

HS-SPME-GC-MS Analyses of Volatiles in Plant Populations – Quantitating Compound × Individual Matrix Effects

Elizabeth A. Burzynski-Chang,¹ Imelda Ryona,¹ Bruce I. Reisch,² Itay Gonda,³ Majid R. Foolad,⁴ James J. Giovannoni,³ Gavin L. Sacks^{1*}

¹ Department of Food Science, Stocking Hall, Cornell University, Ithaca, New York 14853; eab54@cornell.edu, ir45@cornell.edu, gls9@cornell.edu

² Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456; bir1@cornell.edu

³ Boyce Thompson Institute for Plant Science, Ithaca, New York 14850; itaygonda@gmail.com, james.giovannoni@ars.usda.gov

⁴ Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802; mrf5@psu.edu

* Correspondence: gls9@cornell.edu; Tel.: 1-607-255-2335

SUPPORTING INFORMATION

MATERIALS & METHODS

Chemical Reagents and Standards for [^{13}C]Hexanal and [^{13}C]Hexanol Synthesis. The following chemicals were purchased from Sigma-Aldrich (St. Louis, MO): linoleic acid (95%), [^{13}C] α -linoleic acid (>97%; >98% 13C enrichment), Soybean lipoxygenase (LOX) (EC No. 1.13.11.12) type I-B (221700 units/mg), alcohol dehydrogenase (ADH) from *Saccharomyces cerevisiae* (15000 units/mg), β -Nicotinamide adenine dinucleotide (NADH), reduced disodium salt hydrate (>94%), hexanal (\geq 97%), and hexanol (\geq 98%). Chemicals for buffers (citric acid (\geq 99%), sodium phosphate mono- (\geq 99%), and di-basic (\geq 98%), sodium bicarbonate (\geq 99%), and sodium carbonate (\geq 99%)) and organic solvents – ethanol (\geq 98%; EtOH), methanol (\geq 99%; MeOH), dichloromethane (\geq 99%; DCM), and pentane (\geq 99%) – were also purchased from Sigma Aldrich.

Preparation of Stock and Working Solutions for [^{13}C]Hexanal and [^{13}C]Hexanol Synthesis

Enzyme solutions: Separate solutions of LOX (753780 units/mL) and ADH (39300 units/mL stock solution were prepared by addition to 20 mL of Milli-Q water. Each stock was then stored in glass vials at -80 °C in 1.5 mL aliquots and thawed prior to use.

Chemical Standards: A solution of linoleic acid (5% w/w) was prepared by weighing 0.5 g of linoleic acid into 9.5 g of EtOH. [^{13}C]linoleic acid stock solution (0.1 g was diluted in EtOH solution yielding a 5.95% w/w stock solution. Unlabeled hexanal and hexanol were prepared in EtOH to yield 10 and 100 $\mu\text{g}/\text{mL}$ working solutions. NADH stock solution was prepared by adding 20 mL of Milli-Q water into 1 g of NADH yielding a stock concentration of 0.05 g/mL.

Buffer solutions: pH 4.5, pH 7.0, and pH 9.5 buffer solutions were prepared from 0.1 M citric acid/0.2 M sodium phosphate dibasic, 0.1 M sodium phosphate dibasic /0.1 M sodium phosphate monobasic, and 0.1 M sodium bicarbonate/0.1 M sodium carbonate respectively. The solutions were stored at 3 °C.

Protocol for Enzymatic Synthesis of [$U^{13}C$]hexanal and [$U^{13}C$]hexanol from [$U^{13}C$] α -linoleic acid

The protocol for generating [$U^{13}C$]hexanal and [$U^{13}C$]hexanol is shown in Figure S.1. The yield of hexanal and hexanol was determined by calibration against unlabeled standards on GC-MS.

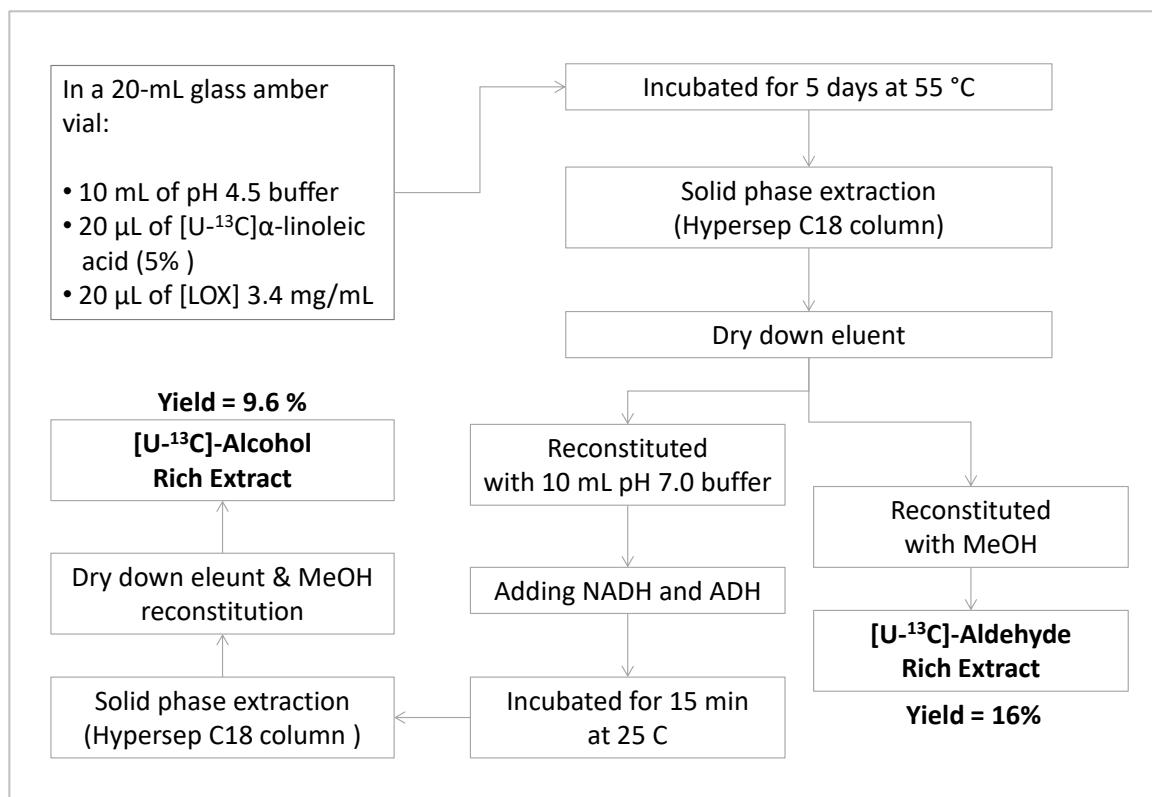


Figure S.1 – Protocol for generation of $[U^{13}C]$ hexanal and $[U^{13}C]$ hexanol from $[U^{13}C]\alpha$ -linoleic acid.

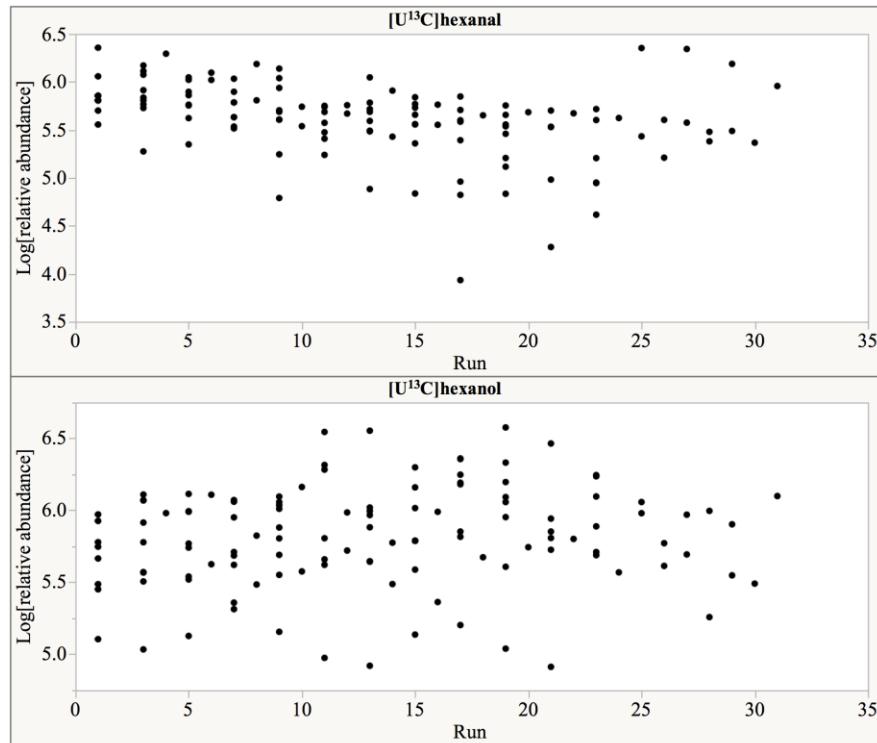


Figure S.2: Plot of ordinal run number (i.e. sample queue assignment) versus log-normalized peak areas for $[U^{13}\text{C}]\text{hexanal}$ (top) and $[U^{13}\text{C}]\text{hexanol}$ (bottom).