 and 23 categories were overrepresented for genes with higher 354 
expression in mice and rabbits, respectively (Supplementary Table 8). Among overrepresented 355 
Molecular Function categories, 151 were for common genes, and one each was for genes with higher 356 
expression in mice and rabbits, respectively. “GO:0008152 Metabolic process” was again 357 
significantly overrepresented among common genes. However, differential expression analysis 358 
proves to be more fine-tuned to experimental system because, e.g., “GO:0019222 regulation of 359 
metabolic process” is overrepresented among genes upregulated in the mouse (Figure 9A), rather 360 
than common genes in the previous analysis (Figure 4A). The topology and nodes overlapped for 361 
Cellular Component categories, and “GO:0005739 mitochondrion” was again overrepresented 362 
among genes with higher expression in rabbit (Figure 9B). This analysis also revealed genes with 363 
“GO:0003712 transcription coregulator activity” (Figure 9C; this group includes Aebp2, Arnt, Atf7ip, 364 
C1d, Cbfa2t2, Crebbp, Ctnnb1, Ddx5, Gon4l, Hcfc1, Hipk2, Hr, Jmy, Kat2b, Kdm5a, Limd1, Mkl2, Myocd, 365 
Naca, Ncoa2, Ncoa3, Ncor2, Nrip1, Nsd1, Rad54l2, Raly, Rbm39, Scai, Sin3a, Tbl1xr1, Tcf4, Trim28, Trrap, 366 
Ube3a, Zfp281) have higher expression in mice. Of these genes, six are annotated with “MP:0005385 367 
cardiovascular system phenotype“ (Arnt, Crebbp, Ctnnb1, Mkl2, Myocd, Naca, Ncor2, and Trim28). To 368 
navigate through all overrepresented GO categories, please see Supplementary HTML3. 369 

Analysis of Mammalian Phenotype ontologies revealed an interesting bias: of 537 370 
overrepresented MP categories (p < 0.01, q < 0.1), 386 are associated with the genes higher expressed 371 
in mice, and 151 with common genes; no single overrepresented MP category was associated with 372 
genes expressed higher in rabbit. “MP:0010768 mortality/aging” and its descendants were the 373 
prevalent categories among top 25 (Figure 10), recapitulating previous result (Figure 5). Similarly, 374 
“MP:0002127 abnormal cardiovascular system morphology” was overrepresented in this analysis as 375 
well (Figure 10, Supplementary Table 9). However, this analysis revealed that both of these 376 
categories are overrepresented in both common genes and genes with higher expression in the 377 
mouse (Figure 10). “MP:0001785 edema” was an overrepresented category among genes with high 378 
expression in mice (Figure 10). Among these, 17 genes with higher expression in mice (Ago2, C2cd3, 379 
Cflar, Ctnnb1, Flrt2, Itgav, Kmt2d, Kras, Map3k7, Mib1, Mkl2, Naca, Notch2, Pdgfra, Pkn2, Por, Wnk1) 380 
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Figure 9. Gene Ontology (GO) enrichment analysis for differentially expressed genes among mouse, rabbit, and common gene
sets. For each GO module, Biological Process (A), Cellular Component (B) and Molecular Function (C), only the top 25
significant terms with lowest p-values are shown. The box size reflects its relative statistical significance with the largest box
with the lowest p value and the colored bar within the box indicates the proportion of contribution to a specific gene set
(purple: Rabbit, red: Mouse, blue: Common). Arrows connecting boxes represent different types of relationship among GO
terms. For more detail and interactive module, see Supplemental Table 8 and Supplemental HTML3. 

belong to a particularly interesting “MP:0001787 pericardial edema” (Supplementary HTML4); 381 
indeed, atherosclerosis and edema conditions are closely linked [40]. 382 

MouseCyc analysis of differentially expressed genes allowed completing and clarifying the 383 
biochemical pathway differences between mice and rabbits (Figure 11). For example, it made clear 384 
that in the mitochondrion, in the electron transfer chain, it is the last step (Complex IV), which is 385 
higher in mice, whereas the rest of the electron transfer chain pathway is higher in the rabbits. 386 
BioCyc analysis confirms, complements, and importantly extends the VLAD the results in the VLAD 387 
analysis of Gene Ontology data in Figure 4B and 9B to specific biochemical pathways and molecules. 388 
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Figure 10. Mammalian Phenotype (MP) ontology enrichment analysis for differentially
expressed genes among mouse, rabbit, and common. For each MP category only the top 25
significant terms with lowest p-values are shown. The box size reflects its relative statistical
significance with the largest box with the lowest p value and the colored bar within the box
indicates the proportion of contribution to a specific gene set (purple: Rabbit, red: Mouse, blue:
Common). Arrows connecting boxes represent different types of relationship among MP terms.
For more detail and interactive module, see Supplemental Table 9 and Supplemental HTML4. 

Interestingly, several fatty acids biosynthesis pathways are expressed higher in mice, while fatty 389 
acids and lipids degradation pathways are higher in rabbits (Figure 10). This reflects the differences 390 
between two translational models of atherosclerosis. 391 

4. Discussion 392 

As a proof of 393 
principle of 394 
precision medicine 395 
at the molecular and 396 
gene network level, 397 
we used 398 
transcriptomics to 399 
classify two of the 400 
most popular in vivo 401 
diet-induced models 402 
of coronary 403 
atherosclerosis, 404 
apolipoprotein E 405 
(Apoe) null mice [14] 406 
and NZW rabbits 407 
[41], fed with high 408 
fat and high 409 
cholesterol diets 410 
[12,15]. This 411 
comparison is a 412 
suitable model to 413 
evaluate strengths 414 
and weaknesses of 415 
transcriptomics 416 
usage for precision 417 
medicine in a clinical 418 
setting because data 419 
were generated by 420 
samples from 421 
heterogeneous 422 
genomic population, 423 
different 424 
laboratories, using 425 
different molecular 426 
biology kits for 427 
RNAseq library 428 
preparation, and 429 
sequencing 430 
instruments. 431 
Consequently, our 432 
analysis mimics the 433 
challenges of 434 
meaningful 435 
bioinformatics 436 
evaluation across different RNAseq datasets of the same human disease. An additional challenge 437 
exemplified in this study is comparison of two different species, with diverse alleles, used to model 438 
the same condition. 439 
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Figure 11. MouseCyc enrichment tool for biochemical pathway analysis and visualization using differentially expressed genes
for mouse vs. rabbit samples. Color scheme corresponds to relative expression in the mouse vs rabbit data based on z-score
difference. 

In summary, from our comparative transcriptome analysis, we discovered that both in vivo 440 
diet-induced models of coronary atherosclerosis, apolipoprotein E (Apoe) null mice [14] and NZW 441 
rabbits [41], share a substantial overlap in dysregulated biological processes, pathways, and 442 
molecules. Furthermore, our study demonstrates transcriptome analysis can discover specific 443 
cellular and molecular pathways and genes with unrecognized roles in atherosclerosis. For example, 444 
using the results from Gene Ontology and Mammalian Phenotype, genes associated with axonal 445 
guidance (Chl1, Dpysl5, Efna5, Epha4, Epha5, Epha7, Ephb2, Fzd3, Gap43, Gli2, Isl1, Klf7, L1cam, Nfasc, 446 
Ngfr, Nrcam, Plxna4, Scn1b, Sema5a, Sema6a, Tubb3, Unc5c) may have unknown roles in the pathology 447 
of coronary atherosclerosis in the Apoe null mouse model (Figures 4B, Supplemental Table 6). Lipid 448 
metabolism is a focal area of therapeutic target testing in atherosclerosis. Both in vivo models exhibit 449 
lipid metabolism derangements, albeit our comparative analysis using MouseCyc pinpoint anabolic 450 
pathways are relatively higher in mice, whereas catabolic pathways are relatively higher in rabbits. 451 
Overall rabbit model has relatively more common pathways than unique species-specific affected 452 
pathways compared to the mouse model, as revealed by Gene Ontology, Mammalian Phenotype, 453 
and BioCyc annotations.  454 

One of the main points to clarify is that we applied Gene Ontology and Mammalian Phenotype 455 
annotations of mouse genes to both mouse and rabbit gene sets, inferring close similarities for gene 456 
functions between mouse and rabbit models of atherosclerosis. Annotation of rabbit genes is 457 
underrepresented in all curated databases, therefore we used annotations of mouse genes to infer 458 
upon rabbit orthologs, and thus we relied on “inferred by sequence similarity” principle for 459 
ontological annotation of rabbit genes. If more experimental, rabbit gene-specific annotations 460 
existed, our analysis may be more precise and resolve some of the obvious biases, such as genes with 461 
higher expression in rabbits not having corresponding overrepresented Mammalian Phenotype 462 
categories. If such annotations for rabbit genes existed at the same level of detail as for the mouse 463 
genes, the result may have more exact and detailed results. However, since laboratory mice are a 464 
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predominating mammalian model system, mouse genes will have inherently better ontological 465 
annotations based on experimental evidence comparing to other model species. 466 

Another source of differences in gene expression between these two models of atherosclerosis 467 
is their genetic difference due to the Apoe mutation in mice. For example, microarray analysis of 468 
aortic endothelial cells from wild-type and Apoe-/- mice revealed ~800 differentially expressed genes 469 
[42]. Likewise, many differences in our comparison may be due to the effects of Apoe mutation upon 470 
direct and secondary changes in gene expression from disruption of Apoe regulation. Nevertheless, 471 
global similarity in gene expression between these two models of diet-induced atherosclerosis, and 472 
common pathways identified by functional genomics analysis, provide a compelling example of the 473 
power of transcriptomics in comparative atherosclerosis research. 474 

Treatments that target molecular mechanisms underlying the physiological changes, in 475 
addition to treating symptoms arising from pathophysiology, are a central promise of personalized 476 
medicine – indeed, in theory genomic data can reveal specific disease-associated genotypes to 477 
optimize the treatment plan [43]. Albeit, in human population only a few genotypes associated with 478 
severe atherosclerosis have been identified, such as multiple alleles of apolipoprotein E (APOE, 479 
Slooter 1998, Elosua 2004), angiotensin-converting enzyme I (ACE) [44] and aryl hydrocarbon 480 
receptor (AHR) polymorphisms (Huang, Shui et al 2015). Importantly, many non-genetic factors, 481 
such as environmental exposures [7], diet [8] and lifestyle [9], strongly affect onset, symptomology 482 
and severity of atherosclerosis. This study validates transcriptome analysis as a robust alternative 483 
method to identify specific cellular and molecular facets of atherosclerotic disease, which can be 484 
used individualize treatment and develop novel avenues of therapeutic intervention even in the 485 
absence of genetic data. Current diagnostic and medical laboratory technologies used in clinical 486 
setting provide only a small snapshot into the state of disease. The untapped potential of 487 
transcriptomics to personalized medicine resides within its revelations of all the local and global 488 
changes to cellular, molecular, and biochemical pathways occurring from disease. 489 
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