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Abstract: Power disaggregation aims at determining the appliance-by-appliance electricity 

consumption leveraging upon a single meter only, which measures the entire power demand. Data-

driven procedures based on Factorial Hidden Markov Models have been proven remarkable results 

on energy disaggregation. Nevertheless, those procedures have various weaknesses: there is a 

scalability problem as the number of devices to observe raises and the algorithmic complexity of the 

inference step is severe. DNN architectures, such as Convolutional Neural Networks, have 

demonstrated to be a viable solution to deal with FHMMs shortcomings. Nonetheless, there are two 

significant limitations: a complicated and time-consuming training system based on back-

propagation has to be employed to estimates the neural architecture parameters, and large amounts 

of training data covering as many operation conditions as possible need to be collected to attain top 

performances. In this work, we aim to overcome those limitations by leveraging upon the unique 

and useful characteristics of the extreme learning machine technique, which is based on a collection 

of randomly chosen hidden units and analytically defined output weights. Experiment evaluation 

has been conducted using the UK-DALE corpus. We find that the suggested approach achieves 

similar performances to recently proposed ANN-based methods and outperforms FHMMs. Besides, 

our solution generalises well to unseen houses. 

Keywords: Non-intrusive Load Monitoring; Machine Learning; Deep Modeling; Extreme Learning 

Machine; Data Driven Approach. 

 

 

1. Introduction 

Energy consumption in household spaces increases every year [1], becoming a serious concern 

of politics across Europe and U.S. due to limited energy resources, and the negative implications on 

the environment (e.g. CO2 emissions). Indeed, the residential area in both Europe and the U.S. 

represents the third highest in power consumption, providing almost a quarter of the whole energy 

used [2, 3]. Moreover, devices, electronics, and lighting are ranked as the second largest group, 

contributing 34.6% of the residential electricity usage [4]. Unfortunately, up to 39% of the energy used 

by the domestic sector can be wasted [5]. Many studies have affirmed energy savings if feedback on 

power consumption information is provided to energy users [6, 7]. Governments and public utilities 

have reacted to the energy efficiency efforts by supporting smart grids and deploying smart meters. 

Private corporations perceive chances in the market potentials of power efficiency, and we have thus 

observed the increase of commercial home power monitoring products available in the market. 

Stakeholders from public, and private sectors envision smart energy management including the 

transmission as well as the distribution of power between energy producers, and energy consumers 

in addition to seamless data exchange on electricity usage and pricing information between 

generators, and users. That requires connection among devices and servers. Such a requirement 

belongs to the broader technology realm called the Internet of Things (IoT) in the smart home [8].  
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In the energy consumption literature, the classification of the electrical loads in a house is usually 

divided into two groups - Intrusive Appliance Load Monitoring and Non-Intrusive Appliance Load 

Monitoring - relating how much engrave to the expenses and to the simplicity to install the system, 

or fix it when required. Intrusive Appliance Load Monitoring (IALM, or ILM) is usually classified as 

the collection of current monitoring techniques where a power meter is connected to each appliance 

in the household. Therefore, those methods need entering the house, which is rated as intrusive; 

furthermore, IALM systems are usually costly - all of the home devices need, at least, one power 

meter each, and challenging to install and configure. Notwithstanding those adverse reasons, ILM 

techniques provide highly trustable and authentic results. Non-Intrusive Appliance Load Monitoring 

(NIALM, or NILM), on the contrary, is a way of specifying both the household power usage, and the 

state of operation of every connected appliance, on the evaluation of the entire load measured by the 

main power meter in the house. Consequently, NILM leads to a lower cost, since the number of the 

energy meters can be reduced to just one per house. Nonetheless, NILM ’s burden stays in finding 

effective and efficient solutions to disaggregate the total of power consumption measured at a single 

point into individual electrical devices power consumption [9-11]. The energy or power consumption 

for individual electrical appliances can be determined from disaggregated data [12]. That is in 

contrast to the deployment of one sensor per device in standard intrusive-type of energy monitoring. 

NILM is worthwhile because it reduces costs, since multiple sensors configurations and installation 

complexity linked with intrusive load monitoring are avoided [10]. Researchers and engineers prefer 

the NILM method because of both economic and practical reasons. That means that NILM research 

is not only focused on theoretical approaches, but also on the deployment of these systems in the real 

cases. A large-scale deployment favors NILM over ILM because of the lower costs. The only benefit 

of intrusive methods is the high accuracy in measuring the power consumption of specific appliances, 

but in many cases, it can be approximated without experiencing any dangerous consequences.   

In this work, we are concerned with NILM, also known as energy disaggregation, which can be 

broadly defined as a set of techniques used to obtain estimates of the electrical power consumption 

of individual appliances from analyses of voltage and/or current taken at a limited number of 

positions in the power distribution system of a building. The original concept traces its roots back to 

George Hart’s seminal work at the Massachusetts Institute of Technology (MIT)[9]. In that work, Hart 

suggested the use of variations in real and reactive power consumption, as measured at the utility 

meter, to automatically trace the operation of individual appliances in a home. A significant number 

of studies has then put forth to resolve this problem under the NILM framework, and the interested 

reader is referred to [10, 11, 14, 15]. NILM approaches initially focused on feature selection and 

extraction with light emphasis on learning and inference techniques [9, 16]. Progresses in computer 

science and machine learning methods have driven to innovations in data prediction and 

disaggregation techniques. 

The most popular approach to power disaggregation is based on Factorial Hidden Markov 

Models (FHMMs) [17]. FHMMs have proven to appropriately perform for the task of load 

disaggregation due to their ability to include in their learning temporal as well as appliance state 

transition data. Nonetheless, the complexity of the HMM exponentially grows as the number of target 

appliances increases, which limits the applicability of this learning approach. Moreover, if any a new 

device class has to be added, the entire model needs to be retrained from scratch. Alternative existing 

machine learning algorithms, such as the Support Vector Machine (SVM) [18], k-Nearest Neighbour 

(k-NN) [19], and Artificial Neural Network (ANN) [20–22], can also have a significant impact on the 

development of NILM.  The principal advantage of using machine learning is that those approached 

can efficiently and effectively solve very complex classification and regression problems [23, 24] . 

However, much effort is still required to reduce the error caused by different prediction and 

disaggregation algorithms to within a satisfactory range, as explained in [13]. 

Deep neural networks fulfill complicated learning tasks by forming learning machines with deep 

architectures, which has been proven to have a stronger recognition ability for highly nonlinear 

patterns compared to shallow networks [25]. Deep learning has been widely studied and applied in 

various frontier fields and has become the state-of-the-art in speech recognition [26, 27], handwriting 
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recognition [28] and image classification [29]. Those recent advancements and applications of deep 

learning have provided new ideas for energy disaggregation [24]. For example, Kelly and Knottenbelt 

[21] suggested three different approaches: (i) a solution employing a specific type of recurrent neural 

network [30], (ii) a solution reducing noise with de-noising auto-encoders and (iii) a regression 

algorithm predicting the start time, end time and average power demand for each device. Mauch and 

Yang [31] presented a different architecture of deep recurrent LSTM network in order to test whether 

this kind of network could overcome the known problems of the previous NILM approaches. Such 

problems involve (i) disaggregation of various appliance types, (ii) automatic feature extraction from 

low-frequency data, (iii) generalization of a solution to other buildings and unseen devices, and (iv) 

estensibility of the method to continuous time and computational tractability. Zhang et al. [32] 

proposed a deep learning solution for the problem of single-channel blind source separation with 

application in NILM. The method is called sequence-to-point learning because it uses a window as 

the input and a single point as the target. The proposed solution is a deep convolutional neural 

network (CNN) [28], which also learns the signature of the devices in a house.  

Although deep neural architectures can achieve excellent results, those models have two main 

weaknesses: (1) deep models considers the multilayer architectures as a whole that is fine-tuned by 

several passes of back-propagation (BP) based fine-tuning in order to obtain reasonable learning 

capabilities – such a training scheme is cumbersome and time-consuming, and (2) huge volumes of 

training data are needed to achieve top performances, which may limit the deployment of DNN-

based solutions in several real-world applications. In this work, we, therefore, aim to overcome those 

issues by introducing an alternative machine learning NILM framework based on the unique and 

effective characteristics of the extreme learning machine (ELM) algorithm [33], namely: high-speed 

training, good generalization, and universal approximation/classification capability. ELMs can play 

a pivotal role in many machine learning applications, e.g. traffic sign recognition [34], gesture 

recognition [35], video tracking [35], object classification [36], data representation in big data [37], 

water distribution and wastewater collection [38], opal grading [39], and adaptive dynamic 

programming [40]. In [41], the authors have shown that ELMs are also suitable for a wide range of 

feature mappings, rather than the classical ones. Moreover, to take advantage of multi-layer models, 

we deploy an energy disaggregation algorithm with hierarchical ELMs (H-ELMs). To test the 

capability of ELM and H-ELM, we conducted a series of experiments on the standardized UK-DALE 

dataset [43]. Notably, the amount of training data in this dataset is limited in comparison to that used 

in speech and image recognition, for example. That permits us to prove that ELMs are indeed a viable 

solution to energy disaggregation when the amount of training data is limited, which hinders training 

and generalisation capabilities of state-of-the-art deep models, such as CNN, and LSTM. Indeed, the 

proposed ELM based algorithms outperform the algorithms based on more traditional back-

propagation based artificial neural networks, as demonstrated in the related experimental 

investigation. 

The rest of this paper is organized as follows: Section II introduces the energy disaggregation 

problem. Section III gives a brief survey of related works. Section IV presents the ELM/H-ELM based 

speech enhancement algorithms. Section V gives our experimental setup and results. The conclusions 

from this study are drawn in Section VI. 

 

2. Energy Disaggregation Problem 

The purpose of power disaggregation is to break the total power drawn down into its 

components. In a domestic building, the resultant power is the outcome of the energy consumption 

of each electrical appliance. Thus, the difficulty consists of identifying how much power each 

appliance consumes. The superimposition of the power of L appliances in a time period T, can be 

defined as: 
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𝑦[𝑛] = 𝜀[𝑛] + ∑𝑥𝑖[𝑛]

𝐿

𝑖=1

, 𝑛 ∈ {𝑡0, 𝑡1, … , 𝑇} (1) 

 

 

 

 

where y(n) is the aggregate (total) power at time n, xi(n) is the power of the ith appliance at time 

n, and ε(n) is some unwanted noise at time n. Let Y = (540, 540, 600, 500, 800, 800, 750, 830, 850, 750, 

570, 570, 570, 590) be the sequence of power readings in Watt taken every 20 minutes, that have to be 

disaggregated. A feasible solution to the energy disaggregation problem is given in Table 1. 

Interestingly, solution is not unique. 

 

Table 1. A simulated example of the energy disaggregation problem. 

 

Timestamp  

(20 minutes) 

Total 

consumption 
Oven TV Dishwasher Laptop Others 

t0 540 0 130 390 20 0 

t1 540 0 130 390 20 0 

t2 600 80 0 390 50 80 

t3 500 80 120 300 50 50 

t4 800 450 0 300 50 0 

t5 800 450 0 300 50 0 

t6 750 450 0 300 0 0 

t7 830 450 80 300 0 0 

t8 750 450 0 300 0 0 

… … … … … … … 

 

A non-intrusive load monitoring (NILM) system collects energy consumption data from the 

central meter of a house. It after can assume the consumption of each appliance, present in residence. 

The NILM framework is made of three necessary steps: (i) data acquisition step relates to how the 

energy data is collected, which is mostly based on hardware solutions; (ii) the device feature 

extraction step, and (iii) inference and learning, such as the mathematical model that disaggregates 

the total power signal into device level signals. In this paper, we focus on the third step only.  

In machine learning approaches to power disaggregation, the problem can be addressed as an 

estimation, a classification, or regression problem. In the next section, a brief overview of related 

work, which addresses the energy disaggregation task under the machine learning framework, will 

be given. 

 

 

3. Related Work 

Energy disaggregation is time-dependent by nature. NILM researchers have always imagined 

models of sequential data and time as potential solutions. Hidden Markov Models (HMMs) have 

therefore received increased attention from the research community. The first work that we are aware 

of that uses HMMs is [43], where the authors apply a Factorial HMM (FHMM) to the energy 

disaggregation task. FHMMs were also explored in [17] and [44]. In [45], the authors apply Additive 

Factorial HMMs using an unsupervised technique for selecting signal pieces where individual 

devices are isolated. Parson et al. have also employed HMM-based methods in [46], and [47] where 

they have fused prior models of general device types (e.g., refrigerators, clothes dryers, etc.) with 

HMMs. More recently, [48] introduced a method, referred to as Particle Filter-Based Load 

Disaggregation, where appliances’ load signatures and superimposition of them were modeled with 

HMMs and factorial HMMs, respectively. Inference was carried out by Particle Filtering (PF). 
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Paradiso et al. [49] proposed a new electrical load disaggregation system, which utilizes FHMMs and 

exploits context-based features. The context data consists of the user presence and the power using 

patterns of devices. Aiad and Lee [50] suggested an unsupervised disaggregation model, taking into 

account the interactions among devices. The device interactions were shaped using FHMMs and 

inference was implemented using the Viterbi algorithm. Stephen Makonin et al. [51] proposed a new 

algorithm, tackling the efficiency problem of the Viterbi algorithm. This proposal was based on super-

state HMM and a modified version of the Viterbi algorithm. A super-state was determined as an 

HMM that defines the overall power state of a set of devices. Every appliance could be ON or OFF, 

and when operating could have a distinct state. Each combination of the devices’ states expressed a 

single state of the home. The central advantage was that exact inference was feasible in 

computationally efficient time, by calculating sparse matrices with a large number of super-states. 

Disaggregation could also run in real time. 

Although HMM-based strategies have attracted much consideration, as the brief literature 

review examined above demonstrates the main weaknesses of those models have not been 

overwhelmed. In fact, those models are restricted in relatively small discrete state space, the 

algorithmic complexity for inference is intractable, and the state space can quickly grow 

exponentially. This exponential space complexity is unfavorable when enlarging the model in context 

window [17]. In more recent time, deep neural architectures have demonstrated exceptional results 

in sequential models, and some NILM researchers have shown a keen interest in those solutions. In 

the following, the most critical efforts using deep neural architectures are briefly described. 

Kelly and Knottenbelt [21] concentrated on answering the problem of power disaggregation 

employing deep networks. The authors submitted three different approaches: a) a solution applying 

a particular type of recurrent neural network using LSTM hidden nodes, b) a noise reduction solution 

employing denoising autoencoders, and c) a regression algorithm forecasting the start time, the end 

time and the average power request for each appliance connected to the electrical network.  Mauch 

and Yang [31] presented another architecture of deep recurrent LSTM network, in order to test if this 

kind of network is possible to overwhelm the known problems of the previous NILM approaches. 

The proposed solution required one network for each device in a home. As a result, in these 

experiments three networks were used, one for each of the three target appliances. Zhang et al. [32] 

proposed a deep learning solution for the problem of single-channel blind source separation with 

application in NILM. That method is named sequence-to-point (seq2point) learning because it uses a 

window as input and a single point as a target. The suggested solution is a deep CNNs, which also 

learns the signature of the appliances in a house. 

 

 

4. Extreme Learning Machine in a nutshell 

In the previous section, we have mentioned that artificial neural network based approaches to 

NILM are a viable solution. Nevertheless, those models require back-propagation (BP) based fine-

tuning in order to obtain suitably learning capabilities – but this is a time-consuming job; moreover, 

vast amounts of training data are required to achieve top performances. The latter may restrict the 

deployment of DNN-based solutions to a meagre collection of real-world applications. Deep models 

in [21], for instance, require many training data in order to achieve good performance, since those 

models have a massive quantity of trainable parameters (the network weights and biases). The neural 

networks employed in the recent NILM litterature have between 1 million to 150 million trainable 

parameters. To overcome those issues, we suggest an Extreme Learning Machine (ELM) approach to 

energy disaggregation. In fact, ELMs have only one layer, the last one, made of trainable parameters 

even in their deep configuration, referred to as Hierarchical-ELMs (H-ELMs). ELMs were introduced 

by Huang et al. for single layer feed-forward networks (SLFNs) to overcome problems with the BP 

algorithm. ELM gives an adequate and agile learning process that does not need the heavy fine-

tuning of parameters [53].  

In this paper, we also frame energy disaggregation as a regression task, which is called as 

“denoising” in [21]. The aggregate power requirement 𝑦[𝑛] hence is composed of the clean target 
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power demand signal of the target device 𝑥[𝑛] and of the background additive noise signal 𝑣[𝑛] 

provided by the other appliances: 

  

𝑦[𝑛] = 𝑥[𝑛] + 𝑣[𝑛]    (2) 

 

The goal is to recover an estimate of x[n] from the noisy signal y[n]. We propose to use ELM-based 

models to peform the denoising task. 

 

4.1. The ELM model 

In the following sections, we introduce the ELM model in its general form. In the experimental 

sections, we present further details concerning the neural architectures. 

 

4.2 Shallow ELM 

The ELM model was proposed by Huang et al. [33] to train single-layer feedforward networks 

(SLFNs) at extremely fast speeds. In the ELM, the hidden layer parameters are randomly initiated 

and do not require fine tuning compared to conventional SLFNs. The only parameters that require 

training are the weights between the last hidden layer and the output layer. Experimental results 

from previous studies have verified the effectiveness of the ELM algorithm by accommodating 

extremely fast training with good generalization performance compared to traditional SLFNs [33]. 

We present the ELM in its generic form following [33]. The function of the ELM can be written 

as 

f(xi) =  ∑βl

L

l=1

σ (wl . xi  +  bl) (3) 

 

where xi = [xi1 , xi2 , … , xiN]T ∈  RN is the input vector, wl = [wl1 , wl2 , … ,wlN]T ∈  RN is the weight 

vector connecting the l-th hidden node and the input vector, bl is the bias of the l-th hidden node,  

βl = [βl1 , βl2 , … , βlM]T ∈ RM is the weight vector from the l-th hidden node to the output nodes, L 

is the total number of neurons in the ELM hidden layer, and σ(∙) is the nonlinear activation function 

to approximate the target function to a compact subset. The output function can be formulated as 

 

f(xi) =  ∑βl

L

l=1

 hl (x) =   h(x)B (4) 

 

where B is the output weight matrix and h(x) = [h1(x),… , hL(x)] is the nonlinear feature mapping. 

The relationship above can compactly be described as 

 

 

 

where H is the hidden layer output matrix, and Y is the target data matrix. 

 

𝐇𝐁 = 𝐘 (5) 
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H =

[
 
 
 
 
σ(w1 ⋅ x1 + b1)  . . .  σ(wL ⋅ x1 + bL)

.                                      .

.                                      .

.                                      .
σ(w1 ⋅ xN + b1)  . . .  σ(wL ⋅ xN + bL)]

 
 
 
 

N×L

 

B =

[
 
 
 
 
β1

T

.

.

.
βL

T]
 
 
 
 

L×M

, and Y =

[
 
 
 
 
y1

T

.

.

.
yN

T]
 
 
 
 

N×M

 

 

(5a) 

 

The output weight matrix B is computed as 

 

B =  H+ Y (6) 

 

where H+ is the Moore–Penrose (MP) pseudoinverse of H that can be calculated using different 

methods such as orthogonal projection methods, Gaussian elimination, and single-value 

decomposition (SVD). 

In order to solve the linear inverse problem arising at the ELM output, we adopted in this study 

a fast-iterative shrinkage-threshold algorithm (FISTA) [55], which is an extension of the gradient 

algorithm and offers better convergence properties for problems involving large amounts of data. It 

should be clarified that that Eq. (3) gives an estimate of the energy consumption for the targeted 

appliance. 

 

 

Figure 1. H-ELM architecture. 

4.3 Hierarchical ELM 

Spurred by DNNs, where the features are extracted using the multilayer framework with 

unsupervised initialization, Tang et al. [56] extended ELM and introduced H-ELM for multilayer 

perceptron’s (MLPs). The entire structure of the H-ELM model is presented in Fig. 1. The H-ELM 

framework has two steps, i.e., unsupervised feature extraction, and supervised feature regression. In 

unsupervised feature extraction, high-level features are extracted using ELM based autoencoder by 

analyzing every layer as an independent layer. The input data is introduced into the ELM feature 

space before feature extraction, to make use of information among training data. The output of the 

unsupervised feature extraction stage can then be used as the input to the supervised ELM regression 

stage [56] for the final result, based on the learning from the two stages. 

Input weight

Hidden weight

Regression

ELM Layer

Sparse Autoencoder

Sparse Autoencoder

Input Data

Output weight

Supervised stage
ELM based 

regression

Unsupervised 

feature 

representation

Hidden 

layers
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5. Experimental Setup & Results 

In this chapter 5, the experimental setup will be explained first. Next, we will present the 

performance evaluation criteria. Finally, the experimental results will be exhibited, accompanied by 

a short dissertation on the main findings. 

Table 2.  Houses used for training and testing. 

Appliance Training Testing 

Kettle 1, 2, 3, 4 5 

Fridge 1, 2, 4 5 

Washing Machine 1, 5 2 

Microwave 1, 2 5 

Dish washer 1, 2 5 

 

5.1. Datasets 

Our goal is to prove that the proposed solution can achieve comparable, if not better, performance 

than recently proposed deep learning methods. Hence, we need to deploy an experimental setup 

that allows a comparison with what available in the literature. To this end, we follow [21] and use 

UK-DALE [23] as our source dataset, so that we can perform sound quantitative comparison 

between the proposed approach and what available in the literature. Each submeter in UK-DALE 

samples once every 6 seconds. All houses record aggregate apparent mains power once every 6 

seconds. Houses number 1, 2 and 5 also record active and reactive mains power once a second. In 

these houses, we downsampled 1 second active mains power to 6 seconds to align with the 

submetered data and used this as the real aggregate data from these houses. Any gaps in appliance 

data shorter than 3 minutes are assumed to be due to RF issues and so are filled by forward-filling. 

Any gaps longer than 3 minutes are assumed to be due to the appliance and meter being switched 

off and so are filled with zeros.   

We used the five target appliances selected in [21] in all our experiments, namely: the fridge, 

washing machine, dish washer, kettle and microwave. Those appliances were chosen because each 

is present in at least three houses in UK-DALE. This means that, for each appliance, we can train 

our nets on at least two houses and test on a different house. These five appliances consume a 

significant proportion of energy, and the five appliances represent a range of different power 

‘signatures’ from the simple on/off of the kettle to the intricate pattern shown by the washing 

machine, as shown in Figure 2 adapted from [21]. In [21], the authors define an “appliance 

activation” to be the power drawn by a single appliance over one complete cycle of that appliance. 

We adopt here the same terminology. 

 

 

Figure 2. Appliance activation for the washing machine adapted from [21]. 
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In [21], the authors pointed out that artificial data had to be generated in order to regularize the 

training of the parameters (biases and weights) of their deep neural networks, having between 1 

million to 150 millions of trainable parameters. Subsequently, large training datasets play a crucial 

role. Our approach is back-propagation free; therefore, there are fewer parameters to learn, which 

allow us to use only real data during the ELM learning phase. That is a key feature of the proposed 

approach. For each house, we reserved the last week of data for testing and used the rest of the data 

for training, as in [21]. The specific houses used for training and testing is shown in Table 4.  

 

5.2. Performance evaluation criteria 

The most common performance evaluation criteria among NILM researchers, as described by [58] 

are split into two categories. The first category is based on the comparison between the observed 

aggregate power signal and the reconstructed signal after disaggregation. These metrics include: 

mean average error (MAE) in watts, and relative error in total energy (RET), which equations are: 

𝑀𝐴𝐸 = 
1

𝑇
∑ |𝑓(𝑦𝑡) − 𝑥𝑡| 

𝑇
𝑡=1     (12) 

𝑅𝐸𝑇 =  
|𝐸̂−𝐸|

max (𝐸,𝐸̂)
    (13) 

 

where 𝑥(𝑡)  is the actual power of the appliance, 𝑓(𝑦𝑡)  is the estimated power after 

disaggregation, and 𝑇 is the number of examples.  

 The second category describes how effectively the disaggregated signal signatures are assigned to 

appliance signatures and include: precision (P), recall (R), accuracy (Acc), F-measure (F1), total 

energy correctly assigned (TECA), Accuracy (A). These metrics are defined as follows: 

 

 

𝑃 = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (14) 

 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (15) 

 

𝐹1 =  
2×𝑃×𝑅

𝑃+𝑅
    (16) 

 

𝑇𝐸𝐶𝐴 =  1 −
∑ ∑ |𝑓(𝑦𝑡

𝑚)−𝑥𝑡
𝑚|𝑀

𝑚=1
𝑇
𝑡=1

2∑ 𝑦𝑡̅̅ ̅𝑇
𝑡=1

    (18) 

 

𝐴 =  
𝑇𝑃+𝑇𝑁

𝑃+𝑁
     (20) 

where 𝑇𝑃 is the true positive that the appliances was working, 𝐹𝑃 is the false positive that the 

appliance was working, 𝑇𝑁 is the true negative and 𝐹𝑁 is the false negative. 𝑃 is the number of 

positive cases in ground truth, and 𝑁 is the number of negative cases in ground truth. Moreover, 

𝑥𝑡
𝑚 is the actual power for the 𝑚th appliance at time 𝑡, 𝑓(𝑦𝑡

𝑚) is the estimated power for 𝑚th 

appliance at time 𝑡, and 𝑇 is the number of samples. 

 

Table 3. Disaggregation performance on seen houses during training. 

Technique Appliance F1 P R A RET TECA MAE 
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CO 

Kettle 0.31 0.45 0.25 0.99 0.43 0.93 65 

Dish Washer 0.11 0.07 0.50 0.69 0.28 0.90 75 

Fridge 0.52 0.50 0.54 0.61 0.26 0.94 50 

Microwave 0.33 0.24 0.70 0.98 0.85 0.92 68 

Washing Machine 0.13 0.08 0.56 0.69 0.65 0.92 88 

FHMM 

Kettle 0.28 0.30 0.28 0.99 0.57 0.91 82 

Dish Washer 0.08 0.04 0.78 0.37 0.66 0.85 111 

Fridge 0.47 0.39 0.63 0.46 0.50 0.91 69 

Microwave 0.43 0.35 0.69 0.99 0.80 0.93 54 

Washing Machine 0.11 0.06 0.87 0.39 0.76 0.88 138 

Autoencoder 

Kettle 0.48 1.00 0.39 0.99 0.02 0.98 16 

Dish Washer 0.66 0.45 0.99 0.95 -0.34 0.97 21 

Fridge 0.81 0.83 0.79 0.85 -0.35 0.97 25 

Microwave 0.62 0.50 0.86 0.99 -0.06 0.99 13 

Washing Machine 0.25 0.15 0.99 0.76 0.18 0.96 44 

LSTM 

Kettle 0.71 0.91 0.63 1.00 0.36 0.98 23 

Dish Washer 0.06 0.03 0.63 0.35 0.76 0.83 130 

Fridge 0.69 0.71 0.67 0.76 -0.22 0.96 34 

Microwave 0.42 0.28 0.92 0.98 0.50 0.97 22 

Washing Machine 0.09 0.05 0.62 0.31 0.73 0.88 133 

Shallow ELM 

Kettle 0.27 0.23 0.24 0.99 0.58 0.91 81 

Dish Washer 0.09 0.06 0.81 0.33 0.62 0.85 112 
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Fridge 0.42 0.23 0.67 0.47 0.48 0.92 68 

Microwave 0.41 0.45 0.71 0.98 0.81 0.90 52 

Washing Machine 0.15 0.12 0.82 0.42 0.72 0.82 137 

H-ELM 

Kettle 0.72 1.00 0.70 1.00 0.01 0.98 15 

Dish Washer 0.75 0.89 0.99 0.98 -0.54 0.98 19 

Fridge 0.89 0.88 0.80 0.88 -0.38 0.98 20 

Microwave 0.66 0.52 0.87 0.99 -0.05 0.99 12 

Washing Machine 0.50 0.73 0.99 0.76 0.09 0.97 27 

 

5.3 ELM Architectural Details 

We implemented our neural nets in Python. We trained our ELMs on an NVIDIA GeForce GT 750M 

GPU with 2 GB of GDDR5. On this GPU, our nets typically took 1 and 3 hours to train per appliance 

for the shallow and hierarchical ELM architecture, respectively. We train one ELM per given 

appliance. The output of the ELM is a window of the power demand of the target appliance. The 

input to every ELM is a window of aggregate power demand. The input window width is decided 

on an appliance-by-appliance basis. For example, a window of 128 samples (13 minutes) for the 

kettle; whereas, 1536 samples (2.5 hours) are used for the dishwasher. On the one hand, the window 

width has to be selected to ensure that the majority of the appliance activations are captured. 

However, a drop in performance can be observed if the width is too large, as reported in [21], 

where the autoencoder for the fridge failed to learn anything useful with a window size of 1024 

samples, for instance. The shallow ELM has the following structure: Input dimension determined 

by the appliance duration, fully connected layer with 4096 hidden nodes having Sigmoid activation 

function, and output dimension determined by the appliance duration. The H-ELM has the 

following structure: Input dimension determined by the appliance, four hidden non-linear layers 

with 2048 nodes having Sigmoid activation function, and output dimension determined by the 

appliance duration. 

 

Table 4. Disaggregation performance on unseen houses during training. This evaluation is essential 

to assess the generalization capability of the pattern recognition technique. 

Technique Appliance F1 P R A RET TECA MAE 

CO 

Kettle 0.31 0.23 0.46 0.99 0.85 0.94 73 

Dish Washer 0.11 0.06 0.67 0.64 0.62 0.94 74 
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Fridge 0.35 0.30 0.41 0.45 0.37 0.94 73 

Microwave 0.05 0.03 0.35 0.98 0.97 0.93 89 

Washing Machine 0.10 0.06 0.48 0.88 0.73 0.93 39 

FHMM 

Kettle 0.19 0.14 0.29 0.99 0.88 0.92 98 

Dish Washer 0.05 0.03 0.49 0.33 0.75 0.91 110 

Fridge 0.55 0.40 0.86 0.50 0.57 0.94 67 

Microwave 0.01 0.01 0.34 0.91 0.99 0.84 195 

Washing Machine 0.08 0.04 0.64 0.79 0.86 0.88 67 

Autoencoder 

Kettle 0.93 1.00 0.87 1.00 0.13 1.00 6 

Dish Washer 0.44 0.29 0.99 0.92 -0.33 0.98 24 

Fridge 0.87 0.85 0.88 0.90 -0.38 0.98 26 

Microwave 0.26 0.15 0.94 0.99 0.73 0.99 9 

Washing Machine 0.13 0.07 1.00 0.82 0.48 0.96 24 

LSTM 

Kettle 0.93 0.96 0.91 1.00 0.57 0.99 16 

Dish Washer 0.08 0.04 0.87 0.30 0.87 0.86 168 

Fridge 0.74 0.71 0.77 0.81 -0.25 0.97 36 

Microwave 0.13 0.07 0.99 0.98 0.88 0.98 20 

Washing Machine 0.03 0.01 0.73 0.23 0.91 0.81 109 

H-ELM 

Kettle 0.95 1.00 0.92 1.00 0.10 1.00 4 

Dish Washer 0.55 0.35 1.00 1.00 -0.28 0.98 22 

Fridge 0.89 0.90 0.92 0.94 -0.22 0.98 23 
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Microwave 0.36 0.32 0.98 0.99 0.65 0.99 7 

Washing Machine 0.43 0.10 1.00 0.84 0.51 0.97 21 

 

5.4. Experimental Results and Discussion 

For the sake of comparison, we report results with combinatorial optimisation (CO), factorial 

hidden Markov model (FHMM), long short-term memory (LSTM) recurrent neural networks, and 

autoencoder algorithms. The performance of those solutions is given as reported in [21]. It should 

be pointed out that there is a single LSTM per appliance in [21], and LSTMs have a number of 

trainable parameters that is around 1M. There is also an auto-encoder neural architecture per 

appliance, with a number of trainable parameters that range from 1M to 150M depending on the 

input size. The interested reader is referred to [21] for more details on both the LSTM and 

autoencoder training phase. The autoencoder acts as a denoiser, and it is therefore similar to our 

ELM-based solutions. 

The disaggregation results on seen houses are shown in Table 3. The results on houses unseen 

during training are shown in Table 4. From the seen houses in Table 3, we observe that LSTM 

outperforms more conventional CO and FHMM on two-state appliances (kettle, fridge and 

microwave), it falls behind CO and FHMM on multi-state appliances (dishwasher and washing 

machine). The shallow ELM solution attains comparable performance with CO and FHMH, yet it is 

worse than the LSTM and autoencoder solutions. The proposed H-ELM instead outperforms CO, 

FHMM, LSTM, and the autoencoder on every appliance on F1 score, P score, accuracy, the 

proportion of total energy correctly assigned and MAE, on both two-state, and multi-state 

appliances.  

Finally, it is significant to verify the generalisation capabilities on houses unseen during training. 

From the results reported in Table 4, we see that autoencoder outperforms CO and FHMM on every 

appliance on every metric except the relative error in total energy. Instead, the H-ELM outperform 

all of the other solutions, as expected. We have already demonstrated that H-ELMs are superior in 

performance than shallow ELMs, so we do not report ELM results on unseen houses. 

 

6. Conclusions 

ELMs are a promising artificial neural network method introduced in [50] that has a high-speed 

learning capability and has been employed in many tasks successfully. For instance, ELMs for wind 

speed forecasting were used in [59, 60]. In [61], the authors apply ELSs to a state-of-charge 

estimation of battery with success. ELMs were also suggested as an effective solution to guarantee 

the continuous flow of current supply in smart grids. In this paper, we have proposed to apply 

ELMs to NILM. ELMs, both in their shallow and hierarchical configurations, act as a non-linear 

signal enhancement system allowing us to recover the power load of the target appliance from the 

aggregated load. In this work, we have proposed to extend ELMs to the energy disaggregation 

problem, and we have reported top performance on the UK-DALE dataset. ELMs are much more 

straightforward to train than deep models reported in [21] while attaining superior performance in 

both seen and unseen house and across appliances. The main advantage of the ELMs over LSTMs 

and denoise autoencoder is that there is no need to fine-tune of the whole network by the iterative 
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back-propagation algorithm, and that can quicken the learning speed and strengthen the 

generalisation performance.  

Finally, it is worth noting that the comparison of various NILM approach is still cumbersome. 

However, there has been much improvement in the latest years, and there are novel approaches 

and mathematical tools that haven’t been used extensively yet. We believe that ELM shows great 

potential for NILM, and further improvement could be achieved through multi-task learning. We 

also believe that Extreme Learning Machines could play a key role for management of Power 

Consumption in Industrial Wireless Sensor Networks [63]. 
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