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Abstract: The present study aims to evaluate the capability of the TRMM-3B42-(V7) precipitation 12 
product to estimate appropriate precipitation rates in the Upper Indus basin (UIB) and the analysis 13 
of the dependency of the estimates’ accuracies on the time scale. To that avail statistical analyses 14 
and comparison of the TMPA- products with gauge measurements in the UIB are carried out. The 15 
dependency of the TMPA estimates’ quality on the time scale is analysed by comparisons of daily, 16 
monthly, seasonal and annual sums for the UIB. The results show considerable biases in the TMPA- 17 
(TRMM) precipitation estimates for the UIB, as well as high false alarms and miss ratios. The 18 
correlation of the TMPA- estimates with ground-based gauge data increases considerably and 19 
almost in a linear fashion with increasing temporal aggregation, i.e. time scale. The BIAS is mostly 20 
positive for the summer season, while for the winter season it is predominantly negative, thereby 21 
showing a slight over-estimation of the precipitation in summer and under-estimation in winter. 22 
The results of the study suggest that, in spite of these discrepancies between TMPA- estimates and 23 
gauge data, the use of the former in hydrological watershed modelling, endeavoured presently by 24 
the authors, may be a valuable alternative in data- scarce regions, like the UIB, but still must be 25 
taken with a grain of salt. 26 

Keywords: Precipitation; Tropical Rainfall Measurement Mission (TRMM); Multi-satellite 27 
Precipitation Analysis (TMPA); Upper Indus basin (UIB). 28 

 29 

1. Introduction 30 
The continued improvements in computation capabilities and the subsequent increase in the 31 

development of spatially explicit and distributed models for expressing environmental phenomena 32 
has necessitated the provision of more intensive and improved data for environmental variables both 33 
in space and time. Two major issues, especially, in hydro-meteorological studies, are the possible 34 
sparsity of data sampling points (gauge stations), and the discontinuities in the data and in the quality 35 
of the temporal records. These issues are more frequent in mountainous regions with high altitudes 36 
which are immensely challenging environments for measurements of precipitation, either through 37 
remote-sensing or the traditional ground based methods, because of the difficult topography and the 38 
highly variable weather and climatic conditions [1, 2]. Similarly, these and other reasons have 39 
restricted many developing countries to have consistent spatial and temporal coverage for ground-40 
based precipitation measurements [2, 3] and make it difficult for them to achieve an effective spatial 41 
coverage of rainfall [4, 5]. The consequent lack of good quality precipitation data, then turns out to 42 
be a big hurdle for properly assessing impacts of climate change on water resources in these regions 43 
[1].  44 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 August 2018                   doi:10.20944/preprints201808.0340.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Climate 2018, 6, 76; doi:10.3390/cli6030076

http://dx.doi.org/10.20944/preprints201808.0340.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/cli6030076


 2 of 20 

 

As data with an acceptable gridded resolution of daily climatic variables are critical for 45 
hydrological and water resources modeling [6, 7], managing the gaps in the data appropriately is 46 
then the first stage of most climatological, environmental and hydrological studies [2]. This step is 47 
also necessary to improve the spatial resolution for sparse gauge station data set, before using it as 48 
an input for spatially-distributed rainfall-runoff models, because the gauge-based interpolation 49 
methods, commonly used in hydrologic models, usually do not cover the spatial heterogeneity of the 50 
variability of climatic variables in the catchment. These errors in the interpolated data field have then 51 
the potential to significantly bias model calibrations and water balance calculations [6]. 52 

Fortunately, the continued scientific development is also showing new prospects in addressing 53 
these issues. . For example, the advancements in the gathering and deriving climate data through 54 
satellite remote sensing could provide a possible opportunity to mend some of the issues with regard 55 
to the spatial coverage of climate data. That is why the use of satellite-based precipitation products, 56 
individually, or in combination with land-based gauge data, has been increasingly recognized as a 57 
very promising alternative to address the aforementioned problems [5]. Such precipitation products 58 
prove to be of great value, especially, in developing countries with remote and high-altitude 59 
locations, where conventional rain gauge- or weather data are of bad quality or have low coverage 60 
[8][8]. 61 

There are numerous satellite-based precipitation products currently available with varying 62 
degrees of accuracy. These include the Climate Prediction Center (CPC) morphing algorithm 63 
(CMORPH) [9], the Global Satellite Mapping of Precipitation [10–12], the Naval Research Laboratory 64 
Global Blended Statistical Precipitation Analysis [13] and the Tropical Rainfall Measuring Mission 65 
(TRMM) Multisatellite Precipitation Analysis (TMPA) [14, 15] and a few others. Since their inception, 66 
most of these gridded datasets have been evaluated for their suitability and usability for a specific 67 
regions or intended uses. In general such investigations are specifically for mountainous regions, and 68 
even less for the Hindukush, Karakurm and Himalays (HKH) region. In the HKH and the Upper 69 
Indus Basin (UIB) region, most of the reported work related to evaluation of gridded precipitation 70 
products, are suggestive of considerable biases in the gridded products in comparison to the gauge 71 
records [16–19].   72 

Additionally the quality, coverage or reprentetiveness of the available observed gauge records 73 
have also been questioned and sometimes regarded below par [20–22] with considerable under 74 
estimation of regional precipitation amounts especially at higher altitudes (Khan and Koch unpublished).(the 75 
spatial distribution of estimated real precipitation  by khan and Koch (unpublished) over study are is given in 76 
the supplementary materials – Appendix-I while the Vertical meteorological and cryspheric regimes in UIB 77 
(modified from Hewitt 2007) is given in Appendix-II)  78 

While, in most cases, these gridded global precipitation data sets are some interpolated version 79 
of point measurements, (most often through geo-statistical procedures), they may only be useful for 80 
regions where dense network of rain gauges are available, because otherwise, in absence of a dense 81 
enough networks or over regions of complex topographies, the interpolated precipitation present a 82 
very generalized destitution, not able to reflect on the prevalent orographic, surface or atmospheric 83 
processes [19]. 84 

 85 
In comparison with the sparse gauge observations or the gridded data products, based on them, 86 

satellite-based precipitation products, such as “Tropical Rainfall Measurement Mission” (TRMM) 87 
“Multi-satellite Precipitation Analysis” (TMPA) (TRMM-3B42-(V7) have an inherent advantage, due 88 
to their higher spatial coverage. However, they also have certain limitations, because they are indirect 89 
estimates of rainfall, which depend on the cloud height and the properties of the cloud’s surfaces (IR-90 
algorithms) and on the integrated sparse and multi-source hydro-meteorological content (passive 91 
microwave algorithms) [23, 15, 24]. Before such satellite-based data can be used with confidence, it is 92 
therefore important to evaluate its accuracy or error characteristics by comparing it with data from 93 
ground-based observations.  94 

 95 
The current study was therefore aimed at assessing the skill of the TRMM precipitation dataset 96 

in matching the magnitudes and occurrences, at different temporal scales, at all the points of the 97 
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observational network available, to evaluate its further processing and correction requirements or 98 
suitability for subsequent use in hydrological modelling.  99 

2. Materials and Methods  100 

2.1. Study Area: “The Upper Indus River Basin (UIB) 101 
The Indus River, one of the largest rivers in Asia with a total length of about 2880 km, has a 102 

drainage area of about 912,000 km2 which extends across portions of India, China, Pakistan and 103 
Afghanistan. The portion of the Indus that comprises the upper Indus river basin (UIB), with a logical 104 
lower boundary at Tarbela Dam, is about 1125 km long and drains an area of about 170,000 km2 [25] 105 
. 106 

Being a high-mountain region, the UIB contains the largest area of perennial glacial ice cover (22 107 
000 km2) outside the polar regions of the earth, and which extends even further during the winter 108 
season  [26]. The altitude within the UIB ranges from as low as 455 m to a height of 8611 m and, as a 109 
result, the climate varies greatly within the basin [27]. 110 

The summer monsoon has no significant effect on the basin, as almost 90% of its area lies in the 111 
rain shadow of the Himalayan belt [28][20]. Except for the south-facing foothills, the intrusion of the 112 
Indian-ocean monsoon is limited by the mountains, so that its influence weakens northwestward. 113 
Subsequently, the climatic controls in the UIB are quite different from that in the Himalayas on the 114 
eastern side. In fact, over the extent of the UIB, most of the annual precipitation originates in the west 115 
and falls in winter and spring, whereas occasional rains are brought by the monsoonal incursions to 116 
the trans-Himalayan areas, but so that even during the summer months the trans-Himalayan areas 117 
do not obtain all their precipitation from the monsoons [29–32]. 118 

Climatic variables are usually strongly influenced by topographic altitude. Several studies have 119 
pointed out that precipitation in the HKH region exhibits large changes over short distances and has 120 
a considerable vertical gradient [33–36, 30, 29]. Thus the northern valley floors of the UIB are arid, 121 
with annual precipitation of only 100-200 mm, but these totals increase with elevation and reach upto 122 
600 mm at 4400 m,  and even reach to an annual glacier accumulation rates of 1500 to 2000 mm at 123 
5500 m altitude, according to some glaciological studies [29]. The average snow cover area in the 124 
Upper Indus River Basin fluctuate between ~10% to 70%. Snow cover in the area is at a maximum of 125 
70‒80% in the winter- (December to February) snow accumulation period and at a minimum 10‒15% 126 
in the summer- (June to September) snow melt period [27]. Stream flow is generated by the 127 
combination of the storm runoff in the lower parts of the upper Indus basin and the snow- and glacier 128 
runoff from the higher parts of the UIB [37, 25]. 129 

 130 
 131 
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2.1.1. TMPA Data (TRMM 3B42 V7)  132 
In this study the TRMM 3B42 (V7) precipitation product is used. This product is basically a 133 

calibration-based combination scheme for precipitation estimates from multiple satellites and space-134 
borne sensors, including infrared, microwave, radar data and gauge measurements. Though the 135 
dataset has very good spatio-temporal resolution (0.25° × 0.25° grid, 3-hourly) and good global 136 
coverage (latitude band 50°N to 50°S) and is available since 1998 to the recent past [15, 1] it also has 137 
certain uncertainties, because the inputs on which they are based are indirect estimates of rainfall, 138 
depending on the cloud height and the properties of the cloud surface (IR algorithms) and on the 139 
integrated sparse and multi-source hydro-meteorological content (passive microwave algorithms) 140 
[15, 24, 14].  141 

During the current study, 3-hourly data from January 1, 1998 to December 31, 2008, were 142 
summed to daily accumulated precipitation for each of the 0.25° X 0.25° grid box, which have a gauge 143 
station, and evaluated for match with the corresponding gauge station’s observed daily accumulated 144 
precipitation. As the observational network is scant, no TRMM grid box had more than one in situ 145 
gauge station located in it. 146 

2.1.2. Observed gauge data 147 
In HKH region of Pakistan, observed in situ data are limited, and operated by different 148 

organizations, mainly the Pakistan Meteorological Department (PMD) and Water and Power 149 
Development Authority (WAPDA). The stations operated by PMD have daily time step climate data 150 
available for longer periods (1947 to date) but with huge gaps and missing data in the record and 151 
with only monthly data available freely for research purposes. Furthermore, all the PMD stations are 152 
valley-based, at elevations below than 3000 m a.s.l. altitude, and therefore hardly represent the 153 
frequency and amount of precipitation in the high-altitude areas. The climate stations, operated by 154 

Figure 1: Upper Indus Basin with hydro-climatological stations 
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WAPDA, are fairly new and have considerably consistent, data over the time period, coinciding with 155 
the TRMM product. These gauge stations are distributed almost evenly across the UIB inside Pakistan 156 
and cover a wide range of elevations. During the current study, daily precipitation records of 14 157 
meteorological stations operated by WAPDA were utilized for evaluation of TRMM estimates. Their 158 
geographical attributes are given in Table 1. The evaluation limited to the duration of 1998 to 2008, 159 
as the observed precipitation data could not be acquired for the period beyond 2008.  160 

Table 1; Geographical attributes of the Precipitation gauge Network 161 
 S. 
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1 Burzil 34.906 75.902 4030 

2 Deosai 35.09 75.54 4149 

3 Hushey 35.42 76.37 3075 

4 Khot 36.517 72.583 3505 

5 Khunjrab 36.84 75.42 4440 

6 Naltar 36.17 74.18 2898 

7 Rama 35.36 74.81 3179 

8 Rattu 35.15 74.8 2718 

9 Shendoor 36.09 72.55 3712 

10 Shigar 35.63 75.53 2367 

11 Ushkor 36.05 73.39 3051 

12 Yasin 36.454 73.3 3350 

13 Zani 36.334 72.167 3895 

14 Ziarat 36.77 74.46 3020 

2.2. Methods 162 
The quantitative comparison of the TRMM-estimates with ground rain-gauge station 163 

observations is done by employing various widely used statistical indicators. These include the 164 
correlation coefficient (R), the mean relative bias error (rBIAS), the mean bias error (MBE); mean 165 
absolute error (MAE), and the root mean square error (RMSE). The R, rBAIS, MBE, MAE and RMSE 166 
are defined in the following equations:  167 
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where n is the number of samples, Ti are satellite-based precipitation, Gi are gauge-based 173 
precipitation, and തܶ and ̅ܩ are the corresponding means. Among these statistical indices, R shows 174 
the degree of linear correlation between TRMM precipitation estimates and gauge observations; 175 
MBE, MAE and rBIAS are used to assess the systematic bias, i.e. the deviation of the satellite 176 
precipitation from the gauge observations, and the RMSE gives the magnitude of the average error 177 
in relative terms.  178 

Table 2.  Contingency table 2X2 179 

 

OBSERVED VALUES 
(GAUGE DATA) 

TOTAL 

YES NO 

ESTIMATED VALUES 
(TRMM-ESTIMATES) 

YES 
-a- 

Hits 
-b- 

False Alarms 
Total-Yes 
Estimated 

NO 
-c- 

Misses 
-d- 

Correct negative 
Total-No 
Estimated 

TOTAL 
Total-Yes 
Observed 

Total-No 
Observed 

TOTAL 
a+b+c+d 

In addition, evaluations were also made for the daily TRMM estimates and gauge data, based 180 
on a 2×2 contingency table (Table 2), by detecting rain events, no events, misses by TRMM and false-181 
alarms by the TRMM, over the Indus river basin.  182 

We used a threshold of 0.3 mm/d, to differentiate precipitation and no precipitation events since 183 
lower precipitation values may be the result of noise, as indicated by [30, 38] etc. 184 

Based on these four indicators, orders as shown the table, several categorical statistical indices 185 
are derived, including, accuracy (Ac), bias score or frequency bias index (FBI), probability of detection 186 
(POD), false alarm ratio (FAR, critical success index (CSI) and true skill statistics (TSS)  [39, 40] . 187 
These are defined in the following equations:  188 

a dAc
Total



                 (6) 189 
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a b
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                  (9) 192 
aCSI

a b c
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a b c d a b c d


  
   

           (11) 194 

where a represents the number of rainfall events that have been successfully estimated by 195 
TRMM data (hits), b is the number of events incorrectly predicted as rain events by TRMM (false 196 
alarms). c is the number actual events, that are missed by TRMM (Misses), while d is the number of 197 
dry days or no-rainfall events identified successfully by the TRMM dataset. For each day, depending 198 
on how the estimated and observed precipitation behave, any events above the given threshold (0.1 199 
mm),   is scored either as hit, miss, false-alarm or correct-negative.so that the rainfall is a hit if both, 200 
|TRMM and observed, reach the threshold, False-alarm if if only the TRMM estimate reach the 201 
threshold, miss if only the observed precipitation reaches it, and correct-negative if both are below 202 
the threshold. The number of hits, fals-alarms, misses and correct-negatives ar used in eq-5 to 10, to 203 
calculate the above mentioned statistical indices  204 

Each of these indices provides a specific information of the two data sets compared. Thus Ac 205 
indicates the fraction of estimates which is correct (range: 0 to 1. perfect score: 1); FBI indicates 206 
whether the estimated dataset have a tendency to underestimate (FBI < 1) or to overestimate (FBI > 1) 207 
rain events, POD quantifies the fraction of rain occurrences that is estimated correctly (range: 0 to 1. 208 
perfect score: 1); FAR measures the fraction of false alarms in the satellite rain estimates (perfect score 209 
of 0 and a range from 0 to 1. CSI measures the fraction of estimated events that are correctly predicted 210 
(perfect score: 1) and a range from 0 to 1. Unlike all the aforementioned indices, TSS does not depend 211 
on the frequency of climatological event and uses all elements in the contingency table (Table 2). Thus 212 
TSS provides a measure of the accuracy of the estimates in terms of the probability of correct detection 213 
of events or no events. In this case the range is form -1 to 1. Perfect score is 1, with 0 showing no skills 214 
and a negative score means that the estimates are worse than a random forecast. 215 

3. Results and discussion 216 
The assessment of the reliability of the TRMM estimates and their comparisons with the rain 217 

data from gauge station presented in this section has been done by three different methodologies, i.e. 218 
(1) a statistical analysis, based on R, BIAS, MAE and RMSE for monthly, annual and seasonal data 219 
aggregates, (2) categorical statistics daily data by computing Ac, FBI, POD, FAR, CSI and TSS, and (3) 220 
visual comparison for monthly, annual and seasonal data. 221 

3.1. Statistical analysis 222 
The results of the TRMM-assessment based on the statistical measures R, rBIAS, MBE, MAE and 223 

RMSE, are given for daily data aggregation in Table 3, for monthly and annual data aggregation in 224 
Table 4, and for seasonal aggregation in Table 5. The summer season include months of April, May, 225 
June, July, August and September, while the remaining 6 months: October, November, December, 226 
January, February and March are aggregated to represent Winter season. 227 

It is evident from a first glance at the two tables that the TRMM performs overall rather poorly 228 
for estimating the observed rain amounts for the study region at all resolutions, as the average R 229 
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values are only 0.16, 0.22, 0.22 and 0.20 for monthly, annual, and seasonal (summer and winter) 230 
aggregation, respectively. Further specific results are discussed in the subsequent sub-sections 231 

3.1.1. Skill Statistics for TRMM precipitation estimates (Daily aggregates)  232 
The daily aggregates of TRMM precipitation estimates showed poor skill in matching observed 233 

precipitation, with an average R of 0.16. Our comparison of the observed and TRMM daily rainfall 234 
data shows highly variable MAE across the UIB, with a range ≥ 23 mm/day (Table-3). Values of MAE 235 
were high throughout most of compared locations in UIB, with MAE ≤ 13 mm for the all stations 236 
averaged rainfall, across the UIB. The North-Western parts of the UIB showed the highest and the 237 
most variable MAE. The results showed that the TRMM data have huge under-estimation across most 238 
of the UIB (average MBE of -3.53 mm), while the MBE values also showed a distinct spatial pattern 239 
across the study area, with distinct under-estimation by TRMM estimates for all the studied locations 240 
in the Eastern and Northern UIB; for the Southern UIB, TRMM estimates showed a high under-241 
estimation at all locations except one; while the stations located in the North-western UIB had a mixed 242 
trend, where TRMM data showed moderate to high, under or over estimation at half (three) of the 243 
locations each. The mean relative bias (rBIAS) at the different gauge location also followed an similar 244 
pattern with huge veriations and ranging from a (-)tive 0.42 to as high as 5.27 (Table 3), while at 245 
certain locations the relative bias was very high and at one location i.e. “Yasin” the rBais was even 246 
more than 5 times the observed values. The RMSE for the daily time series were also very high and 247 
showed large variations, ranging from and 8.08 to as high as 46.57 mm/day, with averages RSME of 248 
20.88 for all locations averaged rainfall. 249 

These results are in agreement with previous studies () as most of them have reported TRMM 250 
product to underestimate rainfall amounts over the HKH region in general and even higher over the 251 
western parts of HKH. 252 

Table 3. Statistical analysis based on monthly and annual data aggregation. 253 

  DAILY 

 STATION R rBIAS MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

So
ut

he
rn

 
U

IB
 

Burzil 0.22 -0.42 -11.77 16.20 20.76 
Deosai 0.10 0.99 4.41 14.53 26.33 
Rama 0.23 -0.22 -16.20 18.31 27.44 
Rattu 0.14 0.69 -7.90 18.12 29.24 

Ea
st

er
n 

U
IB

 Shigar 0.08 1.31 -3.99 10.24 17.81 
Hushey 0.14 -0.07 -5.73 10.79 14.73 

N
or

th
-W

es
te

rn
 

U
IB

 

Khot 0.19 0.70 0.49 4.93 8.08 
Naltar 0.25 0.24 -11.94 15.39 21.10 

Shendoor 0.16 1.48 1.22 9.46 15.67 
Ushkor 0.21 0.70 -0.51 8.16 12.74 
Yasin 0.10 5.27 24.24 28.68 46.57 
Zani 0.13 -0.14 -15.23 19.16 26.96 

N
or

th
er

n 
U

IB
 

Khunjrab 0.15 -0.27 -5.50 10.52 15.40 

Ziarat 0.14 0.71 -0.94 6.05 9.48 

Average 
(all stations in UIB) 

0.16 0.78 -3.53 13.61 20.88 

Maximum 0.25 5.27 24.24 28.68 46.57 
Minimum 0.08 -0.42 -16.20 4.93 8.08 

 254 
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3.1.2. Skill Statistics for TRMM precipitation estimates (Monthly and annual aggregates)  255 
The monthly and annual aggregated TRMM precipitation estimates also showed poor skill in 256 

matching observed precipitation, but with considerably improved values for the Pearson correlation 257 
coefficient R for all the studied locations and with an R of 0. 61 and 0.57 for average of rainfall at all 258 
locations for monthly and annual aggregates, respectively.  259 

Table 3. Statistical analysis based on monthly and annual data aggregation. 260 

  MONTHLY ANNUAL 

 STATION R rBIAS MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

R rBIAS MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

So
ut

he
rn

 
U

IB
 

Burzil 0.55 -0.28 -56.80 58.73 112.81 0.43 -1.05 -391.5 391.5 407.7 

Deosai 0.22 0.17 21.65 43.62 78.95 -0.37 0.24 146.6 201.4 234.6 

Rama 0.54 -0.36 -78.26 79.54 165.86 0.78 -2.05 -538.5 538.5 574.8 

Rattu 0.20 -0.20 -39.31 61.32 119.10 0.30 -0.58 -264.9 274.1 353.8 

Ea
ste

rn
 

U
IB

 Shigar 0.02 -0.21 -19.42 36.56 78.26 -0.11 -0.62 -133.2 179.7 249.8 

Hushey 0.09 -0.24 -29.19 39.72 101.95 -0.15 -0.79 -193.2 230.3 339.6 

N
or

th
-W

es
te

rn
 

U
IB

 

Khot 0.51 -0.21 -26.52 39.47 74.14 0.29 -0.65 -182.0 242.7 250.9 

Naltar 0.60 -0.31 -58.62 60.17 120.63 0.12 -1.32 -395.1 395.1 416.3 

Shendoor 0.42 0.08 6.53 22.08 37.34 0.54 0.13 40.4 66.4 99.1 

Ushkor 0.52 -0.03 -1.82 19.19 39.41 0.62 -0.05 -14.7 79.1 110.5 

Yasin 0.21 1.36 118.35 126.68 241.25 0.10 0.72 806.0 806.0 827.5 

Zani 0.49 -0.34 -75.05 77.98 154.91 0.52 -1.69 -508.3 508.3 532.6 

N
or

th
er

n 
U

IB
 Khunjrab 0.39 0.05 2.26 13.13 23.40 -0.28 0.09 18.3 52.0 70.0 

Ziarat 0.38 -0.07 -5.39 15.23 32.62 0.55 -0.15 -30.6 73.4 104.7 

Average 
(all stations in UIB) 0.61 -0.23 -9.09 14.15 20.98 0.57 -0.24 -117.3 117.3 134.1 

Maximum 0.60 1.36 118.35 126.68 241.25 0.78 0.72 806.03 806.03 827.54 
Minimum 0.02 -0.36 -78.26 13.13 23.40 -0.37 -2.05 -538.50 51.96 69.96 

Our comparison of the observed and TRMM monthly and annual aggregated rainfall also 261 
showed a highly variable MAE across the UIB, ranging from 13.13 mm/month to 126.68 mm/month, 262 
in case of monthly aggregates and from -538.5 mm/year to 806.0 mm/year for annual aggregates 263 
(Table-4). The values for MAE were high throughout most of compared locations in UIB, with an 264 
average MAE of 14.15 mm/month and 117.3 mm/year, for the all locations average monthly and 265 
annual rainfall across UIB, respectively. The spatial pattern of the errors observed in case of monthly 266 
and annual aggregates as well as the predominant under-estimation at most location was similar to 267 
that observed for the daily aggregates The North-Western parts of the UIB showed the highest and 268 
the most variable MAE, while the TRMM data showed huge under-estimation across most of the UIB 269 
(average MBE of a (-)tive 9.09 mm/month and -117.3 mm/year). The Eastern part UIB, showed a 270 
distinct under-estimation by TRMM rainfall, across all the studied locations. In case of the Southern 271 
UIB, the under-estimation was even higher but observed at three out of the four location, while at 272 
one location (Deosai), an over estimation of 21.65 mm/month was observed. The stations located in 273 
the North-western UIB had a mixed trend, where TRMM data showed a moderate to high, under-274 
estimation at four of the studied locations while the opposite in the remaining two, for both monthly 275 
and annual aggregates. The MBE for the total of two location evaluated in the northern UIB, showed 276 
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a mixed results with one station (Khunjrab) showing slight over-estimation (0.05 mm/month and 18.3 277 
mm/year), while the other (Ziarat) showing a negative MBE (-0.07 mm/month and -30.6 mm/year).  278 

3.1.3. Skill Statistics for TRMM precipitation estimates (Seasonal aggregates)  279 
The seasonal statistical indices (Table 4) have comparable trends in terms of magnitude, 280 

however, show a different pattern than the monthly- or annually computed ones. For example the in 281 
summer season the TRMM showed positive BIAS for a few location where the monthly and annual 282 
aggregates show a negative one (i.e. Rattu, Ushkor). Results for the winter season predominantly 283 
show negative BIAS- values, similar to monthly and annual aggregation. The overall range of MBE 284 
for the stations evaluated varies from—268.8 mm to 593.6 mm for the summer season and from -339.9 285 
mm to 212.5 mm for winter season. The MBE for average rainfall across all location in UIB, was -5.18 286 
and -96.51 mm for summer and winter respectively. These MBE value are comparatively lower in 287 
case of summer season, are suggestive of a situation where the under or over-estimation occurring in 288 
the different months of the seasons, cancel each other out to give an overall low MBE. 289 

Table 4. Statistical analysis based on summer and winter season data aggregation 290 

  SUMMER SEASON WINTER SEASON 

Regions 
STATIONS 

R rBIAS MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

R rBIAS MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

So
ut

he
rn

  
U

IB
 

Burzil 0.35 -0.48 -190.8 190.8 201.5 0.05 -0.50 -200.7 200.7 226.0 

Deosai -0.42 0.27 68.1 101.0 123.5 -0.14 0.31 78.6 116.9 139.6 

Ramma 0.68 -0.54 -198.7 198.7 213.9 0.60 -0.92 -339.9 339.9 371.4 

Rattu 0.49 0.09 25.8 101.0 127.9 -0.01 -1.00 -290.8 290.8 357.1 

Ea
ste rn
 Shigar -0.09 -0.22 -36.9 106.0 156.6 -0.10 -0.57 -96.3 105.4 127.9 

Hushey 0.22 -0.35 -83.2 103.7 156.3 -0.55 -0.46 -109.9 132.2 189.3 

N
or

th
-W

es
te

rn
  

U
IB

 

Khot -0.11 -0.03 -4.1 38.1 48.3 0.33 0.16 22.2 29.2 34.8 

Naltar 0.48 -0.50 -203.8 203.8 220.6 0.17 -0.47 -191.6 191.6 205.9 

Shendoor 0.57 0.42 56.1 56.7 79.6 -0.02 -0.12 -15.9 61.1 65.6 

Ushkor 0.49 0.17 31.0 71.9 84.1 0.65 -0.25 -45.9 55.3 85.7 

Yasin -0.35 2.94 593.6 593.6 615.2 0.22 1.05 212.5 212.5 244.1 

Zani 0.52 -0.66 -268.8 268.8 301.3 0.57 -0.59 -239.8 239.8 256.1 

N
or

th
er

n 
U

IB
 Khunjrab 0.09 -0.21 -41.3 91.8 109.2 0.56 -0.72 -141.1 157.5 166.9 

Ziarat 0.56 -0.02 -2.5 36.2 47.4 0.54 -0.20 -28.4 44.8 65.3 

Average 
(all stations in UIB) 0.60 0.00 -5.18 30.1 38.7 0.36 -0.4 -96.51 96.5 109.1 

Maximum 0.68 2.94 593.6 593.6 615.2 0.65 1.05 212.5 339.9 371.4 

Minimum -0.42 -0.66 -268.8 36.2 47.4 -0.55 -1.00 -339.9 29.2 34.8 

The R ranges showed better values for the summer season (0.6) in comparison to winter season, 291 
for the basin average seasonal aggregates, while it ranged from -0.42 to 0.68 and -0.55 to 0.65 for the 292 
summer and winter seasons respectively.  293 

3.2. Categorical statistics 294 
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The results for the six categorical indices, as described in Section 2.3 are listed in Table 5 and 295 
they show how the TRMM-data match the ground-based gauge data at daily resolution. Thus the 296 
values for the first index, accuracy (Ac) are well above 0.50 for all stations, with an average of 0.58.  297 

The frequency bias index FBI has neither very high positive nor negative values, but varies on 298 
both sitdes with 9 stations showing overestimation, and the remaining 5 an underestimation. The 299 
average FBI for all stations is 1.05, i.e. indicates a slight overestimation of the TRMM rainfall.  300 

The other categorical indices (see Eq. 8- 11) do not show very good results either. Thus, for most 301 
of the stations the values of the probability of detection (POD) is below 0.5, with only 4 stations having 302 
values above it. The False Alarm Ratio (FAR) for all stations, but one, are too high, with an average 303 
of 0.56. In the same way, both the CSI- and the TSS values are also not very promising as only 3 304 
stations have values above 0.30 for the former and only one station has a value of about 0.20 for the 305 
latter. 306 

Thus, overall, these results of the categorical statistics indicate that TRMM rainfall estimates do 307 
not have a very good match with the ground-based gauge data and, therefore, should only be used 308 
after some corrections and adjustments have been made. 309 

Table 5. Categorical statistics for daily TRMM estimate and gauge rain data. 310 

Regions  
STATIONS Ac FBI 

PO
D 

FA
R 

CSI 
TS
S 

So
ut

he
rn

  
U

IB
 

Burzil 0.5 0.7 0.42 0.45 0.3 0.1

Deosai 0.5 1.0 0.61 0.39 0.4 0.1

Ramma 0.5 1.2 0.50 0.61 0.2 0.0

Rattu 0.5 1.4 0.56 0.62 0.2 0.0

Ea
ste

rn
 U

IB
 

Shigar 
0.6
0 

1.3
0 

0.41 0.68 
0.2
2 

0.0
8 

Hushey 
0.5
7 

0.8
3 

0.40 0.52 
0.2
8 

0.1
0 

N
or

th
-W

es
te

rn
  

U
IB

 

Khot 0.6 1.3 0.57 0.58 0.3 0.2

Naltar 0.6 0.8 0.40 0.53 0.2 0.1

Shendoor 0.5 1.1 0.40 0.65 0.2 0.0

Ushkor 0.6 1.0 0.42 0.60 0.2 0.1

Yasin 0.6 1.0 0.44 0.58 0.2 0.2

Zani 0.5 0.8 0.35 0.59 0.2 0.0

N
or

th
er

n 
U

IB
 Khunjrab 

0.5
5 

1.0
4 

0.43 0.58 
0.2
7 

0.0
6 

Ziarat 
0.6
0 

0.7
3 

0.35 0.52 
0.2
5 

0.1
0 

Average 
(all stations in UIB) 

0.5
8 

1.0
5 

0.45 0.56 0.2
8 

0.1
1 

Maximum 0.6 1.4 0.61 0.68 0.4 0.2

Minimum 0.5 0.7 0.35 0.39 0.2 0.0

Regions 

STATION
S Ac FBI 

PO
D 

FA
R 

CSI 
TS
S 
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So
ut

he
rn

  
U

IB
 

Burzil 0.5 0.7 0.42 0.45 0.3 0.1

Deosai 0.5 1.0 0.61 0.39 0.4 0.1

Ramma 0.5 1.2 0.50 0.61 0.2 0.0

Rattu 0.5 1.4 0.56 0.62 0.2 0.0

Ea
ste

rn
 U

IB
 

Shigar 
0.6
0 

1.3
0 

0.41 0.68 
0.2
2 

0.0
8 

Hushey 
0.5
7 

0.8
3 

0.40 0.52 
0.2
8 

0.1
0 

N
or

th
-W

es
te

rn
  

U
IB

 

Khot 0.6 1.3 0.57 0.58 0.3 0.2

Naltar 0.6 0.8 0.40 0.53 0.2 0.1

Shendoor 0.5 1.1 0.40 0.65 0.2 0.0

Ushkor 0.6 1.0 0.42 0.60 0.2 0.1

Yasin 0.6 1.0 0.44 0.58 0.2 0.2

Zani 0.5 0.8 0.35 0.59 0.2 0.0

N
or

th
er

n 
U

IB
 Khunjrab 

0.5
5 

1.0
4 

0.43 0.58 
0.2
7 

0.0
6 

Ziarat 
0.6
0 

0.7
3 

0.35 0.52 
0.2
5 

0.1
0 

Average 
(all stations in UIB) 

0.5
8 

1.0
5 

0.45 0.56 0.2
8 

0.1
1 

Maximum 0.6 1.4 0.61 0.68 0.4 0.2

Minimum 0.5 0.7 0.35 0.39 0.2 0.0

3.3. Visual comparison 311 
For visual comparison, monthly-, annually- and seasonally aggregated time series of the TRMM- 312 

rainfall estimates and of the various gauge stations are plotted.  313 
Figs. 2 and 3 show these time series plots for the two stations Yasin and Khunjrab, respectively. 314 

One may notice that for the station Yasin (Fig. 2) shows huge biases and errors at all three time scales 315 
considers, whereas for the other station Khunjrab, a better match, especially, at the annual and 316 
seasonal resolution is obtained. The corresponding plots for the others stations reveal patterns 317 
somewhere in between the two stations shown here. 318 
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Figure 2:  Time series of TRMM estimates and gauge data for rainfall totals at Yasin station; a. 319 
monthly, b. annual, and c. seasonal   (S=Summer, W=Winter) 320 

 

Figure 3: Time series of TRMM- estimates and observed gauge data for mean rainfall totals at 321 
Khunjrab station; a. monthly, b. annual, and c. seasonal (S=Summer, W=Winter)  322 

The monthly TRMM- and gauge rainfalls averaged over all stations and the full length of period 323 
considered (1998-2008), is plotted in Fig. 4. The figure also have demarcation of the seasons. From the 324 
figure an underestimation of the TRMM- rainfall in the winter months and a mix of under and 325 
overestimation in the summer months can clearly be seen. 326 
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 327 

Figure 4. Comparison of TRMM-estimates and gauge data for mean monthly rainfall for all stations 328 
with seasonal demarcation. 329 

Finally, the monthly-, annually- and seasonally aggregated time series of the TRMM- rainfall 330 
estimates of the average rainfall across all the studied gauge stations are plotted in Fig-5. Though 331 
there is almost a persistent underestimation by the TRMM estimates, the peaks and troughs, in most 332 
instances followed similar patterns. 333 

 334 

 335 

Figure 5: Time series of TRMM- estimates and observed gauge data for mean rainfall totals over 336 
the study area, for all the gauge stations ; a. monthly, b. annual, and c. seasonal 337 
(S=Summer, W=Winter)  338 
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4. Discussions and Conclusions 339 

In this study a TMPA product - TRMM 3B42 V7 data for the Upper Indus basin, Pakistan, for 340 
the period 1998-2008 has been assessed and evaluated on a point-to-point basis, using rain gauge data 341 
from 14 stations. These assessments have been performed at monthly, seasonal and annual 342 
aggregation scales. The results indicate that the TMPA product has considerable errors in estimating 343 
the rainfall amounts at the various gauge stations throughout the study area and throughout the total 344 
time period studied. There is a predominant trend of under- estimation across the study area as at 345 
most of the gauge stations, the TRMM product tends to under-estimate the gauge-measured rainfall,. 346 
The seasonal TRMM- rainfall values, though, show a specific pattern, with the summer rainfall 347 
slightly overestimated, but those for the winter predominantly underestimated at almost all locations 348 
and all aggregation time scales. 349 

These overall results are in conformity of the previous studies, which, in most cases, suggest that 350 
neither the sparsely observed station data and gridded data products based on them, nor the sensors 351 
based data, fully represent the precipitation regime of the region [41], with strong non-representation 352 
or underestimation [16] of regional precipitation amounts, especially for higher altitudes by [41, 20, 353 
22]. In fact the in situ meteorological observations in UIB are sparse and mostly taken at valley based 354 
stations. This data provide low spatial coverage and is scant for higher altitudes. Furthermore, the 355 
complex orography of the UIB region also affects the amounts, spatial patterns and seasonality of 356 
precipitation. Additionally, most of the authors have indicated that the observation network across 357 
the UIB, also show underestimation of precipitation amounts by [20, 22, 41–43], with an average  358 
underestimation of around 166%, which may reach even in excess of 300% over some parts of the 359 
basin [43]. This means that the TRMM product may even be underestimating the true areal 360 
precipitation by a much greater margin, as the true areal precipitation is estimated to be much higher 361 
[43] than the gauge observation records. 362 

The comparison of any gridded or sensor based dataset against the observed precipitation, may 363 
not be taken, therefore, as a conclusive evidence for declaring the evaluated data as unappropriated 364 
in terms of usability but rather show the degree to which these data sets match for magnitudes or 365 
occurrences with the observed precipitation, which by no means is perfect., and a better match may 366 
also indicate the evaluated data also may have tendencies to underestimate the real areal 367 
precipitation over the UIB. Furthermore, the resolution of the TRMM product (0.25° X 0.25°), may 368 
also pose limitations, especially for distributed hydrological modelling and investigations, as at this 369 
resolution, the orographic influences on the precipitation regime cannot be mapped, while the 370 
hydrological models may also require precipitation data at a much finer scale.    371 

The main conclusion which can be drawn from our study may be summed up as:  1) The TRMM 372 
3B42 V7 product has an overall poor agreement with the observed rainfall gauge data in the study 373 
area, and this holds for all temporal scales considered; and  2)  our results, eventually means that 374 
the TMPA-TRMM 3B42 V7 product may only be regarded as suitable for further rainfall analyses and 375 
subsequent hydrological applications in the study region, if some improvements, down-scaling and 376 
local calibrations of its output data are carried out first. 377 
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Appendices-Supplementary Materials 

App.I : Spatial Precipitation regimes in UIB (adopted from Khan and Koch 

unpublished) 

 

App.II Vertical meteorological and cryspheric regimes in UIB (modified from 

Hewitt 2007) 
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