

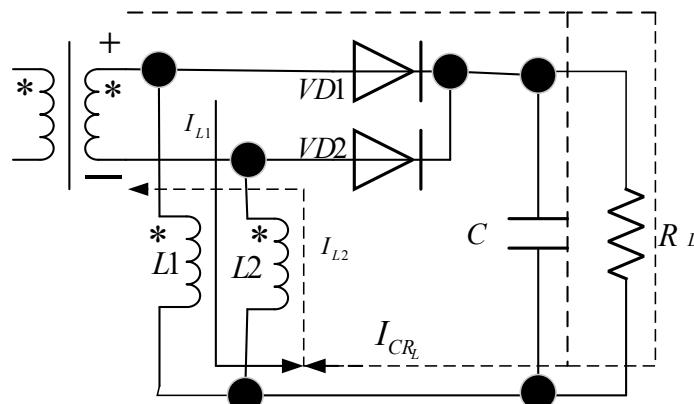
1 Article

2

Improved Current Doubler Rectifier

3 **Mihail Antchev** ^{1*}4 ¹ Section Power Electronics, Faculty of Electronic Engineering and Technology, Technical university - Sofia,
5 Sofia 1000, Bulgaria; antchev@tu-sofia.bg

6 * Correspondence: antchev@tu-sofia.bg; Tel.: +359-2-965-3321


7

8 **Abstract:** It is widespread to examine and explain the functioning of the standard "Current
9 Doubler Rectifier" as strictly symmetrical according to the electrical current through the two
10 inductances. The present work challenges this consideration and proposes a new version of the
11 electrical circuit diagram where the current symmetry is improved. The proposed circuit is called
12 "Improved Current Doubler Rectifier".13 **Keywords:** rectifier; current doubler; symmetry

14

15

1. Introduction

16 The advantages of the "Current Doubler Rectifier" compared to the "Voltage Doubler Rectifier"
17 for DC-to-DC converters are known [1]. There is also an option with transistors in the secondary side,
18 called "Synchronous current doubler rectifier" [2,3,4,5,6]. Other options use "coupled inductors"
19 [7,8,9]. Normally, the functioning of the "Current Doubler Rectifier", here called standard "Current
20 Doubler Rectifier", is examined in an established mode of operation [10,11,12]. In this mode, if there
21 is a voltage on the secondary coil of the transformer, the difference between this and the output
22 voltage is applied to one of the inductances and the current through it increases. At the same time
23 interval, on the other inductance is applied the output voltage, and the current through it decreases.
24 At zero voltage on the secondary coil of the transformer the currents through the two inductances
25 decrease. In this standard examining, the currents through both inductances have the same directions
26 at all time intervals, as they only increase or decrease. This consideration neglects the start-up process,
27 in which it turns out that the current through one of the two inductances has the opposite direction
28 to that of the established mode.

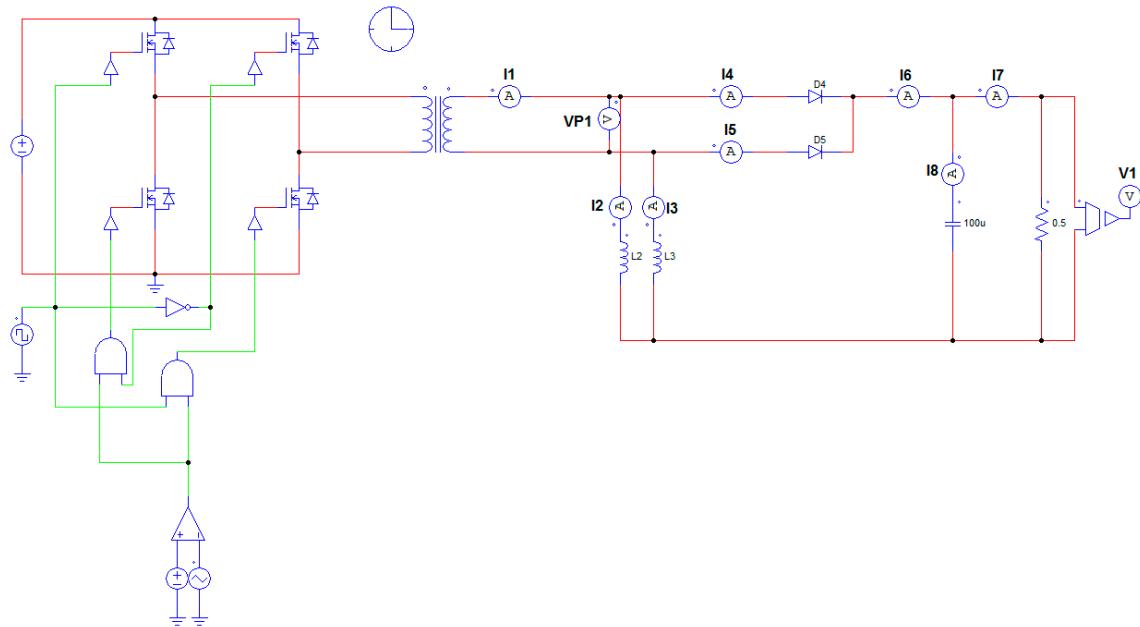
29

30 **Figure 1.** Diagram for clarifying the operation in the first cycle

31

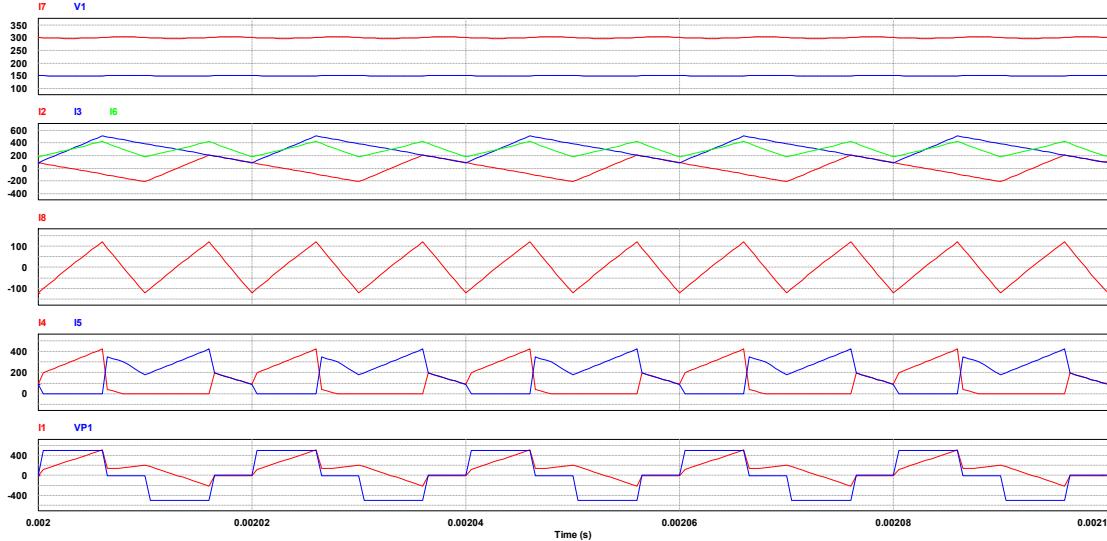
32 Figure 1 shows the principle diagram and the voltage and current indications during the first
33 operation cycle of the standard "Current Doubler Rectifier" after the converter has been started. It is
34 assumed that the voltage of the secondary coil of the transformer has the polarity shown in the figure.

35 It is seen that the current I_{L2} flows through the inductance L_2 from the bottom to the top of the
36 circuit as it increases now and at any subsequent interval during which the polarity of the secondary
37 coil voltage is the same. During the pause and change of polarity, this current decreases but keeps its
38 direction. In this first cycle, the current I_{L1} flows as well, but in the opposite direction through the
39 inductance L_1 - from top to bottom of the circuit. This violates the symmetrical operation of the
40 standard "Current Doubler Rectifier". It is only when changing the polarity of the voltage of the
41 secondary coil in the next cycle, when the current I_{L1} will change its direction. An additional source
42 of asymmetry is the increase in the voltage of capacitor C after each operation cycle during the
43 startup process. For example, in the first cycle, the current I_{L2} is changing at the highest speed, as
44 the capacitor is discharged. In the next cycle, the current I_{L1} , besides starting from a negative value,
45 will also change at a slower speed as the capacitor is charged to some voltage from the first cycle, and
46 so on.

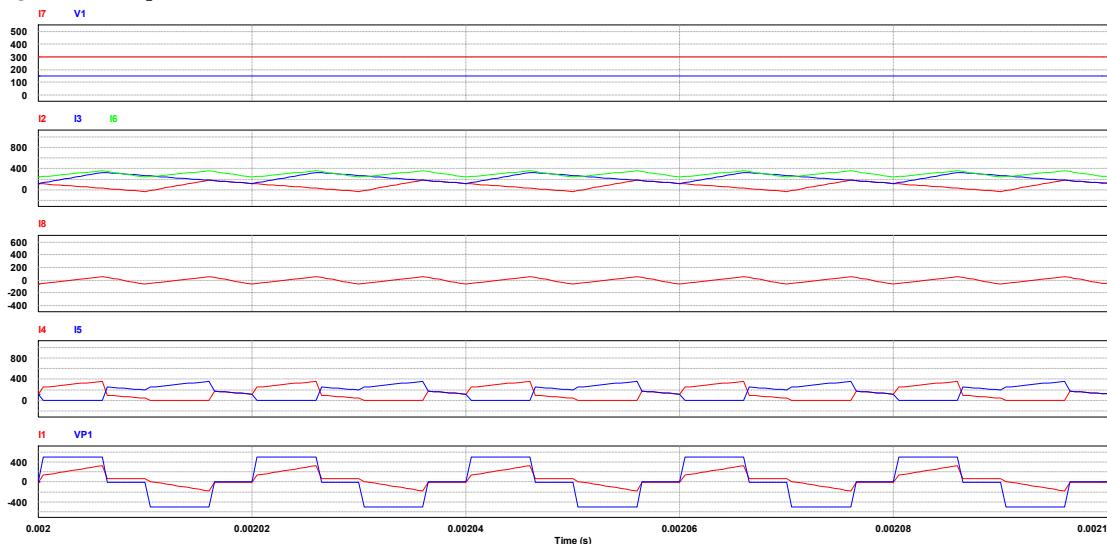

47 The difference in the two currents in the first cycle leads to different starting conditions. In
48 subsequent cycles during the startup process, some additional asymmetry causes increase in
49 capacitor C voltage after each cycle. As a result, during the time, at periodical operation the average
50 value of current I_{L1} remains lower than that of the current I_{L2} . As a result, the currents through
51 the two diodes VD1 and VD2 are different, as well as the current through the secondary coil of the
52 transformer has a direct current component. Similarly, if in the first operation cycle the polarity of
53 the voltage of the secondary coil is opposite to that shown in Figure 1, then the average current I_{L2}
54 value will be lower than that of I_{L1} . A difference in the average values of the two currents is noted in
55 the results of the experimental studies published in other articles, for example [6] (fig.14), [10] (fig.4),
56 [13] (fig.14), [14] (p.32). This difference remains in the case of "coupled inductors" - [9] (fig.9a). The
57 equalization of currents through the two inductances is paid attention in [15], where a "modified
58 current doubler rectifier" is proposed and the equalization is on the average values of the currents.

59 This article introduces a simplified modification of the standard solution called "Improved
60 Current Doubler Rectifier", which avoids, to a large extent, the above-mentioned disadvantages.
61 Comparative results of computer simulation and experimental research are presented.

62 2. Computer simulation results


63 The above-mentioned conclusions about the difference in the average values of the currents
64 through the two inductances, due to the different operating conditions in the first cycle, are confirmed
65 in the present work with the help of computer simulation diagram done with PSIM program shown
66 in Figure 2. The observed values are indicated in the diagram and they are shown in Figure 3 and
67 Figure 4 for different inductance values. The indications of the values shown in the time diagrams
68 are seen in Fig. 2: I_2 , I_3 – electric currents through the inductances; I_1 , V_{P1} – electric current and
69 secondary coil voltage; I_4 , I_5 – electric currents through the diodes; I_6 - the sum of I_2 and I_3 ; I_8 -
70 current through the capacitor; I_1 , V_1 - current and voltage of the load.
71

72


73

74

Figure 2. Computer simulation diagram of the standard "Current Doubler Rectifier".

75

76

Figure 3. Computer simulation results of a standard "Current Doubler Rectifier" with inductances $5 \mu\text{H}$.

77

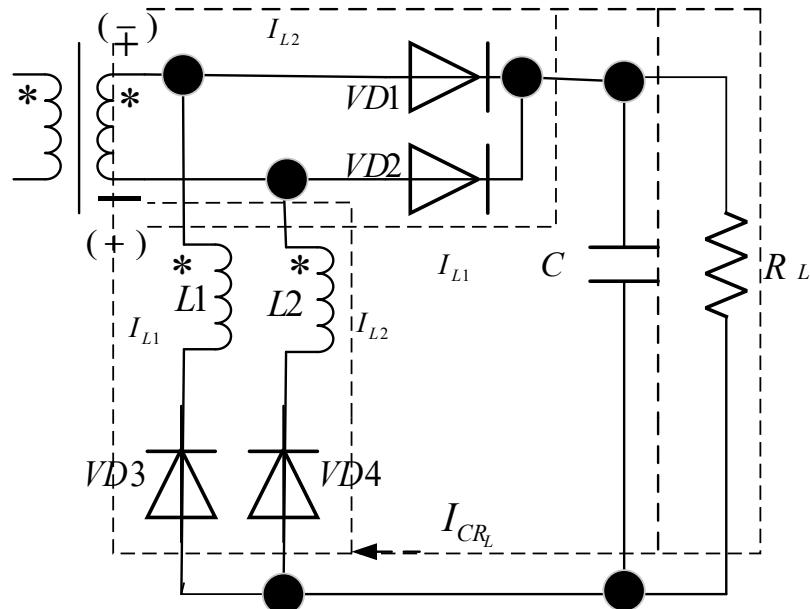

78

Figure 4. Computer simulation results of standard "Current Doubler Rectifier" with inductances $10 \mu\text{H}$.

79 The comparison of the results of Figure 3 with those of Figure 4 shows that at a higher
 80 inductances value the effect in question is less expressed, i.e. the difference in the values of the
 81 average currents through them is smaller. Perhaps this is the reason why researchers did not notice
 82 the difference in currents and did not pay attention to the start-up processes.

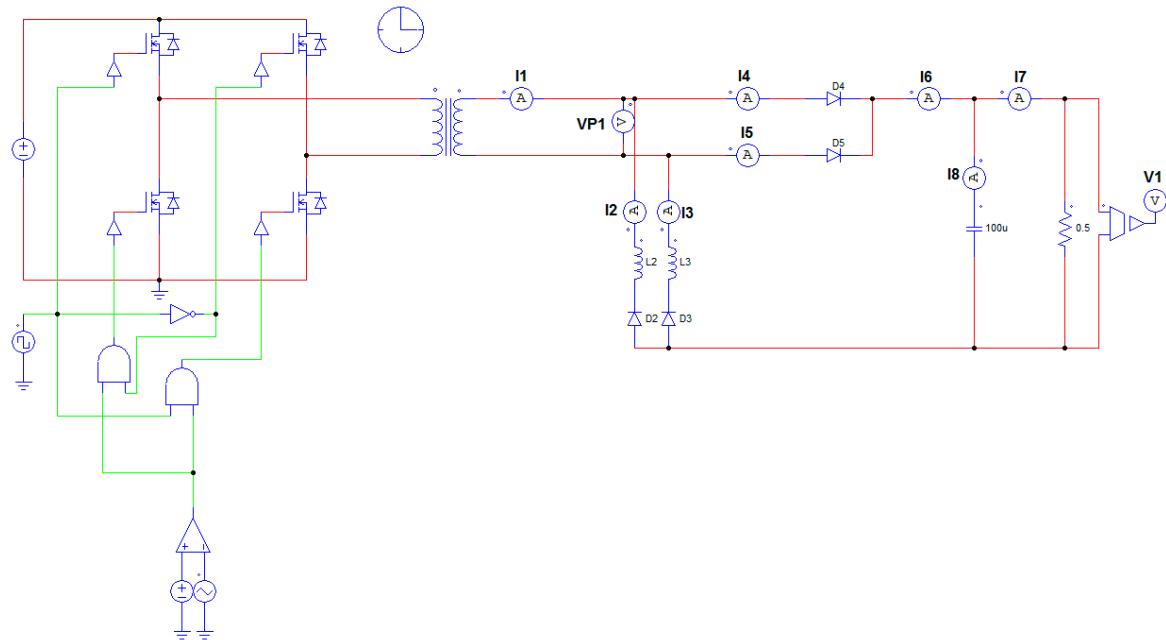
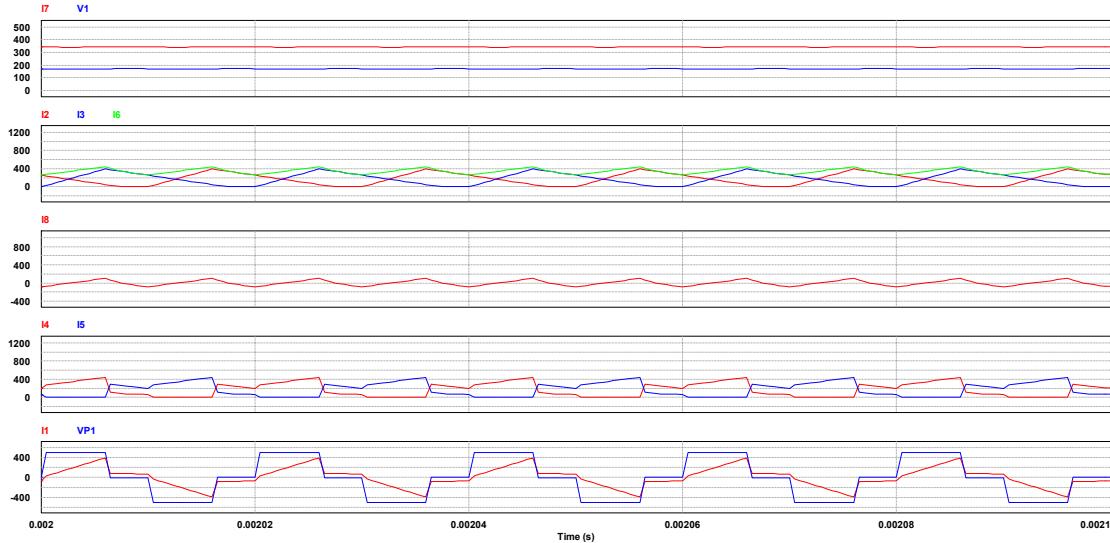
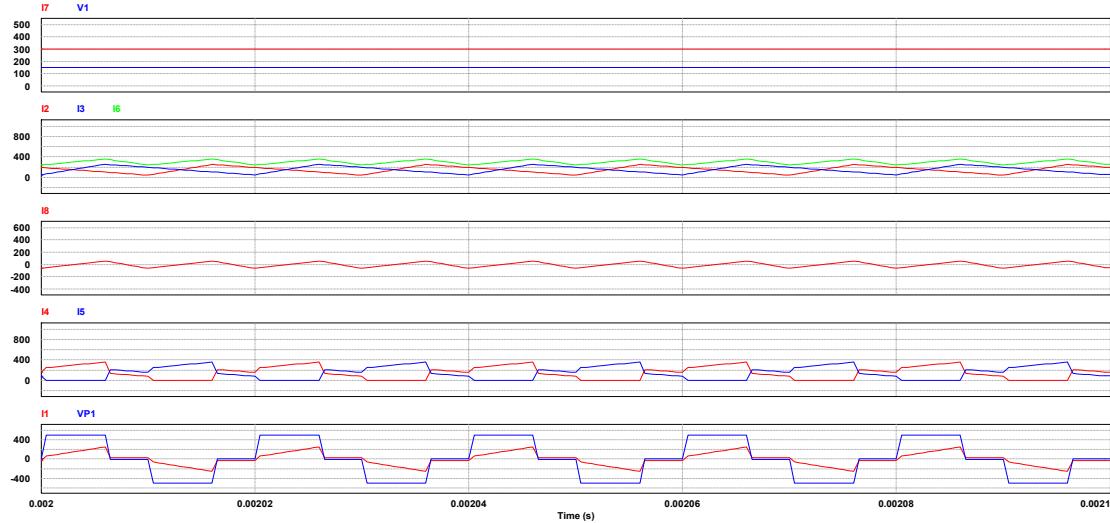
83 To avoid the asymmetry due to the first operating cycle, this article proposes the successive
 84 connection of diodes to inductances, as the this circuit is called "Improved Current Doubler Rectifier"
 85 – Figure 5. It shows that in the first operation cycle at the shown polarity of the voltage of the
 86 secondary coil without brackets, electric current flows only through the inductance L_2 in direction
 87 from the bottom to the top of the diagram. Due to the presence of $VD3$ in this first cycle, there is no
 88 current flowing through the inductance L_1 . When changing the polarity of the voltage in the second
 89 cycle, shown in the figure in brackets, current will flow through the inductance L_1 , in direction from
 90 bottom to top. The diagram will have the same results if the first cycle corresponds to the polarity of
 91 the voltage shown in brackets. In this way, the circuit becomes symmetrical with respect to the two
 92 currents in their first cycle. From the diagram of Figure 5, it is seen that a single-phase bridge rectifier
 93 is connected to the secondary coil of the transformer, as the inductances are being connected
 94 successively with the diodes from the anode group $VD3, VD4$. It should be noted that only the
 95 asymmetry due to the gradual charging of the capacitor C during the startup process remains.

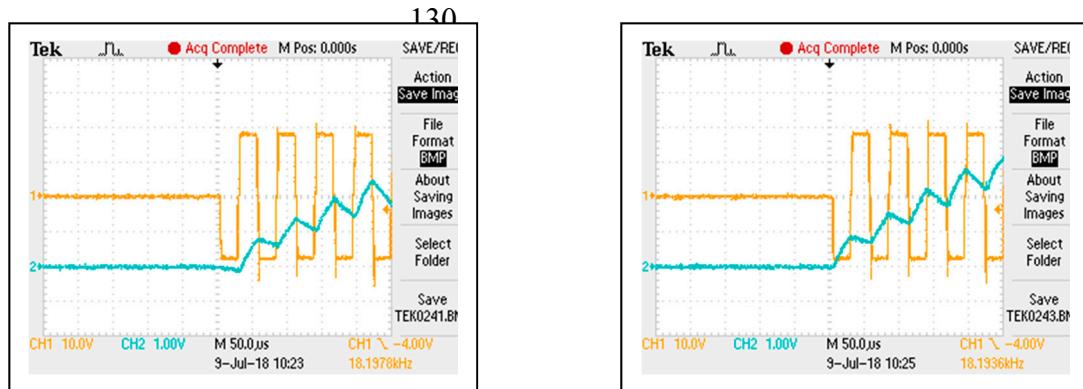
96

97

98 **Figure 5.** Diagram for clarifying the functioning of "Improved Current Doubler Rectifier".
 99

100 The operation of "Improved Current Doubler Rectifier" is checked with the computer simulation
 101 diagram shown in Figure 6. The results are presented in Figure 7 and Figure 8 for the same values of
 102 the two inductances corresponding to Figure 3 and Figure 4. Figure 7 and Figure 8 show almost
 103 complete symmetry of the circuit in terms of currents through inductances, currents through the
 104 diodes, and lack of a direct current component through the secondary coil of the transformer.




105
106

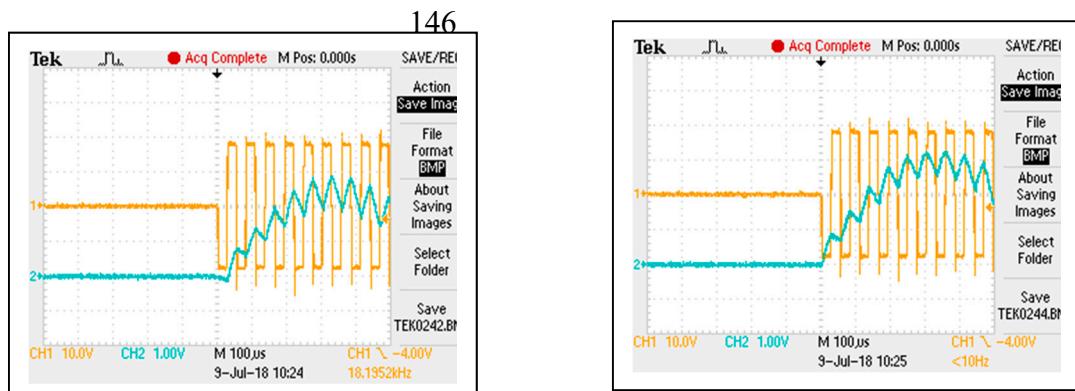

Figure 6. "Improved Current Doubler Rectifier" computer simulation diagram.

107
108Figure 7. Computer simulation results of "Improved Current Doubler Rectifier" with inductances $5 \mu\text{H}$.109
110
111Figure 8. Computer simulation results of "Improved Current Doubler Rectifier" with inductances $10 \mu\text{H}$.

112 **3. Experimental investigation**

114 To investigate the start-up processes, a bridge DC / DC converter with a high-frequency
 115 transformer has been implemented. This converter is powered by a voltage with a value $\approx 300V$,
 116 obtained after rectification the voltage of the power supply network. In the converter control
 117 system, special measures are provided to ensure the symmetrical operation of the diagonally
 118 connected transistors in both half periods. In the first part of the experiment, a standard "Current
 119 Doubler Rectifier" of Figure 1 is connected in the secondary side at inductances value of $21\mu H$. The
 120 values of the two inductances are specifically selected to be equal, and the measurement is done with
 121 an electronic RLC meter. Figure 9 and Figure 10 show oscilloscograms from the initial run experiment at
 122 different time scales. When monitoring the oscilloscope of the voltage on the secondary coil of the
 123 transformer, the active end of the voltage probe on the oscilloscope's first channel is connected to the
 124 anode of VD_2 diode, and the ground - to the anode of diode VD_1 . The currents are monitored by a
 125 current probe, connected to the second channel at a $100mV / A$ scale. The probe is connected so, that
 126 the positive direction of the current through it is from the end to the beginning of each inductance.
 127 On all the oscilloscograms shown below, the voltage scale of CH1 is $10V / div$, and the current scale of
 128 CH2 is $10A / div$.

129



141

b

142

143 **Figure 9.** Horizontal axis scale $\frac{50\mu s}{div}$: a – voltage of the secondary coil of the transformer and current
 144 through inductance L_1 , b - voltage of the secondary coil of the transformer and current through inductance L_2 .
 145

146

b

147

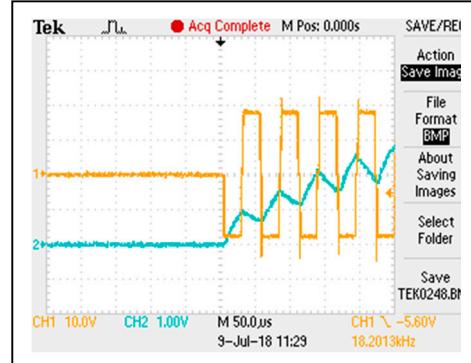
148 **Figure 10.** Horizontal axis scale $\frac{100\mu s}{div}$: a – voltage of the secondary coil of the transformer and current
 149 through inductance L_1 , b - voltage of the secondary coil of the transformer and current through inductance L_2 .
 150

151

152 From the comparison of Figure 9a and Figure 9b can be seen the difference in the first operation cycle. At
 153 the described connection of the first channel voltage probe, the first cycle corresponds to the negative voltage of

164 the anode $VD2$ to the anode of $VD1$ (therefore positive voltage of anode of $VD1$ to the anode of $VD2$). At this
 165 first cycle the current through L_1 flows in the opposite direction and in the second cycle starts from a negative
 166 value that is -2A. In the first cycle the current through L_2 starts from zero value.

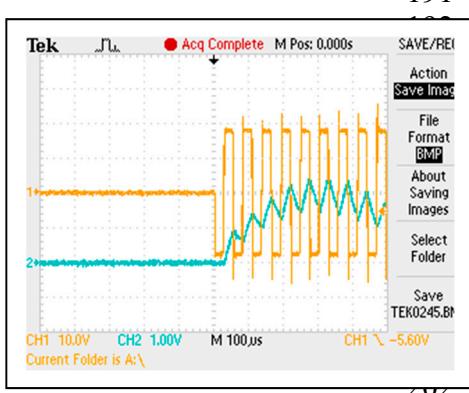
167 From the comparison of Figure 10a and Figure 10b can be seen the difference in the maximum values of
 168 currents during the start-up process - for the inductance L_1 the maximum value is 28A and for the inductance
 169 L_2 - 33A. Therefore, the difference in the maximum values is 5A.


170 In the second part of the experiment, in the secondary side is connected the so-called "Improved Current
 171 Doubler Rectifier" only by adding the two diodes $VD3, VD4$ of the anode group in Figure 5, at the same
 172 inductances value $21\mu H$ Figure 11 and Figure 12 show oscilloscopes from the start-up processes in different
 173 time scales. The position and scale of the voltage and current probes is unchanged.

174

175

186 a



b

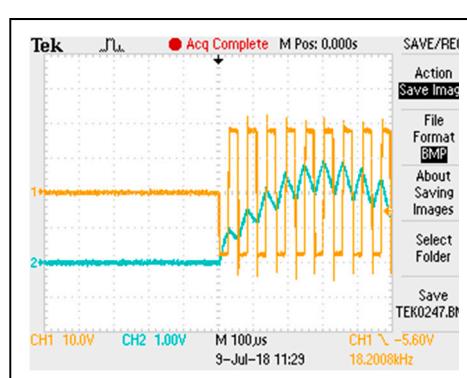

187
 188
 189
 190

Figure 11. Scale on horizontal axis $\frac{50\mu s}{div}$: a - voltage of the secondary coil of the transformer and current
 through inductance L_1 , b - voltage of the secondary coil of the transformer and current through inductance L_2 .

191

a

b

203
 204
 205
 206
 207

Figure 12. Scale on horizontal axis $\frac{100\mu s}{div}$: a - voltage of the secondary coil of the transformer and current
 through inductance L_1 , b - voltage of the secondary coil of the transformer and current through inductance L_2 .

208
 209
 210
 211

From the comparison of Figure 11a and Figure 11b it is seen that there is no current flowing through the
 inductance L_1 in the opposite direction during the first cycle (unlike Figure 9a). During the second cycle this
 current starts at zero value. In the first cycle, the current through L_2 starts from a zero value as it is in Figure
 9b.

212
 213
 214
 215

From the comparison of Figure 12a and Figure 12b the difference in the maximum current values during
 the start-up process is visible - for the inductance L_1 the maximum value is 24A and for the inductance L_2 28A.
 Therefore, the difference in the maximum values is 4A and it is reduced compared to the first case. Although
 smaller, there is some asymmetry in the currents, due to the gradual increase in capacitor C voltage as it was

216 described in the introduction.

217

218 4. Conclusions

219 The results of the researches through computer simulation and these of the experimental studies confirm
220 the original theoretical examination and prove the advantages of the offered in the present work "Improved
221 Current Doubler Rectifier", namely: improving the symmetry of the currents through the two inductances (at
222 their fully equal values and symmetric control of the converter in the primary side); lack of a direct current
223 component in the secondary coil of the transformer. These advantages are achieved by a simple modification of
224 the standard circuit. The advantage, however, is at the expense of a certain disadvantage - the increased number
225 of "Improved Current Doubler Rectifier" diodes. The proposed circuit could be developed and tested through
226 synchronous current rectification in the secondary side, similar to the "Synchronous current doubler rectifier".
227

228 **Conflicts of Interest:** The author declare no conflict of interest.

229 References

1. Balogh L., The Current-Doubler Rectifier: An Alternative Rectification Technique for Push-Pull and Bridge Converters, Design Note 63, *Unitrode Applications Handbook*, 1997, pp.4-79-4-81.
2. Mappus S., PWM IC's AB Outputs Drive Synchronous Rectifier, *Power Electronics Technology*, 2003, February, pp.52-56.
3. Texas Instruments, Control Driven Synchronous Rectifiers in Phase Shifted Full Bridge Converters, *Application Note SLUA287*, 2003, March.
4. Chiang P., M. Hu, Switching Analysis of Synchronous Rectifier MOSFET's with Phase Shifted Full-Bridge Converter and Current Doubler, Vishay Siliconix, *Application Note 833*, 2007, October.
5. Texas Instruments, Using the UCC3895 in a Direct Control Driven Synchronous Rectifier Applications, *User's Guide SLUU109B*, 2009, February.
6. Garsia R., ISL6752/54EVAL1Z ZVS DC/DC Power Supply with Synchronous Rectifier User Guide, *Intersil AN1603*, 2011.
7. Wu Tsai-Fu, C. Tsai, Y. Chang, Y. Chen, Analysis and Implementation of an Improved Current-Doubler Rectifier with Coupled Inductors, *IEEE Transactions On Power Electronics*, 2008, Vol.23, No6, November, pp.2681-2693.
8. Huber L., M. Jovanovic, Forward- Flyback Converter with Current-Doubler Rectifier with Coupled Inductors: Analysis, Design, and Evaluation Results, *IEEE Transactions On Power Electronics*, 1999, Vol.14, No1, January, pp.184-192.
9. Batarseh I., J. Abu-Quahouq, H. Mao, DC-DC Converter with coupled-inductors current-doubler, *US Patent 6982887B2*, 2006, January 3.
10. Texas Instruments, Current Doubler Rectifier Offers Ripple Cancelation, *Application Note SLUA323*, 2004, September.
11. Texas Instruments, UCC3895 Phase Shift PWM Controller EVM Kit Setup and Usage, *User Guide SLUU069A*, 2000, September.
12. Lin B.R., K. Huang, D. Wang, Analysis and implementation of full-bridge converter with current doubler rectifier, *IEE Proceedings Electric Power Applications*, 2005, Vol.152, No.5, September, pp.1193-1202.
13. Renesas, ISL 6752/54 EVAL1Z- ZVS DC/DC Power Supply with Synchronous Rectifiers Evaluation Board, *AN1603*, 2018, May.
14. Balogh L., 100W, 400kHz DC/DC Converter with Current Doubler Synchronous Rectification Achieves 92% Efficiency, *Texas Instruments*, 2000.
15. Mao H., L. Yao, S. Deng, I. Batarseh, Inductor Current Sharing of Current Doubler Rectifier in Isolated DC-DC Converters, *Applied Power Electronics Conference and Exposition*, 2006, pp.770-775.