

1 Article

2

Dual Functional Ultrafiltration Membranes with

3

Enzymatic Digestion and Thermo-Responsivity for

4

Protein Self-Cleaning

5 **Anbharasi Vanangamudi ^{1,2,*}, Ludovic F. Dumée ², Mikel Duke ¹ and Xing Yang ^{1,*}**6 ¹ Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria
7 University, Melbourne, PO Box 14428, Victoria 8001, Australia; anbharasi.vanangamudi@live.vu.edu.au
8 (A.V.); mikel.duke@vu.edu.au (M.D.); xing.yang@vu.edu.au (X.Y.)9 ² Deakin University, Waurn Ponds, Institute for Frontier Materials, Victoria 3216, Australia;
10 ludovic.dumee@deakin.edu.au (L.D.)11 * Correspondence: anbharasi.vanangamudi@live.vu.edu.au; Tel.: +61-399-197-640; xing.yang@vu.edu.au;
12 Tel.: +61-399-197-690

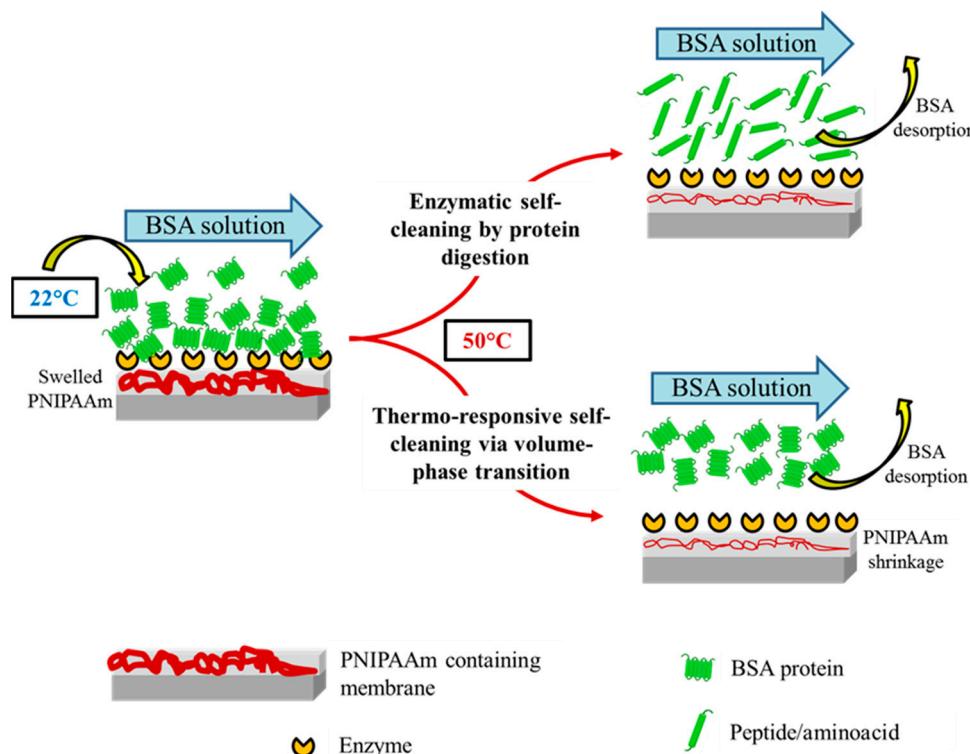
13

14 **Abstract:** Controlling surface-protein interaction during wastewater treatment is the key motivation
15 for developing functionally modified membranes. A new biocatalytic thermo-responsive
16 poly(vinylidene fluoride)(PVDF)/nylon-6,6/poly(*N*-isopropylacrylamide)(PNIPAAm)
17 ultrafiltration membrane was fabricated to achieve dual functionality of protein-digestion and
18 thermo-responsive self-cleaning. The PVDF/nylon-6,6/PNIPAAm composite membranes were
19 constructed by integrating a hydrophobic PVDF cast layer and hydrophilic nylon-6,6/PNIPAAm
20 nanofiber layer where trypsin enzymes were covalently immobilized. The immobilization density
21 of enzymes on the membrane surface decreased with increasing PNIPAAm concentration, due to
22 the decreased number of amine functional sites. Through a ultrafiltration study using a model
23 solution containing BSA/NaCl/CaCl₂, the PNIPAAm containing biocatalytic membranes
24 demonstrated a combined effect of enzymatic and thermo-switchable self-cleaning. The membrane
25 without PNIPAAm revealed superior fouling resistance and self-cleaning with an R_{PD} of 22%,
26 compared to membranes with 2 and 4 wt% PNIPAAm with 26% and 33% R_{PD}, respectively, after an
27 intermediate temperature cleaning at 50°C, indicating that higher enzyme density offers more
28 efficient self-cleaning than the combined effect of enzyme and PNIPAAm at low concentration. The
29 conformational volume phase transition of PNIPAAm did not affect the stability of immobilized
30 trypsin on membrane surface. Such novel surface engineering design offer a promising route to
31 severe surface-protein contamination remediation in food and wastewater applications.32 **Keywords:** thermo-responsive; ultrafiltration; enzymes; self-cleaning; nanofibers

33

34

1. Introduction


35 Non-specific surface-protein interactions at the membrane interface during ultrafiltration (UF)
36 leads to permanent fouling, by accumulation of protein contaminants on membrane surface or into
37 pores [1]. Membrane fouling by proteins cause pore blockage and forms cake layer leading to rapid
38 decline in membrane permeability, increase in cleaning frequency and diminished membrane
39 performance [2,3]. One of the most versatile methods to reduce fouling and self-clean the membranes
40 is to modify the membrane surface functionalities by incorporating self-cleaning materials such as
41 hydrophilic copolymers [4,5], amphiphilic copolymers [6], zwitterionic compounds [7], metal oxides
42 [8], biocatalytic enzymes [1,9], and responsive materials [5,10,11]. Self-cleaning materials are a class
43 of materials with intrinsic ability to remove any contaminant from their surfaces via various
44 mechanisms [12].

45 Biocatalytic enzymes are macromolecules that undergoes biochemical catalysis of specific
46 substrates like proteins to produce respective products. Proteolytic enzymes have attracted attention
47 as self-cleaning compounds that can lyse and detach the protein foulants from the membrane surface
48 [1,13]. To overcome self-hydrolysis of free enzymes in solution leading to instability, deprived
49 performance and poor reusability [14], enzymes may be immobilized onto suitable substrates. The
50 nature and properties of the substrates play a significant role in enhancing enzyme loading, activity
51 and stability over time and cleaning cycles [15].

52 Electrospun nanofibers are considered to be one of the most suitable substrates for enzyme
53 immobilization due to their high surface-to-volume ratio which provides high enzyme loading and
54 improved stability [16], as well as great structure versatility and facile control on surface chemistry
55 [17,18]. The nanofiber membranes possess high porosity and pore interconnectivity that provides low
56 hindrance to mass transfer making it suitable for filtration [19,20]. The activity of enzyme immobilized
57 onto the nanofibers was found to be higher than that of enzyme immobilized
58 commercially cast membranes, owing to the high surface area providing more active sites for enzyme
59 immobilization [9,21,22]. Also, enzyme immobilized nanofibers presented good operational
60 reusability. For example, trypsin immobilized onto polyethylene terephthalate (PET)/poly (lactic
61 acid) (PLA) nanofiber mats and chitosan nanofibers presented 80% (eleven cycles) and 97% (five
62 cycles) reusability respectively [23,24]. Nanofibers are typically used as a surface functional layer
63 along with a support layer during the treatment of complex wastewater [25]. Despite showing
64 enhanced membrane antifouling performance and enzyme resuability, the reported biocatalytic UF
65 membranes exhibited low permeability [1,26,27]. Thus, biocatalytic antifouling membranes with
66 stable enzyme attachment and engineered porous structure offering long term operational stability
67 and high membrane permeability are desired. Since enzymes are susceptible to loss in activity over
68 time [9,28], an additional self-cleaning material that provide facile membrane cleaning may be
69 incorporated to achieve enhanced performance.

70 Thermo-responsive polymers are considered as one of the promising antifouling materials that
71 offer facile temperature based cleaning for membranes [29]. Poly(N-isopropylacrylamide)
72 (PNIPAAm) is a well-known temperature-sensitive polymer with a lower critical solution
73 temperature (LCST) of about 32°C in an aqueous solution [30,31], below which the PNIPAAm
74 polymer chains are more hydrophilic having an extended conformation in water. As the temperature
75 is elevated above LCST, they become less hydrophilic forming a dehydrated compact structure
76 exhibiting a sharp reversible volume-phase conformational transition providing strong inherent
77 washing force. On one hand, the self-cleaning behaviour of the PNIPAAm containing membrane
78 could be attributed to the enhanced hydrophilicity below its LCST, thus facilitating foulants
79 desorption from the surface. For example, PNIPAAm grafted polydopamine/PET UF membranes
80 recovered 90% of the initial flux at 20°C compared to unmodified PET membrane that showed only
81 76% flux recovery, ascribed to the enhanced surface hydrophilicity [29]. Similarly, a flux recovery of
82 92% was achieved for the poly (vinylidene fluoride) (PVDF)/TiO₂-g-PNIPAAm nanocomposite
83 membranes compared to 47% flux recovery for the control PVDF membranes at 23°C [32]. On the
84 other hand, the thermo-switchable characteristic of PNIPAAm providing strong inherent washing
85 force was exploited to remove the membrane foulants in UF, exhibiting self-cleaning property. For
86 example, the PNIPAAm grafted polyethylene membrane fouled by model protein bovine serum
87 albumin (BSA) showed 97% flux recovery via applying a temperature-change (25°C/35°C) cleaning
88 method [33]. Similarly, the PNIPAAm-grafted ZrO₂ membrane showed 80% flux recovery after
89 temperature-change cleaning (25°C/35°C) of BSA fouled membranes [34]. However, the combined
90 self-cleaning effect of PNIPAAm and biocatalytic enzymes has not been explored so far and the
91 impact of one material on the other in terms of filtration and self-cleaning effect was not investigated.
92 In this study, a new biocatalytic PVDF/nylon-6,6/PNIPAAm composite UF membrane was prepared
93 by covalently immobilizing trypsin (TR) enzyme onto functional nanofibrous surface of PVDF/nylon-
94 6,6/PNIPAAm membrane, to achieve dual functionality of protein-digestion and thermo-responsivity
95 for self-cleaning effect. The structural and functional properties of the as-prepared membranes were
96 investigated and correlated to the membrane performance in UF fouling experiments with

97 intermediate temperature cleaning. Also, the impact of thermo-switchable volume-phase transition
 98 on the stability of immobilized enzymes was studied. Figure 1 shows the schematic of membrane
 99 self-cleaning using enzymes and thermo-responsive PNIPAAm polymer via protein-digestion and
 100 volume phase transition mechanisms, respectively.
 101

Figure 1. Conceptual schematic of self-cleaning biocatalytic and thermo-switchable membrane.

126 coagulation tank of DI water at 25°C to remove the solvent. The nascent membranes were post-treated
127 by immersing in to a mixture of glycerol, ethanol and DI water in the ratio 2:1:2 (vol%) and was dried
128 finally before characterisation. Similarly, the control PVDF/nylon-6,6 membrane was prepared
129 without the addition of PNIPAAm.

130 *2.3. Preparation of biocatalytic PVDF/nylon-6,6/PNIPAAm membranes*

131 The immobilization of TR enzymes on to the as-prepared composite membranes with no
132 PNIPAAm (PN0), 2 wt% (PN2) and 4 wt% (PN4) PNIPAAm were achieved by EDC/NHS coupling
133 reaction using a similar method used in our previous study [9], to form PN0-TR, PN2-TR and PN4-
134 TR membranes, respectively. Briefly, the enzyme carboxyl groups was first activated by reacting 1
135 mg/mL of enzyme solution with aqueous EDC and NHS in the ratio 4:1 for 1 h at room temperature,
136 followed by the reaction of EDC/NHS activated enzymes with the primary amines on PN0-TR, PN2-
137 TR and PN4-TR membranes for 12 h at 4°C to covalently attach on to the membranes via amide bonds.
138 The membranes were then rinsed with DI water to remove the adsorbed TR. The efficiency of
139 immobilization was calculated from the enzyme concentration decrease in solution before and after
140 contact with the membrane.

141 *2.4. Membrane characterization*

142 The surface morphology of the biocatalytic composite membranes was observed using scanning
143 electron microscopy (SEM) (ZEISS SUPRA 55VP, Germany) with an accelerating voltage of 5 kV and
144 working distance of 10 mm. The membrane samples were sputter coated with a 5 nm layer of gold in
145 high vacuum, using a Leica EM ACE600 prior to imaging using SEM. The average nanofiber
146 diameters of the membranes were evaluated from the SEM images using ImageJ software. The pore
147 size and pore size distribution of the membranes were measured using Porometer 3Gzh from
148 Quantachrome. The Porofil™ wetted membrane samples of 25 mm diameter each were placed in the
149 sample holder and was exposed to pressures from 6.4 to 34 bar for wet and dry run to measure the
150 mean pore size. The pore size was measured three times for each membrane to obtain the average
151 pore size. The dynamic water contact angles (CA_w) of the as-prepared membranes were measured
152 using an optical contact angle meter CAM101 (KSV Instruments, Finland) to investigate the
153 switchable surface hydrophilicity at 22°C (below LCST) and 50°C (above LCST). The required
154 temperature of the membrane samples was achieved by adjusting the voltage of the source meter
155 connected to the heating pad on which the samples are mounted. Prior optimisation of corresponding
156 temperatures and feed voltages of the heating mats were established before mounting the heating
157 pad on the contact angle meter. Rectangular strips of each membrane sample was pasted on to a glass
158 slide by using sticky tape on the two corners of membrane, following which 4 μ L water droplet was
159 dispensed through a needle onto the membrane surface. Each measurement was recorded every 5 s
160 over the duration of 60 s.

161 *2.5. Quantification of immobilized TR and its activity against BSA*

162 The surface density of immobilized TR on the as-prepared thermo-responsive composite
163 membranes was calculated by measuring the enzyme concentration decrease in solution before and
164 after contact with the membrane using UV-Visible spectrophotometer at 280 nm. Furthermore, the
165 enzymatic activities of biocatalytic thermo-responsive membranes and free TR were determined by
166 measuring their hydrolytic activities using the method described previously in our work with 1 wt%
167 BSA solution as the substrate [9]. Briefly, the immobilized and free TR were allowed to react with the
168 BSA solution for different time periods up to 1 h at 37°C and terminated by the addition of 5 wt%
169 TCA. Then, the mixture was centrifuged at 2000xg and the absorbance of the supernatant containing
170 hydrolytic products was measured at 280 nm using a UV-Visible spectrophotometer. The blank
171 contained the supernatant of the reaction carried out as above using membranes without TR. One
172 digestion unit (DU) represents an increase of 0.1 in absorbance of the hydrolytic products denoting
173 an increase in the amount of substrate digested by the enzymes via hydrolysis.

174 2.6. *Fouling studies*

175 The antifouling and self-cleaning properties of the biocatalytic thermo-responsive membranes
 176 was evaluated using a cross flow UF set up having an effective area of $42 \times 10^{-4} \text{ m}^2$ and flow velocity
 177 of 12.6 cm/s. The prepared feed solution contained 1 mg/mL BSA (model protein), 7 mM NaCl and 1
 178 mM CaCl₂ in DI water that had a pH of 7.8 which falls within the optimal pH range of TR (pH 7.5-
 179 8.5) [35]. Each membrane was initially exposed to 10 min of compaction using DI water at 120 kPa at
 180 RT. It was then subjected to DI water containing 7 mM NaCl at 100 kPa for 15 min to measure the
 181 clean water permeance (P_w) in $\text{L} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$ calculated by the following equation:

$$182 \quad 183 \quad P_w = V / (A * t * p) \quad (1) \\ 184$$

185 where V is the volume of permeate in L, A is the membrane area in m^2 , t is the permeation time
 186 in h and p is the constant pressure (1 bar). Each UF experiment had 2 cycles and each cycle included
 187 the filtration of the prepared feed solution at 22°C for 1 h followed by an intermediate temperature
 188 cleaning with DI water at 22°C for 15 min. The number 'n' represented the cycle number. As a
 189 measure of protein fouling, the rate of permeance decline (R_{PD}) after each cycle was calculated using
 190 the equation,

$$191 \quad R_{PD} (\%) = \left[1 - \left(\frac{P_{e(n)}}{P_w} \right) \right] * 100 \quad (2) \\ 192$$

193 where $P_{e(n)}$ is the final feed permeance in nth cycle. Further, to study the self-cleaning property of
 194 membranes, the permeance recovery after the intermediate temperature cleaning at 22°C was
 195 calculated using the equation,

$$196 \quad PRR (\%) = \frac{P_{w(n)}}{P_w} * 100 \quad (3) \\ 197$$

198 where $P_{w(n)}$ is the clean water permeance in nth cycle. Also, the fouling parameters namely
 199 reversible fouling (RF), irreversible fouling (IF) and total fouling (TF) for each cycle was computed
 200 by the following equations:

$$202 \quad IF = [P_{w(n-1)} - P_{w(n)}] / P \quad (4) \\ 203$$

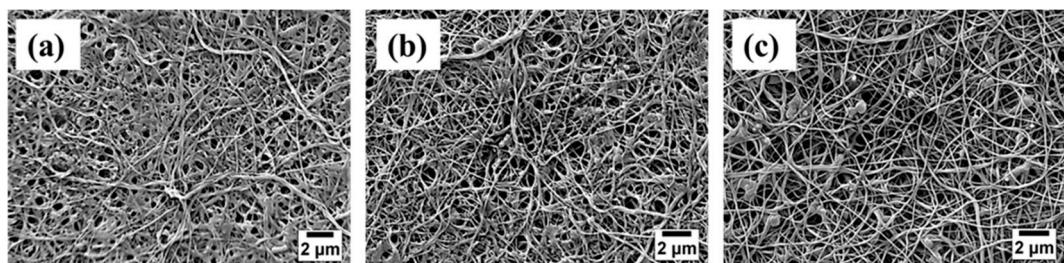
$$204 \quad RF = [P_{s(n)} - P_{e(n)}] / P \quad (5) \\ 205$$

$$206 \quad TF = IF + RF \quad (6) \\ 207$$

208 where P_s is the initial feed permeance of each cycle and P_e is the final feed permeance of each
 209 cycle. Finally, SEM was used to visualise the surfaces of biocatalytic membranes after 2 cycles of
 210 filtration and compare the antifouling and self-cleaning properties of the enzyme immobilized
 211 membranes with and without PNIPAAm. Further, to investigate the combined antifouling and self-
 212 cleaning effects of protein-digestive enzymes and thermo-responsive PNIPAAm, 2 filtration cycles
 213 each including filtration of the prepared feed solution at 22°C for 1 h followed by an intermediate
 214 temperature cleaning with DI water at 50°C for 15 min were also performed and their respective R_{PD}
 215 was calculated for comparison.

216 2.7. *Storage studies and effect of thermo-responsivity on enzyme stability*

217 The biocatalytic membranes was stored under refrigeration at 4°C and at RT (22°C) and the
 218 enzyme activity was measured at regular intervals for up to two weeks. Further, the effect of thermo-
 219 switchable volume phase transition of the PNIPAAm on enzyme stability was investigated by
 220 measuring the hydrolytic activities of the as-prepared membranes (a) before and after treating the
 221 membranes at 50°C for 5 min and (b) over six consecutive reuse cycles before treating the membranes
 222 at 50°C for 5 min and after the treatment. These studies were conducted to investigate if the volume
 223 phase transition during thermo-switchable cleaning affects the stability of enzymes immobilized on

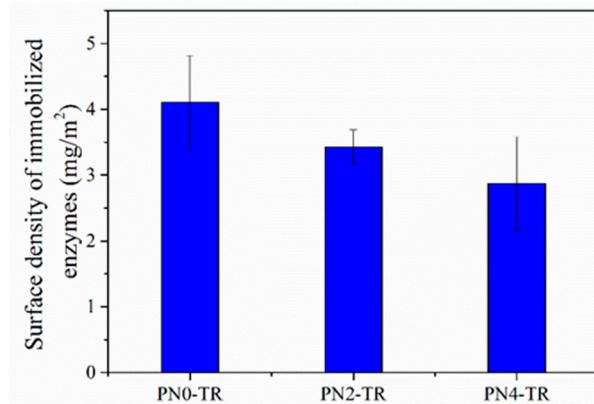

224 to the membrane surfaces. Treatment at 50°C for 5 min is exposing the membrane samples into DI
225 water maintained at 50°C and mild stirring at 100 rpm for 5 min.

226 **3. Results and Discussion**

227 *3.1. Enzyme distribution on membrane surface*

228 The distribution of enzymes on the surface of PVDF/nylon-6,6/PNIPAAm and PVDF/nylon-6,6
229 membranes were analysed using the SEM imaging and shown in Figure 2. All the TR immobilized
230 membranes with no PNIPAAm, 2 and 4 wt% PNIPAAm showed homogenous nanofiber structure
231 with an average nanofiber diameter of 87±17 nm, 180±15 nm and 314±20 nm, respectively. The
232 membrane with 4 wt% PNIPAAm show nano-branched structure with beads and clusters in some
233 nanofibers that could be attributed to the uneven distribution of enzymes; while the membranes with
234 no PNIPAAm and 2 wt% PNIPAAm showed homogenous enzyme attachment as seen in Figure 2.
235 These clusters were formed due to possible aggregation of TR by randomized attachment points on
236 the membrane implying the lack of control on enzyme immobilization [36]. Further, the thickness of
237 the biocatalytic membranes with no PNIPAAm, 2 and 4 wt% PNIPAAm was measured from the cross
238 sectional SEM micrographs to be 249±9 μ m, 257±6 μ m and 265±11 μ m, respectively.

239



240

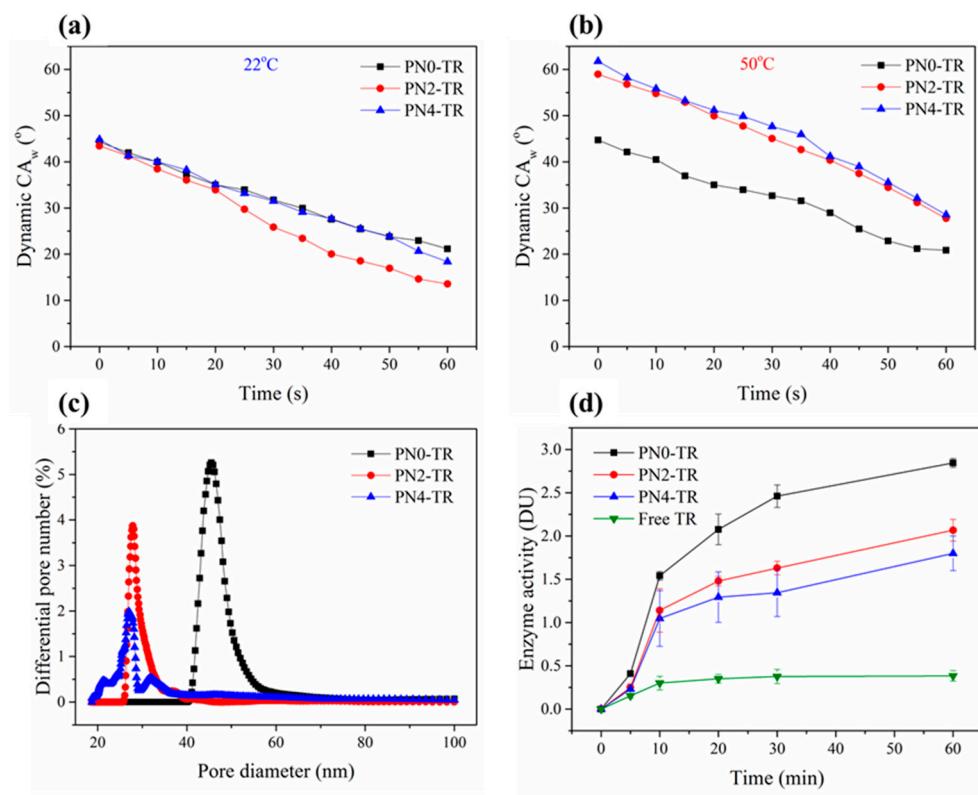
241 **Figure 2.** SEM images of biocatalytic membranes with (a) no PNIPAAm (PN0-TR); (b) 2 wt% PNIPAAm
242 (PN2-TR); and (c) 4 wt% PNIPAAm (PN4-TR).

243 *3.2. Surface density of immobilized enzyme*

244 The density of immobilized TR on the surface of membranes was measured to study the amount
245 of covalently attached enzymes and the results are presented in Figure 3. It was observed that the
246 surface density of immobilized TR decreased as the PNIPAAm concentration in the membrane
247 increased. This can be attributed to the incorporation of PNIPAAm in to the membrane which
248 decreased the availability of surface amine functional groups from nylon-6,6 used for enzyme
249 attachment via carbodiimide chemistry using EDC and NHS. The surface densities of immobilized
250 TR on PVDF/nylon-6,6/PNIPAAm membranes with no PNIPAAm, 2 and 4 wt% PNIPAAm were 4.01
251 mg/m², 3.43 mg/m² and 2.87 mg/m², respectively, which were higher than the reported values of 0.7
252 mg/m² of TR immobilized PES membrane in the literature due to the nanofiber structure providing
253 higher surface area for enhanced immobilization [1]. Among the prepared membranes, the control
254 membrane without PNIPAAm had higher surface density of enzymes.

255

256 **Figure 3.** Surface densities of TR immobilized on to PVDF/nylon-6,6/PNIPAAm membranes with no
 257 PNIPAAm (PN0-TR), 2 wt% (PN2-TR) and 4 wt% (PN4-TR) PNIPAAm concentrations.


258 *3.3. Membrane characterization*

259 To evaluate the hydrophilicity and responsivity of biocatalytic thermo-responsive membranes,
 260 the dynamic water contact angles (CA_w) were measured over 60 s at 22°C and 50°C and are given in
 261 Figure 4a and 4b, respectively. The CA_w for the PNIPAAm containing membranes at 22°C exhibit a
 262 slightly faster attenuation compared to control membrane, as shown in Figure 4a. This decreasing
 263 tendency could be due to the addition of PNIPAAm that has a hydrophilic extended conformation
 264 below its LCST (32°C) which absorbs water by forming hydrogen bond between the amide groups of
 265 PNIPAAm and water, in spite of having lesser immobilized enzymes compared to control membrane.
 266 Also, at 22°C, the biocatalytic PVDF/nylon-6,6/PNIPAAm membrane with 2 wt% PNIPAAm showed
 267 the lowest CA_w of 13.6° compared to the membrane with 4 wt% PNIPAAm (18.4°) after 60 s, which
 268 may be ascribed to the increased amount of immobilized TR on the membrane surface. Figure 4b
 269 shows the dynamic CA_w of the as-prepared membranes at 50°C. For the PVDF/nylon-6,6 without
 270 PNIPAAm, the CA_w attenuation was similar at both 22°C and 50°C. However, the initial CA_w values
 271 for PNIPAAm containing membranes were higher at 50°C compared to those at 22°C, owing to the
 272 hydrophobic nature of the membrane above LCST that breaks the hydrogen bonds between amide
 273 groups of PNIPAAm and water molecules.

274 To investigate the volume-phase transition of the PNIPAAm around its LCST, the thermo-
 275 switchable CA_w of the membranes was measured and compared in terms of their initial CA_w at 22°C
 276 and 50°C, as shown in Figure 4a and 4b, respectively. The biocatalytic membrane without PNIPAAm
 277 exhibited no CA_w switchability; while the membranes with 2 and 4 wt% PNIPAAm exhibited
 278 switchable CA_w from 43.5° to 59° and from 44.8° to 61.8°, respectively, between 22°C and 50°C. The
 279 slightly higher switchability of biocatalytic membrane with 4 wt% PNIPAAm compared to
 280 membrane with 2 wt% PNIPAAm is attributed to increased PNIPAAm concentration in the
 281 membrane. However, this CA_w variation is more significant than the PVDF-g-PNIPAAm membrane
 282 reported in literature that exhibited switching CA_w from 87.5° (22°C) to 89° (50°C) [37].

283 The mean pore size and overall pore size distributions of the as-prepared membranes were
 284 measured using a capillary-flow porometer [5]. Figure 4c compares the differential pore distributions
 285 of the three membranes in terms of pore diameters. The TR immobilized PVDF/nylon-6,6 membrane
 286 exhibited narrow distribution curve due to the homogenously attached enzymes; while the TR
 287 immobilized membranes with 2 and 4 wt% PNIPAAm exhibited bimodal distribution curves owing
 288 to the formation of non-homogenous pore structures due to TR immobilization. The TR immobilized
 289 membrane with 4 wt% PNIPAAm membrane showed slightly wider distribution, possibly due to the
 290 clustering of TR enzymes as observed in Figure 2. The mean pore size of the TR immobilized
 291 PVDF/nylon-6,6/PNIPAAm membranes with no PNIPAAm, 2 and 4 wt% PNIPAAm were 44, 33 and
 292 23 nm, respectively. The smaller pore size of the as-prepared membrane with 4 wt% PNIPAAm
 293 compared to those membranes with no PNIPAAm and 2 wt% PNIPAAm is ascribed to the formation
 294 of enzyme clusters on the membrane surface (Figure 2c).

295

296

297

298

299

300

Figure 4. Dynamic water contact angles (CA_w) of the biocatalytic membranes with and without PNIPAAm for 60 s contact time at (a) 22°C and (b) 50°C; (c) differential pore number (in %) distributions and (d) enzymatic activities of biocatalytic membranes over time with no PNIPAAm, 2 and 4 wt% PNIPAAm.

301

3.4. Enzyme activity evaluation across the nano-composite membranes

302

The enzymatic activity of the free and immobilized TR were determined by performing the hydrolytic assay using 1 wt% BSA solution which gives the amount of hydrolytic products formed. One digestion unit (DU) represents an increase of 0.1 in absorbance of the hydrolytic products denoting an increase in the amount of substrate digested by the enzymes. The results are shown in Figure 4d with respect to the reaction time. The amount of products formed by immobilized TR were noticed to be much greater than that of the free enzymes for all reaction times up to 60 min. For instance, at 60 min, the TR immobilized on to the membranes with no PNIPAAm, 2 and 4 wt% PNIPAAm produced about 7.5, 5.5 and 4.7 times more peptide products, respectively, than the free TR. It was also observed that the activity of immobilized TR increased with reaction time, whereas for the free enzymes, the activity increased initially but reached plateau in 10 min. This is due to the autolytic behaviour of the native enzymes, commonly known as self-digestion [38-40], while the increased stability of immobilized TR has greatly enhanced the enzymatic activity. The results further revealed that the PVDF/nylon-6,6 membrane without PNIPAAm show superior enzyme activity than the PNIPAAm containing membranes, possibly due to high immobilization density (Figure 3).

316

3.5. Protein fouling studies

317

The combined enzymatic and thermo-responsive effect on surface-protein interaction of the as-prepared biocatalytic membranes was investigated by conducting the filtration experiments with and without temperature-change cleaning, i.e., two-cycle filtration with respective intermediate DI water cleaning at 22°C and 50°C, with results shown in Figure 5 and 7, respectively.

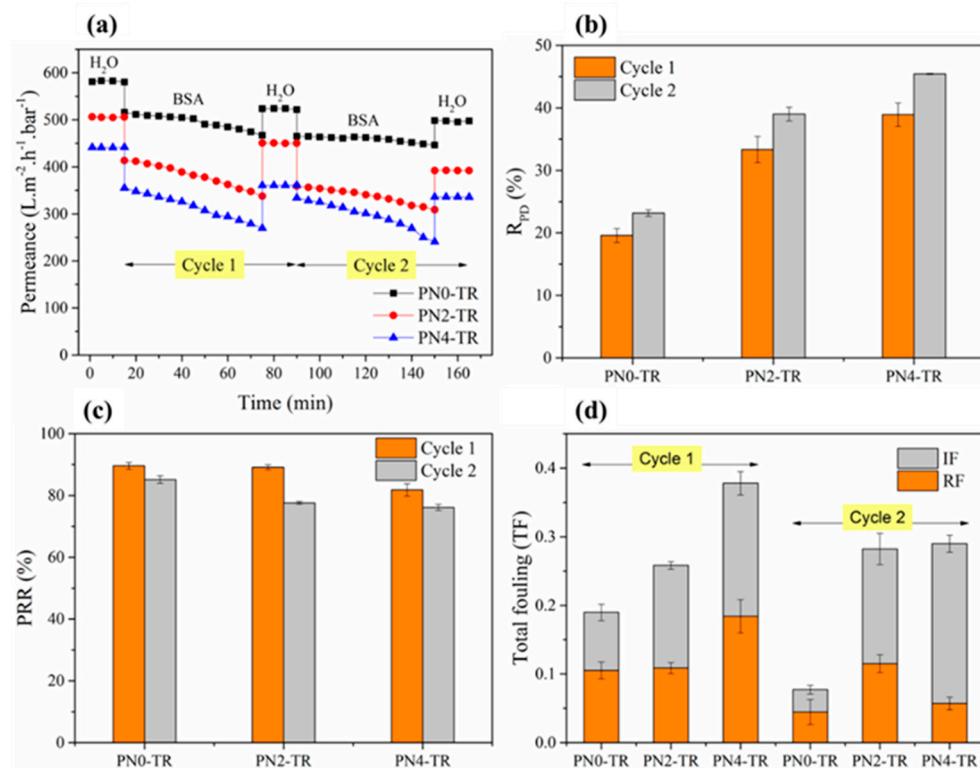
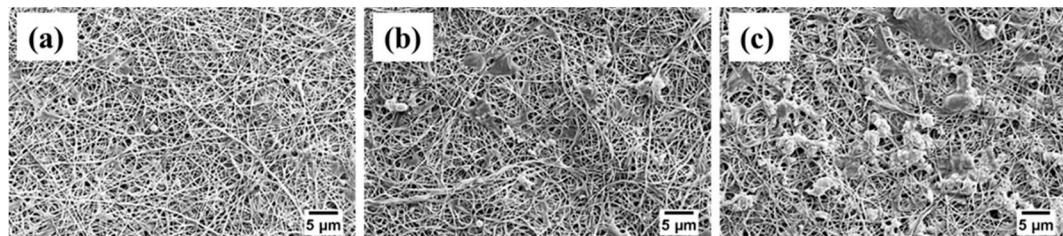

321

Figure 5 shows the results of two consecutive filtration cycles with intermediate DI water cleaning at 22°C presented in terms of permeance and R_{PD} as a measure of protein fouling, and PRR, RF, TF and IF, as measures of the self-cleaning ability of the membranes. As presented in Figure 5a,


324 the biocatalytic membranes with 2 wt% ($506 \text{ L.m}^{-2} \cdot \text{h}^{-1} \cdot \text{bar}^{-1}$) and 4 wt% ($442 \text{ L.m}^{-2} \cdot \text{h}^{-1} \cdot \text{bar}^{-1}$) PNIPAAm
325 exhibited slightly lower initial water permeance i.e. 13% and 24% lesser, compared to the membrane
326 without PNIPAAm ($581 \text{ L.m}^{-2} \cdot \text{h}^{-1} \cdot \text{bar}^{-1}$), which is attributed to the decrease in pore size due to the
327 incorporation of PNIPAAm (Figure 4). Based on the permeance patterns observed for all membranes
328 in Figure 5a, the R_{PD} was calculated based on Equation 2 and presented in Figure 5b to indicate the
329 resistance to protein fouling. During the first filtration cycle, the biocatalytic PVDF/nylon-
330 6,6/PNIPAAm membranes with no PNIPAAm, 2 and 4 wt% PNIPAAm suffered fouling as indicated
331 by an R_{PD} of about 19%, 33% and 39%, respectively. The lower R_{PD} of biocatalytic membrane without
332 PNIPAAm suggests that the membrane with higher density of immobilized enzymes with increased
333 proteolytic ability i.e., protein digestive feature, were able resist BSA fouling to a larger extent [38].
334 Also, this result was found to be promising compared to the reported TR immobilized PMAA-g-PES
335 UF membrane having a flux decline rate of 19.1% using a pure BSA solution of 1 g/L [1].

336 Further, during the second filtration cycle, the R_{PD} values were 22%, 39% and 45% for respective
337 biocatalytic membranes with no PNIPAAm, 2 and 4 wt% PNIPAAm, after temperature cleaning at
338 22°C. Similar to first filtration cycle, the increasing R_{PD} follows the decreasing trend of immobilized
339 TR density on the membrane surface. The SEM micrographs of the fouled membranes are presented
340 in Figure 6. Consistent to the permeance results, the biocatalytic PVDF/nylon-6,6/PNIPAAm
341 membrane with 4 wt% PNIPAAm showed heavy fouling (Figure 6c) compared to that without
342 PNIPAAm that exhibited much reduced protein deposition presenting clear surface after two
343 filtration cycles (Figure 6a), followed by the membrane with 2 wt% PNIPAAm that showed regional
344 accumulation of protein (Figure 6b).

345 The self-cleaning ability of the biocatalytic membranes without temperature cleaning was
346 quantified by calculating the PRR and fouling parameters namely RF, IF and TF. Figure 5c reveals
347 that after the first filtration cycle, the biocatalytic membranes with no PNIPAAm, 2 and 4 wt%
348 PNIPAAm were able to recover about 90%, 89% and 82% of the initial permeance, respectively. The
349 greater permeance recovery of membranes with no PNIPAAm and 2 wt% PNIPAAm compared to
350 that with 4 wt% PNIPAAm was attributed to the higher density of immobilized enzymes on the
351 membrane surface that leads to breakdown of proteins into smaller polypeptides releasing them
352 subsequently from the membrane surface. This result was found to be comparable with the literature
353 work where TR immobilized PVDF MF membrane fabricated via a complex electron beam method
354 showed 90% flux recovery after first filtration cycle with pure BSA solution of 3 g/L after backwashing
355 with 120 mL of pure water every 1.6 L of filtration and self-cleaning through trypsin activation by
356 immersing the fouled membrane into a buffered solution at 37 °C and pH 8.0 overnight [27]. Similar
357 trend was observed after the second filtration cycle with biocatalytic membranes with no PNIPAAm,
358 2 and 4 wt% PNIPAAm showing 85%, 78% and 76% permeance recovery, respectively. The
359 corresponding IF and RF parameters are presented in Figure 5d. After the first filtration cycle, the
360 membranes with no PNIPAAm and 2 wt% PNIPAAm reduced the IF by 43% and 41%, respectively,
361 compared to that with 4 wt% PNIPAAm, explaining the higher PRR presented in Figure 5c. This
362 result demonstrates that less permanent fouling occurs with more enzymes featuring the self-
363 cleaning capacity of the biocatalytic membranes. Thus, the membranes with higher density of
364 immobilized enzymes exhibited much lower TF, which is corresponding to their higher PRR. Here,
365 the biocatalytic PVDF/nylon-6,6 membrane without PNIPAAm was identified to be the best
366 performing biocatalytic membrane in terms of fouling mitigation and self-cleaning ability.
367

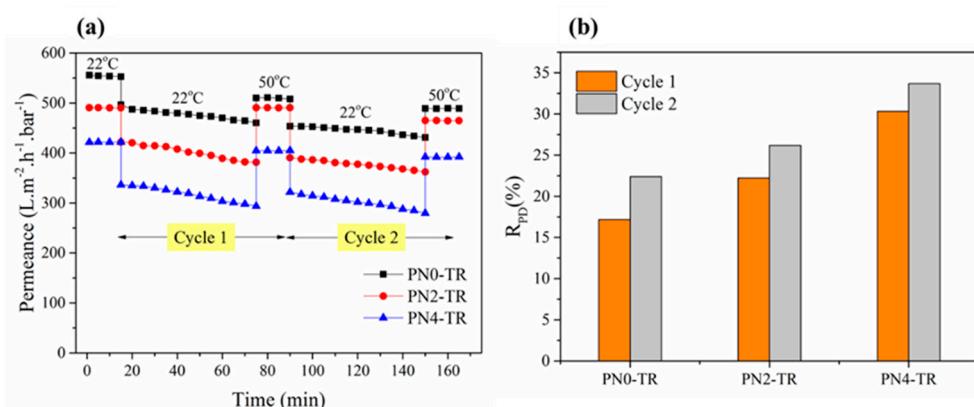
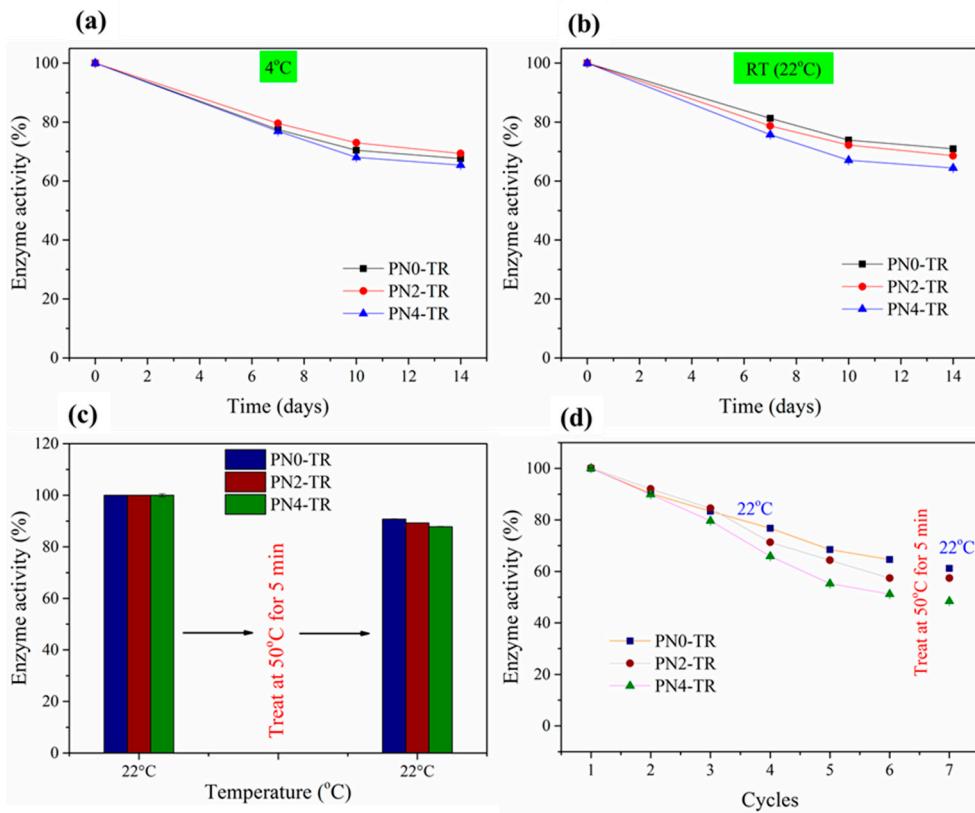

Figure 5. Protein fouling studies for biocatalytic membranes with and without PNIPAAm. (a) Permeance values for two filtration cycles. (b) RPD after each filtration cycle. (c) PRR after each filtration cycle. (d) TF, IF and RF for 2 filtration cycles. Experimental Conditions: Pressure = 100 kPa, cross-flow velocity = 12.6 cm/s, feed solution = 1 g/L BSA, 1 mM CaCl₂, 7 mM NaCl, both filtration and cleaning temperature = 22°C.

Figure 6. SEM micrographs of BSA fouled biocatalytic membranes with (a) no PNIPAAm (PN0-TR); (b) 2 wt% (PN2-TR); and (c) 4 wt% (PN4-TR) PNIPAAm after two filtration and cleaning cycles at 22°C.

To investigate the effect of PNIPAAm in the membrane matrix, the as-prepared biocatalytic PNIPAAm membranes were evaluated with the same filtration experiments, but involved temperature-change cleaning with DI water at 50°C. The performance results in terms of permeance and R_{PD} for two filtration cycles are given in Figure 7a and 7b, respectively. As shown in Figure 7a, the biocatalytic membranes with no PNIPAAm (556 L.m⁻².h⁻¹.bar⁻¹), 2 wt% (491 L.m⁻².h⁻¹.bar⁻¹) and 4 wt% (422 L.m⁻².h⁻¹.bar⁻¹) exhibited similar initial water permeance to those presented in Figure 5a, showing good repeatability. During the first filtration cycle, the R_{PD} values for biocatalytic PVDF/nylon-6,6/PNIPAAm membranes with no PNIPAAm, 2 and 4 wt% PNIPAAm were 18%, 22% and 30%. Further, during the second filtration cycle, the R_{PD} values were 22%, 26% and 33% for the respective membranes. The increasing trends of the R_{PD} in both cycles are consistent with those in Figure 3 corresponding to increasing density of enzymes on the membrane surface. Nevertheless, these values were found to be lower than the R_{PD} values reported with intermediate cleaning at 22°C in Figure 5b. Also, from Figure 7a, during the second filtration cycle, the membranes with no PNIPAAm, 2 wt% and 4 wt% PNIPAAm recovered about 91%, 93% and 96% of the initial BSA

395 permeance of first filtration cycle. Thus, in addition to the enzymatic protein digestive feature of the
 396 membrane, the temperature-change cleaning has confirmed the role of PNIPAAm on the antifouling
 397 and self-cleaning effects via thermo-switchable cleaning when the environment temperature switches
 398 from 22°C to 50°C. Overall, the as-prepared biocatalytic membrane without PNIPAAm revealed
 399 superior fouling resistance with reduced protein interactions compared to PNIPAAm containing
 400 membranes, indicating that higher degree of enzyme immobilization offers better self-cleaning than
 401 the combined effect at low enzyme and PNIPAAm concentrations. However, enzymes may suffer
 402 from deteriorating performance due to loss in biocatalytic activity over time [9,28] and hence further
 403 optimization of PNIPAAm concentration could be performed to achieve maximum thermo-
 404 switchable feature that further enhances the self-cleaning efficiency of membranes.
 405


406
 407 **Figure 7.** Protein fouling studies for biocatalytic membranes with and without PNIPAAm. (a) Permeance
 408 values for two filtration cycles. (b) RPD after each filtration cycle. Experimental Conditions: Pressure = 100 kPa,
 409 cross-flow velocity = 12.6 cm/s, feed solution = 1 g/L BSA, 1 mM CaCl₂, 7 mM NaCl, filtration temperature =
 410 22°C, cleaning temperature = 50°C.

411 3.6. Storage studies & effect of thermo-responsivity on enzyme stability

412 The effect of storage time on the hydrolytic activities of the immobilized TR at 4°C and RT (22°C)
 413 were analysed and given in Figure 8a and 8b, respectively. It was revealed that at both RT and 4°C,
 414 the biocatalytic membrane without PNIPAAm retained about 81% and 78% of their initial enzymatic
 415 activities after 7 days, respectively, and about 71% and 69% of their initial activities after 14 days of
 416 storage. The activity results were found to be similar to the TR immobilized PVDF/nylon-6,6/chitosan
 417 membrane that was prepared in our earlier study [9] with 81% (RT) and 70% (4°C) detainment of
 418 initial enzyme activity after 7 and 14 days of storage, respectively, showing good reproducibility.
 419 Thus, the prepared membranes may not require inconvenient refrigerated storage conditions and can
 420 be stored at RT. Similarly, the membranes with 2 and 4 wt% PNIPAAm stored at RT retained about
 421 79% and 76% of the activity after 7 days, respectively, and about 69% and 64% of the initial activity
 422 after 14 days, respectively.

423 The effect of thermo-switchable volume phase transition of the as-prepared membranes on the
 424 activities of freshly immobilized and used TR enzymes was investigated and the respective results
 425 are given in Figure 8c and 8d. In Figure 8c, the enzyme activities of biocatalytic membranes with no
 426 PNIPAAm, 2 and 4 wt% PNIPAAm declined only about 9%, 11% and 12% after treating at 50°C,
 427 which is similar to the storage data (Figure 8a and 8b) that did not affect the immobilized enzymes
 428 of PNIPAAm membranes. The enzyme activity of membrane with 4 wt% PNIPAAm declined most
 429 significantly by 12%, which is more than that without PNIPAAm (9%), possibly owing to the leaching
 430 of weakly attached TR enzyme clusters formed through aggregation on the membrane surface as
 431 observed in Figure 2. Similarly, in Figure 8d, the enzyme activities of as-prepared membranes after
 432 six consecutive reuse cycles and treatment at 50°C dropped less than about 3% after treating at 50°C.
 433 This could be due to the stable enzyme activity at both 22°C and 50°C temperatures and during
 434 conformational volume phase transition when the temperature switches from 22°C to 50°C. Further,
 435 from Figure 8d, the hydrolytic activities of immobilized enzymes declined with increasing reuse

436 cycles (up to six cycles), that may have occurred due to (a) the release of weakly bound enzymes, if
 437 any, and (b) the gradual change of fibrous morphology because of swelling and disintegration due
 438 to high hydrophilicity [28]. Also, the biocatalytic membranes with 2 and 4 wt% PNIPAAm show
 439 faster decline compared to the PNIPAAm-free membrane which may also be due to the loss of
 440 enzyme activity via change in nanofiber morphology via swelling and disintegration. Thus, the
 441 thermo-switchable volume phase transition of the as-prepared membranes was not found to affect
 442 the enzyme activity that was stable when temperature switched from 22°C to 50°C.
 443

444
 445 **Figure 8.** Hydrolytic activities of biocatalytic membranes for up to 14 days of storage at (a) 4°C and (b)
 446 22°C; Stability of enzymes immobilized on to membranes in terms of enzyme activity with 50°C treatment for 5
 447 min after (a) one reuse cycle and (b) six reuse cycles.

448 4. Conclusions

449 Biocatalytic membranes with and without PNIPAAm were successfully fabricated by
 450 immobilizing trypsin enzymes onto hydrophilic nylon-6,6/PNIPAAm nanofibrous layer supported
 451 by hydrophobic PVDF cast layer. It was demonstrated that superior enzyme loading on to the
 452 membrane without PNIPAAm can be achieved compared to PNIPAAm containing membranes,
 453 owing to the amine-rich and high surface to volume ratio of the nanofibrous structure. The trypsin
 454 immobilized membranes minimized surface-protein interaction on the surface, induced by enzyme
 455 proteolytic digestion. Through a dedicated UF study using model feed solution containing BSA,
 456 CaCl₂ and NaCl, the biocatalytic membrane without PNIPAAm offered superior performance in
 457 separation and purification applications, where they are more permeable and less fouled than the
 458 other membranes with PNIPAAm, demonstrating that higher degree of enzyme immobilization
 459 offers better self-cleaning than the combined self-cleaning of low concentrations of enzyme and
 460 PNIPAAm. Also, the thermo-switchable conformational volume phase transition of the as-prepared
 461 membranes did not affect the stability of surface immobilized enzymes. Hence, the approach of
 462 enzyme immobilization onto nanofibrous surface has greater potential including fouling mitigation
 463 and surface self-cleaning beyond membrane separation.

464 **Author Contributions:** The experimental work was designed and carried out by Ms. Anbharasi Vanangamudi
465 under the guidance of Dr. Ludovic Dumee, Prof. Mikel Duke and Dr. Xing Yang. The manuscript was written
466 by Ms. Anbharasi Vanangamudi and reviewed by all authors. All authors have given approval to the final
467 version of the manuscript.

468 **Funding:** This research received no external funding

469 **Acknowledgments:** This work was supported by Victoria India Institute via Victoria India Doctoral Scholarship.
470 Dr. L. DUMEE acknowledges the Australian Research Council (ARC) for his DECRA fellowship (DE180100130).
471 Dr Xing Yang would like to acknowledge Victoria University for the Industry Postdoctoral Fellowship. The
472 Microscopy platform at Deakin University and support from the technical team is also acknowledged.

473 **Conflicts of Interest:** The authors declare no conflict of interest.

474 **References**

- 475 1. Shi, Q.; Su, Y.; Ning, X.; Chen, W.; Peng, J.; Jiang, Z. Trypsin-enabled construction of anti-
476 fouling and self-cleaning polyethersulfone membrane. *Bioresource Technology* **2011**, *102*, 647-
477 651.
- 478 2. Jim, K.J.; Fane, A.G.; Fell, C.J.D.; Joy, D.C.]fouling mechanisms of membranes during protein
479 ultrafiltration. *Journal of Membrane Science* **1992**, *68*, 79-91.
- 480 3. Ho, C.-C.; Zydny, A.L. A combined pore blockage and cake filtration model for protein
481 fouling during microfiltration. *Journal of Colloid and Interface Science* **2000**, *232*, 389-399.
- 482 4. Zhao, Z.; Zheng, J.; Wang, M.; Zhang, H.; Han, C.C. High performance ultrafiltration
483 membrane based on modified chitosan coating and electrospun nanofibrous pvdf scaffolds.
484 *Journal of Membrane Science* **2012**, *394-395*, 209-217.
- 485 5. Vanangamudi, A.; Dumée, L.F.; Duke, M.C.; Yang, X. Nanofiber composite membrane with
486 intrinsic janus surface for reversed-protein-fouling ultrafiltration. *ACS Applied Materials &*
487 *Interfaces* **2017**, *9*, 18328-18337.
- 488 6. Zhu, L.-P.; Yi, Z.; Liu, F.; Wei, X.-Z.; Zhu, B.-K.; Xu, Y.-Y. Amphiphilic graft copolymers based
489 on ultrahigh molecular weight poly(styrene-alt-maleic anhydride) with poly(ethylene glycol)
490 side chains for surface modification of polyethersulfone membranes. *European Polymer
491 Journal* **2008**, *44*, 1907-1914.
- 492 7. Zhao, X.; He, C. Efficient preparation of super antifouling pvdf ultrafiltration membrane with
493 one step fabricated zwitterionic surface. *ACS Applied Materials & Interfaces* **2015**, *7*, 17947-
494 17953.
- 495 8. Prince, J.A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K.V.K.; Singh, G. Self-
496 cleaning metal organic framework (mof) based ultra filtration membranes - a solution to bio-
497 fouling in membrane separation processes. *Sci. Rep.* **2014**, *4*.
- 498 9. Vanangamudi, A.; Saeki, D.; Dumée, L.F.; Duke, M.; Vasiljevic, T.; Matsuyama, H.; Yang, X.
499 Surface-engineered biocatalytic composite membranes for reduced protein fouling and self-
500 cleaning. *ACS Applied Materials & Interfaces* **2018**.
- 501 10. Chede, S.; Escobar, I.C. Fouling control using temperature responsive n-isopropylacrylamide
502 (nipaam) membranes. *Environmental Progress & Sustainable Energy* **2016**, *35*, 416-427.
- 503 11. Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. *Chemical Reviews*
504 **2010**, *110*, 2448-2471.
- 505 12. Velicangil, O.; Howell, J.A. Self-cleaning membranes for ultrafiltration. *Biotechnology and
506 Bioengineering* **1981**, *23*, 843-854.

507 13. Cordeiro, A.L.; Werner, C. Enzymes for antifouling strategies. *Journal of Adhesion Science and*
508 *Technology* **2011**, *25*, 2317-2344.

509 14. Sun, L.; Liang, H.; Yuan, Q.; Wang, T.; Zhang, H. Study on a carboxyl-activated carrier and
510 its properties for papain immobilization. *Journal of Chemical Technology & Biotechnology* **2012**,
511 *87*, 1083-1088.

512 15. Ansari, S.A.; Husain, Q. Potential applications of enzymes immobilized on/in nano materials:
513 A review. *Biotechnology Advances* **2012**, *30*, 512-523.

514 16. Kim, J.; Grate, J.W.; Wang, P. Nanostructures for enzyme stabilization. *Chemical Engineering*
515 *Science* **2006**, *61*, 1017-1026.

516 17. Wang, Z.-G.; Wan, L.-S.; Liu, Z.-M.; Huang, X.-J.; Xu, Z.-K. Enzyme immobilization on
517 electrospun polymer nanofibers: An overview. *Journal of Molecular Catalysis B: Enzymatic*
518 **2009**, *56*, 189-195.

519 18. Al-Attabi, R.; Morsi, Y.; Schütz, J.A.; Dumée, L.F. One-pot synthesis of catalytic molybdenum
520 based nanocomposite nano-fiber membranes for aerosol air remediation. *Science of The Total*
521 *Environment* **2019**, *647*, 725-733.

522 19. Al-Attabi, R.; Dumée, L.F.; Schütz, J.A.; Morsi, Y. Pore engineering towards highly efficient
523 electrospun nanofibrous membranes for aerosol particle removal. *Science of The Total*
524 *Environment* **2018**, *625*, 706-715.

525 20. Vanangamudi A., Y.X., Duke M.C., Dume L.F. . Nanofibers for membrane applications. . In
526 *Handbook of nanofibers.*, In: Barhoum A., B.M., Makhlof A. (eds) Ed. Springer, Cham: 2018.

527 21. Jia, H.; Zhu, G.; Vugrinovich, B.; Kataphinan, W.; Reneker, D.H.; Wang, P. Enzyme-carrying
528 polymeric nanofibers prepared via electrospinning for use as unique biocatalysts.
Biotechnology Progress **2002**, *18*, 1027-1032.

530 22. Kim, T.G.; Park, T.G. Surface functionalized electrospun biodegradable nanofibers for
531 immobilization of bioactive molecules. *Biotechnology Progress* **2006**, *22*, 1108-1113.

532 23. Srbová, J.; Slováková, M.; Křípalová, Z.; Žárská, M.; Špačková, M.; Stránská, D.; Bílková, Z.
533 Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability.
Reactive and Functional Polymers **2016**, *104*, 38-44.

535 24. R. Silva, T.; Rodrigues, D.; Rocha, J.M.s.; Gil, H.; Pinto, S.; Lopes da Silva, J.; Guiomar, A.J.
536 *Immobilization of trypsin onto poly(ethylene terephthalate)/poly(lactic acid) nonwoven nanofiber*
537 *mats.* 2015; Vol. 104.

538 25. Ray, S.S.; Chen, S.-S.; Li, C.-W.; Nguyen, N.C.; Nguyen, H.T. A comprehensive review:
539 Electrospinning technique for fabrication and surface modification of membranes for water
540 treatment application. *RSC Advances* **2016**, *6*, 85495-85514.

541 26. Schulze, A.; Breite, D.; Kim, Y.; Schmidt, M.; Thomas, I.; Went, M.; Fischer, K.; Prager, A. Bio-
542 inspired polymer membrane surface cleaning. *Polymers* **2017**, *9*.

543 27. Schulze, A.; Stoelzer, A.; Striegler, K.; Starke, S.; Prager, A. Biocatalytic self-cleaning polymer
544 membranes. *Polymers* **2015**, *7*.

545 28. Moreno-Cortez, I.E.; Romero-García, J.; González-González, V.; García-Gutierrez, D.I.;
546 Garza-Navarro, M.A.; Cruz-Silva, R. Encapsulation and immobilization of papain in
547 electrospun nanofibrous membranes of pva cross-linked with glutaraldehyde vapor.
Materials Science and Engineering: C **2015**, *52*, 306-314.

549 29. Tripathi, B.P.; Dubey, N.; Simon, F.; Stamm, M. *Thermo responsive ultrafiltration membranes of*
550 *grafted poly(n-isopropyl acrylamide) via polydopamine*. 2014; Vol. 4.

551 30. Bae You, H.; Okano, T.; Kim Sung, W. Temperature dependence of swelling of crosslinked
552 poly(n,n'-alkyl substituted acrylamides) in water. *Journal of Polymer Science Part B: Polymer*
553 *Physics* 2003, 28, 923-936.

554 31. Xu, Y.; Shi, L.; Ma, R.; Zhang, W.; An, Y.; Zhu, X.X. Synthesis and micellization of thermo-
555 and ph-responsive block copolymer of poly(n-isopropylacrylamide)-block-poly(4-
556 vinylpyridine). *Polymer* 2007, 48, 1711-1717.

557 32. Zhou, Q.; Li 李建华, J.-h.; Yan, B.-f.; Wu 吴东, D.; Zhang 张其清, Q.-q. *Thermo-responsive and*
558 *antifouling pvdf nanocomposites membranes based on pnipaam modified tio2 nanoparticles*. 2014;
559 Vol. 32.

560 33. Guo, H.; Huang, J.; Wang, X. The alternate temperature-change cleaning behaviors of
561 pnipaam grafted porous polyethylene membrane fouled by proteins. *Desalination* 2008, 234,
562 42-50.

563 34. Zhou, S.; Xue, A.; Zhang, Y.; Li, M.; Wang, J.; Zhao, Y.; Xing, W. Fabrication of temperature-
564 responsive zro2 tubular membranes, grafted with poly (n-isopropylacrylamide) brush
565 chains, for protein removal and easy cleaning. *Journal of Membrane Science* 2014, 450, 351-361.

566 35. <http://www.worthington-biochem.com/TRY/default.html>.

567 36. Jia, F.; Narasimhan, B.; Mallapragada, S. Materials-based strategies for multi-enzyme
568 immobilization and co-localization: A review. *Biotechnology and Bioengineering* 2014, 111, 209-
569 222.

570 37. Yu, J.-Z.; Zhu, L.-P.; Zhu, B.-K.; Xu, Y.-Y. *Poly(n-isopropylacrylamide) grafted poly(vinylidene*
571 *fluoride) copolymers for temperature-sensitive membranes*. 2011; Vol. 366, p 176-183.

572 38. Kang, K.; Kan, C.; Yeung, A.; Liu, D. The immobilization of trypsin on soap-free p(mma-ea-
573 aa) latex particles. *Materials Science and Engineering: C* 2006, 26, 664-669.

574 39. Zhang, K.; Wu, S.; Tang, X.; Kaiser, N.K.; Bruce, J.E. A bifunctional monolithic column for
575 combined protein preconcentration and digestion for high throughput proteomics research.
576 *Journal of Chromatography B* 2007, 849, 223-230.

577 40. Shimomura, M.; Ohta, M.; Sugiyama, N.; Oshima, K.; Yamauchi, T.; Miyauchi, S. Properties
578 of [alpha]-chymotrypsin covalently immobilized on poly(acrylic acid)-grafted magnetite
579 particles. *Polym J* 1999, 31, 274-278.