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Abstract: The oil and gas industry faces increasing pressure to remove people from dangerous 

offshore environments. Robots present a cost-effective and safe method for inspection, repair and 

maintenance of topside and marine offshore infrastructure. In this work, we introduce a new 

immobile multi-sensing robot, the Limpet, which is designed to be low-cost and highly 

manufacturable, and thus can be deployed in huge collectives for monitoring offshore platforms. 

The Limpet can be considered an instrument, where in abstract terms, an instrument is a device that 

transforms a physical variable of interest (measurand) into a form that is suitable for recording 

(measurement). The Limpet is designed to be part of the ORCA (Offshore Robotics for Certification 

of Assets) Hub System, which consists of the offshore assets and all the robots (UAVs, drones, 

mobile legged robots etc.) interacting with them. The Limpet comprises the sensing aspect of the 

ORCA Hub System. We integrated the Limpet with Robot Operating System (ROS), which allows 

it to interact with other robots in the ORCA Hub System. In this work, we demonstrate how the 

Limpet can be used to achieve real-time condition monitoring for offshore structures, by combining 

remote sensing with signal processing techniques. We show an example of this approach for 

monitoring offshore wind turbines. We demonstrate the use of four different communication 

systems (WiFi, serial, LoRa and optical communication) for the condition monitoring process. By 

processing the sensor data on-board, we reduce the information density of our transmissions, which 

allows us to substitute short-range high-bandwidth communication systems with low-bandwidth 

long-range communication systems. We train our classifier offline and transfer its parameters to the 

Limpet for online classification, where it makes an autonomous decision based on the condition of 

the monitored structure. 

Keywords: Communication Fail-Over, Fault Diagnosis, Limpet, On-board Processing, ORCA Hub, 

Real-time Condition Monitoring, Remote Sensing, Robots, Robot Sensing Systems, ROS Interface. 

 

1. Introduction 

1.1. Challenges Facing Offshore Industries 

The international offshore energy industry currently faces the challenges of: a fluctuating oil 

price, significant and expensive decommissioning commitments for old infrastructure, and small 

margins on the traded commodity price per kWh of offshore renewable energy [1]. Furthermore, the 
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number of people available to work in offshore industries has reduced because graduates are shifting 

to less hazardous places onshore, and the current workforce is ageing. As the oil and gas 

requirements increase with the rapid growth of the world’s population, advanced technologies will 

become vital, and the cost of operation of these technologies will significantly rise due to the harsh 

and inaccessible nature of the environment. There have been several reported accidents and 

explosions of offshore rigs, with the most widely reported tragedy being the Deep Horizon oil spill 

in the Gulf of Mexico [2], which triggered the biggest debate from governments, academia, 

environmentalists and major companies of the oil and gas industry to look for safer ways to inspect, 

repair and maintain offshore platforms [3]. 

1.2. Application of Robotics in Offshore Industries 

Operators are seeking more cost-effective and safe methods for inspection, repair and 

maintenance of their topside and marine offshore infrastructure. Robots are seen as key enablers in 

this regard. Robots can be deployed in the air, on the rig or in the subsea, where they can be used to 

remotely monitor pipelines, corrosion, natural gas leaks, equipment conditions and real-time 

reservoir status. Hence, they can improve health, safety and environment (HSE) and increase the 

production and cost efficiency. 

1.3. Offshore Robotics for Certification of Assets (ORCA Hub) 

 

Figure 1. A conceptual Overview of the ORCA Hub System. The Limpet is designed to be part of a 

heterogeneous collection of field robots (drones, UAVs, mobile legged robots etc.) that together 

comprise the ORCA Hub System for asset certification and management. The Limpet is shown in 

detail, and it consists of a low-cost microcontroller, RGB LED, communication connector and nine 

exteroceptive sensors. 
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The UK Robotics and Artificial Intelligence Hub for Offshore Robotics for Certification of Assets 

(ORCA Hub) is a 3.5 year EPSRC funded, multi-site project with a vision to use teams of robots and 

autonomous intelligent systems (AIS) on remote energy platforms to enable cheaper, safer and more 

efficient working practices [1]. The ORCA Hub brings together top industrial companies (Total, 

Chevron, BP and many others) with academia (University of Edinburgh, Heriot-Watt University, 

University of Oxford, Imperial College London and University of Liverpool). The long-term vision 

for the ORCA Hub is an offshore platform that is completely autonomous and being operated and 

inspected from the shore, which will decrease the number of people working offshore. The ORCA 

Hub System constitutes the offshore platform, assets and the heterogeneous robotic systems (topside, 

aerial and marine robots) interacting with the platform as shown by Figure 1. The ORCA Hub System 

provides remote solutions using robotics and Artificial Intelligence (AI) that are readily integratable 

with existing and future assets and sensors, and that can operate and interact safely in autonomous 

or semi-autonomous modes in complex and cluttered environments [1]. The ORCA Hub System aims 

at achieving tasks that are not possible with a single robot due to the complex nature of offshore 

platforms.  It includes many components such as robotic autonomy, mobility, manipulation, sensor 

processing, autonomous mapping, navigation, multimodal interfaces and human-machine 

collaboration. In this work, we focus on the sensing aspect of the ORCA Hub System. Sensing is a key 

element to the ORCA Hub System as it is important in asset monitoring, fault detection, mapping, 

environmental monitoring and helping other robots navigate around the platform. 

1.4. Offshore Robotics (Current-State-of-the-Art and Challenges) 

Robots on offshore platforms face many challenges. Some of these challenges include the 

absence of protection against saltwater spray and direct sunlight, harsh weather conditions involving 

rain, hail and high speed winds, extreme ambient temperature, high humidity levels, and dangerous 

atmospheric conditions resulting from gases, which can be explosive, toxic and corrosive [4]. For a 

robot to be suitable for operation on offshore platforms, there are some requirements regarding 

hardware, software and communication. Some of the hardware requirements for offshore robots 

include making the electronics suitable for harsh environments and equipping the robot with highly 

reliable sensors to perceive its surroundings [4]. Offshore robots also have requirements for software 

development including the ability to control the robot from remote locations, ease of programming 

new inspection and manipulation tasks without the use of experts, and the capability to alert remote 

operators when sensor values detected are abnormal [4]. Communication requirements mainly 

includes the ability to communicate and transmit data to a remote control station or to neighbouring 

systems. As a result of the harsh offshore conditions, remote sensing is becoming extremely valuable. 

Recent advances in the Internet of Things (IoT) and the cloud computing model provide support for 

remote sensing [5]. 

Currently, the majority of offshore robotics are used for subsea tasks, such as mapping of the 

seabed and inspecting underwater equipment and pipelines using AUVs and ROVs [6]–[12]. 

However, offshore robots for topside operations have started to gain the interest of researchers in 

recent years. Bengel et al. [13] were the first to demonstrate the application of robots for inspection 

and maintenance tasks in offshore platforms with their work on the MIMROex inspection robot. The 

Sensabot [14], which is developed by the National Robotics Engineering Center, is a teleoperated 

offshore inspection robot designed to withstand extreme weather conditions and harsh environment.  

Kyrkjebo et al. [15] developed the SINTEF Topside Robotic System, which can enable operators to 

control and monitor processes on the platform from onshore. Another robotic system developed by 

Galassi et al. [16] for offshore inspection and monitoring of offshore platforms is DORIS. DORIS 

moves through a rail and carries different sensors, where it can process the sensor data or store it for 

future analysis. The sensors can identify abnormalities such as intrudes in restricted areas, smoke, 

fire, liquid and gas leakages [16]. The robot has an embedded manipulator that allows it to take 

samples and read instruments. Walloid, which is a 4-arm quasistatic robot designed for offshore 

platform topside automation developed by Moghaddam et al. [17], is capable of climbing walls of 

different materials. In 2009, Bengel et al. [18] developed another mobile offshore inspection robot 
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equipped with a robotic arm, a camera and several application sensors such as a microphone, gas 

sensor and fire sensor. The robotic prototype can autonomously execute pre-programmed inspection 

tasks in automatic mode. 

1.5. Fault Detection and Condition Monitoring Systems 

A potential application for robots on offshore platforms is fault detection and condition 

monitoring systems. Condition monitoring techniques help describe types of faults that can occur to 

a system, and the observable signs generated by these faults. Offshore implementation of fault 

detection and condition monitoring is challenging due to the complexity of remote sensing, data 

collection, data processing and data analysis. Condition monitoring systems play an important role 

in reducing maintenance and operational costs in offshore structures such as wind turbines. 

Technological advances in the development of wind turbine blades have led to an increase in the 

blade span, which increases the aerodynamic load on the blades and makes the blades more 

vulnerable to failure. The turbines also face harsh environmental conditions, which increases the 

chance of failure. Failure of wind turbines hinders the economic feasibility of offshore wind farms 

and, therefore, real-time condition-monitoring and fault detection for wind turbines is essential [19]. 

According to the Rules and Guidelines for Industrial Services, offshore wind turbines need to be 

equipped with blade condition monitoring systems to meet the safety requirements [20]. 

Different techniques for condition-monitoring of wind turbines have been proposed in the 

literature [21]–[26]. Some of these techniques for fault diagnosis of wind turbines are based on 

piezoelectric impact sensors [27], acoustic emission sensors [28], fibre Bragg grating sensor system 

[29], [30], piezoceramic and impedance sensing [19], [31]. However, real-time condition monitoring 

of wind turbines and fault detection has not been studied in great detail, due to the harsh 

environments surrounding wind turbines, which makes experimental research challenging. Our 

work introduces a novel method to achieve real-time condition monitoring and fault detection for 

offshore wind turbines by combining signal-processing methods with remote sensing. The reliability 

of the monitoring system is enhanced by conducting all the data processing and analysis on the 

microcontroller, and transmitting data using high-range low-bandwidth communication systems 

only in the event of the presence of a fault. 

1.6. The Limpet 

In this work, we introduce our new immobile multi-sensing robot, the Limpet, which is low-cost 

and designed for manufacturability. Immobile robots (“Immobots”) were introduced by Williams 

and Nayak in 1996 [32]. According to them, immobile robots are sensor-rich, distributed autonomous 

systems. Immobots were introduced as a third class of autonomous agents, along with mobile robots 

and soft robots, by AI researchers at the 1997 AAAI Workshop on Theories of Action, Planning and 

Control [33]. Examples of immobots include networked building energy systems, autonomous space 

probes, chemical plant control systems, satellite constellations for remote ecosystem monitoring, 

power grids, biosphere-like life-support systems, and reconfigurable traffic systems [32]. Such 

systems are considered immobile robots that exploit a vast system of sensors to model themselves 

and their environment on a grand scale [32]. Roush states that immobots could become pervasive, 

where they can help control some of the world’s most important infrastructure technologies [34]. He 

articulates that this would lead to entire cities transforming into massively distributed immobots. 

The focus of attention of immobile robots is directed inwards towards maintaining their internal 

structure, while the focus of traditional robotics is towards exploring and manipulating their external 

environment [32]. This inward direction involves controlling its internal functions such as sensor 

monitoring, energy efficiency, etc. The functions of immobile robots can be compared to the nervous 

and immune systems in humans, while mobile robots mimic perceptual and navigation systems [32]. 

Our robot is inspired by patella vulgata [35] , commonly known as Limpet, which is an aquatic 

snails with a conical shell that lives on rocks on land or in the sea. It has a strong shell that protects it 

from the external environment and predators, and it can adhere to surfaces for long periods of time. 

The patella vulgata has an optic vesicle at the end of its tentacles that provides sensory function, and 
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allows it to sense light and darkness levels [35]. We developed our bio-inspired robot, the Limpet, for 

inspection and monitoring of offshore energy platforms. We embedded permanent magnets in the 

protective housing of the Limpet to enable it to attach to metallic surfaces. The protective housing 

acts as a shell that protects the circuitry from the harsh offshore weather conditions. We can also 

integrate the Limpet with the Robot Operating System (ROS). 

2. Design and Fabrication of the Limpet 

2.1. Instrument Model 

 

Figure 2. A) Instrument model. A measurand is the physical variable of interest that is represented 

by a physical measurement variable. The sensor converts the physical measurement variable into a 

signal variable that is fed to the microprocessor. Signal variables can be transmitted to an output 

device that is remote from the sensor. The value displayed is the measurement. B) The Limpet system 

overview. Our system, the Limpet, is a multi-sensing robotic platform, which is equipped with nine 

different sensors. The different physical measurement variables can be associated with several 

measurands. Each of the sensors on the Limpet converts a physical measurement variable into its 

corresponding signal variable. The signal variables are fed to the on-board microcontroller, which can 

then transmit the signal variable via one of several communication strategies (serial, WiFi, LoRa, 

optical) used by the Limpet.  C) Instrument model for the Limpet for distance-based fault detection. 

We detect normal operation or the presence of a fault measurands by using light (laser) as a 

measurement variable. The time-of-flight sensor converts the time of arrival of the reflected light into 

a distance, which is fed to the microcontroller through the I2C bus. We apply the distance 

measurements to a classifier, which associates the measurements to one of the measurands. The result 

is transmitted to a remote PC using one of the four communication strategies. D) The Limpet and ROS 

Architecture. The sensor data from the Limpet is fed into the microcontroller. The microcontroller 

sends out the data to a converter, which converts this data into a ROS protocol. The data can be 

published to a ROS topic, and any ROS node can subscribe to that topic to read the sensor data. 

The instrument model [36] is a simple generalised model accepted by the sensors community to 

describe an instrument or a measuring device. In abstract terms, an instrument is a device that 
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transforms a physical variable of interest (measurand) into a form that is suitable for recording 

(measurement) as shown by Figure 2A. An example of a basic instrument is a ruler. In this case, the 

measurand is the length of some object, and the measurement is the number of units (meters, inches, 

etc.) that represents the length. 

The measurand (physical process) is represented by an observable physical measurement 

variable (X). There is a wide range of physical measurement variables. Common physical 

measurement variables include: force, temperature, humidity, acceleration, velocity, pressure, 

frequency, time, length, capacitance, resistance, etc. It is important to know that the physical 

measurement variable (X) does not necessarily have to be the measurand, but can simply be related 

to the measurand. For example, the mass of an object is often measured by the process of weighing. 

In this case, the measurand is the mass but the physical measurement variable is the downward force 

the mass exerts in the Earth’s gravitational field. Another example is vibration detection. A robot can 

detect the measurand vibration by measuring force or by relating the measurand to another physical 

measurement variable such as acceleration. Both implementations will allow the detection of 

vibration, however, the accelerometer is much cheaper than the force sensor. There are also other 

situations where a single measurement variable contains information about multiple measurands. 

We refer to this capability as multi-functional sensing.  One example is Infrared (IR) light. IR light 

has been used by robots for proximity measurements and communication with other robots [37]. 

Receiving signals from an IR transmitter requires sensors, such as photodiodes that transduce IR light 

into electric signals. Therefore, communication using IR light can be considered a sensing task. 

Another example is the use of the magnetic flux density from a single hall-effect sensor to detect 

whether the robot had a successful movement, collision or rotation measurands [38]. 

The key element of the instrument model is the sensor. The sensor’s function is to convert the 

physical measurement variable X into a signal variable S. Signal variables can be manipulated in a 

transmission system, such as an electrical or mechanical circuit, which means that they can be 

transmitted to an output device that is remote from the sensor. In our work, we use this property to 

be able to transmit the signal variable to a remote device using different communication or 

transmission systems. Typical signal variables include voltage displacement, current, force, 

frequency, light, pressure, etc. The output from the sensor is transmitted to a display or recording 

device, and the observed output is known as the measurement (M). 

2.2. Design of the Limpet 

2.2.1. System Design 

We equipped the Limpet with nine exteroceptive sensing modalities. The sensors incorporated 

in the Limpet are temperature, pressure, humidity, optical, distance, sound, magnetic field, 

accelerometer and gyroscope. The Limpet can be modelled as an instrument, where each of its sensors 

converts a physical measurement variable into a corresponding signal variable as shown by Figure 

2B. The signal variables are fed to the on-board microcontroller, which can then transmit the signal 

variable using one of several communication systems. In this work, we give one example of the multi-

functional capabilities of the Limpet. Table 1 describes how the physical measurement from each 

sensor on the Limpet can be related to different measurands on offshore platforms. The table is based 

on the instrument model described in Figure 2A. It gives an example of a few potential measurands, 

and not all the measurands possible with each sensor. 

Table 1. The different physical measurements from each sensor on the Limpet and their relation to 

different possible measurands. 
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Sensor 

Physical 

Measurement 

Variable 

Signal Variable Measurands 

Accelerometer Acceleration Acceleration 

Inclination, Collision, 

Vibration, 

Free-Fall Detection, 

Movement 

Acceleration 

Gyroscope Angular Velocity Angular Velocity 
Tilt Detection, 

Orientation 

Temperature Temperature Temperature 

Ambient 

Temperature, Over-

heating, Fire Detection 

Humidity Humidity Humidity Relative Humidity 

Microphone Sound Voltage 

Speech Recognition, 

Noise Cancellation, 

Audible Fault 

Detection 

Pressure Pressure Pressure Ambient Pressure 

Hall-Effect Magnetic Field Magnetic Flux Density 
Locating Pipelines, 

Corrosion Detection 

Optical Light (Visible) Distance 

Ambient Light 

Intensity, Local 

Communication, 

Colour Detection 

Distance (Time-of-

Flight) 
Light (Laser) Distance 

Fault Detection, 

Proximity, Collision 

Detection, Object 

Identification 

 

In this work, we demonstrate the use of a distance sensor, which is a Time-of-Flight (ToF) sensor, 

for fault detection in equipment, specifically a wind turbine. Figure 2C indicates the instrument 

model for the Limpet as considered in this work. The measurands normal operation and fault can be 

related to the physical measurement variable light. We use the distance sensor on the Limpet, which 

converts the physical measurement variable light to a signal variable distance, which is fed into the 

microcontroller’s I2C bus. We use the microcontroller to process the sensor data on-board and check 

them against a classifier. We use the distance measurements to classify if the machine is operating 

normally, or if there is a fault in the machine hindering its performance. The Limpet can send the 

data to a PC using one of several different communication systems. We can then use spectral analysis 

on the data to further reduce the information density and classify the type of fault detected. 

The primary communication method of the Limpet is WiFi. The Limpet uses WiFi to transmit its 

data to a PC. We incorporated an ESP8266, which is a System-on-a-Chip (SOC) WiFi module with 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 August 2018                   doi:10.20944/preprints201808.0362.v1

Peer-reviewed version available at Sensors 2018, 18, 3487; doi:10.3390/s18103487

http://dx.doi.org/10.20944/preprints201808.0362.v1
http://dx.doi.org/10.3390/s18103487


 8 of 21 

 

integrated TCP/IP protocol stack capable of giving any microcontroller access to the WiFi network, 

on the Limpet. We use Mosquitto [39], which implements a messaging protocol known as Message 

Queuing Telemetry Transport (MQTT), to send the data wirelessly from the Limpet to the PC. MQTT 

is a light-weight publish/subscribe messaging protocol used for remote communication. The received 

data can then be plotted in a real-time basis using Matlab, or saved on the PC and processed later.  

We designed the Limpet to have robust communication. We can use multiple communication 

methods with the Limpet, including serial, WiFi, LoRa and optical communication. LoRa is a digital 

wireless data communication technology that enables long-range transmission with low power 

consumption [40]. LoRa technology is provided by the LoRa Alliance, which is a non-profit 

association of more than 500 member companies that are developing and promoting LoRaWAN open 

standard for IoT. We achieve optical communication with a combination of the RGB LED and the 

optical sensor on the Limpet. WiFi and serial communication do not allow robot-to-robot 

communication, unlike LoRa and optical communication. We incorporated a communication fail-

over mechanism on the Limpet. If the primary communication method (WiFi) fails for any reason, 

the functions of the WiFi are assumed by a secondary communication module, which makes the 

system more fault-tolerant and robust in communication and data transmission. 

The Limpet has an onboard programming port (JTAG). We programed the Limpet using a 

SEGGER J-Link programmer together with a JTAG Adapter (Olimex ARM-JTAG-20-10). We 

programmed it in C/C++ using Atmel Studio 7. We used the standard Universal Asynchronous 

Receiver-Transmitter (UART) protocol for communication. The UART protocol uses a high idle line, 

which is pulled low at the start of a message. 

Cost and functionality were the most important factors that we considered when designing the 

Limpets. Our rationale behind the system design was to keep the costs as low as possible without 

sacrificing functionality. The Limpet has a diameter of 50 mm, a height of 7 mm and weighs 17g with, 

and 10g without, the battery. We designed the Limpets to have a size and weight ideal for ease of 

fabrication, manufacturing and assembly. The total cost of electronic components used in the design 

of the Limpet is about £22. 

2.2.2. Electrical Design 

The Limpet consists of a single two-layer Printed Circuit Board (PCB) and a detachable Li-Ion 

coin cell battery. We designed a fully integrated PCB incorporating a low –power microcontroller 

(ATSAMD21G18A), RGB LED (LTST-N683EGBW), battery holder (BK-877) for a rechargeable Li-ion 

battery (LIR2477), charging IC (MCP73812T), charger connector, programming port [JTAG] (Molex 

532610571), and a communication connector as shown by Figure 1. The PCB includes several 

exteroceptive sensors, which are: Temperature and Humidity Sensor (Si7006), IMU [Accelerometer 

and Gyroscope] Sensor (LSM6DS3), Optical Sensor (VEML6040), Sound Sensor (SPU0414HR5H-SB), 

3-Axis Magnetic Sensor (MLX90393), Pressure Sensor (BMP280), Distance Sensor (VL53L0). Figure S1 

shows the PCB schematic. The communication connector is connected to UART of the 

microcontroller. Therefore, we can use this connector to connect the Limpet to different 

communication systems. We designed the Limpet to use a single PCB for control, communication 

and sensing.  

The sensors on the Limpet, except for the microphone, are controlled by the microcontroller 

through the I2C bus. The microphone is an omnidirectional MEMS sensor, with an analogue output 

and a frequency range of 100 Hz to 10 KHz. In this work, we use the distance sensor for fault 

detection. The distance sensor on the Limpet is the smallest range sensor on the market today. It is a 

ToF laser-ranging module that can measure sub-mm distances for a range between 0 and 2.2m. We 

also demonstrate the use of the optical sensor for local communication between two Limpets. 

We power the Limpet by a rechargeable 3.6V 160 mAh lithium-ion coin cell battery. We can 

recharge the battery using a 6Vdc plug-in power supply. We included header pins on the PCB for 

connecting the power supply to recharge the battery.The Limpet has a battery life @160 mAh of 0.87 

to 1600 hours. We calculated the minimum battery life by assuming the Limpet has all the sensors, 

RGB LED, microcontroller and WiFi communication continuously on. The Limpet will consume 
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approximately 182.9 mA (ESP8266 consumes 135 mA, RGB LED consumes 20 mA, sensors consume 

20.9 mA, microcontroller consumes 7 mA), which allows for a battery life of about 0.87 hours or 52.2 

minutes. We calculated the maximum battery life by assuming the Limpet is in sleep mode, where it 

consumes an average current of 0.1 mA. In this mode, the battery life of the Limpet can reach about 

1600 hours or 67 days. 

2.2.3. Mechanical Design 

We designed the PCB of the Limpet using Eagle PCB Design Software and fabricated them on 

double-sided Cu-FR4-Cu 0.1-mm boards using an external company called Minnitron Ltd (Kent, 

United Kingdom). We purchased all electronic components from RS components and Digi-key 

Electronics. We soldered the components on the PCB using a reflow soldering process. In this process, 

we cut solder paste stencils from vinyl using a Laser Cutter (Epilog Laser Fusion 32). 

We fabricated the protective housing from an optically clear, semi-rigid polyurethane resin. We 

developed the housing by casting the resin in a 3D printed mould. We did not cover the surfaces of 

the sensors by resin to keep them exposed to the external physical measurement variables. A picture 

of the encapsulated Limpet and the mould can be found in Figures S2 and S3. 

We designed the Limpet explicitly for manufacturability; it consists of a single PCB and therefore 

mass manufacture is a simple case of placing a batch order with a PCB foundry. The PCB consists of 

surface mount components, except for the communication connector, and can be autonomously 

populated with pick-and-place machines at the point of manufacture. Robots that are made of a single 

PCB with mostly surface components allow for scaling up to huge collectives of robots easily without 

sacrificing functionality [41]. Assembly of one robot takes seconds as it is a matter of only connecting 

the coin cell battery. Once the battery is connected, there is no need to remove the battery from the 

robot again as it can be charged on-board. As a result of the Limpet being highly manufacturable and 

easy to assemble, it is easy to mass-produce Limpet agents and deploy them in huge collectives. 

2.3. ROS Interface 

We can interface the Limpet with ROS as shown by Figure 2D. The sensor data are fed into the 

microcontroller. The microcontroller sends out the data to a converter, which converts this data into 

a ROS protocol. We can publish this data to a ROS topic, and any ROS node can subscribe to that 

topic to read the sensor data. The different sensors on the Limpet have different physical 

measurement variables. When these measurement variables are fed into the microcontroller, it adds 

a label to the data to differentiate data from the different sensors (e.g. distance, temperature, pressure, 

etc). The data are published to the relative ROS topic based on this label as shown by Figure S4. ROS 

nodes can subscribe to relevant topics to gain access to the sensor data. Interfacing the Limpet with 

ROS enables it to interact with other robots in the ORCA System that are running ROS, where the 

interaction between them can result in a more complex and useful behavior. Figure S5 depicts the 

results from integrating the Limpet with ROS. It shows a screenshot of the data published to the 

distance ROS Topic, and a graph of the distance measurement from the ROS Topic during normal 

operation of the fan. 

3. Experimental Design 

The work presented here focuses on the sensing capabilities of the Limpet. In this work, we use 

the ToF sensor to demonstrate how distance measurements can be used to detect faults in the 

operating conditions of machines or equipment. We show how a measurement variable can be 

indirectly related to the measurand, and demonstrate an example of how the Limpet could be used 

to monitor offshore energy platforms. The approach presented in this work is applicable to different 

offshore structures such as wind turbines, rotating gears and cooling fans. This section discusses the 

design of the experiments that we used to demonstrate the capabilities of a single Limpet in fault 

detection and condition monitoring of offshore structures. 
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Figure 3. A) Experimental setup for distance-based fault detection. We fixed the Limpet in place and 

used the fan to mimic a small wind turbine. We attached the fan blades, which were cut out of acrylic 

sheets, to a stepper motor to achieve rotation. We fixed the stepper motor in place to minimize the 

errors in measurement by having the fan at the same distance from the Limpet for all the experiments. 

B) Schematic of the fan and distance profile for nomal operation mode. Each peak corresponds to one 

of the four fan blades detected. The time period corresponds to the frequency of detection of the fan 

blades. The absence of a fan blade in front of the Limpet corresponds to a measurement of zero. C) 

Schematic of the faults introduced to the system. 

3.1. Design of the Distance-Based Fault Detection Experimental Setup 

The experimental setup consists of a platform containing the Limpet and a custom-designed fan 

with four blades rotating in front of the Limpet as shown by Figure 3A. We designed the fan blades 

by cutting a pattern out of an acrylic sheet using a laser cutter. We attached the fan blades to a stepper 

motor to achieve rotation. We used the fan to mimic a small wind turbine. We placed the fan at a 

distance of 85 mm from the Limpet. We use the ToF sensor on the Limpet to measure distance to the 

fan blades as they are rotate. We fix the Limpet in place on a small wall in front of the fan to reduce 

the chance of errors in the distance measurement due to any displacement by the Limpet. We 

controlled the speed of rotation of the fan by controlling the speed of rotation of the stepper motor. 

When a blade passes in front of the Limpet, the blade is intercepted by the ToF sensor, and a distance 

measurement is recorded. We programed the Limpet to interpret the absence of a blade as a zero 

measurement. One of the errors we face in our experiment is that the distance sensor detects the edge 

of the fan blade as it is approaching the sensor, since the sensor has a Field of View (FoV) of 25˚. This 

error results in a larger number of distance measurements versus time as each blade passes in front 

of the limpet. Figure 3B shows a schematic of how the distance measurement was determined for the 

fan for normal operating conditions. It shows the distance profile, which depicts the distance 

measurement for each blade passage in front of the Limpet. The frequency of detection of the fan 

blades is 1.25 Hz under normal conditions. The fan has four blades, and each blade corresponds to a 

peak on the graph. In our case, the zero value represents the absence of a blade in front of the Limpet. 

We recorded the distance profile over a period of 3.2s, which corresponds to the frequency of rotation 

of the fan. The difference in width between the peaks is due to the error in detection of the edges of 

the blade.. 

3.2. Overview of the Communication 

In this work, we use four different communication methods (WiFi, serial, LoRa, optical) to 

transmit the sensor data from the Limpet to the PC. Figure S6 gives an overview of the 

communication strategies involved in this work. For serial and WiFi communication, the 
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communication bandwidth is high, and we can send the sensor data from the Limpet continuously 

in real time to the PC. We can then analyse the data on the PC using analysis tools such as Matlab. In 

this regard, the Limpet is only making a measurement and transmitting it instantly to the PC without 

doing any processing on the data, which means serial and WiFi communication are not 

computationally demanding on the Limpet. We transmit the data from the Limpet over WiFi using 

the ESP8266, and serially using SparkFun’s FTDI Basic Breakout - 3.3V, which is a serial to USB 

convertor.  

LoRaWAN is a new wide area network (WAN) technology that allows for long-range 

communication, but with a limited bandwidth. Low power WAN combines robust modulation and 

low data rate to achieve long range communication. LoRaWAN is one of the most successful tools in 

low power WAN technologies. It is a network stack rooted in the LoRa physical layer. LoRaWAN 

features a low data rate (a maximum of 27 kb/s with spreading factor 7 and 500 kHz channel) and 

long range communication (2–5 km in urban areas and 15 km in suburban areas). There is a tradeoff 

between the spreading factor and communication range in LoRa. The higher the SF, which means the 

slower transmission, the longer the communication. Depending on the spreading factor used (7 to 

12), LoRaWAN data rate ranges from 0.3 kb/s to 27 kb/s [42]. LoRa has a much lower communication 

bandwidth than serial and WiFi communication. Thus, when we use LoRa technology with the 

Limpet for communication, the limited bandwidth limits the ability to send the sensor data 

continuously in real time to the PC. Therefore, if the dataset is large, processing and analysis of the 

data need to be done before transmission to allow for only small amounts of data to be transmitted. 

This on-board processing and analysis approach requires higher computational power than serial 

and WiFi communication. We used the LoPy, which is a MicroPython enabled WiFi, Bluetooth and 

LoRa development board, to gain access to the LoRa network. The LoPy transmits the data from the 

Limpet to The Things Network, which is a network that uses LoRaWAN to allow for devices to talk 

to the Internet without 3G or WiFi. 

Optical communication has the lowest bandwidth among the four communication strategies. 

The processing and analysis also need to be done before the transmission of data. In our case, we 

transmitted data using the on-board RGB LED. We transmit the data by pulse-width modulating 

(PWM) the LED to different levels, where each level corresponds to a number from 0 to 9. We used 

the different LED colours to correspond to different measurements such as time, distance, pressure, 

temperature, etc. We used the optical sensor to read the light intensity and colour power density, in 

order to interpret the data transmitted using the RGB LED. There is an extra step involved in the 

optical communication, which is the calibration and use of the optical sensor to infer the transmitted 

data. This extra step implies a higher computational power demand for optical communication. 

Optical communication can not be used for long-range communication, but can be used for 

communication with underwater vehicles, as blue light can propagate seawater better than other 

types of light [43]. 

3.3. Design of the Classification Techniques 

3.3.1. Signal Processing Tools 

To eliminate outliers from the input signal, we applied a Median Absolute Deviation (MAD) 

Algorithm. MAD algorithm is used in statistics as a measure of the variability of a sample of 

quantitative data. MAD is more resilient to outliers in a dataset than the standard deviation. Since 

MAD is more robust to scale estimates than the standard deviation, it is better applied to data that is 

not normally distributed, which is the case in this work. Consider an input signal 𝑥 = [𝑥1, … , 𝑥𝑁] 

with length N. MAD is defined as the median of the absolute deviations from the dataset’s median, 

and is given by 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝑥𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)|), 𝑖 = 1, … , 𝑁 (1) 
 In this work, we considered data points greater than 3 median absolute deviations from the 

dataset’s median as outliers, and we replaced them with the mean of the dataset. 
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 After the successful elimination of outliers, we applied a low pass filter to the data to 

remove white noise from the input signal. We applied a simple moving average filter to smooth out 

the short-term fluctuations in the data. In this stage, we calculate the mean from an equal number of 

data points on either side of a central value. By doing so, the variations in the mean are associated 

with the variations in the data instead of being shifted in time. 

For an input signal x and a positive integer k, the moving average y is computed by sliding a 

window of length k along x. Each element of y is the local mean of the corresponding values in the 

input signal x within the window, and signal y is the same size as x. For a signal x made up of k 

scalar observations, the mean µ and the moving average y are given by 

µ =
1

k
 ∑ 𝑥𝑖

𝑘

𝑖=1

(2) 

𝑦 = [µ𝑖 , … , µ𝑁] (3) 
 We have chosen a moving average sliding window of size (k=8) as the distance sensor records 

8 data points for each blade passage in front of the sensor due to sampling frequency we set for the 

sensor (25 Hz). The time series after application of the low-pass filter varies within a narrower 

range as compared to the signal after elimination of outliers. 

 After elimination of outliers and noise, we reduce the input signal 𝑥 = [𝑥1, … , 𝑥𝑁] with length 

N in size to accord with the computational limitations of the microcontroller. We reduce the length 

of the signal from N to M by dividing the signal into M parts, each of which contains 𝐿 =
𝑁

𝑀
 

measurements. The value of each element 𝑥𝑀
′  of the down-sampled signal 𝑥′ is given by 

𝑥𝑚
′ =

1

𝐿
 ∑ 𝑥𝑖

𝐿𝑚

𝑖=𝐿(𝑚−1)

, 𝑚 =  1, … , 𝑀 (4) 

 In this work, we down-sample the full distance measurement for each fan rotation to 8 

measurements (M = 8) corresponding to the four peaks in the distance profile. We conduct the same 

process on the timestamp and index information sent with the original data. Down-sampling has an 

impact on the classifier’s detection rate. The higher the down-sampling frequency on the input 

signal, the worse the detection rate becomes. Down-sampling potentially removes important 

features in the signal that can help the classifier discriminate between signals constituting normal 

operation or a fault. However, the higher the down-sampling frequency, the lower the memory 

required to store values of the cumulative distance matrix. Memory reductions are useful since it 

lowers the requirements for our low-cost microcontroller. Therefore, there is a tradeoff between 

memory reduction and classifier performance. In this work, we were able to achieve good 

classification performance with suitable memory usage as shown in the Results Section. We 

determined the down-sampling frequency after conducting multiple experiments for normal 

operation of the fan and studying the signal for characterising features in the distance profile. 

3.3.2. Analysis Tools 

After processing the input signal, we use spectral analysis to classify the fault detected. Spectral 

analysis has been used extensively in literature for fault detection [44], [45]. We first apply a fast 

Fourier Transform (FFT) algorithm to the processed signal, which divides the time signal into its 

frequency components. These components are single sinusoidal oscillations at different frequencies, 

where each component has its own phase and amplitude. The FFT algorithm is the Discrete Fourier 

Transform (DFT) of a sequence. FFT computes the same results as DFT, but can do it more quickly. 

In terms of time complexity, which is described as the amount of time needed to run an algorithm 

based on its computational complexity and expressed using big O notation, DFT takes O(N2) 

arithmetical operations, while FFT takes O(N log N) arithmetical operations for an input signal with 

N points. The N-point DFT equation for a finite-duration sequence x(n) is given by 

𝑋(𝑓) =  ∑ 𝑥(𝑛)𝑒−𝑗
2𝜋
𝑁

 (𝑓−1)(𝑛−1), 1 ≤ 𝑓 ≤ 𝑁

𝑁

𝑛=1

 (5) 
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 Following the application of the FFT algorithm, we compute the power spectral density 

function (PSD) of the signal. The PSD shows the variation of power as a function of frequency, 

which could be used to detect abnormal system behaviour. Thus, observing the PSD of the recorded 

sensor data will enable classifiying the fault using a single parameter. The power spectral density 

for a signal x(n) with N points is given by 

𝑃(𝑓) =  
1

𝑁
 |𝑋(𝑓)|2 (6) 

 For a periodic rectangular pulse function, the FFT divides the pulse signal into several 

harmonics (sine waves) to approximate the pulse signal. Adding more sine waves of increasingly 

higher frequencies improves the approximation of the rapid changes (discontinuity) in the pulse 

signal. In the frequency domain, a periodic rectangular pulse function results in a sinc() function 

centered around the dominant frequency. As the duty cycle or pulse width of the signal is varied, 

the sinc() function changes. As the duty cycle is decreased, the width of the of the sinc() function 

broadens (i.e. it becomes less localised in frequency). Thus, if a function changes rapidly in time, the 

signal must contain high frequency component to allow for such a rapid change. 

 

Figure 4. Overview of the signal processing components for A) Offline Classification and B) Online 

Classification. 

3.3.3. Offline Classification 

Figure 4A gives an overview of the components included in the offline classification process of 

the system. First, we conduct the distance measurement experiment with the Limpet and record the 

data (distance measurement, timestamp). We transmit the data from the Limpet to the PC in a real-

time manner using a high bandwidth communication system such as serial or WiFi communication. 

We then process the data on the PC using Matlab. We apply MAD Algorithm to remove any outliers 

from the dataset. We then apply a low-pass filter (simple moving average) to the data to remove the 

white noise. We also down-sample the data (K = 8) to accord with the computational limitations of 

the microcontroller on the Limpet. In the presence of a fault, given this processed dataset, we apply 

spectral analysis to classify the type of fault. This offline classification process is used as a learning 

basis for online classification on the Limpet. 
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During normal operation of the fan, we compute the average and standard deviation of the 

distance measurements recorded over a period of ten minutes. We used these values as learning 

values for the microcontroller when performing the online classification process. 

3.3.4. Online Classification 

Figure 4B gives an overview of the online classification process. The Limpet starts sampling the 

distance to the fan using the ToF sensor. The Limpet stores a number of distance measurements into 

its memory (120 measurements). The Limpet processes the data, by first removing any outliers from 

the sensor data. The data are then down-sampled according to the down-sampling frequency. The 

Limpet classifies the dataset using a sliding window algorithm. The sliding window algorithm is 

used to process data streams, where the input is presented as a sequence of items, and the function 

of interest is computed over a fixed-size window in the stream [46], [47]. The Limpet detects the first 

rising edge and the fourth falling edge and calculates the time period between them. This time period 

is checked against the frequency of normal operation stored in the microcontroller’s memory. The 

distance measurements are also compared to the average value and standard deviation of normal 

operation, which were stored in the microcontroller after training the classifier offline.  

According to the offline training of the classifier, the distance measurement for each blade must 

fall within a range of average ± standard deviation. The parameters of the class representations 

(average, standard deviation, time period) were trained offline and do not change during operation. 

These parameters are stored on the Read-Only Memory (ROM) of the microcontroller. The amount 

of ROM used depends mainly on the number of points (120) in the dataset and their size (distance is 

8-bit, time is 16-bit, distance index is 8-bit). After the Limpet checks the dataset for the presence of 

any faults, it makes an autonomous decision based on the result of the classification. Autonomy is 

the ability of a system to make its own decision and to act on its own without external intervention 

[48]. Within autonomy, there are many variations concerning where and how decisions are made, 

and actions are invoked. An automatic system carries out a number of fixed and prescribed activities, 

where there may be options, but they are fixed in advance and follow a rigid cycle [48]. An adaptive 

system uses feedback from the environment to improve its performance [48]. A completely 

autonomous system makes decisions based on the system’s view of the situation at the time of 

decision and its current view of the environment [48]. Decisions made by completely autonomous 

systems mimic human-level decisions. 

Since the Limpet carries out a number of prescribed activities or checks during online 

classification, it can be considered an automatic system. If the dataset is within the specified range 

and frequency, the Limpet continues monitoring the system, but if the dataset fails any of the checks, 

the Limpet classifies the measurements as faulty operation. The Limpet then transmits the processed 

data using low bandwidth communication systems such as LoRa and optical communication to the 

PC, where spectral analysis is performed to classify the fault detected. 

3.4. Design of the Distance-Based Fault Detection Experiments 

To evaluate the capability of distance-based fault detection using the Limpet, we conducted five 

experiments for each of the four communication systems. We conducted the five experiments 

separately and repeated using each communication system. We designed one of the five experiments 

to be normal operation of the fan. In the other four experiments, we introduce a fault to the system 

and check if the Limpet is capable of detecting this fault. The faults introduced to the system are listed 

below and a schematic of these faults are shown by Figure 3C. 

• Fault 1: We attach an object of 15 mm thickness to one of the four blades.  

• Fault 2: We remove one of the four blades of the fan. 

• Fault 3: We reduce the frequency of detection of a fan blade from 1.25 Hz to 0.25 Hz. 

• Fault 4: We immobilise the rotation of the fan for a certain time period during the course of its 

normal operation. 

For WiFi and serial communication, we sent the data from the sensor on a real-time basis to the 

PC. Since there is no memory limitation, as the data are not stored on the microcontroller, we 
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recorded the sensor data over a period of 300s.We processed the data and observed the distance 

profile from each experiment. We then analysed the data using spectral analysis to classify the type 

of fault that occurred during operation. To test for other faults we conducted two additional 

experiments using WiFi communication and serial communication, these were: sampling at a rate 

lower than the Nyquist Frequency, and immobilising the fan twice during the 300s measurement 

period. 

For LoRa and optical communication, the Limpet follows the online classification approach 

where it does all the processing and analysis on-board, and then takes an autonomous decision based 

on the classification result. For optical communication, we designed an experimental setup, where 

we placed another Limpet in front of the Limpet that is part of the distance-based fault detection 

experimental setup. We aligned the second Limpet such that it does not block the distance sensor of 

the first Limpet, but at the same time with its optical sensor aligned with the RGB LED of the first 

Limpet. We used the down-sampled results from the LoRa and optical communication experiments 

to construct the distance profile for each experiment, and we perform a spectral analysis on the data 

to classify the type of fault present in the system.  

Before we conducted any experiments using optical communication, we ran a calibration 

experiment for the light sensor, where we PWM the RGB LED from 0 to 255 in steps of 25. Each PWM 

level corresponds to a number between 0 and 9. We pulse-width modulated the red LED first, 

followed by the green LED and the blue LED. We used the optical sensor to read the light intensity 

and colour power density of the LED for each PWM level, and the results are shown by Figure S7. 

Plots of the power density versus time for different numbers transmitted using the red, green and 

blue LED are shown by Figures S8, S9 and S10, respectively. We used the results of this calibration 

experiment as a reference to interpret the data transmitted by the Limpet during the experiments 

with optical communication. We used the red LED to send distance measurements, the green LED to 

send timestamps, and the blue LED to send the index of the data point. Figure S11 shows a plot of 

the power density from each LED, which could be used to interpret the number transmitted for each 

measurement variable during the experiment. 

4. Results 

4.1. Distance-Based Fault Detection 

 

Figure 5. A) Schematic of Fault 1. B) Distance Profile of WiFi communication experiment for Fault 1. 

C)  Distance Profile of LoRa and optcial communication experiment for Fault 1. D) Schematic of Fault 

2. E) Distance Profile of WiFi communication experiment for Fault 2. F)  Distance Profile of LoRa and 

optcial communication experiment for Fault 2. G) Schematic of Fault 3. H) Distance Profile of WiFi 
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communication experiment for Fault 3. I)  Distance Profile of LoRa and optcial communication 

experiment for Fault 3. J) Schematic of Fault 4. K) Distance Profile of WiFi communication experiment 

for Fault 4. L) Distance Profile of LoRa and optcial communication experiment for Fault 4. 

Figure 5 depicts the results of the experiments for WiFi, LoRa and optical communication. It 

shows the distance profile resulting from each of the four faults introduced to the system. We 

constructed the distance profile for LoRa and optical communication (dotted lines) from the down-

sampled results of the experiments (markers). Every two consecutive points (markers) on the graph 

represent a single peak or a fan blade. The distance profiles are shown within a period (T) of 3.2s 

(corresponding to the frequency of rotation of the fan during normal operation). When a fault is 

introduced to the fan and stepper motor system, its distance profile looks distinctly different as 

compared to the distance profile of normal operation. Each fault also possesses a distinctive power 

spectral density plot as compared to other faults. 

Figure 5A shows a schematic of Fault 1. Figure 5B shows the distance profile acquired using 

WiFi communication, and Figure 5C shows the distance profile for LoRa and optical communication, 

after we introduce Fault 1 to the system. As seen in both Figures, one of the peaks in the distance 

profile has an amplitude lower than the other peaks as a result of the object attached (extra thickness) 

to it. Figure 5D shows a schematic of Fault 2. The results for WiFi communication, and LoRa and 

optical communication are shown by Figures 5E and 5F, respectively. The results of the three 

communication systems show that one of the peaks in the distance profile is missing as compared to 

normal operation. Figure 5G shows a schematic of Fault 3, where we reduced the frequency of 

detection of the fan blade to 0.25 Hz. The distance profile for WiFi, LoRa and optical communication 

shows only a single peak within 3.2s as shown by Figures 5H and 5I, as the frequency of blade 

detection is lower than normal operation. Figure 5J shows a schematic of Fault 4, where we 

immobilized the fan during its normal operation. The distance profile for WiFi communciation shows 

the absence of any peaks after the introduction of the fault to the system as shown by Figure 5K. 

Figure 5L shows the down-sampled results and the distance profile for LoRa and optical 

communication. The graph shows that two of the peaks are missing corresponding to where the fault 

is present. The fault period is slightly different for LoRa and optical communication experiments. The 

fault duration is also different for LoRa and optical communication as compared to WiFi 

communication. For WiFi communication, we recorded the distance measurements for a long period, 

and, thus the fault was introduced over a larger time window. 

The raw sensor data we recorded from the Limpet during each of the five experiments using 

WiFi communication are shown by Figure S12. The data after elimination of outliers, application of a 

low pass filter, and down-sampled results can be found in Figures S13, S14 and S15, respectively. The 

results from the experiments we conducted using serial communication were similar to the results 

from the WiFi experiments. For serial communication, the raw sensor data, data after elimination of 

outliers, results of the low pass filter and down-sampled results can be found in Figures S16, S17, S18 

and S19, respectively. Figure S20 shows the distance profile from the serial communication 

experiments within a period (T) of 3.2s. 
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Figure 6. Spectral analysis of the data after introducing A) Fault 1, B) Fault 2, C) Fault 3 and D) Fault 

4 to the system. 

Figure 6 shows the power spectral density plots for each of the four faults. We obtained these 

results from the experiments using WiFi communication. During normal operation, the spectral 

analysis gives a single output signal (peak) at a frequency of 1.3 Hz as shown by Figure S21, which 

corresponds to the dominating harmonic frequency that best describes the signal in the time domain. 

In the time domain, the distance profile is a periodic rectangular pulse signal, therefore, in the 

frequency domain the harmonics exist around the same frequency. This collection of similar 

harmonics results in a peak in the frequency domain that is distributed around the dominating 

frequency. Figure 6A shows the power spectral density graph resulting from the introduction of Fault 

1 to the system. There is a large peak at a frequency of 1.3 Hz, and three smaller peaks at frequencies 

of 0.35 Hz, 0.7 Hz and 1 Hz. The peak at 1.3 Hz represents the dominant harmonic in the time domain 

signal, while the other peaks are present because of the harmonics introduced to the system due to 

the presence of Fault 1. The PSD divides the signal into its single sinusoidal components at the 

different frequencies. In this case, the time domain signal is more complex, since the pulse signal is 

not periodic anymore. Therefore, the harmonics in this signal are more complex and introduce lower 

frequency components to describe the signal in the frequency domain. Figure 6B shows the power 

spectral density graph resulting from the introduction of Fault 2 to the system. There is a large peak 

at a frequency of 1.3 Hz, and three smaller peaks at frequencies of 0.35 Hz, 0.7 Hz and 1.1 Hz. The 

peak at 1.3 Hz represents the dominating harmonic in the time domain signal, while the other peaks 

are present because of the harmonics introduced to the system due to the presence of Fault 2. The 

absence of the peak in the time domain signal introduces new harmonics in the spectrum represented 

by the lower frequency components. This power spectrum is distinct from the power spectrum of 

Fault 1, as the power in the lower frequency harmonics is higher due to the larger difference in the 

amplitude between the peaks in the distance profile. The spectral analysis of Fault 3 shown by Figure 

6C depicts a single large peak at a frequency of 0.25 Hz, which corresponds to the lower frequency 

of detection of the fan blades. The signal is a periodic rectangular pulse signal, and thus, results in a 

spectral plot with a peak around the dominant frequency. Since the duty cycle is increased as 

compared to normal operation, the peak is narrower and larger in the frequency domain. The spectral 

analysis of Fault 4 shown by Figure 6D depicts a large peak at a frequency of 1.3 Hz representing the 

normal fan operation and another peak at a lower frequency representing the break of rotation of the 

fan. The amplitude of the peaks depends on the length of the jam introduced to the system. Figure 

S22 shows the power spectral density plots from the WiFi experiments plotted against time. 

Figures S23 and S24 shows the power spectral density plots from the serial communication 

experiments plotted against frequency and time, respectively. The results of the spectral analysis on 

the serial communication experiments are similar to the spectral analysis of the WiFi experiments. 

Figure S25 shows the optical sensor data, which is obtained from the transmission of measurements 

using the RGB LED during the optical communication experiments, and which shows the down-

sampled results from the experiments and the spectral analysis performed on the data for both LoRa 

communication and optical communication after we introduce the four faults to the system. The 

frequency of the peaks in the power spectral density graph of LoRa and optical communication 

experiments are similar to those of serial and WiFi experiments. The only difference is the amount of 

power or energy in each peak. The power in the sinusoidal oscillations is much higher in serial and 

WiFi experiments as the results were recorded over a larger time period. The results from the two 

additional experiments (jamming the fan twice and a lower rate of sampling) we conducted using 

WiFi communication and serial communication are shown by Figures S26, S27, S28 and S29. 

5. Discussion 

In this paper, we combined ideas from the fields of offshore robotics, remote sensing and signal 

processing and designed a system to demonstrate that low-cost hardware can be a useful tool to 

monitor offshore energy platform. The signal processing techniques we used in this work were 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 August 2018                   doi:10.20944/preprints201808.0362.v1

Peer-reviewed version available at Sensors 2018, 18, 3487; doi:10.3390/s18103487

http://dx.doi.org/10.20944/preprints201808.0362.v1
http://dx.doi.org/10.3390/s18103487


 18 of 21 

 

explicitly adapted to operate on our low cost hardware. We introduced a down-sampling method to 

reduce the time taken to run the classifier and also to decrease the size required in memory on the 

microcontroller. We performed a sliding window algorithm on-board as a rapid test of the system’s 

functionality. The same approach can be applied to other sensors, which is discussed in section 5.1. 

The advantages and disadvantages of on-board computation as compared to offline computation are 

discussed in section 5.2. 

5.1. Applicability to Other Sensors 

In this work, we have shown how we can use a single sensor to monitor the state of equipment 

by measuring several measurands, as well as how we can process the data and analyse it on-board 

to improve communication requirements. Our method is dependent on distinct measurement 

profiles associated with each measurand. The method also depends on time-varying measurements. 

We think that this approach is applicable to other sensors and systems, if the measurement profile is 

(i) a time-varying measurement and (ii) distinctly different from other profiles. Thus, this method 

could be used by other sensors to identify different types of faults with equipment or to monitor 

different parameters on offshore platforms. It could also be easily adapted to other low cost systems. 

5.2. On-board Data Processing vs Offline Processing 

By processing and analysing data on-board using the microcontroller, we can improve the 

communication and power requirements of the system while still being able to perform same 

analysis. Data transmission does not need to occur continuously, but only in the case of a particular 

event. This design allows us to use communication systems with high transmission distance, but low 

bandwidth (such as LoRaWAN), and increase battery life of systems as the data transmission link is 

the most power-consuming part of a system. Offline processing involves continuously transmitting 

data and analyzing it to detect the presence of any faults. This approach is time-consuming, reduces 

battery life and requires high communication bandwidth, which lowers transmission distance. The 

major drawback of our approach is that low cost hardware is limited in its computational power. As 

such, we are restricted to the types of algorithms that could be used on the system. 

6. Conclusions 

In this work, we introduce a new immobile multi-sensing robot, the Limpet, which is part of the 

ORCA Hub System. We embedded the Limpet circuitry in a protective housing to protect it from the 

harsh offshore weather conditions. We have integrated the Limpet with ROS, which allows it to be 

used with other robots within the ORCA Hub System, where the interaction between different robots 

results in more complex and useful behaviour. We designed the Limpet to be low-cost and highly 

manufacturable, which enables us to deploy it in huge collectives for inspecting offshore energy 

platforms. We show how the Limpet could be used for fault detection in wind turbines, by detecting 

multiple measurands from a single sensor. This demonstrates one of the possible multi-sensing 

capabilities of the Limpet. We demonstrate this approach using four different communication 

systems. We also show how we can do the processing and analysis of the data from the sensor on-

board using the microcontroller, which can improve our communication requirements. The signal 

processing techniques that we used in this paper are generally applicable to time-variant 

measurements, however, they must be applied to time-varying, distinct, and systematically 

reoccurring measurements to augment the sensing capabilities of a robot. We train the classifier 

offline and transfer its parameters to the Limpet for online classification. During online classification, 

the Limpet takes an autonomous decision of either transmitting the data or continuing the monitoring 

process based on whether a fault is detected or not. We apply spectral analysis to the data to classify 

the type of fault detected. This work shines light on how robots can perform on-board signal 

processing and analysis to gain multi-functional sensing capabilities, improve their communication 

requirements, and monitor the structural health of equipment. 
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