

1 Article

2 Personalized E-learning System Architecture Using 3 Data Mining Approach

4 Samina Kausar ¹, Xu Huahu ¹, Iftikhar Hussain ^{2,*}, Zhu Wen Hao ¹ and Misha Zahid ²

5 ¹ School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China;

6 ² School of Computer and IT, Beaconhouse National University, Lahore, 54400, Pakistan;

7 * Correspondence: iftikhar.hussain@bnu.edu.pk; Tel.: +92-4238100156 (Ext. 508)

8

9 **Abstract:** Educational data mining is an emerging discipline that focuses on development of
10 self-learning and adaptive methods. It is used for finding hidden patterns or intrinsic structures of
11 educational data. In the field of education, the heterogeneous data is involved and continuously
12 growing in the paradigm of big data. To extract meaningful knowledge adaptively from big
13 educational data, some specific data mining techniques are needed. This paper presents a
14 personalized e-learning system architecture which detects and responds teaching contents
15 according to the students' learning capabilities. Furthermore, the clustering approach is also
16 presented to partition the students into different groups based on their learning behavior. The
17 primary objective includes the discovery of optimal settings, in which learners can improve their
18 learning capabilities to boost up their outcomes. Moreover, the administration can find essential
19 hidden patterns to bring the effective reforms in the existing system. The various clustering
20 methods K-means, Clustering by Fast Search and Finding of Density Peaks (CFSFDP), and CFSFDP
21 via Heat Diffusion (CFSFDP-HD) are also analyzed using educational data mining. It is observed
22 that more robust results can be achieved by the replacement of K-means with CFSFDP and
23 CFSFDP-HD. The proposed e-learning system using data mining techniques is vigorous compared
24 to typical e-learning systems. The data mining techniques are equally effective to analyze the big
25 data to make education systems robust.

26 **Keywords:** Big data; clustering; data mining; educational data mining; e-learning; profile learning.
27

28 1. Introduction

29 Educational data mining (EDM) is a new perspective in modern educational systems. It is
30 concerned with the study and development of new adaptive methods, instruments to artificially
31 analyze and visualize the hidden patterns or intrinsic structures in educational datasets. Mostly,
32 education related datasets contain structured, semi-structured and un-structured data with different
33 geographical distribution [1]. EDM has emerged as a promising area of research aimed to analyze
34 the intrinsic data structures, extracting hidden predictive information and finding insights into
35 educational datasets [2]. EDM can be defined as an application of data mining methods in the field of
36 education to exploit novel patterns and artificially analyze big data efficiently and effectively.

37 Recently, frontier technologies such as Internet of Things (IoT), sensors, artificial intelligence,
38 and social networks are being integrated with educational system for effective learning [3,4]. Web
39 based systems are computer-aided virtual form of instructions that are independent of geographical
40 location. Sensors and IoT generate huge amount of data that lead towards the big data dilemma [5].
41 However, big data has significant impact in scientific studies, public health, industrial applications,
42 and in the field of education [6–10]. In educational field, the huge amount of data provides a new
43 insight to improve the learning capabilities and decision making skills of teachers and students. The
44 educational data mining may play an important role to improve the education system by (1) refining

45 the individual based quality education, (2) discovering new areas of knowledge and finding
46 associations among different fields and (3) finding the new perspective in experimental data.

47 With the advancement in communication technologies, nowadays many smart devices and
48 sensors [11] are incorporated into educational systems to observe the overall behavior of the
49 education system. It contains rich information of people's thoughts about different events in
50 semi-structured or unstructured form. Most of the web based learning methods are static and fail to
51 take into account the diversity of students. These virtual educational systems can be improved by
52 utilizing data mining techniques, in order to effectively meet the needs of diverse learners. In
53 general, there is a wide variety of data mining methods that can be applied in the field of education.
54 These methods can be categorized into classification, clustering, neural network, and relationship
55 manning. Clustering is a primary unsupervised approach to partition datasets into distinct groups
56 based on the estimated intrinsic characteristics or similarities [12] and has been applied in various
57 fields [13–19]. Clustering methods can be categorized as: partition-based, density-based,
58 model-based and hierarchy-based [20–24]. The traditional data mining techniques cannot be directly
59 applied to cope with the complexities of big data.

60 1.1. Research Objectives

61 This paper presents a personalized e-learning system architecture integrating data mining
62 technique which creates and responds teaching content according to students' learning capability.
63 The primary objective includes the discovery of optimal settings, in which learners can improve
64 their learning capabilities to boost up their outcomes. Moreover, the administration can find
65 essential hidden patterns to bring the effective reforms in the existing system. The system is more
66 robust compared to the typical e-learning systems due to the use of clustering methods. The data
67 mining based clustering approaches are offered to partition the students into different groups based
68 on their learning behavior. This paper analyzes K-means algorithm for clustering and compares it
69 with Clustering by Fast Search and Finding of Density Peaks (CFSFDP). It also draws a contrast
70 between K-means and CFSFDP via Heat Diffusion (CFSFDP-HD) in regard to academic performance
71 of students. Both K-means and CFSFDP-HD algorithms were executed multiple times to effectively
72 partition students into groups according to their learning capabilities.

73 1.2. Paper Organization

74 This paper organized as follows: Section 2 presents the literature review of data mining
75 techniques with some specific tools to deal with education data. Section 3 describes the idea of
76 personalization in e-learning system architecture using data mining approach. The existing
77 clustering (K-means) approach and the proposed clustering approaches are also described in this
78 section. Section 4 presents the experiments and results with discussion by considering a specific case
79 study. Finally, the conclusion and recommendations for the future research are discussed in Section
80 5.

81 2. Literature Review

82 This section presents a comprehensive review of data mining techniques with some specific
83 tools to deal with educational data.

84 Big data has the capability to benefit students distinctly by providing them with a modern and
85 dynamic education system. In the study [25], Athanasios S. D. and Panagiotis L. analysed the goals,
86 purposes, and benefits of *big data* and *open data* in Education. Authors concluded that the education
87 system can be enhanced by embracing new learning approaches to make it more effective and
88 focused on. Moreover, Annapoorna M. et al. [26], support the same idea and anticipated that the big
89 data can be effectively used in predicting student results, and improving both the teaching and the
90 learning experience. The research conducted by B. Tulasi [27] and Ben Daniel [28], targeted the
91 higher education and explored the solutions proposed by big data systems to the challenges faced by
92 higher education. Chris Dede [29] further advanced the topic by studying "next steps" that can be

93 taken using big data in education and concluded that the field has a lot of potential in the betterment
94 of the individual learning experiences.

95 Educational data mining is emerging as a research area with a suite of computational and
96 psychological methods, and research approaches for understanding how students learn [30]. B. R.
97 Prakash, et al. [31] have researched learning analytic techniques for *big data* in educational data
98 mining to find out the Adaptive learning systems (ALS). The ALS empowers teachers to rapidly
99 observe the adequacy of their adjustments and mediations, giving input to persistent change. The
100 outcomes of this study are coherent with the conclusions of the study presented by Abdul-Mohsen
101 Algarni [32]. In [32] author explored various studies and datasets revolving around the field of
102 EDM. Author derived that EDM can be utilized as a part of a wide range of zones including
103 recognizing at risk students, distinguishing needs for the adapting needs of various groups of
104 students, expanding graduation rates, adequately surveying institutional execution, boosting
105 grounds assets, and upgrading subject educational modules reestablishment. Another research
106 study [33] consistent with [32] is conducted by Amjad Abu Saa examines and predicts student
107 performance in different scenarios using data mining methods. In the similar study [34], Tommaso
108 Agasisti and Alex J. Bowers have analysed various analytical techniques: Educational Data Mining,
109 Learning Analytics and Academic Analytics, and have reached the conclusion that application of
110 data mining methods with responsibility and professionalism yields positive results.

111 Numerous researchers have expressed that personalization, in an academic setting, permits
112 executing more proficient and viable learning forms. Various works are attempting to enhance the
113 quality and viability of e-learning by utilizing standards of other research zones. This pattern of
114 personalization advancement additionally shows up in e-learning. Matteo G. et al., [35] have
115 introduced a new tool: Intelligent Web Teacher (IWT) to support Personalized E-Learning in their
116 study on personalized e-learning. The comparison of traditional methods with IWT deduce that
117 personalization permits executing more proficient and powerful e-Learning forms, featuring an
118 expanding level of fulfilment by both educator and students. A grid agent model was proposed by
119 Zhen L. and Yuying L. in their study [36] for effective adaptation of e-learning systems using
120 artificial psychology to individual students who would benefit from this personalization.
121 Furthermore, Xin Li and Shi-Kuo Chang [37] have proposed another personalized e-learning system
122 which is a feedback extractor with fusion capability to adjust the user preferences. Maryam Yarandi,
123 et al. [38] take individual learning capabilities of students to present an ontology-based approach to
124 develop an adaptive e-learning system. The proposed e-learning system creates content according to
125 the learner's knowledge. The significance of the above mentioned literature being that personalized
126 e-learning systems are effective tools in individual learning and hence this paper proposes yet a
127 fresh intelligent personalized e-learning system. The K-means [20] is a state-of-the-art partition
128 based clustering algorithm and have been applied in EDM [39–50]. Such as, special selection of
129 student's seat in lab or classroom and its impact on student's assessment has been evaluated by
130 Ivancevic, Celikovic & Lukovic [45]. Another study presented by Ying, et al. [49] has utilized
131 K-means to understand the behavior of students based on the annotation dataset of 40 students. In a
132 study conducted by Eranki & Moudgalaya [51], K-means was applied to examine the influence of
133 human characteristics on student's performance while listening to music. Chang, et al [50] utilized
134 Item Response Theory (IRT) to identify student's ability and discovered distinct groups based on the
135 student's ability.

136 Web based education or e-learning is a new paradigm in education where a significant large
137 amount of information defining the variety of teaching-learning interactions. It is endlessly
138 generated and ubiquitously available. To cope with aforementioned e-learning issues, we proposed
139 a new e-learning system architecture using the data mining techniques. The integration of data
140 mining techniques (DMT) makes the learning system more interesting.

141 3. Personalized E-learning System Architecture Using Data Mining Techniques

142 In this section, a Personalized E-learning System Architecture (PESA) is presented. Proposed
143 system is sensitive to detect the understanding levels of students and then respond to the students

144 according to their learning capabilities. Proposed system finds the possible groups in students by
145 matching shared similarities according to their level of interest. For each group, system generates
146 different quizzes, assignments, study related games, and books' contents to improve their learning
147 capabilities. To make groups and select appropriate teaching methods, system uses artificial
148 intelligence and adaptive clustering methods. In proposed architecture, the K-means and
149 CFSFDP-HD are used as a profiling and content filtering method to group student into appropriate
150 classes. The traditional e-learning systems are mostly query-based and the queries are responded
151 without any intelligence or heuristics.

152 *3.1. Problem Background and the Big Data*

153 A primary agenda of higher education is to harness cross-disciplinary intelligence to improve
154 syllabus, content and delivery, enhancing learners' experiences and creating an atmosphere that
155 integrates them with the skills and knowledge required to cope the changes and challenges posed by
156 the big data. In such complex educational environment, it is tough for human mind to identify
157 patterns manually, but database projects have the abilities to incorporate and link traditional and
158 new data sources. Such compactness can create deeper insights into students learning capabilities
159 and enhance classroom activities.

160 Grade Point Average (GPA) and percentage score are important indicators for the measurement
161 of students' academic performance and capabilities. GPA is an important factor for academic
162 planner to setup and analyse the learning environment in the academic organizations [59]. The GPA
163 or percentage score of students can be affected by different factors such as teaching methodology
164 and attention of teachers towards some particular students. It is a general phenomenon that teachers
165 mostly focus on students those take part in class activities and show satisfactory outputs. Moreover,
166 there are some intrinsic hidden patterns that exist among the students. Students can be divided into
167 different categories or groups based on their progress. The same teaching method may not be
168 effective for different groups of students.

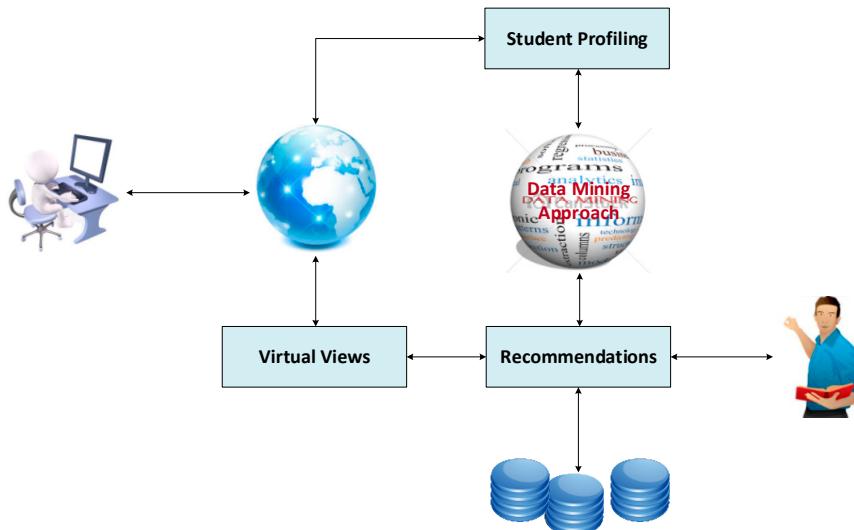
169 The similarity measures and clustering are important tasks to find the similar groups in big
170 data. The similar patterns of data in different fields may be useful for researchers and learners to
171 gain knowledge easily from various fields. For example, we can use partition based clustering,
172 density based clustering, and hierarchical based clustering for text mining, to find the similarity
173 between data points, outliers, and similar or related fields by clustering big data.

174 Institutional databases, having the teaching material and users' queries, are entertained
175 according to the stored data. However, most of updated knowledge lies on internet at different
176 places. To robust the student learning capabilities, it might be credible to integrate the rest of data
177 sources with e-learning system [52]. The data mining techniques can play an important role to find
178 the relationships among different subjects available over internet, specifically in the e-learning
179 systems. Generally most of the e-learning systems are static and query based. In this domain,
180 students' click based server logs generated valuable data. Clustering methods can be successfully
181 utilized to analyze the click stream data. Clustering of click streams data can be further utilized to
182 make e-learning system more attractive and intelligent to understand the students' activities and
183 interest.

184 *3.2. Proposed PESA*

185 The e-learning architecture responds to the individual demands of users, and is able to predict
186 user preferences or interests. E-learning not only allows the instructors and learners to meet
187 virtually, but also makes sharing of resources possible electronically.

188 The overall Personalized E-learning System Architecture is shown in Figure 1. The major steps
189 of the PESA are described as follows:



190
191 **Figure 1:** Personalized E-learning Architecture. A profile is created for each learner and is
192 automatically updated based upon the activities of the learner.

193 3.2.1. Student profiling

194 The student interacts and manages his/her profile through the interface deployed on a desktop
195 laptop or a smartphone. The user profile and other information seldom change through the internet.
196 According to [53,54], student profile or sometimes a student model refers to a typical group of
197 students. Its function is to determine the user-learner needs and preferences automatically.

198 Student related data works like a seed for personalization of student queries and intelligent
199 response of queries. Student profiling is an ongoing process which contains both static and dynamic
200 data. Data collected in a static way [54] includes personal, personality, cognitive, pedagogical and
201 preference data. Personal data define the biographical information about the students. Personality
202 data enlighten the students' attention, cooperation and coordination skills. Student profile reflects
203 the overall interest and behavior of the student. Cognitive data inform about the students' cognition
204 while pedagogical data describe different learning styles and methods. If the profile maintaining
205 system detects any unusual behavior in student activities, it updates the profile accordingly.

206 3.2.2. Data Mining Techniques

207 The data mining is responsible to find association, recommendation, and intelligence to provide
208 customized and powerful learning mechanism for students. For example, appropriate content
209 selection on the basis of the students' interest and understanding is a big problem. This can be
210 resolved by grouping whole contents by simply applying clustering approach to filter contents
211 according to individual student profile. Moreover, the key inference components in such e-learning
212 systems are based on data mining techniques, which analyze the user's profile and suggest some sort
213 of actions with the application of artificial intelligence. Moreover, especially, when we talk about
214 clustering methods in existing systems are mostly based on the naïve clustering approaches such as
215 K-means and Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Unlike
216 existing e-learning systems, we proposed to use CFSFDP and CFSFDP-HD methods to achieve
217 robust results. The data mining techniques (CFSFDP and CFSFDP-HD) are explained in more details
218 as follows.

219 CFSFDP and CFSFDP-HD

220 The CFSFDP has been recently proposed by Alex and Laio [23]. It has characteristics to discover
221 significant clusters in a more intuitive way as compared with K-means. A brand new heuristic
222 approach is proposed that empowers clustering procedure, in which high-density regions are
223 identified as potential clusters, outliers are automatically identified and arbitrary shape of clusters
224 are organized. In K-means to obtain meaningful clusters users are required to repeat clustering

225 process multiple times with different parametric setting. However, the unique approach utilized in
 226 CFSFDP to discover clusters and noise adaptively would be a significant clustering tool to analyze
 227 the educational. The CFSFDP uses the following given methodology to discover significant clusters.

228 For each given data-point i , CFSFDP calculates its local density (ρ_i) and a minimum distance
 229 (δ_i) with its nearest high density point. The local density can be estimated by utilizing the following
 230 definition:

231 Definition-1:

$$\rho_i = \sum_j X(d_{ij} - d_c) \quad (1)$$

232 where,

$$X(x) = \begin{cases} 1 & x < 0 \\ 0 & \text{otherwise.} \end{cases} \quad (2)$$

233 However, the distance (δ_i) can be computed using the definition-2, given as follows:

234 Definition-2:

$$\delta_i = \begin{cases} \min_{j: \rho_j > \rho_i} (d_{ij}) & \text{if } \exists j \text{ s.t. } \rho_j > \rho_i \\ \max_{j: \rho_j > \rho_i} (d_{ij}) & \text{otherwise} \end{cases} \quad (3)$$

235 Cluster centers are attained by plotting calculated values of ρ_i and δ_i , which is referred as the
 236 decision graph. In cluster analysis, the key challenge is to discover correct cluster centers in the
 237 datasets [1]. However, CFSFDP uses decision graph to select the correct cluster centers with the least
 238 human interaction, which makes it more worthy to analyze big data / streaming data. CFSFDP has
 239 variety of applications in education as well as in many other fields, such as bioinformatics [58],
 240 image processing and protein analysis [23].

241 As CFSFDP has characteristics to discover intrinsic hidden signal of interest from ambiguous
 242 data, it can be applied in existing education data mining systems and e-learning systems to produce
 243 more significant clusters and further it can be used to cluster the similar documents, find plagiarism
 244 in documents, and analyse the students' profiles and to find the similar insights in different research
 245 areas. The CFSFDP via heat diffusion (CFSFDP-HD) [21] was proposed as a variant of CFSFDP,
 246 where limitations of CFSFDP are improved and users can analyse data without any prior domain
 247 knowledge. In CFSFDP-HD, an adaptive method was used to estimate density of underlying
 248 dataset, which is given as follows:

$$\hat{f}(x; t) = \frac{1}{n} \sum_{j=1}^n \sum_{k=-\infty}^{\infty} e^{-k^2 \pi^2 t/2} \cos(k \pi x) \cos(k \pi x_j) \quad (4)$$

249 Equation 5 can be expressed as

$$\hat{f}(x; t) \approx \sum_{j=0}^{n-1} a_k e^{-k^2 \pi^2 t/2} \cos(k \pi x), \quad (5)$$

250 where n is a positive large integer and a_k is

$$a_k = \begin{cases} 1 & k = 0 \\ \frac{1}{n} \sum_{i=1}^n \cos(k \pi x_i), & k = 1, 2, \dots, n-1, \end{cases} \quad (6)$$

251

252

253 3.2.3. Recommendations

254 This process is responsible to collect data from databases filtered according to student profile
 255 with the help of data mining techniques. It also has the ability to prevent duplication of the
 256 information created before. This process recommends or proposes the solution to the instructor.

257 3.2.4. Database

258 Database contains the rich data of courses and other education related activities. This
 259 component contains all the information that the student received from the instructor and also
 260 recommends or proposes instructions to the instructor.

261 3.2.5. Virtual Views

262 After the intelligent analysis of student records and selection of appropriate contents for
 263 students, virtual views are created and delivered to the students in the form of electronic documents.

264 3.3. Existing Clustering Method (K-means)

265 The K-means [20] is a state-of-the-art partition based clustering algorithm. In K-means, input
 266 data is divided into k distinct groups, where k is an input parameter used to specify the number of
 267 output clusters. K-means iteratively improves the initial partitions until the optimized clusters are
 268 not found. Mathematically we can express K-means using the following expression:

$$\underset{S}{\operatorname{argmin}} \sum_{i=1}^n \sum_{x \in S_i} \|x - \mu_i\|^2 \quad (7)$$

269 where, μ_i is mean of data-points in S_i . S_i is initial partition of dataset $\{x_1, x_2, x_3, \dots, x_n\}$.

270 K-means is the best choice to discover the signal of interest from educational datasets if
 271 significant number of clusters is already defined. However, it might be a hectic job to discover
 272 appropriate groups using K-means without prior knowledge of existing number of clusters or in
 273 presence of noisy or complex data. As, in EDM data, the selection of number of clusters and initial
 274 centroids setting of K-means are hard to setup. These are also obscure to find significant signal of
 275 interest. Therefore, more sophisticated and frontier clustering methods are required to benchmark
 276 on EDM data to get intrinsic insights. Moreover, various other clustering methods have been used in
 277 EDM such as DBSCAN in [22,55] and Hierarchical clustering in [42,50,56,57], however, these
 278 approaches are also not robust to identify significant clusters in ambiguous and noisy datasets [23].

279 3.4. Steps Involved in the Proposed Framework

280 The key steps of CFSFDP-HD along with the flow control are shown in Figure 2.

281 The presented approach takes *distance matrix D* of dataset as input: D is the pairwise distance
 282 matrix of educational data.

283 Step 1: In the first step, the proposed approach estimates the density ρ_i via heat diffusion
 284 using Eq. (5).

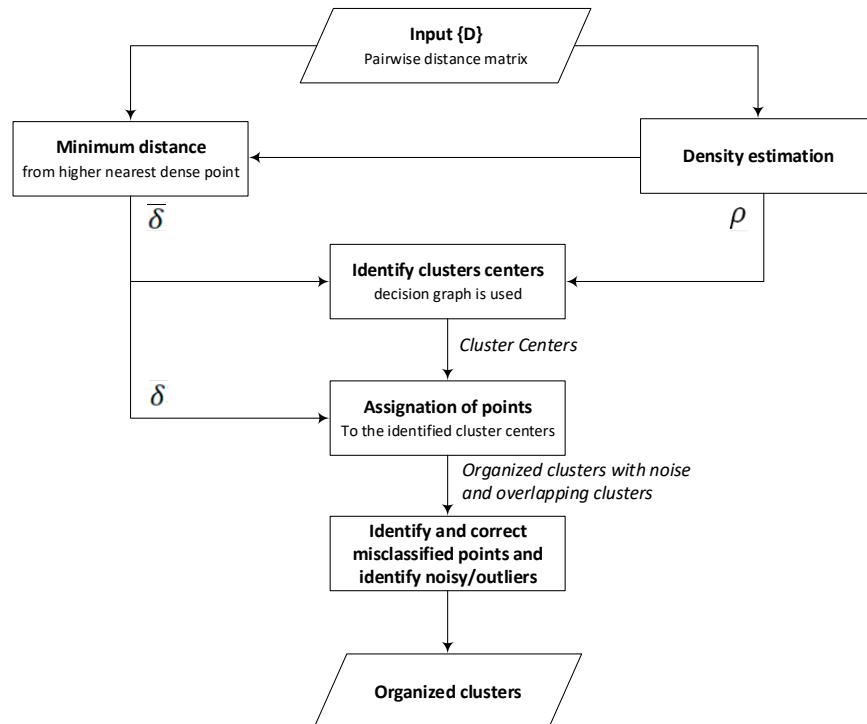
285 Step 2: the proposed approach calculates the minimum distance δ_i from the higher nearest
 286 dense points by using Eq. (3).

287 Step 3: the identification of cluster centers is achieved by the use of decision graph. In the
 288 decision graph, the ρ_i and δ_i are plotted. The output of this step is the *Cluster Centers*.

289 Step 4: The assignation of the remaining points to the identified cluster centers. The output of
 290 this step is the *organized clusters* with noise and overlapping clusters.

291 Step 5: In this step, the presented approach identifies and fixes the misclassified points and also
 292 identifies the noisy or outliers of the organized clusters (noisy and overlapping clusters).

293 The output of the proposed approach is the *organized clusters*.



294
295 Figure 2: Key steps involved in the presented data mining approach (CFSFDP-HD).

296 4. Experiments and Results

297 The presented data mining approach (CFSFDP-HD) is implemented using MATLAB to analyse
298 the behavior and to simulate the educational data.

299 4.1. Experiment 1: Using K-means clustering approach

300 In the first experiment, the data of 57 students is simulated using *K-means clustering approach*
301 and executed for 1000 times. The analysis is based on the students' obtained marks of: (1) three
302 quizzes, (2) two assignments, (3) one midterm, and (4) one final-term exams. The class-attendance
303 and class-participation are also considered. The results are extracted by passing different values of
304 clustering inputs. The output showed that three distinct groups of students are obtained. The
305 aforementioned partition of students into three significant groups can play an important role to
306 enhance the learning skills by paying special attention to a particular group of students. Based on the
307 obtained different categories of the students, the instructors can adapt different teaching approaches
308 to deal with appropriate group of students. Hence performance of students can be enhanced by
309 applying different methods for each group of students. According to table 1, the students in group C
310 require special care and attention to improved their skills, group B students require only a little
311 attention, especially in class tests and quizzes, and the students of group A are self-motivated and do
312 not require special attention by instructors or counselors, as described in table-1.

313 Table 1: K-means based created three different student categories of the synthetic data of 57
314 students. Each category needs to teach with different levels of preparation.

No. of students	Group	Efforts
18	A	Extra-ordinary students are comprised in this category and do not need special care to enhance their performance.
18	B	The students of this category are mediocre; they need to take care of their attendance and the sessional tests (i.e. class tests & Assignments).
21	C	The students if this category of below average and they needs special care and also required a lot of practice to deal with their course material.

315 The aforementioned application is simple to understand and exercise in a class at small level. In
 316 order to get appropriate clusters using K-means, users must have prior knowledge of existing
 317 clusters. This limitation makes K-means inappropriate to discover all intrinsic hidden patterns in
 318 data. To tackle with this technical drawback of K-means we are presenting density peaks based
 319 clustering methods to discover all existing patterns in data without knowing technical knowledge of
 320 underlying data.

321 *4.2. Experiment 2: Using CFSFDP-HD clustering approach*

322 In this experiment, the dataset of 600 students (enrolled in different sessions) is simulated by
 323 CFSFDP-HD approach. The CFSFDP-HD is used to partition the students into appropriate groups
 324 and is based on the students' obtained marks of: (1) three quizzes, (2) two assignments, (3) one
 325 midterm, and (4) one final-term exams. The class-attendance and class-participation are also
 326 considered. The progress-based segmentation of students is necessary to design appropriate
 327 teaching methods to address the weakness of a particular group in the class. In the Figure 3, the
 328 decision graph based heuristic approach is visualized to select the exact number of clusters
 329 intuitively. The full black points in Figure 3 are treated as non-cluster centre points.

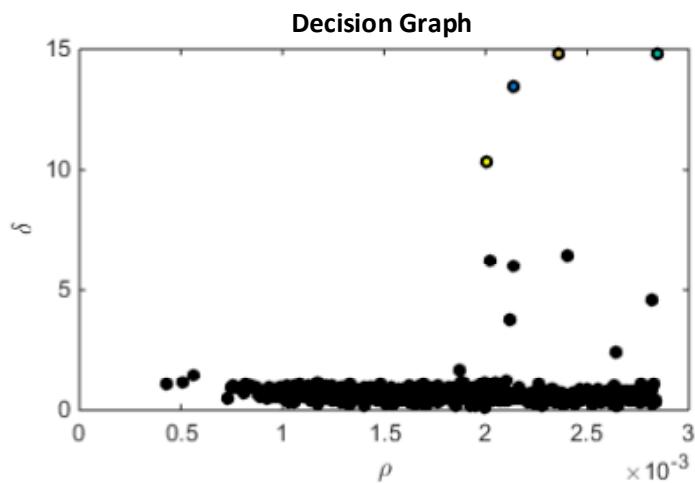


Figure 3: In the decision graph, the ρ and δ are plotted. The identification of cluster centers is achieved by the use of decision graph.

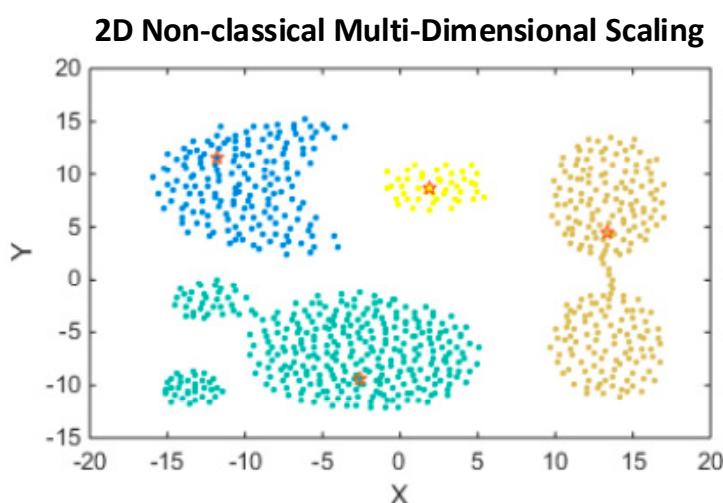


Figure 4: CFSFDP-HD analysis of 600 students' performance in Computer Application subject. Assigning the remaining points to the identified cluster centres are shown in different colour schemes, where different colours represent different groups.

337 With the minimum interpretation of heuristic approach to select the exact number of clusters,
 338 we successfully identified four distinct groups: Excellent (A+), Good (A), Average (B) and poor (C)
 339 in the students, as shown in Figure 4, where outliers are treated as potential cluster centres and are

340 represented with different colours. After identification of potential cluster centers, the discovered
 341 clusters are shown with different colours scheme in Figure 4, where 2D Non-classical
 342 multidimensional scaling is used to visualize the dataset.

343 As compared with K-means, the decision graph based approach provides a deep insight to
 344 select potential clusters intuitively. In general practice, users run K-means more than 1000 times
 345 with various input settings to get the meaningful clusters, however, the decision graph
 346 based approach in CFSFDP-HD provides heuristics to get exact solutions within few repetitions of
 347 CFSFDP-HD. Furthermore, four distinct groups can easily be examined and visualized in Figure 4
 348 using the heat-map.

349 **Table 2:** CFSFDP-HD based created four different student categories of the dataset of 600 students
 350 belong to different sessions. Each category needs to teach with different levels of preparation.

No. of students	Group	Efforts
90	A+	A good student who needs no extra effort.
398	A	An average student who needs to put some effort in course work.
20	B	A below average student who needs to take put in extra effort in lessons and course work.
92	C	A lowest level student who needs to put in the most effort in lessons and course work to keep up.

351 From the aforementioned case study of GPA, the clustering has potential to partition the
 352 education data into appropriate groups and that groups can be used for further analysis to improve
 353 the overall education system. From literature [39–50], it has been observed that K-means has been
 354 used in EDM for different purposes, however, CFSFDP and CFSFDP-HD are more adaptive in
 355 nature and their results are more significant as compared with K-means [21,23]. Therefore, more
 356 robust results can be achieved with replacement of K-means with CFSFDP and CFSFDP-HD.

357 5. Conclusions

358 As the data mining approaches provide the sense of intelligence in existing e-learning systems,
 359 efficiently and effectively. This paper has been presented the personalized e-learning architecture
 360 using the data mining techniques. The potential application of clustering in educational big data has
 361 also been examined. It has been observed from the literature that traditional e-learning systems are
 362 mostly query-based and the queries are responded without any intelligence or heuristics. Similarly,
 363 the K-means is suitable to cluster educational data where cluster numbers are known and faces
 364 drawbacks when applied to unknown cluster sizes. Hence, more robust data mining approaches
 365 (CFSFDP and CFSFDP-HD) are incorporated in the proposed e-learning system to find clusters in
 366 the educational data. Furthermore, it has been evaluated that data mining techniques are efficacious
 367 in analyzing the big data to make education systems robust and have the potential to solve the
 368 challenges of interdisciplinary research, emotional learning, and e-learning in the field of education.

369 For the future work; the data mining approaches can further be improved by making them
 370 more intelligent to generate knowledge and provide more intelligent assistance to the students. The
 371 larger and real datasets can be simulated to analyze the behavior of the proposed data mining
 372 approaches. The learning capabilities of the students can further be improved by introducing the
 373 intelligent games. Student collaboration is an important aspect of learning by group discussion and
 374 by sharing personal thoughts. The intelligent techniques can be introduced in different students'
 375 groups with significant attributes for problem solving.

376 **Author Contributions:** All the authors contributed equally.

377 **Acknowledgments:** This work is supported by National Natural Science Foundation of China (No. 91630206).

378 **Conflicts of Interest:** The authors declare no conflict of interest.

379 **References**

380 (1) Wong, W.; Fu, A. W. Incremental Document Clustering for Web Page Classification. In *Enabling Society*
381 *with Information Technology*; Jin, Q., Li, J., Zhang, N., Cheng, J., Yu, C., Noguchi, S., Eds.; Springer Japan,
382 2002; pp 101–110.

383 (2) Baker, R. S.; Yacef, K. The State of Educational Data Mining in 2009: A Review and Future Visions. *JEDM |*
384 *Journal of Educational Data Mining* **2009**, *1* (1), 3–17.

385 (3) Yan-lin, L. L. Z. The Application of the Internet of Things in Education [J]. *Modern Educational Technology*
386 **2010**, *2* (005).

387 (4) Baker, R. Data Mining for Education. *International encyclopedia of education* **2010**, *7* (3), 112–118.

388 (5) Blanco, T.; Casas, R.; Manchado-Pérez, E.; Asensio, Á.; López-Pérez, J. M. From the Islands of Knowledge
389 to a Shared Understanding: Interdisciplinarity and Technology Literacy for Innovation in Smart Electronic
390 Product Design. *International Journal of Technology and Design Education* **2017**, *27* (2), 329–362.

391 (6) Siemens, G.; Long, P. Penetrating the Fog: Analytics in Learning and Education. *EDUCAUSE review* **2011**,
392 *46* (5), 30.

393 (7) Howe, D.; Costanzo, M.; Fey, P.; Gojobori, T.; Hannick, L.; Hide, W.; Hill, D. P.; Kania, R.; Schaeffer, M.; St
394 Pierre, S. Big Data: The Future of Biocuration. *Nature* **2008**, *455* (7209), 47.

395 (8) Kim, G.-H.; Trimi, S.; Chung, J.-H. Big-Data Applications in the Government Sector. *Communications of the*
396 *ACM* **2014**, *57* (3), 78–85.

397 (9) Chen, M.; Mao, S.; Zhang, Y.; Leung, V. C. Big Data Applications. In *Big Data*; Springer, 2014; pp 59–79.

398 (10) Chen, C. P.; Zhang, C.-Y. Data-Intensive Applications, Challenges, Techniques and Technologies: A
399 Survey on Big Data. *Information Sciences* **2014**, *275*, 314–347.

400 (11) Noury, N.; Hervé, T.; Rialle, V.; Virone, G.; Mercier, E.; Morey, G.; Moro, A.; Porcheron, T. Monitoring
401 Behavior in Home Using a Smart Fall Sensor and Position Sensors. In *Microtechnologies in Medicine and*
402 *Biology, 1st Annual International Conference On. 2000*; IEEE, 2000; pp 607–610.

403 (12) Bie, R.; Mehmood, R.; Ruan, S.; Sun, Y.; Dawood, H. Adaptive Fuzzy Clustering by Fast Search and Find of
404 Density Peaks. *Personal and Ubiquitous Computing* **2016**, *20* (5), 785–793.

405 (13) Qian, G.; Wu, Y.; Ferrari, D.; Qiao, P.; Hollande, F. Semisupervised Clustering by Iterative Partition and
406 Regression with Neuroscience Applications. *Computational intelligence and neuroscience* **2016**, *2016*.

407 (14) Markowska-Kaczmar, U.; Kwasnicka, H.; Paradowski, M. Intelligent Techniques in Personalization of
408 Learning in E-Learning Systems. In *Computational Intelligence for Technology Enhanced Learning*; Springer,
409 2010; pp 1–23.

410 (15) Cordeiro, M.; Gama, J. Online Social Networks Event Detection: A Survey. In *Solving Large Scale Learning*
411 *Tasks. Challenges and Algorithms*; Springer, 2016; pp 1–41.

412 (16) Shah, G. H.; Bhensdadia, C. K.; Ganatra, A. P. An Empirical Evaluation of Density-Based Clustering
413 Techniques. *International Journal of Soft Computing and Engineering (IJSCE) ISSN* **2012**, *22312307*, 216–223.

414 (17) Engström, S. Differences and Similarities between Female Students and Male Students That Succeed
415 within Higher Technical Education: Profiles Emerge through the Use of Cluster Analysis. *International*
416 *Journal of Technology and Design Education* **2018**, *28* (1), 239–261.

417 (18) Stevenson, J. Developing Technological Knowledge. *International Journal of Technology and Design Education*
418 **2004**, *14* (1), 5–19.

419 (19) Zhang, Y.; Zhao, Y. Automated Clustering Algorithms for Classification of Astronomical Objects.
420 *Astronomy & Astrophysics* **2004**, *422* (3), 1113–1121.

421 (20) MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In *Proceedings of*
422 *the fifth Berkeley symposium on mathematical statistics and probability*; Oakland, CA, USA, 1967; Vol. 1, pp 281–
423 297.

424 (21) Mahmood, R.; Zhang, G.; Bie, R.; Dawood, H.; Ahmad, H. Clustering by Fast Search and Find of Density
425 Peaks via Heat Diffusion. *Neurocomputing* **2016**, *208*, 210–217.

426 (22) Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large
427 Spatial Databases with Noise. In *Kdd*; 1996; Vol. 96, pp 226–231.

428 (23) Rodriguez, A.; Laio, A. Clustering by Fast Search and Find of Density Peaks. *Science* **2014**, *344* (6191), 1492–
429 1496.

430 (24) Xu, R.; Wunsch, D. Survey of Clustering Algorithms. *IEEE Transactions on neural networks* **2005**, *16* (3), 645–
431 678.

432 (25) Drigas, A. S.; Leliopoulos, P. The Use of Big Data in Education. *International Journal of Computer Science
433 Issues (IJCSI)* **2014**, *11* (5), 58.

434 (26) Manohar, A.; Gupta, P.; Priyanka, V.; Uddin, M. F. Utilizing Big Data Analytics to Improve Education;
435 ASEE, 2016.

436 (27) Tulasi, B. Significance of Big Data and Analytics in Higher Education. *International Journal of Computer
437 Applications* **2013**, *68* (14).

438 (28) Daniel, B. B. Big Data and Analytics in Higher Education: Opportunities and Challenges. *British journal of
439 educational technology* **2015**, *46* (5), 904–920.

440 (29) Dede, C. Next Steps for "Big Data" in Education: Utilizing Data-Intensive Research. *Educational Technology
441* **2016**, *37*–42.

442 (30) Anaya, A. R.; Boticario, J. G. A Data Mining Approach to Reveal Representative Collaboration Indicators
443 in Open Collaboration Frameworks. *International Working Group on Educational Data Mining* **2009**.

444 (31) Prakash, B. R.; Hanumanthappa, M.; Kavitha, V. Big Data in Educational Data Mining and Learning
445 Analytics. *Int. J. Innov. Res. Comput. Commun. Eng* **2014**, *2* (12), 7515–7520.

446 (32) Algarni, A. Data Mining in Education. *International Journal of Advanced Computer Science and Applications
447* **2016**, *7* (6), 456–461.

448 (33) Saa, A. A. Educational Data Mining & Students' Performance Prediction. *International Journal of Advanced
449 Computer Science and Applications* **2016**, *7* (5), 212–220.

450 (34) Agasisti, T.; Bowers, A. J. 9. Data Analytics and Decision Making in Education: Towards the Educational
451 Data Scientist as a Key Actor in Schools and Higher Education Institutions. *Handbook of Contemporary
452 Education Economics* **2017**, 184.

453 (35) Gaeta, M.; Miranda, S.; Orciuoli, F.; Paolozzi, S.; Poce, A. An Approach To Personalized E-Learning.
454 *Journal of Education, Informatics & Cybernetics* **2013**, *11* (1).

455 (36) Liu, Z.; Liu, Y. Research on Personalization E-Learning System Based on Agent Technology. In *Proceedings
456 of the 3rd WSEAS international conference on circuits, systems, signal and telecommunications. Ningbo (China);*
457 2009.

458 (37) Li, X.; Chang, S.-K. A Personalized E-Learning System Based on User Profile Constructed Using
459 Information Fusion. In *DMS*; Citeseer, 2005; Vol. 2005, pp 109–114.

460 (38) Yarandi, M.; Jahankhani, H.; Tawil, A.-R. A Personalized Adaptive E-Learning Approach Based on
461 Semantic Web Technology. *webology* **2013**, *10* (2), Art. 110.

462 (39) Zheng, Q.; Ding, J.; Du, J.; Tian, F. Assessing Method for E-Learner Clustering. In *Computer Supported
463 Cooperative Work in Design, 2007. CSCWD 2007. 11th International Conference on*; IEEE, 2007; pp 979–983.

464 (40) Tian, F.; Wang, S.; Zheng, C.; Zheng, Q. Research on E-Learner Personality Grouping Based on Fuzzy
465 Clustering Analysis. In *Computer Supported Cooperative Work in Design*, 2008. CSCWD 2008. 12th
466 International Conference on; IEEE, 2008; pp 1035–1040.

467 (41) Antonenko, P. D.; Toy, S.; Niederhauser, D. S. Using Cluster Analysis for Data Mining in Educational
468 Technology Research. *Educational Technology Research and Development* **2012**, *60* (3), 383–398.

469 (42) Romero, C.; López, M.-I.; Luna, J.-M.; Ventura, S. Predicting Students' Final Performance from
470 Participation in on-Line Discussion Forums. *Computers & Education* **2013**, *68*, 458–472.

471 (43) Chang, W.-C.; Wang, T.-H.; Li, M.-F. Learning Ability Clustering in Collaborative Learning. *JSW* **2010**, *5*
472 (12), 1363–1370.

473 (44) Almeda, M. V.; Scupelli, P.; Baker, R. S.; Weber, M.; Fisher, A. Clustering of Design Decisions in Classroom
474 Visual Displays. In *Proceedings of the Fourth International Conference on Learning Analytics And Knowledge*;
475 ACM, 2014; pp 44–48.

476 (45) Ivancevic, V.; Celikovic, M.; Lukovic, I. The Individual Stability of Student Spatial Deployment and Its
477 Implications. In *Computers in Education (SIE), 2012 International Symposium on*; IEEE, 2012; pp 1–4.

478 (46) Chen, C.-M.; Li, C.-Y.; Chan, T.-Y.; Jong, B.-S.; Lin, T.-W. Diagnosis of Students' Online Learning
479 Portfolios. In *Frontiers In Education Conference-Global Engineering: Knowledge Without Borders, Opportunities*
480 *Without Passports*, 2007. FIE'07. 37th Annual; IEEE, 2007; pp T3D-17-T3D-22.

481 (47) Tair, M. M. A.; El-Halees, A. M. Mining Educational Data to Improve Students' Performance: A Case
482 Study. *International Journal of Information* **2012**, *2* (2), 140–146.

483 (48) Perera, D.; Kay, J.; Koprinska, I.; Yacef, K.; Zaïane, O. R. Clustering and Sequential Pattern Mining of
484 Online Collaborative Learning Data. *IEEE Transactions on Knowledge and Data Engineering* **2009**, *21* (6), 759–
485 772.

486 (49) Ying, K.; Chang, M.; Chiarella, A. F.; Heh, J.-S. Clustering Students Based on Their Annotations of a Digital
487 Text. In *Technology for Education (T4E), 2012 IEEE Fourth International Conference on*; IEEE, 2012; pp 20–25.

488 (50) Chang, W.-C.; Chen, S.-L.; Li, M.-F.; Chiu, J.-Y. Integrating IRT to Clustering Student's Ability with
489 K-Means. In *Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on*;
490 IEEE, 2009; pp 1045–1048.

491 (51) Eranki, K. L.; Moudgalya, K. M. Evaluation of Web Based Behavioral Interventions Using Spoken
492 Tutorials. In *Technology for Education (T4E), 2012 IEEE Fourth International Conference on*; IEEE, 2012; pp 38–
493 45.

494 (52) Shen, L.; Wang, M.; Shen, R. Affective E-Learning: Using" Emotional" Data to Improve Learning in
495 Pervasive Learning Environment. *Journal of Educational Technology & Society* **2009**, *12* (2).

496 (53) Esposito, F.; Licchelli, O.; Semeraro, G. Extraction of User Profiles in E-Learning Systems. *Proceedings of*
497 *I-KNOW'0, Graz, Austria* **2003**, 238–243.

498 (54) Gomes, P.; Antunes, B.; Rodrigues, L.; Santos, A.; Barbeira, J.; Carvalho, R. Using Ontologies for Elearning
499 Personalization. *Communication & Cognition* **2008**, *41* (1), 127.

500 (55) Dutt, A.; Ismail, M. A.; Herawan, T. A Systematic Review on Educational Data Mining. *IEEE Access* **2017**,
501 *5*, 15991–16005.

502 (56) Draždilová, P.; Martinovic, J.; Slaninová, K.; Snášel, V. Analysis of Relations in ELearning. In *Web*
503 *Intelligence and Intelligent Agent Technology*, 2008. WI-IAT'08. IEEE/WIC/ACM International Conference on;
504 IEEE, 2008; Vol. 3, pp 373–376.

505 (57) Cobo, G.; García-Solórzano, D.; Santamaría, E.; Morán, J. A.; Melenchón, J.; Monzo, C. Modeling Students'
506 Activity in Online Discussion Forums: A Strategy Based on Time Series and Agglomerative Hierarchical
507 Clustering. In *EDM*; 2011; pp 253–258.

508 (58) Wiwie, C.; Baumbach, J.; Röttger, R. Comparing the Performance of Biomedical Clustering Methods.
509 *Nature methods* **2015**, *12* (11), 1033.

510 (59) Hedayetul, M.; Shovon, I.; Haque, M. An Approach of Improving Student's Academic Performance by
511 Using K-Means Clustering Algorithm and Decision Tree. **2012**.