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Abstract: Power disaggregation aims at determining the appliance-by-appliance electricity
consumption leveraging upon a single meter only, which measures the entire power demand. Data-
driven procedures based on Factorial Hidden Markov Models have been proven remarkable results
on energy disaggregation. Nevertheless, those procedures have various weaknesses: there is a
scalability problem as the number of devices to observe raises and the algorithmic complexity of the
inference step is severe. DNN architectures, such as Convolutional Neural Networks, have
demonstrated to be a viable solution to deal with FHMMs shortcomings. Nonetheless, there are two
significant limitations: a complicated and time-consuming training system based on back-
propagation has to be employed to estimates the neural architecture parameters, and large amounts
of training data covering as many operation conditions as possible need to be collected to attain top
performances. In this work, we aim to overcome those limitations by leveraging upon the unique
and useful characteristics of the extreme learning machine technique, which is based on a collection
of randomly chosen hidden units and analytically defined output weights. Experiment evaluation
has been conducted using the UK-DALE corpus. We find that the suggested approach achieves
similar performances to recently proposed ANN-based methods and outperforms FHMMs. Besides,
our solution generalises well to unseen houses.

Keywords: Non-intrusive Load Monitoring; Machine Learning; Deep Modeling; Extreme Learning
Machine; Data Driven Approach.

1. Introduction

Energy consumption in household spaces increases every year [1], becoming a serious concern
of politics across Europe and U.S. due to limited energy resources, and the negative implications on
the environment (e.g. CO2 emissions). Indeed, the residential area in both Europe and the U.S.
represents the third highest in power consumption, providing almost a quarter of the whole energy
used [2, 3]. Moreover, devices, electronics, and lighting are ranked as the second largest group,
contributing 34.6% of the residential electricity usage [4]. Unfortunately, up to 39% of the energy used
by the domestic sector can be wasted [5]. Many studies have affirmed energy savings if feedback on
power consumption information is provided to energy users [6, 7]. Governments and public utilities
have reacted to the energy efficiency efforts by supporting smart grids and deploying smart meters.
Private corporations perceive chances in the market potentials of power efficiency, and we have thus
observed the increase of commercial home power monitoring products available in the market.
Stakeholders from public, and private sectors envision smart energy management including the
transmission as well as the distribution of power between energy producers, and energy consumers
in addition to seamless data exchange on electricity usage and pricing information between
generators, and users. That requires connection among devices and servers. Such a requirement
belongs to the broader technology realm called the Internet of Things (IoT) in the smart home [8].
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In the energy consumption literature, the classification of the electrical loads in a house is usually
divided into two groups - Intrusive Appliance Load Monitoring and Non-Intrusive Appliance Load
Monitoring - relating how much engrave to the expenses and to the simplicity to install the system,
or fix it when required. Intrusive Appliance Load Monitoring (IALM, or ILM) is usually classified as
the collection of current monitoring techniques where a power meter is connected to each appliance
in the household. Therefore, those methods need entering the house, which is rated as intrusive;
furthermore, IALM systems are usually costly - all of the home devices need, at least, one power
meter each, and challenging to install and configure. Notwithstanding those adverse reasons, ILM
techniques provide highly trustable and authentic results. Non-Intrusive Appliance Load Monitoring
(NIALM, or NILM), on the contrary, is a way of specifying both the household power usage, and the
state of operation of every connected appliance, on the evaluation of the entire load measured by the
main power meter in the house. Consequently, NILM leads to a lower cost, since the number of the
energy meters can be reduced to just one per house. Nonetheless, NILM ’s burden stays in finding
effective and efficient solutions to disaggregate the total of power consumption measured at a single
point into individual electrical devices power consumption [9-11]. The energy or power consumption
for individual electrical appliances can be determined from disaggregated data [12]. That is in
contrast to the deployment of one sensor per device in standard intrusive-type of energy monitoring.
NILM is worthwhile because it reduces costs, since multiple sensors configurations and installation
complexity linked with intrusive load monitoring are avoided [10]. Researchers and engineers prefer
the NILM method because of both economic and practical reasons. That means that NILM research
is not only focused on theoretical approaches, but also on the deployment of these systems in the real
cases. A large-scale deployment favors NILM over ILM because of the lower costs. The only benefit
of intrusive methods is the high accuracy in measuring the power consumption of specific appliances,
but in many cases, it can be approximated without experiencing any dangerous consequences.

In this work, we are concerned with NILM, also known as energy disaggregation, which can be
broadly defined as a set of techniques used to obtain estimates of the electrical power consumption
of individual appliances from analyses of voltage and/or current taken at a limited number of
positions in the power distribution system of a building. The original concept traces its roots back to
George Hart’s seminal work at the Massachusetts Institute of Technology (MIT)[9]. In that work, Hart
suggested the use of variations in real and reactive power consumption, as measured at the utility
meter, to automatically trace the operation of individual appliances in a home. A significant number
of studies has then put forth to resolve this problem under the NILM framework, and the interested
reader is referred to [10, 11, 14, 15]. NILM approaches initially focused on feature selection and
extraction with light emphasis on learning and inference techniques [9, 16]. Progresses in computer
science and machine learning methods have driven to innovations in data prediction and
disaggregation techniques.

The most popular approach to power disaggregation is based on Factorial Hidden Markov
Models (FHMMs) [17]. FHMMs have proven to appropriately perform for the task of load
disaggregation due to their ability to include in their learning temporal as well as appliance state
transition data. Nonetheless, the complexity of the HMM exponentially grows as the number of target
appliances increases, which limits the applicability of this learning approach. Moreover, if any a new
device class has to be added, the entire model needs to be retrained from scratch. Alternative existing
machine learning algorithms, such as the Support Vector Machine (SVM) [18], k-Nearest Neighbour
(k-NN) [19], and Artificial Neural Network (ANN) [20-22], can also have a significant impact on the
development of NILM. The principal advantage of using machine learning is that those approached
can efficiently and effectively solve very complex classification and regression problems [23, 24] .
However, much effort is still required to reduce the error caused by different prediction and
disaggregation algorithms to within a satisfactory range, as explained in [13].

Deep neural networks fulfill complicated learning tasks by forming learning machines with deep
architectures, which has been proven to have a stronger recognition ability for highly nonlinear
patterns compared to shallow networks [25]. Deep learning has been widely studied and applied in
various frontier fields and has become the state-of-the-art in speech recognition [26, 27], handwriting
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recognition [28] and image classification [29]. Those recent advancements and applications of deep
learning have provided new ideas for energy disaggregation [24]. For example, Kelly and Knottenbelt
[21] suggested three different approaches: (i) a solution employing a specific type of recurrent neural
network [30], (ii) a solution reducing noise with de-noising auto-encoders and (iii) a regression
algorithm predicting the start time, end time and average power demand for each device. Mauch and
Yang [31] presented a different architecture of deep recurrent LSTM network in order to test whether
this kind of network could overcome the known problems of the previous NILM approaches. Such
problems involve (i) disaggregation of various appliance types, (ii) automatic feature extraction from
low-frequency data, (iii) generalization of a solution to other buildings and unseen devices, and (iv)
estensibility of the method to continuous time and computational tractability. Zhang et al. [32]
proposed a deep learning solution for the problem of single-channel blind source separation with
application in NILM. The method is called sequence-to-point learning because it uses a window as
the input and a single point as the target. The proposed solution is a deep convolutional neural
network (CNN) [28], which also learns the signature of the devices in a house.

Although deep neural architectures can achieve excellent results, those models have two main
weaknesses: (1) deep models considers the multilayer architectures as a whole that is fine-tuned by
several passes of back-propagation (BP) based fine-tuning in order to obtain reasonable learning
capabilities — such a training scheme is cumbersome and time-consuming, and (2) huge volumes of
training data are needed to achieve top performances, which may limit the deployment of DNN-
based solutions in several real-world applications. In this work, we, therefore, aim to overcome those
issues by introducing an alternative machine learning NILM framework based on the unique and
effective characteristics of the extreme learning machine (ELM) algorithm [33], namely: high-speed
training, good generalization, and universal approximation/classification capability. ELMs can play
a pivotal role in many machine learning applications, e.g. traffic sign recognition [34], gesture
recognition [35], video tracking [35], object classification [36], data representation in big data [37],
water distribution and wastewater collection [38], opal grading [39], and adaptive dynamic
programming [40]. In [41], the authors have shown that ELMs are also suitable for a wide range of
feature mappings, rather than the classical ones. Moreover, to take advantage of multi-layer models,
we deploy an energy disaggregation algorithm with hierarchical ELMs (H-ELMs). To test the
capability of ELM and H-ELM, we conducted a series of experiments on the standardized UK-DALE
dataset [43]. Notably, the amount of training data in this dataset is limited in comparison to that used
in speech and image recognition, for example. That permits us to prove that ELMs are indeed a viable
solution to energy disaggregation when the amount of training data is limited, which hinders training
and generalisation capabilities of state-of-the-art deep models, such as CNN, and LSTM. Indeed, the
proposed ELM based algorithms outperform the algorithms based on more traditional back-
propagation based artificial neural networks, as demonstrated in the related experimental
investigation.

The rest of this paper is organized as follows: Section II introduces the energy disaggregation
problem. Section III gives a brief survey of related works. Section IV presents the ELM/H-ELM based
speech enhancement algorithms. Section V gives our experimental setup and results. The conclusions
from this study are drawn in Section VI.

2. Energy Disaggregation Problem

The purpose of power disaggregation is to break the total power drawn down into its
components. In a domestic building, the resultant power is the outcome of the energy consumption
of each electrical appliance. Thus, the difficulty consists of identifying how much power each
appliance consumes. The superimposition of the power of L appliances in a time period T, can be
defined as:
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y[n] = €[n] + in[n], n € {ty, ty, ..., T} (1)

where y(n) is the aggregate (total) power at time #, xi(n) is the power of the i* appliance at time
n, and &(n) is some unwanted noise at time n. Let Y = (540, 540, 600, 500, 800, 800, 750, 830, 850, 750,
570, 570, 570, 590) be the sequence of power readings in Watt taken every 20 minutes, that have to be
disaggregated. A feasible solution to the energy disaggregation problem is given in Table 1.
Interestingly, solution is not unique.

Table 1. A simulated example of the energy disaggregation problem.

Tlme.stamp Total . Oven TV | Dishwasher Laptop Others

(20 minutes) | consumption
to 540 0 130 390 20 0
t1 540 0 130 390 20 0
t2 600 80 0 390 50 80
ts 500 80 120 300 50 50
ta 800 450 0 300 50 0
ts 800 450 0 300 50 0
to 750 450 0 300 0 0
t7 830 450 80 300 0 0
ts 750 450 0 300 0 0

A non-intrusive load monitoring (NILM) system collects energy consumption data from the
central meter of a house. It after can assume the consumption of each appliance, present in residence.
The NILM framework is made of three necessary steps: (i) data acquisition step relates to how the
energy data is collected, which is mostly based on hardware solutions; (ii) the device feature
extraction step, and (iii) inference and learning, such as the mathematical model that disaggregates
the total power signal into device level signals. In this paper, we focus on the third step only.

In machine learning approaches to power disaggregation, the problem can be addressed as an
estimation, a classification, or regression problem. In the next section, a brief overview of related
work, which addresses the energy disaggregation task under the machine learning framework, will
be given.

3. Related Work

Energy disaggregation is time-dependent by nature. NILM researchers have always imagined
models of sequential data and time as potential solutions. Hidden Markov Models (HMMs) have
therefore received increased attention from the research community. The first work that we are aware
of that uses HMMs is [43], where the authors apply a Factorial HMM (FHMM) to the energy
disaggregation task. FHMMs were also explored in [17] and [44]. In [45], the authors apply Additive
Factorial HMMs using an unsupervised technique for selecting signal pieces where individual
devices are isolated. Parson et al. have also employed HMM-based methods in [46], and [47] where
they have fused prior models of general device types (e.g., refrigerators, clothes dryers, etc.) with
HMMs. More recently, [48] introduced a method, referred to as Particle Filter-Based Load
Disaggregation, where appliances’ load signatures and superimposition of them were modeled with
HMMs and factorial HMMSs, respectively. Inference was carried out by Particle Filtering (PF).

d0i:10.20944/preprints201808.0551.v1
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Paradiso et al. [49] proposed a new electrical load disaggregation system, which utilizes FHMMs and
exploits context-based features. The context data consists of the user presence and the power using
patterns of devices. Aiad and Lee [50] suggested an unsupervised disaggregation model, taking into
account the interactions among devices. The device interactions were shaped using FHMMs and
inference was implemented using the Viterbi algorithm. Stephen Makonin et al. [51] proposed a new
algorithm, tackling the efficiency problem of the Viterbi algorithm. This proposal was based on super-
state HMM and a modified version of the Viterbi algorithm. A super-state was determined as an
HMM that defines the overall power state of a set of devices. Every appliance could be ON or OFF,
and when operating could have a distinct state. Each combination of the devices’ states expressed a
single state of the home. The central advantage was that exact inference was feasible in
computationally efficient time, by calculating sparse matrices with a large number of super-states.
Disaggregation could also run in real time.

Although HMM-based strategies have attracted much consideration, as the brief literature
review examined above demonstrates the main weaknesses of those models have not been
overwhelmed. In fact, those models are restricted in relatively small discrete state space, the
algorithmic complexity for inference is intractable, and the state space can quickly grow
exponentially. This exponential space complexity is unfavorable when enlarging the model in context
window [17]. In more recent time, deep neural architectures have demonstrated exceptional results
in sequential models, and some NILM researchers have shown a keen interest in those solutions. In
the following, the most critical efforts using deep neural architectures are briefly described.

Kelly and Knottenbelt [21] concentrated on answering the problem of power disaggregation
employing deep networks. The authors submitted three different approaches: a) a solution applying
a particular type of recurrent neural network using LSTM hidden nodes, b) a noise reduction solution
employing denoising autoencoders, and c) a regression algorithm forecasting the start time, the end
time and the average power request for each appliance connected to the electrical network. Mauch
and Yang [31] presented another architecture of deep recurrent LSTM network, in order to test if this
kind of network is possible to overwhelm the known problems of the previous NILM approaches.
The proposed solution required one network for each device in a home. As a result, in these
experiments three networks were used, one for each of the three target appliances. Zhang et al. [32]
proposed a deep learning solution for the problem of single-channel blind source separation with
application in NILM. That method is named sequence-to-point (seq2point) learning because it uses a
window as input and a single point as a target. The suggested solution is a deep CNNSs, which also
learns the signature of the appliances in a house.

4. Extreme Learning Machine in a nutshell

In the previous section, we have mentioned that artificial neural network based approaches to
NILM are a viable solution. Nevertheless, those models require back-propagation (BP) based fine-
tuning in order to obtain suitably learning capabilities — but this is a time-consuming job; moreover,
vast amounts of training data are required to achieve top performances. The latter may restrict the
deployment of DNN-based solutions to a meagre collection of real-world applications. Deep models
in [21], for instance, require many training data in order to achieve good performance, since those
models have a massive quantity of trainable parameters (the network weights and biases). The neural
networks employed in the recent NILM litterature have between 1 million to 150 million trainable
parameters. To overcome those issues, we suggest an Extreme Learning Machine (ELM) approach to
energy disaggregation. In fact, ELMs have only one layer, the last one, made of trainable parameters
even in their deep configuration, referred to as Hierarchical-ELMs (H-ELMs). ELMs were introduced
by Huang et al. for single layer feed-forward networks (SLENs) to overcome problems with the BP
algorithm. ELM gives an adequate and agile learning process that does not need the heavy fine-
tuning of parameters [53].

In this paper, we also frame energy disaggregation as a regression task, which is called as
“denoising” in [21]. The aggregate power requirement y[n] hence is composed of the clean target
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power demand signal of the target device x[n] and of the background additive noise signal v[n]
provided by the other appliances:

y[n] = x[n] + v[n] )

The goal is to recover an estimate of x[n] from the noisy signal y[n]. We propose to use ELM-based
models to peform the denoising task.

4.1. The ELM model

In the following sections, we introduce the ELM model in its general form. In the experimental
sections, we present further details concerning the neural architectures.

4.2 Shallow ELM

The ELM model was proposed by Huang et al. [33] to train single-layer feedforward networks
(SLENs) at extremely fast speeds. In the ELM, the hidden layer parameters are randomly initiated
and do not require fine tuning compared to conventional SLFNs. The only parameters that require
training are the weights between the last hidden layer and the output layer. Experimental results
from previous studies have verified the effectiveness of the ELM algorithm by accommodating
extremely fast training with good generalization performance compared to traditional SLFNs [33].

We present the ELM in its generic form following [33]. The function of the ELM can be written
as

L
f(x;) = Z Bio (wy.x; + by) 3)
=1

where %; = [Xj1, Xiz, -, Xin]T € RN is the input vector, w; = [wy;, Wy, ..., wiy]T € RN is the weight
vector connecting the I-th hidden node and the input vector, b, is the bias of the I-th hidden node,
Bi= [Bi1, Biz,- Bim]T € RM is the weight vector from the 1-th hidden node to the output nodes, L
is the total number of neurons in the ELM hidden layer, and o(-) is the nonlinear activation function
to approximate the target function to a compact subset. The output function can be formulated as

L
() = D By (0 = h(OB )
1=1

where B is the output weight matrix and h(x) = [h;(x), ..., h (X)] is the nonlinear feature mapping.
The relationship above can compactly be described as

HB=Y (5)

where H is the hidden layer output matrix, and Y is the target data matrix.
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The output weight matrix B is computed as
B= H*Y (6)

where H* is the Moore-Penrose (MP) pseudoinverse of H that can be calculated using different
methods such as orthogonal projection methods, Gaussian elimination, and single-value
decomposition (SVD).

In order to solve the linear inverse problem arising at the ELM output, we adopted in this study
a fast-iterative shrinkage-threshold algorithm (FISTA) [55], which is an extension of the gradient
algorithm and offers better convergence properties for problems involving large amounts of data. It
should be clarified that that Eq. (3) gives an estimate of the energy consumption for the targeted
appliance.

Regression

T Output weight

ELM based

. ELM Layer Supervised stage
regression

T

Sparse Autoencoder

Hidden

layers T Hidden weight

Unsupervised
feature
representation

Sparse Autoencoder

T Input weight

—

Input Data

Figure 1. H-ELM architecture.

4.3 Hierarchical ELM

Spurred by DNNs, where the features are extracted using the multilayer framework with
unsupervised initialization, Tang et al. [56] extended ELM and introduced H-ELM for multilayer
perceptron’s (MLPs). The entire structure of the H-ELM model is presented in Fig. 1. The H-ELM
framework has two steps, i.e., unsupervised feature extraction, and supervised feature regression. In
unsupervised feature extraction, high-level features are extracted using ELM based autoencoder by
analyzing every layer as an independent layer. The input data is introduced into the ELM feature
space before feature extraction, to make use of information among training data. The output of the
unsupervised feature extraction stage can then be used as the input to the supervised ELM regression
stage [56] for the final result, based on the learning from the two stages.
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5. Experimental Setup & Results

In this chapter 5, the experimental setup will be explained first. Next, we will present the
performance evaluation criteria. Finally, the experimental results will be exhibited, accompanied by
a short dissertation on the main findings.

Table 2. Houses used for training and testing.

Appliance Training Testing
Kettle 1,2,3,4 5
Fridge 1,2,4 5

Washing Machine 1,5 2

Microwave 1,2 5

Dish washer 1,2 5

5.1. Datasets

Our goal is to prove that the proposed solution can achieve comparable, if not better, performance
than recently proposed deep learning methods. Hence, we need to deploy an experimental setup
that allows a comparison with what available in the literature. To this end, we follow [21] and use
UK-DALE [23] as our source dataset, so that we can perform sound quantitative comparison
between the proposed approach and what available in the literature. Each submeter in UK-DALE
samples once every 6 seconds. All houses record aggregate apparent mains power once every 6
seconds. Houses number 1, 2 and 5 also record active and reactive mains power once a second. In
these houses, we downsampled 1 second active mains power to 6 seconds to align with the
submetered data and used this as the real aggregate data from these houses. Any gaps in appliance
data shorter than 3 minutes are assumed to be due to RF issues and so are filled by forward-filling.
Any gaps longer than 3 minutes are assumed to be due to the appliance and meter being switched
off and so are filled with zeros.

We used the five target appliances selected in [21] in all our experiments, namely: the fridge,
washing machine, dish washer, kettle and microwave. Those appliances were chosen because each
is present in at least three houses in UK-DALE. This means that, for each appliance, we can train
our nets on at least two houses and test on a different house. These five appliances consume a
significant proportion of energy, and the five appliances represent a range of different power
‘signatures’ from the simple on/off of the kettle to the intricate pattern shown by the washing
machine, as shown in Figure 2 adapted from [21]. In [21], the authors define an “appliance
activation” to be the power drawn by a single appliance over one complete cycle of that appliance.
We adopt here the same terminology.

Power (kW)

Time (minutes)

Figure 2. Appliance activation for the washing machine adapted from [21].
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In [21], the authors pointed out that artificial data had to be generated in order to regularize the
training of the parameters (biases and weights) of their deep neural networks, having between 1
million to 150 millions of trainable parameters. Subsequently, large training datasets play a crucial
role. Our approach is back-propagation free; therefore, there are fewer parameters to learn, which
allow us to use only real data during the ELM learning phase. That is a key feature of the proposed
approach. For each house, we reserved the last week of data for testing and used the rest of the data
for training, as in [21]. The specific houses used for training and testing is shown in Table 4.

5.2. Performance evaluation criteria

The most common performance evaluation criteria among NILM researchers, as described by [58]
are split into two categories. The first category is based on the comparison between the observed
aggregate power signal and the reconstructed signal after disaggregation. These metrics include:
mean average error (MAE) in watts, and relative error in total energy (RET), which equations are:

MAE = Z3T_11f () — x| (12)
_ |E-E|
RET = max(E,E) (13)

where x(t) is the actual power of the appliance, f(y,) is the estimated power after
disaggregation, and T is the number of examples.

The second category describes how effectively the disaggregated signal signatures are assigned to
appliance signatures and include: precision (P), recall (R), accuracy (Acc), F-measure (F1), total
energy correctly assigned (TECA), Accuracy (A). These metrics are defined as follows:

TP

P = TP+FP (14)
TP

R= TP+FN (1)
2XPXR

F1==—— (16)

1 Tiea S| f O -2
TECA = 1 T (18)
TP+TN
= PN (20)

where TP is the true positive that the appliances was working, FP is the false positive that the
appliance was working, TN is the true negative and FN is the false negative. P is the number of
positive cases in ground truth, and N is the number of negative cases in ground truth. Moreover,
x{" is the actual power for the mth appliance at time t, f(y{") is the estimated power for mth
appliance at time t, and T is the number of samples.

Table 3. Disaggregation performance on seen houses during training.

Technique Appliance F1 | P R A RET | TECA | MAE

d0i:10.20944/preprints201808.0551.v1
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Kettle 0.31 | 045 | 0.25 | 0.99 | 0.43 | 0.93 65
Dish Washer 0.11 | 0.07 | 0.50 | 0.69 | 0.28 | 0.90 75
cO Fridge 0.52 | 0.50 | 0.54 | 0.61 | 0.26 | 0.94 50
Microwave 0.33 | 024 | 0.70 | 0.98 | 0.85 | 0.92 68

Washing Machine | 0.13 | 0.08 | 0.56 | 0.69 | 0.65 | 0.92 88

Kettle 0.28 | 0.30 | 0.28 | 0.99 | 0.57 | 0.91 82

Dish Washer 0.08 | 0.04 | 0.78 | 0.37 | 0.66 | 0.85 111
FHMM Fridge 047 | 0.39 | 0.63 | 0.46 | 0.50 | 0.91 69

Microwave 043|035 |0.69 | 099|080 | 093 54

Washing Machine | 0.11 | 0.06 | 0.87 | 0.39 | 0.76 | 0.88 138

Kettle 0.48 | 1.00 | 0.39 | 0.99 | 0.02 | 0.98 16
Dish Washer 0.66 | 0.45 | 0.99 | 0.95 | -0.34 | 0.97 21
Autoencoder | Fridge 0.81 | 0.83 | 0.79 | 0.85 | -0.35 | 0.97 25
Microwave 0.62 | 0.50 | 0.86 | 0.99 | -0.06 | 0.99 13

Washing Machine | 0.25 | 0.15 | 0.99 | 0.76 | 0.18 | 0.96 44

Kettle 0.71 {091 | 0.63 | 1.00 | 0.36 | 0.98 23

Dish Washer 0.06 | 0.03 | 0.63 | 0.35 | 0.76 | 0.83 130
LSTM Fridge 0.69 | 0.71 | 0.67 | 0.76 | -0.22 | 0.96 34

Microwave 042 |0.28 1092|098 | 050 |0.97 22

Washing Machine | 0.09 | 0.05 | 0.62 | 0.31 | 0.73 | 0.88 133

Kettle 027 {023 024|099 | 0.58 | 0.91 81

Shallow ELM
Dish Washer 0.09 | 0.06 | 0.81 | 0.33 | 0.62 | 0.85 112
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Fridge 042 | 023 | 0.67 | 0.47 | 0.48 | 0.92 68

Microwave 041|045 |0.71 | 098 | 0.81 | 0.90 52

Washing Machine | 0.15 | 0.12 | 0.82 | 0.42 | 0.72 | 0.82 137

Kettle 0.72 | 1.00 | 0.70 | 1.00 | 0.01 | 0.98 15
Dish Washer 0.75 | 0.89 | 0.99 | 0.98 | -0.54 | 0.98 19
H-EIM Fridge 0.89 | 0.88 | 0.80 | 0.88 | -0.38 | 0.98 20
Microwave 0.66 | 0.52 | 0.87 | 0.99 | -0.05 | 0.99 12

Washing Machine | 0.50 | 0.73 | 0.99 | 0.76 | 0.09 | 0.97 27

5.3 ELM Architectural Details

We implemented our neural nets in Python. We trained our ELMs on an NVIDIA GeForce GT 750M
GPU with 2 GB of GDDR5. On this GPU, our nets typically took 1 and 3 hours to train per appliance
for the shallow and hierarchical ELM architecture, respectively. We train one ELM per given
appliance. The output of the ELM is a window of the power demand of the target appliance. The
input to every ELM is a window of aggregate power demand. The input window width is decided
on an appliance-by-appliance basis. For example, a window of 128 samples (13 minutes) for the
kettle; whereas, 1536 samples (2.5 hours) are used for the dishwasher. On the one hand, the window
width has to be selected to ensure that the majority of the appliance activations are captured.
However, a drop in performance can be observed if the width is too large, as reported in [21],

where the autoencoder for the fridge failed to learn anything useful with a window size of 1024
samples, for instance. The shallow ELM has the following structure: Input dimension determined
by the appliance duration, fully connected layer with 4096 hidden nodes having Sigmoid activation
function, and output dimension determined by the appliance duration. The H-ELM has the
following structure: Input dimension determined by the appliance, four hidden non-linear layers
with 2048 nodes having Sigmoid activation function, and output dimension determined by the
appliance duration.

Table 4. Disaggregation performance on unseen houses during training. This evaluation is essential
to assess the generalization capability of the pattern recognition technique.

Technique Appliance F1 P R A | RET | TECA | MAE

Kettle 0311023046099 |085 |[094 73

co
Dish Washer 0.11 | 0.06 | 0.67 | 0.64 | 0.62 | 0.94 74

d0i:10.20944/preprints201808.0551.v1
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Fridge 0.3510.30 [ 0.41 [ 0.45 | 0.37 [ 0.94 73

Microwave 0.050.03 1035|098 ]0.97 |0.93 89

Washing Machine | 0.10 | 0.06 | 0.48 | 0.88 [ 0.73 | 0.93 39

Kettle 019014 1029|099 (088 | 0.92 98

Dish Washer 0.05(0.03 1049033075 |091 110
FHMM Fridge 0.5510.40 | 0.86 | 0.50 | 0.57 | 0.94 67

Microwave 0.01{0.01]1034(091]099 |0.84 195

Washing Machine | 0.08 | 0.04 | 0.64 | 0.79 [ 0.86 | 0.88 67

Kettle 0.93 | 1.00 | 0.87 | 1.00 | 0.13 | 1.00 6

Dish Washer 0.4410.29 1099|092 | -0.33 [ 0.98 24
Autoencoder | Fridge 0.8710.8510.88 |1 0.90 | -0.38 | 0.98 26

Microwave 0.26 | 0.15 |1 094 | 0.99 | 0.73 [ 0.99 9

Washing Machine | 0.13 | 0.07 | 1.00 | 0.82 | 0.48 | 0.96 24

Kettle 093 (096|091 ]1.00 (057 |0.99 16

Dish Washer 0.08 [ 0.04 | 0.87 | 0.30 [ 0.87 | 0.86 168
LSTM Fridge 0741071 (0.77 | 0.81 | -0.25 | 0.97 36

Microwave 0.130.07 1099 | 098 [ 0.88 | 0.98 20

Washing Machine | 0.03 [ 0.01 | 0.73 [ 0.23 | 0.91 | 0.81 109

Kettle 0.95 | 1.00 | 0.92 | 1.00 | 0.10 1.00 4

H-ELM Dish Washer 0.55 | 0.35 | 1.00 | 1.00 | -0.28 [ 0.98 22

Fridge 0.89 | 0.90 | 0.92 | 0.94 | -0.22 | 0.98 23



http://dx.doi.org/10.20944/preprints201808.0551.v1
http://dx.doi.org/10.3390/electronics7100235

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2018 d0i:10.20944/preprints201808.0551.v1

13 of 18

Microwave 0.36 | 0.32 | 0.98 | 0.99 | 0.65 0.99 7

Washing Machine | 0.43 | 0.10 | 1.00 | 0.84 | 0.51 | 0.97 21

5.4. Experimental Results and Discussion

For the sake of comparison, we report results with combinatorial optimisation (CO), factorial
hidden Markov model (FHMM), long short-term memory (LSTM) recurrent neural networks, and
autoencoder algorithms. The performance of those solutions is given as reported in [21]. It should
be pointed out that there is a single LSTM per appliance in [21], and LSTMs have a number of
trainable parameters that is around 1M. There is also an auto-encoder neural architecture per
appliance, with a number of trainable parameters that range from 1M to 150M depending on the
input size. The interested reader is referred to [21] for more details on both the LSTM and
autoencoder training phase. The autoencoder acts as a denoiser, and it is therefore similar to our
ELM-based solutions.

The disaggregation results on seen houses are shown in Table 3. The results on houses unseen
during training are shown in Table 4. From the seen houses in Table 3, we observe that LSTM
outperforms more conventional CO and FHMM on two-state appliances (kettle, fridge and
microwave), it falls behind CO and FHMM on multi-state appliances (dishwasher and washing
machine). The shallow ELM solution attains comparable performance with CO and FHMH, yet it is
worse than the LSTM and autoencoder solutions. The proposed H-ELM instead outperforms CO,
FHMM, LSTM, and the autoencoder on every appliance on F1 score, P score, accuracy, the
proportion of total energy correctly assigned and MAE, on both two-state, and multi-state
appliances.

Finally, it is significant to verify the generalisation capabilities on houses unseen during training.
From the results reported in Table 4, we see that autoencoder outperforms CO and FHMM on every
appliance on every metric except the relative error in total energy. Instead, the H-ELM outperform
all of the other solutions, as expected. We have already demonstrated that H-ELMs are superior in
performance than shallow ELMs, so we do not report ELM results on unseen houses.

6. Conclusions

ELMs are a promising artificial neural network method introduced in [50] that has a high-speed
learning capability and has been employed in many tasks successfully. For instance, ELMs for wind
speed forecasting were used in [59, 60]. In [61], the authors apply ELSs to a state-of-charge
estimation of battery with success. ELMs were also suggested as an effective solution to guarantee
the continuous flow of current supply in smart grids. In this paper, we have proposed to apply
ELMs to NILM. ELMs, both in their shallow and hierarchical configurations, act as a non-linear
signal enhancement system allowing us to recover the power load of the target appliance from the
aggregated load. In this work, we have proposed to extend ELMs to the energy disaggregation
problem, and we have reported top performance on the UK-DALE dataset. ELMs are much more
straightforward to train than deep models reported in [21] while attaining superior performance in
both seen and unseen house and across appliances. The main advantage of the ELMs over LSTMs
and denoise autoencoder is that there is no need to fine-tune of the whole network by the iterative
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back-propagation algorithm, and that can quicken the learning speed and strengthen the
generalisation performance.

Finally, it is worth noting that the comparison of various NILM approach is still cuambersome.
However, there has been much improvement in the latest years, and there are novel approaches
and mathematical tools that haven’t been used extensively yet. We believe that ELM shows great
potential for NILM, and further improvement could be achieved through multi-task learning. We
also believe that Extreme Learning Machines could play a key role for management of Power
Consumption in Industrial Wireless Sensor Networks [63].
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