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The understanding of black holes in loop quantum gravity is becoming increasingly accurate. This
review focuses on the possible experimental or observational consequences of the underlying spinfoam
structure of space-time. It adresses both the aspects associated with the Hawking evaporation and
the ones due to the possible existence of a bounce. Finally, consequences for dark matter and
gravitational waves are considered.

I. INTRODUCTION

The Planck length is 1015 times smaller than scales
probed at colliders. Linking quantum gravity with
observations is therefore extremely hard (see, e.g.,
[1] for a recent review and [2–4] for complementary
viewpoints). Most works devoted to the connection
of quantum gravity with experiments are focused on
cosmology or astroparticles physics. In the cosmological
sector, the main goal consists in calculating scalar
and tensor power spectra (see, e.g., [5, 6]), together
with the background dynamics (see, e.g., [7, 8]). In
the astroparticle physics sector, the main idea is to
investigate the possible consequences of the granular
structure of space (see, e.g., [9] for a recent investigation).

Although black holes (BH) have been intensively
studied in quantum gravity, those investigations were
mostly disconnected from observations and focused on
consistency issues. Recovering, at the leading order, the
Bekenstein-Hawking entropy is, for example, obviously
a major requirement for all tentative theories (see,
e.g., [10] and references therein). Curing the central
singularity – understood as a classical pathology – is
another one (see, e.g., [11, 12]). Solving the information
paradox (see, e.g., [13] and references therein) would
also be highly desirable (this is clearly connected to the
previous issues).

In this article, we focus on black holes as possible
probes for loop quantum gravity (LQG). We begin by
a very short summary of the basics of black hole physics
in this framework. We then switch to consequences for
the Hawking evaporation, considering different possible
perspectives. The quite recent (within the LQG setting)
hypothesis of black holes bouncing into white holes is
presented with the possible associated signals. Finally,
we critically review the possible links with dark matter
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and conclude with prospective for gravitational waves.

II. BASICS OF BLACK HOLES IN LOOP
QUANTUM GRAVITY

The study of black holes is an incredibly fruitful field
of theoretical physics. Black holes are simple objects.
They are pure geometry. There is no equation of state
needed: they are just vacuum solutions to the Einstein
equations. This is their first fundamental characteristic.
The second specificity of black holes lies in the fact that
they are (classically) scale invariant [14]. They can, in
principle, exist at any mass.

As far as quantum gravity is concerned, the major
breakthrough came from black holes thermodynamics.
Because of the no-hair theorem, in Einstein gravity, the
most general stationary black hole geometry is described
by the Kerr-Newman (KN) solution with mass M , elec-
tric charge q and angular momentum j as the only pa-
rameters. One can define three length scales character-
izing the BH [14]: m ≡ GMc−2, Q ≡

√
Gqc−2 and

a ≡ jM−1c−1. There exists a BH solution only when
Q2 + a2 ≤ m2. One can show, from the area expression,
that

d(Mc2) = ΘdA+ ΦdQ+ Ωdj (2.1)

with

Θ ≡ c4(2GA)−1(rg −m), (2.2)

Φ ≡ q rg(r2
g + a2)−1, (2.3)

Ω ≡ j m−1(r2
g + a2)−1, (2.4)

rg = 2m being the gravitational radius. The parameters
Θ, Φ and Ω can be understood as the surface gravity, the
electrostatic potential, and the angular momentum.

As Mc2 is the energy, this equation looks like the first
law of thermodynamics TdS = dE − ΦdQ − Ωdj. This
led to the introduction of a temperature

TH = (2c~/A)
√
M2 −Q2 − a2, (2.5)
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and entropy

SBH = A/4`P
2, (2.6)

yealding the evaporation process [15]. The second BH
law expresses the fact that the sum of the BH entropy
together with the entropy outside the BH cannot
decrease. (From now on, except otherwise stated, we use
Planck units.)

The description of BHs in LQG heavily relies on the
concept of isolated horizons (IH) [16–20]. This is an
intrinsically quasilocal notion which has the advantage
of not requiring the knowledge of whole spacetime to
determine whether horizons are present, as is the case
with event horizons. The most important characteristics
of isolated horizons are [10]: their quasilocality, the
availability of a Hamiltonian description for the sector of
GR containing the IH, the possibility of finding physical
versions of the laws of BH thermodynamics and the
existence of local definitions of the energy and angular
momentum.

This article focuses on the consequences and not on the
theoretical definition of an LQG BH, but recent pedagog-
ical reviews on BH in LQG can be found, e.g., [21–27].

Very schematically, the isolated horizon plays the role
of a boundary for the underlying manifold before quanti-
zation. Given the area A of a Schwarzschild BH horizon,
the geometry states of the BH horizon arise from a punc-
tured sphere. Each puncture carries quantum numbers
(see, e.g., [28–31] for details): two labels (j,m), where j
is a spin half-integer carrying information about the area
and m is the corresponding projection carrying informa-
tion about the curvature. They fulfill the condition

A−∆ ≤ 8πγ
∑
p

√
jp(jp + 1) ≤ A+ ∆, (2.7)

where γ is the Barbero-Immirzi parameter entering the
definition of LQG (see, e.g., [32]), ∆ is the “smearing”
area parameter (or coarse graining scale) used to recover
the classical description and p refers to different punc-
tures. In addition, one requires∑

p

mp = 0, (2.8)

which means that the horizon has a spherical topology.
Many aspects of the BH entropy were studied in this
framework and we shall mention some of them in the
following.

III. MODIFIED HAWKING SPECTRUM

One cannot directly measure the entropy of a BH. So
even if some quantum gravity approaches do predict some
corrections with respect to the Bekenstein-Hawking law,

this can hardly be considered as a smoking gun for ob-
servational aspects of quantum geometry. On the other
hand, one might observe the evaporation of a black hole.
This would require light black holes (the temperature of
a solar-mass BH is far below the one of the cosmologi-
cal microwave background) whose existence is far from
obvious. At this stage the Hawking evaporation of BHs
therefore remains purely theoretical (although there are
some hints that this could have been observed in analog
systems [33]). But it is in principle observable and might
constitute a path toward experimental quantum gravity.

A. Global perspective

The first obvious idea to investigate LQG footprints is
to consider the deep planckian regime of an evaporating
BH by taking into account the discrete structure of the
area operator eigenvalues in LQG. An edge with spin
representation j of SU(2) carries an area of eigenvalue

Aj = 8πγ
√
j(j + 1), (3.1)

where j is, again, a half-integer. A BH surface punctured
by N edges therefore exhibits, as explained previoulsy, a
spectrum given by

Aj = 8πγ

N∑
n=1

√
jn(jn + 1), (3.2)

where the sum is carried out over all intersections of the
edges with the isolated horizon. As the area spectrum
in discrete, BHs can only make discontinuous jumps and
the evaporation spectrum will inevitably be modified.

In [34], a Monte-Carlo simulation was carried out to
investigate to which extent the associated line struc-
ture can be discriminated from the usual continuous
(enveloppe of the) spectrum. The algorithm was based
on an improved version of the method given in [35],
enhanced by an efficient numeration scheme based on a
breadth-first search. The probability for the transition
from a BH state to another is expressed as the exponen-
tial of the entropy difference, weighted by the greybody
factor. As the optical limit was not satisfactory to derive
accurate results, the full greybody factor obtained by
solving the wave equation in the (classical) Schwarzschild
background was used. The simulation was started at
200 APl, where APl is the Planck area.

At each step n of the simulation, starting from a BH
mass Mn, a new mass Mn+1 is randomly determined
within the available spectrum, according to the prob-
ability law previously given. A particle type is then
randomly selected among the standard model, according
to the weighted number of internal degrees of freedom
(and among those with a mass smaller than ∆M). The
available energy Mn −Mn+1 is assigned to this particle
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and the process is repeated. The analysis presented
in the following was carried out considering only the
emitted photons, that is approximately 1.5% of the
emitted quanta. This choice is motivated by the fact
that they keep their initial energy (quarks and gluons
lead to jets), they are easy to detect (neutrinos are not),
stable (muons or tau leptons do decay) and unaffected
by magnetic fields (electrons are).

The simulation was repeated many times to account
for different possible realizations of the process. As
expected the time-integrated spectrum exhibits lines
that are not present in the standard Hawking spectrum.
The time integrated differential Hawking spectrum
scales as E−3, where E is the energy of the emitted
photons. In this case it becomes a truncated power-law
as the available energy is limited. To test to which
extent the LQG spectrum can be distinguished from
a standard Hawking spectrum, a Kolmogorov-Smirnov
(K-S) test was implemented. The K-S statistics mea-
sures the distance between the cumulative distribution
functions of the considered distributions and can be
used for a systematic study of discrimination capabilities.

Fig. 1 shows the number of evaporating BHs,
seen in their final stages, that would be required to
discriminate at a given confidence level between the
Hawking spectrum and the LQG spectrum, depending
on the experimental uncertainty of the measure of the
energy of the detected photons. This later parameter is
mandatory. If the resolution was infinite a single photon
could nearly allow to discriminate, but this is obviously
never the case. The results are theoretically appealing
but experimentally challenging.

Another interesting feature is the following. The
end of the evaporation in the LQG framework consists
in the emission of a few particles, whose energies are
given by the mass difference between BH states. In the
usual Hawking view, the situation is very different. The
evaporation is expected to stop somehow slowly (when
compared to the previous stages). Because the energy
available inevitably becomes, at some point, smaller that
it should be (in the sense that M becomes smaller that
the associated temperature 1/(8πM)), the process slows
down and the energy of the emitted particles decreases.
In [34], it was shown that this might be used as another
discrimination tool between models.

It could also be that a periodicity with broader peaks
does appear in the emitted spectrum, due to the “large
scale” structure of the area spectrum. This has been
discussed in [35]. In that case, the Hawking/LQG
spectra could also be dicriminated for higher mass black
holes [34]. This possibility is however extremely unlikely,
and we will not discuss it further, as a damping in the
pseudo-periodicity is expected to take place [37–39].
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Figure 1: Number of BHs that would have to be observed as
a function of the relative error on the energy measurement
for different confidence levels (the color scale corresponds to
the number of standard deviations). Upper plot : discrimina-
tion between LQG and the Hawking spectrum. Lower plot :
discrimination between LQG and the Mukhanov-Bekenstein
hypothesis [36]. From [34].

This analysis was pushed further in [40] where recent
results are accounted for. The fundamental excitations
are now better understood as living on the horizon
and as being elements of the Hilbert space of a SU(2)
Chern-Simons theory [41, 41, 42]. The quantization
of such a Chern-Simons theory with a compact gauge
group is well-defined and the kinematical characteristics
of a quantum black hole becomes quite clear [43–45].
The role of the Barbero-Immirzi parameter γ was stud-
ied in details and recovering the Bekenstein-Hawking
entropy has been considered as a way to fix its value.
It is however the coupling constant with a topological
term in the action of gravity, with no consequence
on the classical equations of motion. The strong
dependence of the entropy calculation on γ therefore
remains controversial. Many progresses were recently
made [46–50]. The canonical ensemble formulation of
the entropy making use of a quasi-local description
shed a new light of the subject. The semi-classical
thermodynamical properties can actually be recovered
for any value of γ if one assumes a non trivial chemical
potential conjugate to the number of horizon punctures.
A possible fundamental explanation to the exponential
degeneracy would be to consider the area degeneracy
as an analytic function of γ and to make an analytical
continuation from real γ to complex γ. This suggests
that the quantum gravitational theory, defined in terms
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of self dual variables, could account for the holographic
degeneracy of the area spectrum of the BH horizon.

Two models of black holes were studied by a full MC
simulation in [40]. The first is based on the naive micro-
canonical view. It takes into account only the quantum
geometry excitations, leading to [51]:

S =
γ0

γ

A

4
+ o(log(A)), (3.3)

where γ0 is of order one. Then, holographic black holes,
where one uses the matter degeneracy suggested by quan-
tum field theory with a cut-off at the vicinity of the hori-
zon (that is an exponential growth of vacuum entangle-
ment in terms of the BH area), were considered. The
entropy becomes:

S =
A

4
+

√
πA

6γ
+ o(
√
A). (3.4)

The simulation has been performed with 107 evapo-
rating black holes. Fig. 2 shows the results for different
values of the Barbero-Immirzi parameter γ. This γ
dependence interestingly shows up even though the
leading order term of the black hole entropy, which
mainly governs the transitions during the evaporation
process, is not depending on γ. This phenomenon is
fully quantum gravitational in nature and is both due
to the fact that γ enters in the discretization of the area
spectrum and shows off in the sub-leading corrections
to the entropy. The effects of a detector finite energy
resolution are shown on Fig. 3.
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Figure 2: Spectrum of a holographic black hole for different
values of γ as a function of ∆A, from [40].

This shows that the Hawking spectrum of a LQG BH
has two distinct parts: a nearly continuous background
corresponding to the semi-classical stages of the evapo-
ration and a series of discrete peaks associated with the
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Figure 3: γ dependence of the integrated spectrum, as func-
tion of the energy of the emitted particle, in the holographic
model, with a detector energy resolution of 5%, from [40].

deep quantum structure. Interestingly, γ has an effect
on both parts and becomes somehow measurable. In
all cases, there are significant differences with the usual
Hawking picture in the last stages.

B. Greybody factors

When dealing with evaporating black holes, a key el-
ement is the greybody factor – closely related with the
absorption cross section. The Hawking effect is approx-
imated by a blackbody spectrum at temperature TH =
1/(8πM) with M the mass of the BH. But the emitted
particles have to cross a (gravitational and centrifugal)
potential barrier before escaping to infinity. This induces
a slight modification of the spectrum, captured by the
cross section σ. The spectrum reads as:

dN

dt
=

1

e
ω
TH ± 1

σ(M, s, ω)
d3k

(2π)3
, (3.5)

with s the particle spin, ω its energy, and k its momen-
tum. The cross section is, in general, given by

σ(ω)s =

∞∑
l=0

(2j + 1)π

ω2
|Al,s|2, (3.6)

where Al,s is the transmission coefficient of the mode
with angular momentum l, and j = l + s is the total
angular momentum. It has been shown, in many
different frameworks, to encode a lot on information on
the chosen gravitational theory or on the underlying
background spacetime. In the framework of LQG those
cross sections have been studied only in [52].

The emphasis was put on BHs as described in [53, 54]
where, instead of all a priori possible closed graphs, a
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regular lattice with edges of lengths δb and δc was chosen.
The resulting dynamical solution inside the horizon is
analytically continued to the region outside the horizon.
Requiring that the minimum area is the one found in the
LQG area operator spectrum, the model is reduced to one
free parameter δ, the so-called dimensionless polymeric
parameter. The effective LQG-corrected Schwarzschild
metric is then given by:

ds2 = −G(r)dt2 +
dr2

F (r)
+H(r)dΩ2 ,

G(r) =
(r − r+)(r − r−)(r + r∗)

2

r4 + a2
o

,

F (r) =
(r − r+)(r − r−)r4

(r + r∗)2(r4 + a2
o)

,

H(r) = r2 +
a2
o

r2
, (3.7)

where dΩ2 = dθ2 + sin2 θdφ2, r+ = 2m and r− = 2mP 2

are the two horizons, and r∗ =
√
r+r− = 2mP ,

P being the polymeric function defined by
P = (

√
1 + ε2 − 1)/(

√
1 + ε2 + 1), with ε = γδ,

and the area parameter ao is given by a0 = Amin/8π.
The parameter m in the solution is related to the ADM
mass M by M = m(1 + P )2.

The case of massless scalar fields is quite easy to deal
with. Since the BH is static and spherical, the field can
be written as Φ(r, θ, φ, t) = R(r)S(θ)ei(ωt+mφ) and the
generalized Klein-Gordon equation is

1√
−g

∂µ(gµν
√
−g∂νΦ) = 0, (3.8)

leading for the metric given in Eq. (3.7), to the radial
equation:

√
GF

H

∂

∂r

(
H
√
GF

∂R(r)

∂r

)
+

(
ω2 − G

H
l(l + 1)

)
R(r) = 0.

(3.9)

Using the tortoise coordinate dr∗2 ≡ dr2

GF , one can im-
pose the appropriate boundary conditions, fit the asymp-
totic solutions and sum over the different values of l to
get the final cross section, which is given in Fig. 4.

The cross section decreases when ε increases. One
can also notice a shift of the pseudo-periodic oscillations
toward a lower frequency (in Mω). When ε < 10−0.8,
it is hard to distinguish between the solutions. From
the phenomenological viewpoint, it seems that taking
into account the quantum corrections does not influence
substantially the cross section of a scalar field for
reasonable values of ε (that is ε � 1). The main trend
is however clear and if the actual value of ε happened to
be unexpectedly high, it could be probed by a reduced
cross section.
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Figure 4: Emission cross section for a scalar field with energy
ω for a loop BH of mass M for different values of ε. From
bottom to top: ε = 10{−0.3,−0.6,−0.8,−1,−3}. The blue line,
corresponding to ε = 10−3 is superposed with the cross section
for a Schwarzschild BH. From [52].

The case of fermions is more complicated and a specific
derivation of the Dirac equation in the Newman-Penrose
formalism had to be developed in [52]. Basically, one is
led to the following equation for the R+ component of
the Dirac spinor (the equation for R− is the conjugate):

√
HFD

( √
HFD†

λ− ime

√
H
R+

)
− (λ+ ime

√
H)R+ = 0,

(3.10)
with D a radial operator

D = ∂r +

(
G′

8G
− F ′

8F

)
+

iw√
GF

. (3.11)

The separation constant λ is obtained by solving the
angular equation, leading to λ2 = (l + 1)2 for fermions.
Results are given in Fig. 5. Once again, the general
trend is a decrease of the cross section when the “quan-
tumness” increases. In addition, it was shown that the
existence of a non-vanishing a0 is the reason for the
slight increase of the cross section on the first peak. The
polymerization parameter and the minimal area do have
different consequences.

The considered polymerized model [53] is just a first
attempt and by no means a final statement on the quan-
tum corrected geometry around an LQG BH. The same
work on greybody factors should be carried out for mod-
els like [55–57], to cite only a few. This however shows
that some non-trivial features can be expected.

C. Local perspective

The previous view is based on the idea that the
Hawking evaporation should be considered as a global
phenomenon. The BH emits a particle and undergoes
a transition from one area eigenstate to another one.
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Figure 5: Emission cross section for a fermionic field, with
energy ω, for a loop BH of mass M . From bottom to top: ε =
10{−0.3,−0.6,−0.8,−1,−3}. The dashed dark curve corresponds
to the Schwarzschild cross section. From [52]

When the BH is large, the density of states grows
exponentially and reads (we make the Newton constant

dependance explicit here) as ρ(M) ∼ exp(M
√

4πG/3),
which means that the spectral lines are virtually dense in
frequency for high enough masses. No quantum gravity
effects are therefore expected well above the Planck mass.

This view is however not that straightforward. When
the BH undergoes a transition from the mass M1 to the
mass M2, which is extremely close to M1 if the black
hole is massive, the quantum state after the jump is
– in the global perspective – completely different from
the initial one. The final state corresponds to values
of the spins (labelling the SU(2) representations of the
edges puncturing the horizon – or colors of the graph)
that are generically deeply different from the ones of the
initial state. Assuming that the quasidense distribution
of states is correct requires a full reassigning of the
quantum numbers for every single transition, which is
in tension with a quantum gravitational origin of the
evaporation process. As we will explain later, if, instead,
one assumes that the evaporation is due to a change of
state of an “elementary area cell”, there is no reason for
all of the other surfaces paving the horizon to change
simultaneously their quantum state (as argued, e.g., in
[58]). This even raises a causality issue: how can a “far
away” elementary cell know how it should change to
adjust to the others?

Another view, to account for this issue, was however
suggested in [59] (somehow in the line of [60]), assuming
that each particle emitted is basically due to the relax-
ation of the BH following a change of state of a single
elementary cell. This was called a local quantum gravity
dynamics. This does not assume that local process mag-
ically know the global BH quantities like temperature,
entropy and mass: after the quantum jump, without any
a priori knowledge of the picture, the BH relaxes through
a semiclassical process consistent with the energy avail-

able. This naturally leads to a spectrum whose properties
fit the Hawking description.

This hypothesis leads to phenomenological results
comparable to those of [36] but with a clear foundation
in the LQG framework. The key-point is that the same
change of area dA (∼ APl) implies a relative peak
separation in the spectrum dE/T which is independent
of the BH mass. Quantum gravity effects can therefore
be expected to be measured for masses arbitrary far
above the Planck mass. This deeply contrasts with what
was believed to be expected in initial LQG studies. The
density of reachable states is not quasi-dense anymore.

The eigenvalues of the area operator given by Eq. (5.1)
are not equally spaced: only in the large-j limit does a
regular line spectrum arise. It is shown in [59] that this
interesting feature could allow to distinguish between dif-
ferent LQG models of black holes (in particular those in
the line of [28] favoring low spin values and the holo-
graphic ones [47] where higher spins could dominate).

If one calls nA0/2 the area variation associated with
one quantum jump, n being an integer and A0 the basic
area ∼ APl, the relative variation of energy of the emit-
ted particles between emissions is ∆E/E ≈ nA0/(2A).
The change in energy is therefore negligible and the line
structure should be observable if it exists: the BH mass
evolution during its evaporation does not erase out this
feature.

The criterion for the detection of a signal coming from
an evaporating primordial black hole (PBH) [61] consists
in asking for a mean time ∆t between two measured pho-
tons smaller than a given reference time interval ∆t0.
This allows to estimate a maximum distance for detec-
tion of

Rmax ≈
√
S∆t0
M

. (3.12)

The realistic case however corresponds to the signal
emitted by a distribution of PBHs with different masses.
Does the global line structure remains? It was shown
that if the temperature of the universe does not change
by more that 5-10 % during the formation of the
considered PBHs, the line structure holds.

Another issue had to be considered seriously: when the
temperature of the BH is higher than the quantum chro-
modynamics (QCD) confinement scale, the evaporating
BH also emits partons that will fragmentate into hadrons.
Some of those will then decay into gamma-rays, denoted
as “secondary”. The secondary instantaneous spectrum
reads as

d2Nγ
dEdt

=
∑
j

∫ ∞
Q=E

αjΓj(Q,T )
(
e
Q
T − (−1)2sj

)−1

(3.13)

× dgjγ(Q,E)

dE
dQ,
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where j = 1, ...6 is the flavor, sj = 1/2 ∀j, dg(Q,E)/dE
is the normalized differential fragmentation function (de-
termined using the “Lund Monte Carlo” PYTHIA code
[62]), Q being the quark energy, T the temperature of
the black holes, α the number of degrees of freedom, Γ
the cross section, and E the photon energy. The time-
integrated spectrum is then given by

dNγ
dE

=

∫ Mf

Mi

d2Nγ
dEdt

dt

dM
dM. (3.14)

Those secondary photons will obviously not exhibit
the line structure of quantum gravitational origin. The
numerical simulation performed in [59] however shows
that, quite surprisingly, those electromagnetic quanta
are not numerous enough to wash-out the primary
signal and its line structure, which could indeed still be
measured.

If this local view for the evaporation of black holes is
correct, this means that this should lead to a line struc-
ture in the spectrum, even arbitrarily far away from the
Planck mass.

IV. BOUNCING BLACK HOLES

A. The model

Recently, the possibility that black holes could ac-
tually be bouncing objects has been revived. In its
current “LQG-compatible” version, the model was first
introduced in [63], and its consequences were studied
in [64]. It was then refined in [65, 66]. Basically, the
idea is that what happens to the Universe in LQC,
that is a bounce, should also happen to black holes. As
the contracting Friedmann solution is connected to the
expanding one by a quantum tunneling, the classical
black hole solution is expected to be glued to the white
hole one by quantum gravitational effects. It is in line
with other works based on different assumptions, e.g.
[67, 68]. The process takes a time proportional to M2,
whereas the Hawking process requires a time of order
M3. Black holes would therefore bounce before they do
evaporate and the Hawking radiation would be seen as
a kind of a dissipative correction.

The important result of [65] is that a metric exists for
a bouncing black-to-white hole. It is a solution to the
Einstein equations outside a finite region and beyond a
finite time duration. This means that it is possible to
have a bounce from a black hole into a white hole without
any spacetime modification at large radius. The quantum
region extends slightly outside the Schwarzschild radius
and can have a short duration. The associated Penrose
diagram is shown in Fig. 6.

Because of the gravitational redshift the bounce is
seen as nearly “frozen” by a distant observer but it is

Figure 6: Causal diagram for a bouncing black holes, from
[65]. (I) is flat, (II) is Schwarzschild, ans (III) is the “quantum
gravity” region.

extremely fast for a clock comobile with the collapsing
null shell. In this sense, a BH is a star that is collapsing
and bouncing seen at very slow motion from the exterior.

The key-point is to assume that classicality might not
be determined by, e.g., the Kretschmann invariant (R2 =
RabcdRabcd) but by

q = l2−bP R τ b, (4.1)

with b of order unity and τ is the (asymptotic) proper
time. In this expression units have been reinserted for
clarity. This opens the door to a possible cumulative
effect like in the decay of an unstable nucleus.

The metric is entirely determined by two functions of
u and v,

ds2 = −F (u, v)dudv + r2(u, v)(dθ2 + sin2 θdφ2), (4.2)

whose explicit expression has been calculated in [65]. In-
terestingly, this also means that strong quantum grav-
ity effects may appear outside the event horizon (which
becomes, in this context, a trapping horizon) at R =
(7/6)RS [69]. As far as this study is concerned, the key-
point is that the bouncing time is given by τ = 4kM2

(although this expression is hard to recover from the
full theory [70]). The k parameter has a lower bound
(k > 0.05) and will be varied in the next sections.

B. Individual events and fast radio bursts

The question of the detectability of those bouncing
black holes naturally arises. At this stage, a detailed
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model for the emission from the white hole is missing.
Two hypothesis can however reasonably by made.

The first one is simply based on dimensional analysis.
The hole size is the only scale of the problem. It is there-
fore expected that the wavelength of the emitted radia-
tion is of the order of the bouncing BH diameter. This
makes clear sense and this is in agreement with what
happens, e.g., during the Hawking evaporation. The as-
sociated signal is called the low-energy component.

The second hypothesis relies on the symmetry of the
process (this might not be completely true [71], but this
does not change the argument). What goes out of the
white hole is what went in the black hole. In this model,
the bouncing star is formed by a collapsing null shell.
The energy of the emitted radiation should therefore
be the same than the one of the incoming photons. If
we consider PBHs formed in the early universe by the
collapse of over-densities the correspondance between
the mass and the time is known. And time is also in
one-to-one correspondance with the temperature of the
Universe. So, for a given BH mass, one can calculate the
energy of the emitted radiation, called the high-energy
component.

The idea of explaining fast radio bursts (FRBs) by
bouncing black holes was suggested in [72]. Basically,
FRBs are intense radio signals with a very brief duration.
Events were, among others, observed at the Parkes radio
telescope [73–75] and by the Arecibo Observatory [76].
Could they be explained by (the low-energy component
of) bouncing black holes ?

As mentioned before, the bouncing time can be esti-
mated to be of the order of

τ = 4k M2. (4.3)

For the phenomenology of FRBs, one sets the parame-
ter to its lowest possible value: k = 0.05. PBHs with an
initial mass around

MtH =

√
tH
4k
∼ 1026 g, (4.4)

where tH is the Hubble time, would therefore be ex-
pected to explode today. One can notice that, naturally,
this mass is much higher that M? ∼ 1015 g correspond-
ing to black holes that would require a Hubble time to
evaporate by the Hawking process. In the case of the low
energy channel of bouncing BH, the emitted radiation
wavelength should be of the order of 200 microns, three
orders of magnitude below the measured 20 cm of FRBs.

This apparent discrepancy has been addressed and
solved in [77]. The key idea lies in the fact that if the
black-to-white hole transition is to be understood as a
tunneling process, the lifetime of a BH should be consid-
ered as a random variable. The probability for a black
hole not to have bounced after a time t is given by

P (t) =
1

τ
e−

t
τ . (4.5)

10-6 10-5 10-4 0.001
E (eV)

10-10

10-5

1

105

1010

ϕ (arbitary units)

Figure 7: Electromagnetic flux emitted by bouncing BHs for
a mean mass M0 of (from right to left) MtH , 10MtH , 100MtH ,
and 1000MtH , normalized such that the total mass going into
PBHs is the same. From [77].

Let us model the shape of the signal emitted by a single
black hole by a simple Gaussian function of width σE .
The full signal due to a local distribution of bouncing
black holes is given by

dNγ
dE

=

∫ ∞
MPl

Ae
− (E−E0)2

2σ2
E · dN

dM
(M)· 1

4kM2
e−

tH
4kM2 . (4.6)

The key-point is that the mean energy of the detected
signal is not necessarily the naively expected one, that is
may not be E ∼ 1/(4MtH ) where MtH is such that tH =
4kM2

tH (this corresponds to BHs having a characteristic
lifetime of the order of the age of the Universe, leading to
the emitted wavelength 3 orders of magnitude too small
to account for FRBs). If the mass spectrum of PBHS is
however peaked around a mass M0,

dN

dM
∝ e
− (M−M0)2

2σ2
M , (4.7)

which can be different than MtH =
√
tH/4k, the mean

emitted energy will be around 1/(4M0) which can
differ from 1/(4MtH ). This happens because of the
distributional nature of the bouncing time.

In Fig. 7, the emitted photon flux is shown for
different values of the mean mass M0 of the mass
spectrum: MtH , 10MtH , 100MtH , and 1000MtH . This
shows that the energy of the radiation does depend
on this value, even if the parameters of the model are
otherwise fixed. Since a given mean lifetime τ = 4kM2

does not imply a fixed expected energy, the three orders
of magnitudes needed to match the measured energy of
FRBs can be accounted for with a mass M0 = 1000MtH ,
which corresponds to the left curve in Fig. 7.

This explanation for FRBs is unquestionably exotic
when compared to more conventional astrophysical in-
terpretations (especially when considering that one “re-
peater” has been observed – it could however well be that
there are different populations of FRBs). What makes
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Figure 8: Measured wavelength, normalized to the rest-frame
one, as a function of the redshift. The upper curve is for
a conventional astrophysical signal and the lower one is for
bouncing black holes. Reproduced from [78], with the per-
mission of AIP Publishing.

the scenario however meaningful is that it is testable,
due to a specific redshift dependance. When observing
a galaxy at redshift z, the measured energy of the signal
emitted by any astrophysical object (including decaying
dark matter) will be E/(1 + z) for a rest-frame energy
E. This is not the case for bouncing black holes: BHs
that have bounced far away and are observed today had a
shorter bouncing time and consequently a smaller mass.
The energy of the emitted radiation is therefore higher
and this compensates for the redshift effect. The ob-
served wavelength of the signal from an object at redshift
z can be written as:

λBHobs ∼
2Gm

c2
(1 + z) × (4.8)√√√√ H−1

0

6 kΩ
1/2
Λ

sinh−1

[(
ΩΛ

ΩM

)1/2

(z + 1)−3/2

]
,

where we have reinserted the physical constants; H0,ΩΛ

and ΩM being respectively the Hubble rate, the cosmo-
logical constant, and the matter density. This is to be
contrasted with what happens for standard sources whose
measured wavelength is related to the observed wave-
length by

λotherobs = (1 + z)λotheremitted , (4.9)

as shown in Fig. 8.

Importantly, is was also shown in [77] that even if
the mass spectrum is wide, it could still be possible to
explain FRBs. It could be that most bouncing BHs lead
to a signal of wavelength 0.02 cm and that only the
tail (whose existence is due to the probabilistic nature
of the lifetime) of the distribution is actually detected
by radio-telescopes. If the real emission peak is in the
infrared band which should naturally occur if the mass
spectrum is, itself, not peaked it could very well be that

it is just unobserved today. Observatories in the infrared
have time constants that are too high to allow for the
measurement of fast transient phenomena and no large
survey is being carried out. In this case, a prediction of
the model is that one should expect a higher flux as the
energy increases.

Finally, it is worth considering the high-energy emis-
sion. The bouncing BHs then act as “redshift freezing
machines” for collapsing fields which are emitted back at
the energy they had when being absorbed. However, in
the meanwhile, the age of the surrounding universe has
grown tremendously. In simple models, PBHs form with
a mass of the order of the Hubble mass at the formation
time. For BH masses as considered here (around 1026

g), this corresponds to a temperature of the Universe
around the TeV. New very high energy telescopes, like
the Cherenkov Telescope Array (CTA) could detect
bursts is this energy range, as suggested by this model.

The redshift dependance for this component is qual-
itatively the same than for the low-energy one, but for
different reasons. For a BH exploding at redshift z and
cosmic time t, the energy is determined by the tempera-
ture of the universe when the formation took place. It is
proportional to the inverse square root of the time which
is in turn proportional to the horizon mass, that is to the
BH mass. So, the emitted wavelength is proportional to
the square root of the mass of the BH. This leads to an
observed wavelength

λobs ∝ (1 + z)

(
sinh−1

[(
ΩΛ

ΩM

) 1
2

(z + 1)−
3
2

]) 1
4

. (4.10)

As previously stated, this is a flatter dependance than
for astrophysical effects.

It is meaningful to evaluate the maximal distance at
which one could observe a bouncing black hole. This
question was addressed in [79], allowing the k parame-
ter, which determines the bouncing time, to vary. The
minimum value of k is such that the quantum effects
have enough time to make the bounce happen and the
maximum is such that the bouncing time remains smaller
than the Hawking time. The study was carried out tak-
ing into account the size of the detector (and its detec-
tion efficiency), the absorption during the propagation
over cosmological distances, and the number of measured
photons required for the detection to be statistically sig-
nificant. As k increases, the global trend is a decrease
of the maximum distance at which the bouncing BH can
be observed. This comes both from the fact that BHs
are lighter for higher values of k (for a given bouncing
time) and from the fact that they emit higher energy
(and therefore fewer) particles. However, quite subtle ef-
fects also appear. For example, the distance can slightly
decrease above the threshold of emission of a new sta-
ble particle (leaving less energy available for the consid-
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Figure 9: Maximum distance at which a single bouncing BH
can be observed through its low-energy component, as a func-
tion of the k parameter, from [79] (Copyright IOP Publishing.
Reproduced with permission. All rights reserved).

ered photons) whereas it can increase when new particles
decaying into gamma-rays are produced. For k varying
between 0.05 to 1022, the maximum detectable distance
varies from the Hubble scale to 1019 m for the low-energy
component, as shown in Fig. 9, and from 1024 to 1016 m
for the high energy component.

C. Background

It is also important to consider a possible background
emission. In this case, one does not look for a single
event but from the diffuse emission due to a distribution
of BHs. The number of photons detected per time unit,
surface unit, and energy unit is given by:

dNmes
dEdtdS

=

∫
Φind((1+z)E,R) ·n(R) ·A(E) ·f(E,R)dR,

(4.11)
where Φind(E,R) is the flux emitted by a single BH at
distance R and at energy E, n(R) is the number of BHs
bouncing at distance R per unit time and volume, A(E)
is the acceptance of the detector convoluted with its
efficiency and f(E,R) is the absorption. The n(R) term
does depend on the shape of the initial mass spectrum
of PBHs which is unknown. It has however been checked
that varying this shape has no significant impact on the
results.

The study was carried out for both the low-energy
and the high-energy components. In this latter case it
is important to take into account the hadronization of
emitted quarks that will produce hadrons potentially
decaying into gamma-rays. This was modeled using the
PYTHIA Monte-Carlo program [62]. Quite surprisingly,
the result is that, due to a kind of redshift-compensation
effect, the integrated signal is very similar to the single
event one. It basically appears as a distorted gaussian

function [79].

This also raised the question to whether it could
be possible to explain the gamma-ray excess coming
from the galactic center, as observed by the Fermi
satellite. This has been reported in [80–82] and even
observed at higher galactic latitudes [82, 83]. Once
again many astrophysical interpretation have been
suggested. Millisecond pulsars are probably the most
convincing hypothesis (see, e.g., [84]), it is however not
yet fully satisfactory [83] and their is room for new
physics. Interestingly, it was demonstrated in [78] that
bouncing BHs can indeed explain the Fermi excess if the
k parameter is chosen at its higher possible value. It is
worth noticing that the values required to explain either
the FRBs or the GeV gamma-ray excess are not “ran-
dom” but either the smallest or the highest possible ones.

In [78], the secondary spectrum, mostly due to the de-
cay of neutral pions, was shown to be well approximated
by

f(E, ε) =
aεb

πγ

[
γ2

(ε− ε0)2 + γ2

]
e−( 4ε

E )
3

, (4.12)

E being the quark energy, ε the photon energy, a = 50.7,
b = 0.847, γ = 0.0876 and ε0 = 0.0418 (the energies being
in GeV), whereas the direct emission due to the low-
energy component (the high-energy component cannot
be smaller than a TeV and is not relevant for this study)
is given by

g(E, ε) = Ae−
(ε−E)2

2σ2 + 3N
√

2πAσf(E, ε), (4.13)

where N is the number of flavors of quarks with m < E.

The best fit is shown in Fig. 10. The fact that the
bouncing BH signal can account for the data is in itself
non-trivial. It is, for exemple, absolutely impossible to
reproduce the measurements with evaporating BHs. In
addition, the most important result here lies in the am-
plitude of the little bump on the left of the plot. It is
associated with the secondary emission (that is the one
coming from the hadronization and subsequent decay of
emitted partons). As the number of emitted quarks and
gluons is much higher than the number of directly emit-
ted photons (responsible for the main bump) it could
have been (wrongly) expected that this indirect emission
conflicts with the background displayed as the horizontal
green dashed line on the plot. Due to the subtle energy
distribution in the jets, this is not the case and, at this
stage, the explanation by bouncing BHs does work satis-
factorily.

V. DARK MATTER

The idea that if bouncing BHs are a substantial
part of dark matter (DM), this might have an effect

10

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2018                   doi:10.20944/preprints201808.0485.v1

Peer-reviewed version available at Universe 2018, 4, 102; doi:10.3390/universe4100102

http://dx.doi.org/10.20944/preprints201808.0485.v1
http://dx.doi.org/10.3390/universe4100102


Figure 10: Fit to the Fermi excess with bouncing black holes.
Reprinted from [78].

on galaxy clustering was introduced in [85]. Several
possible constraints were considered.

Only recently, however, was a new scenario for the evo-
lution of black holes proposed [86], with possible impor-
tant consequences for DM. In this model, a black hole
first evaporates, according to the usual Hawking process.
When it becomes Planckian the tunneling probability to
turn into a white hole, estimated to be of the order of

P ∼ e
−M2

M2
p , (5.1)

becomes large. Old black holes have a large interior
volume [87]: even if the Schwarzschild radius is fixed
the “physical” volume available inside does increase with
time. This remains true for the formed white hole, al-
though its mass is small (the volume is of the order of
M4
i where Mi is the initial mass). The white hole life-

time is also of the order of M4
i . This scenario meets the

conditions required to solve the information paradox.
It can be seen as a “less radical” proposal than the

one presented in the previous sections. There is still
a black to white hole transition, in agreement with
the arguments given before, but instead of the very
small bouncing time M2

i , it takes the time suggested by
the usual instanton solution. This is probably a more
conservative and natural scenario.

In addition, following [88], it was suggested that dark
matter could be formed by such white hole relics [89]. In
[90], the central argument is pushed forward. For those
objects to be still present in the contemporary Universe,
one needs their lifetime to be larger than the Hubble time
tH , that is

M4
i > tH . (5.2)

On the other hand, for those relics to be formed by evap-
orated black holes, one needs

M3
i < tH , (5.3)

where M3
i if the Hawking evaporation time. This leads

to

1010 g < Mi < 1015 g. (5.4)

It is argued in [90] that this correspond to typical Hubble
masses at reheating, making the scenario convincing.

It should be emphasized that quite a lot of models
leading to stable relics at the end of the Hawking
evaporation process have been proposed so far, relying
on many different assumptions (see [91–104] to mention
only a few historical references among many others).
In those models, the relics are completely stable. This
makes the situation easier: the only constraint is then
that initial primordial black holes did evaporate within
the Hubble time but there are no lower bound on Mi.
From this point of view, the new model [90] is more
challenging than the usual pictures, which does not
make it wrong.

The key-point is of course to find a way to produce
enough primordial black holes so that the white hole
relics account for dark matter, without relying on too ex-
otic physics as this is one of the motivation for this new
scenario. As the CMB-measured amplitude and slope of
the primordial power spectrum would lead to a vanish-
ingly small number of primordial black holes, an extra
input is obviously needed. A possibility would be to fol-
low [105] and use Starobinsky’s broken scale invariance
spectrum [106]. The main idea is that power is increased
at small scales through a step in the power spectrum.

Let us call MH,e the Hubble mass at the end of infla-
tion, p2 the ratio of the power on large scales with respect
to that on small scales, δmin the minimum density con-
trast required to form a black hole, MWH the mass of
the white hole, and Ω2

WH,0 the abundance of white holes
today, LW the Lambert-W function, and σH the mass
variance. One can then show that

p ≈ σCMB
H

δmin

√√√√LW

{
8.0× 10−6

2πΩ2
WH,0

[
MWH

Mp

]2 [
1015 g

MH,e

]3
}
.

(5.5)
Requiring ΩWH,0 ≈ 0.3, δmin ≈ 0.7 and MWH ≈ Mp

allows one to perform an explicit evaluation of p and
this fixes the parameters of the scenario assuming that
the reheating temperature is high enough.

However, a major problem remains to be solved. If
the white hole relics are to be made by primordial black
holes with initial masses between 1010 g and 1015 g,
one must consider the sever constraints associated with
nucleosynthesis. The D/H, Li6/Li7, and He3/D ratio
mustn’t be distorted by the evaporation of black holes
(assumed to be the “seeds” of the white hole relics)
beyond observed values [61]. This forbids the easy
formation of enough relics, unless a way to evade those
constraints is found. This is the major challenge for
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future studies (which is fortunately easier to deal with
when extended mass functions are taken into account
[107]).

Another possibility was imagined in [108]. Here, the
objets are assumed to be formed before the bounce in
a cosmological model where the Big Bang singularity is
replaced by a tunneling between the classically contract-
ing and the classically expanding Friedmann solutions, as
suggested by loop quantum cosmology [109]. This is in
principle consistant and other theories of quantum grav-
ity might lead to this new paradigm. This evades the
previously mentioned problem. Although in a different
setting, the possibility was already considered in [110–
112].

Very interestingly, the proposal is also related with
the idea that the entropy and arrow of time could be
perspectival [113]. This approach sheds a new light on
the old paradox of the apparently low entropy of the
initial state of the Universe: the Universe is not anymore
homogeneous at the bounce and our observed entropy
is determined by the fact that we cannot access the
huge volume inside the abundant white hole remnants.
It might seem puzzling that the authors explain the
“un-naturally” low entropy of the Universe by arguing
that the probability for us to be where we are (outside
of a relic) is only one part in 10120. It is however
meaningful in the sense that a special position is much
more anthropically “acceptable” than a special state.

More importantly, it seems hard for the dark matter
remnants to be already present at the bounce time. The
current density of the universe is ρ0 ∼ 10−30 g cm−3.
If we assume the usual cosmological evolution, we had
at least 60 e-folds of inflation followed by approximately
60 e-folds of radiation, matter, and cosmological con-
stant dominated expansion. It means that the scale
factor has increased by at least a factor 1052 since the
bounce. The density of remnants should then be at least
10156 × 10−30 = 10126 g.cm−3 at the bounce, that is
1033ρPl. Leaving appart the fact that this value is prob-
ably unphysical (the bounce would have happened be-
fore when thinking in the positive time direction), this is
anyway incompatible with Planck mass and Planck size
remnants (that cannot lead to a density higher that the
Planck density without merging).

This could be evaded by assuming that no infla-
tion took place but this would require a quite exotic
cosmological evolution. A nice feature of bouncing
models is precisely to be compatible with inflation
[7, 8, 114–116]. However, a possible way out could be
to focus on a matter bounce (as white hole remnants
would probably behave as pressure-less matter from the
viewpoint of cosmological evolution) [117]. This requires
a much lower-than-Planckian density at the bounce time.

The new scenario put forward in [86] constitutes an
exciting new paradigm in black hole physics. It would

be very nice to link it with the dark matter mystery but
quite a lot remains to be understood.

VI. GRAVITATIONAL WAVES

Gravitational waves from merging black holes are now
observed for real by interferometers [118–122]. This
opens a new era with important interesting constraints
on black hole physics and modified gravity.

A. Spin in gravitational wave observations

For a rotating black hole, the Bekenstein-Hawking en-
tropy is given by

S(M, j) = 2πM2(1 +
√

1− j2), (6.1)

where j = J/M2 is the dimensionless spin parameter.
It follows from Eq. (6.1) that, at fixed mass M, BHs
with larger spin have a smaller entropy. If one assumes
that PBHs were indeed formed in the early Universe,
following a microcanonical ensemble statistics, and if we
make a statistical interpretation of the BH entropy in
terms of microstates, the previous statement indicates
that there are fewer microstates with large spin than
with small spin. In this context, the existence of a
population of black holes with nearly vanishing spins
is naturally predicted [123]. This is to be contrasted
with astrophysical black holes, formed by the collapse
of rotating stars, which are expected to be generically
rotating quite fast.

If gravitational wave interferometers were to observe a
specific distribution of events with very small spins, this
would both be an evidence for the primordial origin of
the considered BHs (at microcanonical equilibrium) and
for the physical relevance of the Hawking-Bekenstein
entropy formula.

To go ahead in this direction one would need to con-
sider the entropic factor eS(m,j) as the weighting of a spin
distribution of PBHs determined by the physical process
responsible for their creation. This distribution is how-
ever not known at this time (which means in no way that
it can be approximated by a flat distribution).

B. Quasinormal Modes

In the current LIGO/Virgo era, it would be highly
desirable to make clear predictions about gravitational
waves in LQG. The possibility of detecting gravitational
waves emitted by BHs before the bounce was mentioned
in [124]. This could be extremely promising for opening
a new window on the pre-bounce Universe thanks to the
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non-trivial behavior of the luminosity distance in the
contracting phase, leading to a natural amplification of
the signal (if the Universe is, e.g., matter dominated).
This, however, does not address the question of the
specific modification to the gravitational wave shape
induced by LQG corrections.

The best way to face this difficult question is proba-
bly to focus first on quasinormal modes (QNMs). They
correspond to the ringdown phase between the transient
and the exponential or power law tail in a BH merging.
The radial part of the perturbed metric is described by

Ψ = Ae−iωt = Ae−i(ωR+iωI)t, (6.2)

where ωR characterizes the oscillations and ωI the char-
acteristic damping timescale τ :

τ =
1

ωI
.

Very importantly, the frequencies of the QNMs form a
countable set of discrete frequencies [125]. There are
actually two types of perturbations (axial and polar)
in the linearized Einstein field equations described by
the Regge-Wheeler and Zerilli equations. In GR, those
equations are isospectral but it is not clear whether this
fundamental property still holds in LQG.

The Regge-Wheeler equation is very close to the one
used to calculate greybody factors (although the ques-
tion is different : the problematics of QNM is to study
the relaxation of the BH itself, not the way it scatters a
quantum field). It reads for a Schwarzschild BH:

V axial
` (r) =

(
1− 2M

r

)[
`(`+ 1)

r2
− 6M

r3

]
, (6.3)

for a mode of angular momentum `. The know-how re-
cently gained on greybody factors could therefore be use-
fully recycled to this purpose. It should however be clear
that the technique is different (one does not search for
the solution of an equation for all frequencies but for the
values of the frequencies allowing for a solution with dif-
ferent boundary conditions) and that only models lead-
ing to substantial metric modification around the hori-
zon might lead to observational effects. This is one of the
most promising ways to relate LQG corrections to BHs
with observations.

VII. CONCLUSION

The description of black holes in loop quantum
gravity has much improved in the last years. A glob-
ally consistent picture is now emerging. In this article

we have reviewed its possible experimental consequences.

The main results are the following :

• First, the Hawking evaporation spectrum should be
modified in its last stages. We have shown that it
could not only allow for the observation of a clear
signature of LQG effects but also, in principle, to
the discrimination between different LQG models.
In particular, holographic models lead to specific
features. The value of the Barbero-Immirzi param-
eter could even by measured.

• Second, attempts to calculate the greybody factors
were presented. They should keep a subtle foot-
print of the polymerization of space and of the ex-
istence of a non-vanishing minimum area gap.

• Third, it was emphasized that a local quantum
gravity perspective would lead to an observable
modification to the Hawking spectrum (line struc-
ture), even arbitrarily far away from the Planck
mass. This prediction is not washed out by the
secondary emission from the BH.

• Fourth, a model with BHs bouncing into white
holes with a characteristic time proportional to M2

was presented and shown to have astrophysical con-
sequences. It can be fine-tuned to explain whether
fast radio bursts or the Fermi gamma-ray excess,
depending on the values of the parameters. The
possible associated background was also studied. A
specific redshift dependence allows to discriminate
the model from other possible explanations.

• Fifth, the possibility of having a large amount of
dark matter in the form of white holes appearing af-
ter a quantum gravitational tunneling is presented
together with possible weaknesses and future im-
provements of the model.

• Sixth, observable effects on gravitational wave de-
tections associated with the BHs spin distribution
expected are presented.

• Seventh, promising prospects for quasinormal
modes are outlined.

It could be that black holes will play a major role in
making quantum gravity become an experimental sci-
ence.
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