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Abstract: Service robots operating in indoor environments should recognize dynamic changes from 

sensors, such as RGB-D camera, and recall the past context. Therefore, we propose a context query-

processing framework, comprising spatio-temporal robotic context query language (ST-RCQL) and 

spatio-temporal robotic context query-processing system (ST-RCQP), for service robots. We 

designed them based on the spatio-temporal context ontology. ST-RCQL can query not only the 

current context knowledge but also the past. In addition, ST-RCQL includes a variety of time 

operators and time constants, and thus queries can be written very efficiently. The ST-RCQP is a 

query-processing system equipped with a perception handler, working memory, and backward 

reasoner for real-time query-processing. Moreover, ST-RCQP accelerates query-processing speed 

by building a spatio-temporal index in the working memory, where percepts are stored. Through 

various qualitative and quantitative experiments, we demonstrate the high efficiency and 

performance of the proposed context query-processing framework. 
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1. Introduction 

Dey [1] defined context knowledge in a broad sense as “any information that can be used to 

characterize the situation of an entity”. However, for intelligent service robots, the concrete context 

knowledge of the robot’s domain needs to be redefined. Turner [2] defined context knowledge for 

intelligent agent in three categories, based on which Bloisi [3] redefined robot-oriented context 

knowledge: environmental knowledge, task-related knowledge, and self-knowledge. Environmental 

knowledge includes physical-space information about the environment outside the robot, such as 

locations of people and objects and environmental map. Task-related knowledge includes tasks that 

can be performed by robots and the constraints of these tasks. Self-knowledge includes the internal 

conditions of robots such as joint angle and battery level. According to the definition by Bloisi, the 

context knowledge of robots includes not only static knowledge, such as common sense, but also 

dynamic knowledge that has high time dependency as it continuously changes in real time. This 

context knowledge is indispensable for generation of robot task plans (task planning) [6, 7], human–

robot collaboration or multiple robot collaboration [6, 7], and context-knowledge-providing service 

[8, 9]. Therefore, the performance and application scope of robots depend on how diverse and 

complex context knowledge the service robot can recognize and understand. 

Among the many different types of context knowledge of robots, this study focused on context 

knowledge related to environment, and in particular, on the locational information of individual 

objects and the three-dimensional (3D) spatial relations among objects in home environment. The 

locational information (pose of individual objects) is subsymbolic knowledge obtained from sensors, 

such as RGB-D camera, and 3D spatial relations are abstracted symbolic knowledge that must be 

derived from this locational information. 3D spatial relations are comprehensive knowledge 

commonly required in most robot domains and are essential prior knowledge for deriving complex 

context knowledge, which is more difficult to determine, for example, the intention of external agents 
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[10, 11]. However, 3D spatial relations must be tracked in real time because they continuously change 

with time independent of the robot, and must be able to store and retrieve past context knowledge. 

To examine examples of application of 3D spatial relations, first, the preconditions of each task 

must be satisfied for robots to generate a task plan. For example, to generate a task plan for delivering 

a drink to a person, the following preconditions must be satisfied: a cup is filled with the drink and 

the robot is holding this cup. In another example, a context-knowledge-providing service must 

provide various context knowledge requested by the user in an indoor environment. For example, 

the user requests context knowledge such as “is there orange juice in the refrigerator now?” and 

“where is the tumbler, which was on the table yesterday, now?” These examples show that in terms 

of service, the context knowledge ultimately required by a robot is abstracted symbolic knowledge. 

A service robot must be able to retrieve context knowledge stored in the working memory 

anytime or infer abstracted context knowledge when necessary. The retrieval of context knowledge 

requires a context query language and processing method for accessing the working memory inside 

the robot and manipulating knowledge. The important requirements of a context query language can 

be found in [12, 13]. Typically, context knowledge is closely related to the physical spatial relations 

and has high time dependency as it frequently changes over time. Therefore, the context query 

language must have high expressiveness to query context knowledge of various periods. 

Furthermore, as the main purpose of context query is to retrieve and infer abstracted symbolic 

knowledge, the grammatical structure of query language must be designed to write highly concise 

and intuitive queries. 

As the grammatical structure of query language is greatly dependent on the knowledge 

representation model for storing context knowledge, the knowledge representation model must be 

defined first. The general knowledge representation method of knowledge-based agents, such as 

service robots, involves the use of description logic based ontology [14, 15, 16, 17]. Every knowledge 

on the ontology is represented in a statement composed of a subject, a predicate, and an object. Thus, 

the query language and processing method for retrieving context knowledge depends on this triple 

format. However, as the triple format can only express one fact, representing when this fact occurs 

and whether it is a valid is difficult. For example, the triple format of “<red_mug> <on> <table>” 

cannot express that this fact was valid yesterday but is no longer valid today because the red mug 

has been moved to the shelf. 

The existing works on robot context query include OpenRobots Ontology (ORO) [16], KnowRob 

[17], and SELECTSCRIPT [18]. ORO provides a knowledge-query API based on SPARQL [19], which 

is a semantic Web query language, and ORO can thus retrieve and manipulate knowledge written in 

RDF. However, ORO does not have a specific knowledge representation method to specify the valid 

time of knowledge and does not consistently maintain past context knowledge. Hence, ORO is 

limited in allowing only the current context knowledge to be queried. KnowRob provides prolog 

query predicates based on first-order logic in accordance with the semantic Web library of SWI-

Prolog [20]. KnowRob provides query predicates for expressing the valid times of perception 

information obtained from sensors and for querying and inferring the context knowledge of various 

periods. However, KnowRob does not support time operators and time constants for querying 

various periods and requires complex, inefficient queries. SELECTSCRIPT is an SQL-inspired 

declarative query language of the script format. It provides embedded unary and binary operators to 

enable the context knowledge to be queried. However, as with ORO, SELECTSCRIPT does not have 

a specific knowledge representation method to specify the valid time of knowledge and does not 

consistently store past context knowledge. Thus, SELECTSCRIPT is also limited in allowing only the 

current context knowledge to be queried. For these three works, efficient query-processing methods, 

such as spatio-temporal indexing, have not been considered. 

Against this backdrop, this study proposes the spatio-temporal robotic context query language 

(ST-RCQL), which allows the query of time-dependent context knowledge of service robots, and the 

spatio-temporal robotic context query-processing system (ST-RCQP), which allows the real-time 

query-processing. The ST-RCQL proposed in this paper assumes that the 3D spatial relations among 

objects are retrieved from the individual spatio-temporal perceptions of indoor environmental objects 
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obtained from RGB-D cameras. However, although this type of assumption is adopted by many 

spatial query systems, it has a disadvantage in that a very complex query must be written to obtain 

symbolic knowledge [21, 22]. As service robots require more abstract symbolic knowledge, in this 

study, query grammar was designed to allow very concise and intuitive queries instead of complex 

queries. For actual query-processing, query translation rules were designed to automatically translate 

queries to complex queries for internal processing. Furthermore, query grammar was designed to 

enable queries involving context knowledge of various periods by providing time operators based 

on Allen’s interval algebra. The query-processing was accelerated using a spatio-temporal index by 

considering the characteristics of service robots with a real-time property from the perspective of a 

query-processing system. Furthermore, it is more appropriate for robots to obtain specific context 

knowledge required at some time point rather than always inferring and accumulating all context 

knowledge explicitly. Therefore, we adopted a query-processing method based on backward 

chaining [23]. To verify the suitability of the proposed ST-RCQL as a robot context query language 

and the efficiency of ST-RCQP, a query-processing system was implemented using SWI-Prolog and 

JAVA programming language, and the results of qualitative and quantitative experiments using this 

system are introduced in the following sections. 

2. Related Works 

2.1. Repesentation and Storage of Context Knowledge 

The OpenCyc [14] provides OWL-DL-based upper ontology that the semantic Web community 

agrees on. To express knowledge about the specific domain of a robot, ORO [16] and Knowrob [17] 

expand the upper ontology of OpenCyc in a robot-oriented manner. ORO expands the upper 

ontology of OpenCyc to represent specific objects and actions that appear in scenarios such as 

packing and cleaning a table. The context knowledge stored by ORO comprises spatial relations, 

including topological, directional, and distance relations, as well as abstracted symbolic knowledge 

such as visibility of agents and reachability about objects. For storing context knowledge in a working 

memory, the triple store of OpenJena is used. The perception information collected from sensors is 

used for inferring context knowledge but is not stored in the working memory. For efficient 

management of the working memory, ORO separately stores short-term, episodic, and long-term 

knowledge. The short-term and episodic knowledge are deleted every 10 s and 5 min, respectively, 

but the long-term knowledge is not deleted. Examples of short-term, episodic, and long-term 

knowledge are spatial relations, actions, and TBox, which is an ontology schema, respectively. 

KnowRob expands the upper ontology of OpenCyc for specific objects, tasks, actions, and 

perception information, which are observed in scenarios occurring at home, such as making a 

pancake in the kitchen. The context knowledge stored by KnowRob is mostly perception information, 

such as the pose and bounding box of objects obtained from sensors. It does not store abstracted 

symbolic knowledge such as spatial relations. For storing context knowledge in the working memory, 

rdf_db triple store, which is included in the semantic Web library of SWI-Prolog, is used. 

Ontology-based Unified Robot Knowledge (OUR-K) [15] is another context knowledge 

representation model. OUR-K categorizes knowledge into context, spaces, objects, actions, and 

features classes and each class has three layers. Among them, the bottom layer inside the context class 

represents a spatial context, which represents the spatial relations between objects. The spatial context 

combines with the temporal context in the middle layer and is lead to more abstracted contexts. 

2.2 Context Query Language 

ORO provides an API for context query, with find as the main function. As a SPARQL engine is 

present at the backend of the find function, context knowledge can be retrieved from the triple pattern 

by inheriting the expressive power of the SPARQL as it is. However, ORO cannot query past context 

knowledge because it always stores and maintains only recent spatial relations. 

For context query, KnowRob expands the semantic Web library of SWI-Prolog and supports the 

prolog predicates that can construct queries that include the valid time of knowledge. The main 
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predicate for knowledge retrieval is holds; it can retrieve context knowledge valid at a specific time in 

the present or past. This is because it is possible to enter the context predicate and valid time of the 

triple pattern as arguments. However, in the holds predicate, the valid time can be entered only as a 

time point and only at is supported for time operator, resulting in very complex queries. 

Another query language is SELECTSCRIPT [18], which constructs queries for XML-based 

simulation files that are continuously updated. In particular, SELECTSCRIPT supports embedded 

binary operators that can query spatial relations in the WHERE clause and supports the function to 

obtain the results in the form of prolog predicate logic. However, one limitation of SELECTSCRIPT 

is that it cannot query past context knowledge because it always updates and maintains the 

simulation file as latest information. 

2.3 Context Reasoning 

From the spatial reasoning and knowledge (SPARK), which is a geometric reasoning module, 

ORO infers abstracted context knowledge. SPARK infers spatial relations among objects, robots, and 

the user, as well as visibility and reachability from the perception information obtained from sensors, 

such as 2D fiducial marker tracking and human skeleton tracking, whenever perception information 

is inputted from sensors. SPARK is a forward reasoning method that infers context knowledge, 

delivers the result to the ontology module of ORO and stores it in the working memory. When storing 

context knowledge in the working memory, it performs consistency checks by using the Pellet 

reasoner. 

KnowRob infers abstracted context knowledge from a spatio-temporal reasoning module 

developed through SWI-Prolog. This module infers spatial relations between objects from the 

bounding box and center of objects obtained from sensors. Unlike the forward reasoning method of 

ORO, KnowRob employs the backward reasoning method, which infers context knowledge only 

when requested by a query using a computable predicate. 

Another estimator is the QSRlib [24], which is a software library implemented using Python, and 

it can be embedded in various intelligent systems. QSRlib provides geometric reasoning for distance 

relations, such as qualitative distance calculus [25]; directional relations, such as cardinal direction 

(CD) [26] and ternary point configuration calculus) [27]; and topological relations, such as rectangle 

algebra [28] and region connection calculus [29], from video information obtained from RGB-D 

cameras. In addition, it also provides geometric reasoning for the movements of objects such as 

qualitative trajectory calculus [30]. 

 

 

Figure 1. A part of ontology for context knowledge. 

3. Expression and Management of Robot Context Knowledge 

3.1. Knowledge Representation 
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As a context query language depends on a knowledge representation model for representing 

and storing context knowledge, the model must be defined before the context query language is 

designed. For this purpose, we constructed a context ontology, as shown in Figure 1, in accordance 

with the standard semantic Web language, RDF/OWL. The RDF/OWL based on descriptive logic (DL) 

can define facts or knowledge of the triple format for logical reasoning. Figure 1 (left) shows class 

hierarchy and properties for representing time-related knowledge. Representative classes include the 

Event class for representing the individual spatio-temporal information of objects, such as 

VisualPerception class, indicating the pose of objects and TimePoint, TimeInterval class, indicating the 

valid time of specific events. As startTime and endTime properties are defined for the TemporalThing 

class at the top, subclasses, such as VisualPerception, can inherit these properties to represent valid 

time of event. 

 

Figure 2. An example of visual perceptions. 

Figure 2 shows the visual perception instances of objects created by referring to the ontology in 

Figure 1. The box above of visual perception instances show the basic information about each object, 

such as class type, depth, width, and height, which the service robot knows in advance. Then, when 

visual perception of the object occurs, the visual perception instances of the object 

(visualPerception_492w, visualPerception_3nd8, ...) are created. These instances include information 

about the class type (type), perceived object (objectActedOn), perceived pose of object (eventOccersAt), 

and perceived time (startTime). This representation method can effectively represent the spatial 

information of objects according to the valid time and is advantageous for building the spatio-

temporal index. The center of Figure 1 shows class hierarchy and properties to represent objects in 

the indoor environment and the 3D spatial relations. The representative classes include container 

classes (ContainerArtifact), such as DrinkingGlass, Tray and furniture classes such as Table and Shelf. 

 
Figure 3. An example of 3D spatial relations between objects. 

Figure 3 shows the 3D spatial relations among the objects created from the ontology in Figure 1. 

The top part of Figure 3 shows the visual perception instances of the mug cup (mugCup4) and tray 

(tray4) perceived at t1 (timepoint_3928405921) and t2 (timepoint_3928405925). The middle part of 
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Figure 3 shows the semantic map instance for the table (table1) comprising the visual perception 

information. The representation method for the semantic map instances is similar to that of visual 

perception instances. However, the objects that belong to semantic map instances are assumed to be 

always stationary. The bottom part of Figure 3 shows expressions of 3D spatial relations among the 

objects: “The mug cup is on the table (mugCup4 on-Pyhsical table1)” and “The tray is on the table (tray4 

on-Physical table1).” These spatial relations are inferred from poses and geometries in the visual 

perception instances and the semantic map instances. The spatial relations of the mug cup and 

furniture, which are the result of inference, implicitly include time dependency on t1 and t2, which 

are time points when the poses of mug cup were perceived. For example, the valid time of the mug 

cup on the table is t1, and the valid time of the mug cup on the tray is t2. The properties of spatial 

relation considered in this study are shown in Figure 4. 

 

Figure 4. Properties of 3D spatial relation. 

Figure 4 shows the subproperties of the spatiallyRelated property for representing the 3D spatial 

relations in Figure 1. The properties of spatial relation are largely divided into topological, directional 

and distance relations. The topological relation properties include on-Physical, in-ContGeneric, in-

CenterOf, and outsideOf, whereas the directional relation properties include toTheLeftOf, inFrontOf-

Generally, and aboveOf-Generally. Finally, Distance relation properties include very-close, close, far, and 

very-far. 

3.2. Knowledge Management 

This study followed the RDF/OWL triple format for unified representation and smooth sharing 

of context knowledge; however, the knowledge is internally stored after being translated into prolog 

facts based on first-order logic. This is because of the geometric reasoning to infer 3D spatial relations 

from the positions of individual objects. Prolog is an advanced logic programming language that 

enables ontology-based logical inference according to description logic, horn logic, etc., and enables 

geometric reasoning based on arithmetic operations. 

 

Figure 5. Translating context knowledge in the form of RDF/OWL to Prolog facts. 

As shown in Figure 5, the context knowledge stored inside the robot follows the static context 

ontology, which exists in the ontology file format, and represents dynamic visual perception 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2018                   doi:10.20944/preprints201808.0554.v1

Peer-reviewed version available at Sensors 2018, 18, 3336; doi:10.3390/s18103336

http://dx.doi.org/10.20944/preprints201808.0554.v1
http://dx.doi.org/10.3390/s18103336


 7 of 18 

 

instances, which are perceived in real time through the RGB-D camera, and semantic map instances, 

which are made in advance. The context ontology and semantic map instances are loaded into the 

working memory when the robot is started, and the perception information is newly stored at each 

perception. This study employed the backward reasoning method to present the 3D spatial relations 

among objects only as responses to query requests without storing them in the working memory. 

Considering the hardware limit, real-time property, etc., of the robot, obtaining only the context 

knowledge specifically demanded at a specific time point is more appropriate for the robot than to 

identify and accumulate all abstracted context knowledge whenever perception information is input. 

The backward reasoning adopted in this study is illustrated in Figure 6. 

 

Figure 6. Backward reasoning using computable predicate. 

Figure 6 shows the backward reasoning method using a computable predicate [13]. As shown 

in this figure, when a Prolog query (rdf_triple (‘on-Physical’, ?Object, ‘table01’)) is input for 3D spatial 

relations, it retrieve working memory. And then it is checked whether on-Physical, which is the 

predicate of the query, is registered as the computable predicate in the context knowledge ontology. 

If the predicate of the query is not registered as a computable predicate, the query is processed by 

just retrieving the working memory through the triple pattern. However, if it is registered, not only 

is it retrieved but the built-in reasoning rule is also invoked and the result is included in the response 

to the query. 

<query> ::= (context <query pattern> {<query pattern>}) 

<query pattern> ::= <simple query pattern> | <temporal query pattern> 

<simple query pattern> ::= (<predicate> <subject> <object>) 

<predicate> ::= <uri> | <var> 

<subject> ::= <uri> | <var> 

<object> ::= <uri> | <literal> | <var> 

<temporal query pattern> ::= (<simple query pattern> <temporal condition>) 

<temporal condition> ::= <time point condition> | <time interval condition> 

<time point condition> ::= <time point operator> <time point> 

<time point operator> ::= EQUALS | BEFORE | AFTER 

<time point> ::= <uri> | <literal> 

<time interval condition> ::= <time interval operator> <time interval> 

<time interval operator> ::= EQUALS | BEFORE | AFTER | OVERLAPS |... 

<time interval> ::= <uri> | <time point> <time point> 

Figure 7. Grammar structure of context query language. 

 

4. Design of Robot Context Query Language 
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As the 3D spatial relations change continuously over time, a context query language with time 

dependency is required. Furthermore, as the context knowledge mainly required of robots in terms 

of service is abstracted symbolic knowledge, such as 3D spatial relations, rather than low-level values, 

such as object poses, the context query language must be written very concisely and intuitively. To 

satisfy these requirements of the context query language, we propose the grammatical structure of 

the context query language in Figure 7; this structure is written in the extended Backus Naur form. 

This grammatical structure is interpreted as follows. A query is a repetition of a query pattern, 

which is either a simple or temporal query pattern. A simple query pattern is a triple format 

consisting of a predicate, a subject, and an object. The predicate and subject are a URI (Uniform 

Resource Identifier) or variable, and the object is a URI, literal, or variable. The temporal query 

pattern is composed of a simple query pattern and a temporal condition, which is composed of a 

time-point condition and a time-interval condition. The time point condition is composed of a time-

point operator and a time point. The time-point operators include EQUALS, BEFORE, and AFTER, 

while the time point is a URI or literal. The time-interval condition is composed of a time-interval 

operator and a time interval. Thirteen time-interval operators are present and are based on Allen’s 

theory; these include EQUALS, BEFORE, AFTER, and OVERLAPS. The time interval is a URI or 

consists of two time points. The grammatical structure of the context query language in Figure 7 can 

be used to write context queries, as shown in Figures 8–10. Figure 8 shows illustrates a context query 

using a time-point operator. 

(context  

  (“rcql:on-Physical” $Object “rcql:table01” “AT” “2018-07-07T12:00:00”) 

) 

Figure 8. An example of the context query using a time-point operator. 

Figure 8 represents the query “What is the object on the table at 12:00?” In this example, the first 

three elements after the header context are a predicate (rcql:on-Physical), a subject ($Object), and an 

object (rcql:table01), respectively. Here, the subject is a variable. The fourth element is the time-point 

operator EQUAL and the last fifth element is the time literal value (2018-07-07T12:00:00), which is the 

operand of the time-point operator. Figure 9 illustrates a context query using a time-interval operator. 

(context 

  (rcql:on-Physical $Object “rcql:table01” “DURING” “2018-07-07T12:00:00” “2018-07-07T14:00:00”) 

) 

Figure 9. An example of the context query using a time-interval operator. 

Figure 9 represents the query, “What is the object that was on the table between 12:00 and 14:00?” 

The fourth element in this query is the time-interval operator DURING and the fifth and sixth 

elements represent the start time (2018-07-07T12:00:00) and end time (2018-07-07T14:00:00), 

respectively, for the operand of the time-interval operator. Finally, Figure 10 illustrates multiple 

context query using time-interval operators. 

(context 

  (rcql:on-Physical $Milk "rcql:table01" "DURING" "2018-07-07T12:00:00" "2018-07-07T14:00:00") 

  (rdf:type $Milk "rcql:Milk") 

  (rcql:on-Physical "rcql:milk01" $Furniture "DURING" "NOW") 

) 

Figure 10. An example of the multiple context query using time-interval operators. 

As shown in Figure 10, a multiple context query refers to a query consisting of two or more 

query patterns. The query in this figure represents “Where is the milk that was on the table during 

lunch between 12:00 and 14:00 now?” In this query, the first query pattern queries about the objects 

that were on the table during lunch by using a time-interval operator. The second query pattern only 

queries about the milk among the objects queried in the first query pattern. The last query pattern 
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queries about the furniture on which the milk (queried about in the second query pattern), is placed 

presently. Here, NOW is the time constant that dynamically receives the current time. 

The query languages of ORO and SELECTSCRIPT can only query about the current context 

knowledge because the valid time of context knowledge cannot be specified. However, ST-RCQL can 

query context knowledge that is valid at specific times both in the past and present. Similarly, 

KnowRob allows the query of a valid past context knowledge. However, KnowRob provides only 

one time-operator, whereas ST-RCQL provides a rich set of 13 time-operators following the Allen’s 

interval theory, thus allowing very efficient queries of context knowledge in different periods. 

Furthermore, more concise and abstracted queries are possible as ST-RCQL supports time constants 

such as NOW and TODAY. 

5. Robot Context Query-processing System 

5.1. System Structure 

The core context query-processing abilities required in this study are to retrieve the context 

knowledge of the valid time satisfying the time operator and the inference of 3D spatial relations 

among objects from poses of the individual object. Therefore, in this study, context query language 

was translated to Prolog queries, which were then processed. Arithmetic operations, such as 

geometric operations, can be included in the reasoning rules because the advanced logic 

programming language, Prolog, programs procedural languages, such as C, by using a logical 

language. Furthermore, to quickly process queries of service robots working in real time, spatio-

temporal indices were built in the working memory and referenced to accelerate query-processing 

by increasing the knowledge access and reasoning speeds. Figure 11 shows the structure of the 

context query-processing system that meets these requirements. 

 

Figure 11. Structure of context query-processing system. 

In the context query-processing system, the perception handler stores the visual perception 

information (percepts) received in the working memory, which is an internal storage, in real time. 

When storing the visual perception information in the working memory, the system refers to the 

context ontology and dynamically updates the spatio-temporal indices. When a context query is 

inputted in this situation, the query processor translates the context query into a Prolog query and 

retrieves context knowledge in the working memory or derives the result of the query by using the 

hybrid reasoner. Then, it replies the final result to the query by synthesizing these results. 
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5.2. Spatio-temporal index 

For the real-time property of the service robot, the 3D spatial relations must be quickly inferred 

from the visual perception instances of the objects inputted to the working memory at a rate of 10 

frames per second. The largest costs in this process are the costs of accessing the visual perception 

instances and inferring 3D spatial relations from them. In this study, to reduce the cost of accessing 

the visual perception instances, as shown in Figure 12, a time index was built from the valid times of 

the visual perception instances, and a spatial index was built from the poses of objects to reduce the 

cost of inferring 3D spatial relations. 

 

Figure 12. Building of spatio-temporal index for visual perception instances. 

The time index in Figure 12 was built by using a 1D R-tree [31]. This time index is referenced 

when visual perception instances satisfying the time operator is accessed. The spatial index was built 

by using the 2D R*-tree. Although the pose of object is a 3D spatial information, the spatial index was 

built in a 2D R*-tree because the 3D plane viewed from the top can sufficiently represent the locality 

of the objects in an indoor environment. Furthermore, it is much faster to update a 2D spatial index 

than a 3D spatial index when considering the cost of updating the spatial index whenever the poses 

of objects is inputted in real time. 

5.3. Translation of Context Query 

In this study, the query grammar was designed to enable very concise and intuitive context 

queries to be written for retrieving abstracted symbolic knowledge. However, to process actual 

queries that include time operators and geometric operations, such as 3D spatial reasoning, the 

inputted context query must be translated into a Prolog query for internal processing. Accordingly, 

the query translation rules were designed, as shown in Table 1. 

Table 1. Rules of query translation. 

Query Pattern Translation to Prolog Query 

(context (SpatialPredicate $Subject 

$Object)) 

rdfs_individual_of(Subject, rcql:'SpatialThing'), 

rdfs_individual_of(Object, rcql:'SpatialThing'), 

 

latest_detection_of_instance(Subject, 

LatestDetectionS), 

latest_detection_of_instance(Object, 

LatestDetectionO), 

 

rdf_triple(SpatialPredicate, LatestDetectionS, 

LatestDetectionO). 

(context (SpatialPredicate $Subject 

$Object "TimePointOperator" 

"TimePoint")) 

rdfs_individual_of(Subject, rcql:'SpatialThing'), 

rdfs_individual_of(Object, rcql:'SpatialThing'), 
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rdf_triple(knowrob:'objectActedOn' ,SP, Subject), 

rdf_triple(knowrob:'objectActedOn' ,OP, Object), 

 

time_point_operation(TimePointOperator, 

TimePoint, SP, OP), 

rdf_triple(SpatialPredicate, SP, OP). 

(context (SpatialProperty $Subject 

$Object "TimeIntervalOperator" 

"TimePointS" "TimePointE")) 

rdfs_individual_of(Subject, rcql:'SpatialThing'), 

rdfs_individual_of(Object, rcql:'SpatialThing'), 

 

rdf_triple(knowrob:'objectActedOn' ,SP, Subject), 

rdf_triple(knowrob:'objectActedOn' ,OP, Object), 

 

time_interval_operation (TimeIntervalOperator,   

TimePointS, TimePointE, SP, OP), 

rdf_triple(SpatialPredicate, SP, OP). 

 

The query translation rules in Table 1 are divided into simple spatial queries not comprising 

time operators, spatio-temporal queries comprising time-point operators, and spatio-temporal 

queries comprising time-interval operators. First, for the context query translation rule for queries 

not comprising time operators, the most recent visual perception information of objects was retrieved 

and the query was translated into a Prolog query for verifying the spatial relation predicate from the 

poses of objects. 

Context Query: 

    (context (on-Physical $Object "rcql:table01")) 

 

Translated Prolog Query: 

   rdfs_individual_of(Object, rcql:'SpatialThing'), 

   rdfs_individual_of(rcql:‘table01', rcql:'SpatialThing'), 

   latest_detection_of_instance (Object, TVP), 

   latest_detection_of_instance (rcql:‘table01', BVP), 

   owl_has(rcql:‘on-Physical', TVP, BVP). 

Figure 13. Illustration of translation for simple spatial query pattern. 

For example, if the context query, “What is the object on the table01?” in Figure 13 is inputted, 

the semantic map instance of table01 and the most recent visual perception instances of other objects 

is retrieved, and the spatial relation predicate between the poses of table01 (BVP) and the other objects 

(TVP) is verified, while the remaining objects satisfying this query are returned as the result. 

Next, the query comprising a time-point operator retrieves visual perception instances of the 

period satisfying the time-point operator, and the query is translated into a Prolog query for verifying 

the spatial-relation predicate from the poses of these objects. 

 

 

 

 

 

 

 

 

 

Context Query : 

  (context (on-Physical $Object "rcql:table01" "AFTER" "2018-07-07T12:00:00")) 
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Translated Prolog Query : 

  rdfs_individual_of(Object, rcql:'SpatialThing'), 

  rdfs_individual_of(rcql:‘table01', rcql:'SpatialThing'), 

  owl_has(knowrob:'objectActedOn' , TVP, Object), 

  owl_has(knowrob:'objectActedOn' , BVP, rcql:‘table01'), 

  after(TVP, '2018-07-07T12:00:00'), 

  after(BVP, '2018-07-07T12:00:00'), 

  owl_has(on-Physical(TVP, BVP)). 

Figure 14. Illustration of translation for spatio-temporal query pattern 1. 

For example, when the context query “What is the object on table01 after 12:00 a.m. on July 7, 

2018?” is inputted, as shown in Figure 14, the visual perception information of table01 and other 

objects after 12:00 a.m. on July 7, 2018 is retried. Then, the spatial relation predicate on-Physical 

between the pose of table01 (BVP) and poses of other objects (TVP) is verified and the objects 

satisfying this condition are retrieved again. 

Finally, the query including a time-interval operator retrieves visual perception information of 

the period that satisfies the time-interval operator and is translated into a Prolog query for verifying 

the spatial relation predicate from these poses of objects. 

Context Query: 

   (context (on-Physical $Object "rcql:table01" "DURING" "2017-11-28T13:00:00"  "2017-11-28T14:00:00")) 

 

Translated Prolog Query: 

   rdfs_individual_of(Object, rcql:'SpatialThing'), 

   rdfs_individual_of(rcql:‘table01', rcql:'SpatialThing'), 

   owl_has(knowrob:'objectActedOn', OVP, Object), 

   owl_has(knowrob:'objectActedOn', BVP, rcql:‘table01'), 

   during(TVP, ['2017-11-28T12:00:00', '2017-11-28T12:00:00']) 

   during(BVP, ['2017-11-28T12:00:00', '2017-11-28T12:00:00']) 

   owl_has(on-Physical(TVP, BVP)). 

Figure 15. Illustration of translation for spatio-temporal query pattern 2. 

For example, as shown in Figure 15, if the context query “What is the object on table01 between 

13:00 a.m. and 14:00 p.m. on November 28, 2017?” is inputted, the semantic map instance of table01 

and visual perception instances of other objects whose valid time is between 13:00 a.m. and 14:00 p.m. 

on November 28, 2017 is queried first. Then, the spatial-relation predicate between the pose of table01 

(BVP) and poses of other objects (TVP) is verified and the objects that satisfy this condition are 

retrieved again. 

6. Implementation and Experiment 

6.1. Implementation 

To analyze the performance of the context query language ST-RCQL and the query-processing 

system ST-RCQP proposed in this study, ST-RCQP was implemented as follows. 

ST-RCQP was implemented using Java programming language in the environment of Window 

10 on a 64 bit i5-6600 CPU. In particular, to implement the Prolog-based reasoning engine and 

working memory inside the system, the Semantic Web Library 3.0 package of SWI-Prolog [20] was 

used, and the Space package of SWI-Prolog was used to implement indices in the working memory. 

In addition, the JPL library was used as the bidirectional interface between Java and Prolog. 

6.2. Experiment 
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The experiments on performance analysis were largely divided into qualitative and quantitative. 

First, the qualitative experiment was conducted to prove the high expressive power of ST-RCQL. The 

experimental method involved writing queries by using ORO, KnowRob, SELECTSCRIPT, and ST-

RCQL to obtain answers for three spatio-temporal contexts and compare the queries. 

 

Context: 

Objects now on the table. 

ORO query: 

   find(?Object isOn table01)  

result: 

   ?Object = cup01; 

   ?Object = tray01. 

SELECTSCRIPT query: 

   SELECT object FROM kitchen 

   WHERE above(table, object) 

result: 

   object = cup01; 

   object = tray01. 

KnowRob query: 

   holds(on-Physical(?Object, rcql:table01), NOW). 

result: 

   ?Object = cup01; 

   ?Object = tray01. 

ST-RCQL query: 

   (context (rcql:on-Physical $Object rcql:table01 AT NOW)) 

result: 

   $Object = cup01; 

   $Object = tray01. 

Figure 16. Comparison of spatio-temporal context queries 1. 

 

The first context is “objects now on the table.” This context includes the temporal context of “now” 

with the spatial context of “on”. According to Figure 16, all the four query languages have the 

expressive power to query this spatio-temporal context. Every query includes a time operator or 

spatial predicate for the spatio-temporal query. In the case of ORO and SELECTSCRIPT, the query 

only includes a spatial predicate with no time operator. ORO and SELECTSCRIPT do not store past 

context knowledge but continuously update and maintain the current spatial context knowledge. 

Thus, their queries for the first context are valid. However, when writing a query for a past context, 

the occurrence of the problem shown in the second context in Figure 17 cannot be avoided. 

 

 

 

 

 

 

 

 

 

 

 

Context: 
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Objects that were on the table yesterday. 

ORO query: 

   unwritable 

KnowRob query: 

   holds(on-Physical(?Object, rcql:table01), "2017-10-26T00:00:00"); 

   holds(on-Physical(?Object, rcql:table01), "2017-10-26T00:00:01"); 

   holds(on-Physical(?Object, rcql:table01), "2017-10-26T00:00:02"); 

   ... 

result: 

   object = cup01 

   object = cup02 

   object = plate01 

   ... 

SELECTSCRIPT query: 

   unwritable 

ST-RCQL query: 

   (context (rcql:on-Physical $object rcql:table01 DURING YESTERDAY)) 

result: 

   object = cup01 

   object = cup02 

   object = plate01 

   ... 

Figure 17. Comparison of spatio-temporal context queries 2. 

 

Compared to the first context, for the second context, “objects that were on the table yesterday,” 

the time point of the queried context is of the past and not the present. As mentioned earlier, ORO 

and SELECTSCRIPT do not maintain past context knowledge, and thus cannot write queries for a 

past context owing to the limitation of query grammar. Although KnowRob can write the query, as 

it only supports the time-point operator at, a very inefficient query is written to express the time 

interval of yesterday. In contrast, as ST-RCQL supports time-interval operators, it can write a very 

concise, efficient query, as shown in Figure 17. To verify the high linguistic expressive power of ST-

RCQL, a query about a spatio-temporal context, in which various time points of the past and present 

are entangled, was written, as shown in the following example (Figure 18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Context: The place where oranges on the table for lunch were subsequently stored 
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ORO: 

   unwritable 

 

KnowRob: 

   holds(on-Physical(?Object, rcql:table01), "2017-10-27T12:00:00"); 

   holds(on-Physical(?Object, rcql:table01), "2017-10-27T12:00:01"); 

   holds(on-Physical(?Object, rcql:table01), "2017-10-27T12:00:02"); 

   ... 

   owl_has(?Object, rdf:type, rcql:Orange), 

   holds(in-ContGeneric(?Object, ?Contrainer), "2017-10-27T14:00:00"); 

   holds(in-ContGeneric(?Object, ?Contrainer), "2017-10-27T14:00:01"); 

   holds(in-ContGeneric(?Object, ?Contrainer), "2017-10-27T14:00:02"); 

   ... 

SELECTSCRIPT: 

   unwritable 

ST-RCQL: 

   (context (rcql:on-Physicalc $object rcql:table01 DURING LUNCH) 

    (rdf:type $object rcql:Orange) 

    (rcql:in-ContGeneric $object $Container AFTER LUNCH) 

   ) 

 

Figure 18. Comparison of spatio-temporal context queries 3. 

The third context is “The place where oranges on the table for lunch were subsequently stored.” 

To determine this context, multiple queries were constructed to find the oranges present on the table 

during lunch and then to find the place where they were stored after lunch. As in the second context, 

this third context also includes a past time point. Thus, ORO and SELECTSCRIPT cannot be used to 

write a query for this context. Although KnowRob can be used, it is still very inefficient. ST-RCQL 

can be used to write this query in only three lines. The first line finds the objects that were on the 

table, the second line selects oranges only among the objects present on the table at that time, and the 

third line finds the place where oranges were stored after lunch. 

Next, quantitative experiments were conducted to verify the efficiency of query-processing 

based on backward reasoning adopted in this study (Figures (a) and (b)) and the acceleration of 

query-processing by using spatio-temporal indices (Figures 20 (c) and (d)). 
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Figure 19. Experimental result of context query-processing by using reasoning types or spatio-

temporal index. (a) Reasoning time by reasoning types; (b) Amount of inferred knowledge by 

reasoning types; (c) Temporal query-processing time and (d) Spatial query-processing time with 

respect to index. 

Figure 19 (a) shows the reasoning times of forward and backward reasoning depending on the 

number of visual perception instances stored in the working memory. All the visual perception 

instances were assumed to have the same valid time. Unlike backward reasoning, forward reasoning 

infers all possible context knowledge before querying; this requires considerable reasoning time. 

Furthermore, we determined that the reasoning time of forward reasoning increased exponentially 

with the number of visual perception instances. Figure 19 (b) shows the volume of context knowledge 

inferred after forward and backward reasoning, depending on the number of visual perception 

instances stored in the working memory. Backward reasoning derives a very small volume of context 

knowledge, which it derives through reasoning among the inferred context knowledge by accessing 

specific context knowledge only. In contrast, forward reasoning derives a very large volume of 

context knowledge because it infers all possible knowledge and stores all the results. This results in 

an exponential increase in the volume of context knowledge with the increase in visual perception 

instances. In Figure 19 (b), the space occupied by approximately 8 million triples of context 

knowledge in the memory, which was derived at the maximum, is approximately 1.5 GB. Visual 

perception instances obtained using the RGB-D camera are generated at the rate of approximately 10 

frames per second. Therefore, approximately 3 min 20 s are required to occupy 1.5 GB of memory. 

Furthermore, robots also obtain other perception information in addition to visual perception 

instances, and thus the memory capacity for forward reasoning is practically impossible to meet. 

Although not shown in the results of the two experiments in Figure 19 (a) and (b), to actually apply 

forward reasoning to robots, it must be performed ceaselessly whenever the perception occurs. This 

reasoning method is inappropriate for service robots that must work in real time. 

Next, Figure 19 (c) shows the temporal query-processing time according to the number of visual 

perception instances stored in the working memory. Figure 19 (c) shows the graph of temporal query-

processing times with and without the time index. For temporal query, the temporal query predicates 

in Figures 14 and 15 were used. As temporal queries are extremely fast to process, the number of 

visual perception instances was increased more than in other experiments in Figure 19 to show a clear 

difference. The results in Figure 19 (c) confirm that the use of a time index greatly accelerated the 
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query-processing speed compared to the case of not using the time index. The effect of the index 

appears more conspicuously in the result of Figure 19 (d), which shows the spatial query-processing 

time depending on the number of visual perception instances stored in the working memory. Figure 

19 (d) shows the spatial query-processing times with and without spatial index R*-tree. For spatial 

query, the owl_has query predicate and the computable spatial predicate were used. The result in 

Figure 19 (d) confirms that the spatial query-processing speed accelerated significantly compared to 

the case in the index was not used. Furthermore, the effect increased continuously with the number 

of visual perception instances. 

7. Conclusions 

In this paper, we proposed the context query language ST-RCQL and query-processing system 

ST-RCQP for service robots working in an indoor environment. The proposed context query language 

ST-RCQL was designed to query 3D spatial relations among objects at various periods based on 

Allen’s interval algebra. Furthermore, the automatic query-translation rules were designed to write 

very concise and intuitive queries by considering the nature of service robots, which mainly handle 

abstracted symbolic knowledge in terms of service. Furthermore, to support the real-time property 

of service robots, this study proposed a query-processing method of backward reasoning and a 

method of accelerating query-processing by the building of spatio-temporal indices for individual 

perception information of objects. The suitability of ST-RCQL as a robot context query language and 

the efficient performance of ST-RCQP were verified through various experiments. 

From the perspective of storing and retrieving context knowledge, one of the problems that must 

be dealt with as much care as time dependence is uncertainty, which was not addressed in this study. 

In the future, we plan to research a context query language and processing method that considers 

both time dependence and uncertainty of context language. 
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