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Abstract: This paper presents the methods of estimating the mean square error of hydrological forecasts, 
allowing for assessment of their practical applicability. Depending upon the amount and composition of 
available hydrometeorological data, an appropriate method for forecast error estimation is chosen. A 
system of statistical tests for comparison of different forecasting methods for the same hydrologic 
characteristic with the same lead time is presented. These tests allow for choosing an optimal and most 
accurate forecasting method. Hydrological forecasting method efficiency estimation is based on 
comparing the forecast error with climatology or inertial (persistence) forecast error using presented tests. 
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1. Introduction 
The purpose of hydrologic forecasting is to predict the expected future water regime characteristics for 
rivers, channels, lakes, reservoirs, and other water bodies. Hydrologic forecasts are used for water 
resources management and water-related hazard management planning and operational activities. The 
quality of hydrologic forecasts is defined in turn by their accuracy and lead time. Therefore, the 
development of modern objective methods for evaluating the quality of operational river flow forecasting 
methods is of great scientific and practical importance [11, 12]. 

To estimate deterministic hydrologic forecast error and to assess the forecast applicability, the 
system of statistical methods is recommended. The use of those methods allows for obtaining objective 
quality assessment of hydrologic forecasting algorithms. Using these methods allows for selecting 
optimal scheme and developing scheme enhancement strategies taking into account the specific features 
of forecasting scheme, as well as the amount of hydrologic and meteorological data, their contents and 
quality investigated during scheme development, testing and operational use. 

Forecast verification implies statistical analysis of the relation between actual values of 
hydrologic regime elements and their forecast values using this scheme. Verification procedures are the 
final necessary step to complete the process of forecast scheme development and implementation. 
Hydrological forecast error determination and analysis are an essential step in the process of scheme 
development and operation. First of all, for a given forecast lead time, forecast error is the key index of 
practical value of that forecast. Moreover, forecast error analysis allows for determining scheme 
weaknesses and outlining strategies for scheme enhancement. Analysis results for a set of forecast of 
different elements of hydrologic regime within a whole region may determine and prove the strategies 
for improving the observation network and data acquisition and processing system. 

In case when different methods may be used for forecasting the same hydrologic characteristic 
with the same lead time, there is a need to choose the most accurate method. If an advanced modification 
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of some previously used scheme is presented, its advantage must be substantiated. In all such cases, 
statistically significant difference between the estimated errors of hydrologic forecast methods must be 
determined. 

Hydrologic regime elements forecasting method are based on hydrological and  meteorological 
information about variability factors of these elements available on the date of forecast issue. An 
alternative forecast is based on long-term data statistical analysis of predicted element only. Climatology 
forecasting method (“climatology”) using mean long-term value of predicted element could be 
considered such unconditional alternative for long-range hydrological forecasts as well as for some 
medium-range forecasts. Inertial, or persistence forecast (“persistence”) using the known value of forecast 
element for the date of forecast issue could be considered an unconditional alternative for short-range 
and some medium-range hydrological forecasts. The practical use of a hydrological forecast method is 
reasonable if its accuracy is higher than that of alternative forecast [2, 6,12]. 

 
2. General principles of forecast error estimation 
Hydrological forecast general error V  is defined as mean squared difference between its actual value Y  
and value Y~  predicted using considered scheme: 

V = ])
~

[( 2YYM  .                                                                                                     (1) 
 Before presenting the measure V  estimation methods, considering forecast error estimation using 

dependent sample would be useful. Consider a hydrological forecasting method based on n -year joint 
hydro- and meteorological observation data. If average number of annually issued forecasts is l , the 
number N  of hydrological observations of predicted value taken into account when developing that 
method is nl , as well as that of hydrometeorological observations of its predictors. Those 
hydrometeorological observations are used for generating the series of N  forecasts. As a result, a test 
forecast error series 11

~YY  ,…, NN YY ~  is generated. Forecast error is characterized by the following 
index: 
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where k  is the number of forecasting model or formula parameters estimated using the same data of N  
hydrometeorological observations. In case of using graphs representing the relationship between 
predictors and predictand, k  is defined using the following rule: k = 2 for a linear relationship between 
one predictor and predictand; k = 3 for a parabolic, exponential or logarithmic relationship, etc. [1, 7, 10, 
16]. 

Very important aspect of considered problem is that the test forecast error series used for 
producing the estimate 2S  was generated based on the data used for developing the evaluated 
forecasting method. Choosing predictors, developing the forecasting formula, estimating its parameters 
or plotting relationship graphs was performed in such a way that the discrepancy between observed and 
predicted values iY  and iY

~  of hydrologic characteristic for i = 1, ..., N  was minimal. 

Due to the fact that dependent sample–based estimate 2S  is characteristic of only residual 
variance 2~  of the relationship between predictors and predictand Y , the true value of forecast error is 
therefore considerably underestimated.   

Forecast error is defined by forecasting method robustness against the used observation data as 
well. Ceteris paribus, the larger the number of predictors and parameters (or the more flexible the set of 
relationship graphs), the lower the robustness of that predictors–predictand relationship and the larger 
the difference between residual variance 2~  and forecast error V  [6, 8, 9, 15, 19]. 

To recognize the discrepancy between 2~  and V , consider a case when stochastic relationship 
between characteristic Y  and its predictors is described by a linear regression model for each date of 
forecast issue over the observation period and over projected period of operational use. Model 
parameters are estimated using the least squares method basing on N  joint hydro- and meteorological 
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observation series. The relationship between residual variance 2~  and forecast error V  is described by 
the following equation: 

V  = 2~ )
1

/2
1(



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kN

Nk
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1
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.                                    (3) 

The formula (3) shows that forecast error is rapidly increasing with increasing number k  of 
parameters, as residual variance 2~  is not that rapidly decreasing due to more comprehensive and 
adequate description of predicted event [2, 9]. The above results demonstrate a well-known fact that in 
case of verification using independent sample, simple but robust forecasting methods quite often can be 
more accurate than those using comprehensive and adequate models with many parameters to be 
estimated [2, 6, 9, 12, 18, 20]. 

 
3. Forecast error estimation methods 
Depending on the volume and composition of available observation data used for developing and testing 
a forecast, one of the following methods is recommended for estimating deterministic hydrological 
forecast error [2]. The absence of autocorrelation in series of forecast errors is supposed. 

Method 1. 
If N~  forecasts of a hydrological variable Y  were issued using developed and implemented 

hydrological forecasting method, a series of forecast errors 11
~

  NN YY ,..., NNNN YY ~~
~

    is generated, 
representing the results of testing using independent sample. Forecast error estimate computed from that 
series is defined by the formula: 

*
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.        (4) 

The estimate *
IV  is unbiased, i.e., is free of systematic error. For quite large number N~  of 

independent test forecasts, *
IV  is close to actual forecast error V  [1, 8, 10, 11, 16]. 

For proper use of estimates *
IV  or *

IV , their statistical error of determination must be computed. 

For *
IV  and *

IV , their root mean squared errors (square root of variance) are approximately calculated 
using the formulas: 

)( *
IV  = 

N
VI ~

2* ,                    (5) 

)( *
IV = 

N
VI ~2

1* .                               (6) 

As more observation data is available, a hydrological forecast may be corrected (updated) by re-
estimating model parameters or refining the relationship graphs, which results in changing that 
forecasting method, in fact, in developing a new one which has to be tested separately. 

Method 2. 
In case of quite long n -year hydro- and meteorological observation data series, a “leave-p-out” 

cross-validation method can be used [2, 4, 8, 11, 13, 16, 19]: ‘truncated’ 0n -year random sample of 
original n -year data is used as training set for developing a forecasting method and  the remaining 

0ˆ nnn   observations are used as an independent validation set. On average, l̂  forecasts are issued 

during each of n̂  years; forecast error series length N̂  is therefore equal to ln ˆˆ . That test data subset 
should be used for estimating the forecast error using a formula similar to (2.9). 

Test dataset–based forecasting scheme remains the same, though its parameters or graphs may 
change. Thus, it is reasonable to change the indications and to denote such forecast by jY ,0

~  for j = 

1,..., N̂ . 
Using less observation data leads to lower accuracy of model parameters estimation. As a result, 
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‘truncated’ forecast error is somewhat larger than actual forecast error V  derived from full data set of N  
observations. A correction coefficient resulting from formula (2.5) may be used to eliminate that fault [2]. 
If k  parameters of forecasting method are to be estimated, the forecast error estimate computed from all 
N  observations should be defined by the following formula: 

*
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Accuracy of that method may be considerably improved using the following approach: the above 
procedure should be repeated m  times in such a way that the resulting test set consists of non-duplicate 
data for each of all available n  years. That number m  of iterations should satisfy the condition that the 
sum of all test sample lengths 1N̂  + …+ mN̂  is equal to total number N  of observations. To ensure 

satisfying that condition, the numbers 1n̂ ,..., mn̂  may differ at each iteration. 

Resulting forecast error estimate is computed from the series of forecast error estimates *
1,IIV , …, 

*
,mIIV  for m  iterations: 

*
IIV  = 



m

i
iIIV

m 1

*
,

1
.         (8) 

Root mean squared errors of estimates *
IIV  and *

IIV  are approximately calculated using the 
formulas (5) and (6). 

Method 3. 
Consider a less favorable situation when original hydro- and meteorological observation data 

sample is quite short, not allowing for obtaining a validation set long enough, whereas no operational 
verification has been performed yet or there is still not enough data available for error estimation using 
the above method 1. In this case, a “leave-one-out” method, based on J.W. Tukey’s “jack-knife” method, 
is optimal [2, 9]. In case of small n , this is an optimal modification of method 2 [2, 5, 9, 13, 17, 18].  

Leaving out the i -th year from n -year observation period, the remaining n –1 observations are 
used for developing an i -th variant of forecasting method modification with new relationship 
parameters or graphs. Denote the number of forecasts issued during the i -th  year by il . The series of 

forecast errors jiY , – jiY ,
~  for j = 1,..., il  can be used as independent validation sample, as the values jiY , , 

as well as their predictors, were not taken into account when developing the i -th variant of forecasting 
method.  

For i  = 1, …, n , the described procedure is repeated for each i -th year, each time returning the 
year left out on previous step to the training sample. Thus, method 3 is a modification of the above cross-
validation method 2 in case of 0n  = n –1, n̂  = 1, and m  = n . As a result, for j = 1,..., il  and i  = 1, …, n , 

a series of test forecast errors jiY , – jiY ,
~  is generated, characterizing the forecast error derived from ( n –

1)-year observation data, whereas the verified scheme is based on n -year observation data. However, 
this may be considered negligible, as the correction coefficient following from formula (2.5) is close to 1. 
The “leave-one-out”-estimated forecast error is defined by the formula: 

*
IIIV  = 
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In respect of theoretical results presented in [9], approximate root mean squared errors of estimates 
*

IIIV  and *
IIIV  are defined by formulas (5) and (6). 

Method 4. 
The presented verification method is the easiest, allowing for validating the forecast using a 

dependent sample (the same data used for scheme development). This method is based on a hypothesis 
that stochastic relationship between hydrologic characteristic and its predictors is described by a linear 
regression model and its k  parameters are estimated using least squares method. Using the estimates 
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2S , respectively, forecast error can be estimated as follows: 
*

IVV  = 2S )
1

(
kN

N




.                                        (10) 

In respect of theoretical results presented in [2, 9], approximate root mean squared errors of 

estimates *
IVV  and *

IVV  are defined by formulas (5) and (6) too. 

The following guidelines are recommended for deterministic hydrological forecast verification: 
1. If there are enough operational forecasts issued to form an independent validation data set, it is 

reasonable to use method 1. Otherwise, one of the remaining three methods should be used. 
2. If there is enough joint hydro- and meteorological data available for developing and validating a 

forecasting scheme, it is reasonable to use method 2. 
3. Otherwise, it is reasonable to use method 3. 
4. For any data volume available, it is reasonable to use method 4, if the forecasting equation is 

linear in its parameters. 
5. We recommend that several verification methods be used if possible and analysis of results be 

performed. 
 

4. Hydrological forecast verification example 
Consider using the above methods for short-range daily hydrologic forecast verification (case study of 
the Sochi River at Sochi, forecast lead time is 1 day). Conceptual snowmelt- and rainfall–runoff model 
was developed for forecasting. To feed that model, daily hydrometric and weather data observed at Sochi 
streamgauge and Sochi weather station are used, as well as weighted mean temperature and 
precipitation 1-day ahead forecasts derived from four available operational meteorological model outputs 
(COSMO-Ru 7, NCEP, REGION, and UKMO). For each month, using least squares method, 13 
parameters of hydrological forecasting model were estimated from 18-year hydrometeorological 
observation data series over the period from 1984 to 2005 (accounting for observation gaps). Forecasts are 
issued once a day on daily basis; annual number of issued forecasts is therefore equal to 365-366. In 
respect of the number of days in a month, total monthly number N of daily observations varies from 508 
to 558. Mean long-term total annual number of daily observations is 6506 [3]. 

As the above forecasting model has been operationally implemented fairly recently, there is still 
not enough data available for using verification method 1 (see section 2.2). Therefore, methods 2, 3 and 4 
were used for estimating forecast error. 

Example of using method 2. 
Randomly choosing n̂  = 5 years 1984, 1990, 1998, 2000, and 2004 as ‘independent data’, initial 18-

year observation data were cut to a 5-year validation set and 13-year training set. For each month, model 
parameters were estimated using that training sample and 5-year forecast error series was derived from 
test sample.  

Figure 1 shows daily actual vs. predicted flow (discharge) plots, which coincide fairly closely.  
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Figure 1. Daily discharge of the Sochi River at Sochi in the year 1984: actual (blue solid line) vs. 

forecast (red dashed line)  
 

For each month, forecast error was estimated using equation (7), where N̂  = 141 - 155. For each 

month and the whole year, the estimates *
IIV  /sm3 are given in table 1. According to (6), relative root 

mean squared error of estimating *
ПV  is approximately equal to 6.4% for each month. 

Example of using method 3 
For i =1,…, n  ( n  = 18), consequently leaving out every i -th year, forecasting model parameters 

were estimated from remaining n –1 = 17 years. The data of that i -th year were used for generating an 
independent set of forecast errors. For each month and the whole year, forecast error was estimated using 

equation (9). Estimates *
IIIV /sm3  are presented in table 1.  

Example of using method 4.  
As the conditions for using method 4 are satisfied, equations (2) and (10) were used for estimating 

forecast error *
IVV /sm3 for each month and for the whole year is given in table 1..  

 
Table 1 
Daily stream flow forecast error estimates, cubic meters per second (case study of the Sochi River at 

Sochi) 
  

  I II III IV V VI VII VIII IX X XI XII year 
*

IIV  12.3 10.2 10.4 9.6 16.3 11.9 10.2 12.5 9.6 16.4 15.7 17.1 12.7 
*

IIIV  11.4 8.2 11.1 8.8 17.2 12.5 9.7 10.4 9.8 14.5 16.1 15.7 12.1 
*

IVV  10.4 8.5 10.7 8.6 14.8 12.1 9.2 11.2 8.8 15.3 14.5 16.2 12.0 

 
As table 1 shows, for each month, identical forecast error estimates are derived using different 

verification methods. The features of hydrological regime, in particular, intramonthly flow variability, are 
well represented by monthly error distribution [2, 3]. 

 
5. Comparison of hydrologic forecasting methods 
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Consider using two concurrent methods of forecasting the same characteristic Y  with the same lead 
time. The differences in forecast methods may be related with forecast models, meteorological data 
assimilation schemes, the set of predictors taken into account, the set of parameters, parameter estimation 
methods, or forecast relation graphs. Denote the forecasts of characteristic Y  constructed using methods 

“1” and “2” by 1

~
Y  and 2

~
Y , respectively, and mean squared forecast errors defined by formula (1), i. e., 

true error values of compared methodologies, by 1V  and 2V , respectively. The methods presented before 

must be used for computing the estimates *
1V  and *

2V  based on test forecast series using dependent or 

independent samples , series lengths are 1N  and 2N , respectively. There may be some number 2,1N  of 

test forecasts issued on the same time using compared schemes. 
Considering  test forecast series common for both schemes “1” and “2”, denote the forecasts of 

value iY  for i -th forecast time by iY ,1

~
 and iY ,2

~
. There may be strong correlation between forecast errors 

iY – iY ,1

~
 and iY – iY ,2

~
 due to the common observed value iY  and to the same (or strongly correlated) 

predictors. The factors not taken into account, for instance, weather conditions over hydrological forecast 
lead time period [2], contribute considerably to forecast error correlation. 

Standard estimate of forecast error iY – iY ,1
~  and iY – iY ,2

~  correlation coefficient for i  = 1,…, 2,1N is 

defined by formula: 

r =




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Forecasting experience demonstrates that positive correlation coefficient estimate r  is virtually 
always statistically significant. Error correlation of forecasts using different methods must be taken into 
account when comparing the estimates *

1V  and *
2V , as that correlation results in increase in probability 

of advantage of one, i.e., in power increase of statistical tests used for comparing those methods [2, 9]. 
Suppose method “1” seems to be more accurate, i.e., *

1V < *
2V  likely due to the fact that method 

“1” is actually more accurate than method “2”, i.e., 1V < 2V . However, method “1” may only seem to have 
an advantage due to statistical error of compared estimates. Submitting or rejecting the advantage of one 
method over another actually comes to testing a statistical   hypothesis that )( 21 VV   against )( 21 VV  . 

Depending on the properties of each test forecast error series, we recommend two statistical tests 
be used for assessing statistical significance of method “1” advantage. When using these tests, the 
following fact must be taken account: if scheme errors were estimated using dependent sample, the 
number of estimated parameters ( 1k  and 2k  for methodologies “1” and “2”, respectively) must be taken 

into account. Otherwise, if forecasts errors were estimated using independent sample, the values 1k  and 

2k  must be replaced with zero for further calculations.  
Test 1. 
This test, given in [9], is a modification of asymptotically most powerful Wald likelihood-ratio 

test [2]. It can be used if the following conditions are satisfied: 
1 Test forecasts of the same forecast time are used for testing both forecasting methodologies, i.e., 

1N  = 2N = 2,1N = N . 

2 For each forecasting method, test forecast error series is a random sample of normal probability 
distribution. 

3 Forecast error estimates *
1V  and *

2V  were computed using methods 1, 2, or 3 described before. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2018                   doi:10.20944/preprints201808.0507.v1

http://dx.doi.org/10.20944/preprints201808.0507.v1


 

8 

 

For significance level α , the inequality *
1V < *

2V  should be considered statistically significant and 
scheme  “1”, obviously more accurate, if the following condition is satisfied: 

B = ]
)1(4

)(
1ln[

2*
2

*
1

2*
1

*
2

rVV

VV
N




  > )α(χ 2
1 ,                                                          (12) 

where )α(χ 2
1  is the quintile of central chi-squared distribution with one degree of freedom 

corresponding to probability of exceedance α . For α  = 5%, )α(χ 2
1  = 3.84 [2, 9]. 

One should pay attention to the fact that the left part of inequality (12) increases with increasing 
value of coefficient r . This is indicative of the fact that in case of strongly correlated forecast errors of 
compared methods, even a slight advantage of one of forecasting methodology over another becomes 
statistically significant. 

Test 2. 
The presented statistical test is recommended for the use in the most general case of no 

limitations of test forecast error series properties. In this case, we recommend the multidimensional 
statistical analysis Mahalonobis distance based test given in [2]. The errors )( *

1V  and )( *
2V  of 

estimates *
1V  and *

2V , defined by formula (5). The only condition of using that test is sufficiently large 

number of test forecasts, 1N  and 2N  for methods “1” and “2”, respectively. 

For significance level α , the inequality *
1V < *

2V  should be considered statistically significant and 
method  “1”, obviously more accurate, if the following condition is satisfied: 

M  = 

)()(2)()( *
2

*
1

2
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2,1*
2
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1

2

*
1

*
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VVr
NN

N
VV

VV

 


 > )α(t ,                  (13) 

where )α(t  is the normal probability distribution quintile corresponding to probability of exceedance α . 
In particular, for α  = 5%, )α(t  = 1.64. 

 
6. Hydrologic forecasting schemes comparison example 
Compare two methods of short-range stream flow forecasting for the Sochi River at Sochi (lead time is 1 
day). Both were developed using the same hydrometeorological observation data for the period from 
1984 to 2005 accounting for observation gaps (series length n  = 18 years). Total monthly number of daily 
observations varies from 508 to 558. For the whole year, mean long-term total number of daily 
observations is equal to 6506.  

As for forecasting algorithm “1” presented in section 2.4, its forecasting formula has 13 
parameters estimated for each month using least squares method. 

As for forecasting algorithm “2” based on the same conceptual snowmelt- and rainfall-runoff 
model and using the same hydrometeorological data, its forecasting formula is simplified and has only 

2k  = 7 parameters estimated for each month. 

Concerning specific features of the forecasting algorithms, with *
1V , *

2V  and r  estimates  taken 
into account, the above statistical tests are used for comparing both forecasting methods. 

Using test 1. 
Correlation coefficient r  of forecast “1” and forecast “2” errors for the same days was estimated 

using formula (11) for each month and for the whole year (see table 2). The values of test measure B  
defined by formula (12) are also given in table 2. For significance level α  = 5 %, critical value of B  is 

%) 5(χ 2
1 = 3.84. According to the data given in table 2, for the whole year and for all months except for 

June, July, and September, the inequality (12) is true and there is statistically significant accuracy 
advantage of scheme “1” over scheme “2”. 

Using test 2. 
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Root mean squared errors )( *
1V  and )( *

2V  of estimates *
1V  and *

2V  respectively, defined by 
formula (5), are presented in table 2. The values of test measure M , defined by formula (13) for 

1N  = 2N = 2,1N = N , are given in table 2. For significance level α  = 5 %, critical value of M is %) 5(t  = 

1.64. According to the data given in table 3, for the whole year and for all months except for June, July, 
and September, the inequality (13) is true and there is statistically significant accuracy advantage of 
forecasting algorithm “1” over method “2”. For the Sochi River, flood frequency is quite low in the period 
from July to September following the period of relatively low spring flood. Therefore, the impact of using 
simplified forecasting formula “2” is minimal [3]. 

 
Table 2  
Stream flow forecasting schemes comparison results using test 1 and 2 for Sochi River flow 

forecasting 
 

 I II III IV V VI VII VIII IX X XI XII year 
N  554 508 526 540 558 540 558 526 540 558 540 558 6506 

*
1V  108 72 114 74 219 146 85 125 77 234 210 262 144 

)( *
1V  6.6 4.6 6.2 5.1 18.9 17.3 11.1 16.7 6.5 17.2 14.1 19.1 3.8 

*
2V  161 88 164 83 279 149 86 135 81 266 253 331 172 

)( *
2V  15.6 6.7 10.6 6.4 30.6 18.0 11.7 16.8 7.3 20.1 18.6 24.9 5.0 

r  0.81 0.87 0.84 0.92 0.85 0.96 0.98 0.97 0.93 0.90 0.90 0.89 0.90 
B  61.5 20.7 7.9 3.3 3.9 0.8 0.4 2.1 1.4 5.9 4.6 5.7 12.7 
M  4.9 5.1 7.9 3.3 3.9 0.8 0.4 2.1 1.4 5.9 4.6 5.7 12.7 

 
Thus, the results of using the above both tests allow to make the same conclusion that for the 

whole year and for almost all months, there is statistically significant accuracy advantage of forecasting 
algorithm “1” over “2” [2, 3]. 

 
7. Forecast applicability assessment 
Climatology forecasting method (“climatology”), as well as inertial (persistence) forecast, may be used as 
unconditional alternative of some hydrological forecasting method. If the latter is obviously more 
accurate than unconditional alternative forecast, the studied methodology has proved to be used in 
hydrological forecasting practice [2].  

Climatology method is used as unconditional alternative of long-range and some medium-range 
hydrological forecasting techniques, as well as of occurrence dates forecasting of events characterizing 
the hydrological regime of a water body. The forecast of some hydrologic characteristic Y  produced 
using the climatology method is characterized by its long-term value Y  averaged over the n -year period 
of observations ( 1Y ,…, nY ). Such forecast error is usually characterized by Y  variance estimate defined 
by the following formula: 

  = 





n

i
i YY

n 1

2)(
1

1
.                                                              (14) 

The “climatology” forecast error is compared to the error of forecast produced using the 
evaluated method. That error is usually characterized by an index 2S  defined by formula (2). That 
measure is an approximate estimate of residual variance related to the variance of forecasted value and 
correlation ratio R  [18]. Squared R  estimate is defined by the following formula:  

2R  = 
2

2

1

S

 .                                                                          (15) 
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The index 2R  is a correction of Nash-Sutcliffe efficiency index widely used in a number of countries for 
assessing the hydrological forecast efficiency [2, 14, 19]. 

Inertial forecast is the unconditional alternative of short-range and some medium-range 
hydrological forecasting methods. For t -day forecast lead time, inertial forecast )(~ tYI  of some flow 
characteristic for day t  is based on that characteristic’s value )( ttY   known on the date of forecast 
issue and is defined by the formula: 

)(~ tYI  = )( ttY  +  ,                                        (16) 
where  , providing the absence of systematic error, is mean variation of forecasted hydrologic 
characteristic over the lead time period. That value is the arithmetic mean of the series i  for i  = 1,..., 

N , where N  is the total number of forecasted runoff characteristic variation values observed over a 
hydrological forecast lead time period. Inertial forecast error estimate   is defined by the formula: 

  = 





n

i
iN 1

2)(
1

1
.                             (17) 

In some cases of medium-range hydrological forecasting, a problem of choosing an unconditional 
forecasting alternative may arise. The choice of “climatology” or inertial forecast is driven by the   and 

  ratio. For t -day forecast lead time, that ratio is determined by the angle of incline ( a ) of the line 
)(tY  = f( )( ttY  ), where )(tY  is the forecasted hydrological variable and )( ttY   is its actual value 

observed t  days before day t . The criterion of choice is as follows: 
if a  1/2, then   >   and inertial forecast is therefore recommended as unconditional 

alternative of evaluated forecasting scheme; 
if a  < 1/2,   <   and “climatology” is therefore recommended as unconditional alternative of 

evaluated forecasting scheme [2, 7]. 
Applicability assessment of a hydrological forecast is based on comparing its error with that of 

unconditional alternative forecast. One of the methods described before should be used to get the error 
estimate *V  of forecast depending on the volume and quality of available data. 

In case of choosing “climatology” as alternative, we need to compare *V  with 2  defined by 
formula (14). If *V < 2 , we recommend the statistical tests presented before be used for testing the 
statistical significance of accuracy advantage of evaluated method over “climatology”. 

In case of choosing inertial forecast as alternative, we need to compare *V  with 2
   defined by 

formula (17). If *V < 2
 , we recommend the above mentioned tests be used for testing the statistical 

significance of accuracy advantage of evaluated method over inertial forecast. 
 

8. Forecast applicability assessment example 
Applicability evaluation of one-day lead time stream flow forecasting scheme for the Sochi River at Sochi 
is considered as the second example of forecasting method applicability assessment. Error estimates 
defined by method 4 are considered in this example. One-day lead time inertial forecast defined by 
formula (17) for t  = 1 is used as unconditional forecast  alternative.  

For each month and for the whole year, table 3 presents the following data: the ratio of evaluated 

forecast errors to inertial forecast errors *V /  , and the coefficient r  of correlation between same-
day evaluated forecast errors and inertial forecast errors. There is considerable difference between the 
evaluated forecast error probability distribution and normal probability distribution, as well as between 
the inertial forecast probability distribution and normal probability distribution. In respect of the above, 
the most generalized test 2 was used for assessing the efficiency of considered forecasting scheme. The 
values of that test index M , defined by formula (13), are presented in table 3. For each month and for the 
whole year, those values are large enough for the inequality (13) to be true for any feasible significance 
level α . 
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Table 3 
Applicability characteristics of short-range daily stream flow forecasting scheme for the Sochi 

River at Sochi  
 

 I II III IV V VI VII VIII IX X XI XII year 

/S  0.62 0.60 0.58 0.61 0.65 0.72 0.63 0.66 0.64 0.58 0.57 0.63 0.62 
r  0.36 0.50 0.33 0.44 0.29 0.49 0.40 0.45 0.30 0.41 0.41 0.50 0.41 
M  10.9 10.0 11.2 9.9 11.2 7.0 7.7 7.0 9.3 9.7 11.1 10.0 32.7 

 
Thus, the considered method of 1-day lead time daily stream flow forecasting for the Sochi River 

at Sochi may be considered efficient for each month and for the whole year [5, 6]. 
 

8. Forecast applicability assessment example 
Special web application had been developed for operational visualization and analysis of 

hydrological forecasting results for the Kuban River basin. The web app enables users to compare 
streamflow and flood category forecasts with actual hydrological situation in this river basin. The web 
app provides access to all hydrological data via Internet to remote users. For this web application 
development, some GIS Amur technologies were used [1, 2, 3]. 

The web application is a user interface managing and supporting several web services, including 
web map service, actual hydrological data service, forecast hydrological data service, and satellite web 
service. Web map service includes a set of topographic and administrative maps (Rosreestr, 
OpenStreetMap, Esri topo maps, etc.) and digital elevation models (Esri and USGS web services). Actual 
hydrological web service allows users to display observed river stages at Roshydromet and EMERCOM 
(Emercit) streamgauges, whereas forecast hydrological web service provides the results of hydrological 
modeling and forecasting. Satellite web service provides Russian and foreign satellite data of high- and 
medium spatial resolution provided by the State Research Center “Planeta”. 

Two Roshydromet organizations, the Hydrometcenter of Russia and the State Research Center 
“Planeta” perform the technical support of the web application. The Hydrometcenter has a web server 
hosting the web app (the management component) and GIS servers hosting the hydrological web 
services, organized into a cluster in order to increase the web service performance and reliability. The 
database providing information for the web services had been deployed on a separate server. 

The State Research Center “Planeta” has a GIS server hosting an automatically updated satellite 
database and satellite web services. 

ArcGIS Enterprise was used for building and managing the web app and web services. Microsoft 
SQL Server 2014 Enterprise for Windows is used for managing the hydrological and satellite databases. 

To make working with hydrological data more convenient, a number of functionalities had been 
implemented in the “Kuban” web app. In particular, the most recent data is displayed first time the users 
launch the app. The app allows users to work with both operational and archival data. Red color is used 
to display locations (streamgauges) where water stage exceeds a dangerous threshold. Moreover, the web 
app allows users to integrate satellite and ground data, to use tables and graphs for their data 
visualization. Using the app, for any date of river forecast issue a forecast hydrograph can be plotted for a 
selected location together with the hydrograph for the past few days, allowing users to analyze 
streamflow changes over some time for 1 to 5 days ahead. Moreover, plotting back predicted data against 
an actual hydrograph for a given time period is a useful tool to analyze forecast accuracy over that time 
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period. Other useful options are: searching, filtering, and downloading data using specific criteria; 
multiple time animation of actual and forecast data; etc. 

Figure 1 presents the forecast of flood situation in the Kuban River basin in terms of flood 
category (from no flooding to major flooding using green-yellow-red color scheme, respectively) and 
streamflow changes (flow rise is displayed with red figures; flow fall, with blue figures). 
 
 

 
 

Figure 1. Hydrological forecasts, visualized in the WEB-GIS application 
 
 

9. Conclusion 
Hydrological forecast verification rules taking into account the amount and composition of available 
hydrometeorological data are presented in this paper, as well as their mean square error estimation 
methods. To choose an optimal forecasting method, statistical tests for comparison of different methods 
of forecasting the same hydrologic characteristic with the same lead time are offered. This paper presents 
hydrological forecasting method efficiency estimation procedures based on comparing the forecast error 
with climatology or inertial forecast error. Verification of short-range flood forecasts of the Sochi River 
(Krasnodar region, Russian Federation) is an example of using the above recommended verification rules. 

 
References 

 
[1] American Society of Civil Engineers,1996: Hydrology Handbook, Second Edition, ASCE Manual and 
Reports on Engineering Practice No. 28, New York, 784.  
[2] Borsch S.V., Khristoforov A.V. Hydrologic flow forecast verification. Moscow, Proceedings of 
Hydrometcentre of Russia, Special Issue 355, 2015, 198.  
[3] Borsch S.V., Simonov Y.A., Khristoforov A.V. Flood forecasting and early warning system for rivers of 
the Black Sea shore of Caucasian region and the Kuban River basin. Moscow, Proceedings of 
Hydrometcentre of Russia, Special Issue 356, 2015, 247.  
[4] Burman P., Chow E., Nolan D. A cross-validatory method for dependent data. Biometrika, 1994, № 81, 
351-358.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2018                   doi:10.20944/preprints201808.0507.v1

http://dx.doi.org/10.20944/preprints201808.0507.v1


 

13 

 

[5] Efron B. The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial and Applied 
Mathematics, 1982, 92. 
[6] Guide to Hydrological Practices. Volume II. Management of Water Resources and Application of 
Hydrological Practices // World Meteorological Organization - No. 168, 2009, 302.  
[7] Instruction to forecasting service. Section 3. Part 1. Forecasting of land hydrological regime. 
Leningrad, Gidrometeoizdat, 1962, 193.  
[8] Jolliffe I.T., Stephenson, D.B. Forecast Verification. – Wiley, 2003, 240.  
[9] Khristoforov A.V. Reliability of river flow calculations. Moscow, Moscow State University, 1993, 166.  
[10] Management Overview of Flood forecasting Systems (MOFFS): Version 3. Geneva: HWR, 1995, 26. 
[11] Manual on Flood Forecasting and Warning. // World Meteorological Organization - No. 1072, 2011, 
138. 
[12] Lambert A.O. Development and Use of the Management Overview of Flood Forecasting Systems 
(MOFFS) / Technical Reports in Hydrology and Water Resources No. 55. Geneva: HWR, 1994, 23. 
[13] Langford J. Quantitatively Tight Sample Complexity Bounds. -  Carnegie Mellon Thesis, 2002, 124. 
[14] Nash J. E., Sutcliffe J. V. River flow forecasting through conceptual models. Part 1 – A discussion of 
principles // Journal of Hydrology. Vol. 10, 1970, 282–290. 
[15] National Research Council, 1988: Estimating probabilities of extreme floods, National Academy 
Press, Washington, D.C., 141. 
[16] National Weather Service River Forecast Verification Plan. Report of the Hydrologic Verification 
System Requirements Team. U.S. Department of Commerce. National Oceanic and Atmospheric 
Administration, 2006, 44. 
[17] Tukey J.W. Exploratory Data Analysis. Reading, Mass, Addison-Wesley, 1977, 688. 
[18] Wang Juemou. Methods of Verification of Hydrological Forecasts. / Technical Reports in Hydrology 
and Water Resources No. 44. Geneva: HWR, 1994, 15. 
[19] Welles E. Verification of river stage forecasts: Dissertation. University of Arizona, 2005, 157.  
[20] World Meteorological Organization. Manual on Flood Forecasting and Warning // WMO, No. 1072, 
Geneva, 2011, 138.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2018                   doi:10.20944/preprints201808.0507.v1

http://dx.doi.org/10.20944/preprints201808.0507.v1

