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Abstract: In this contribution, we aim to show that opinion dynamics and population balance 
modeling can benefit f rom a n e xchange o f p roblems a nd m ethods. To s upport t his c laim, the 
Deffuant-Weisbuch model, a classical approach in opinion dynamics, is formulated as a population 
balance model. This new formulation is subsequently analyzed in terms of moment equations, and 
conservation of the first and second order moment is s hown. Exemplary results obtained by our 
formulation are presented and agreement with the original model is found. Also the influence 
of the initial distribution is studied. Additionally, the Deffuant-Weisbuch model is transferred to 
engineering and interpreted as mass transfer between liquid droplets which results in a more flexible 
formulation compared to alternatives from the literature. On the one hand, it is concluded that the 
transfer of opinion-dynamics problems to the domain of population balance modeling offers some 
interesting insights as well as stimulating challenges for the population-balance community. On the 
other hand, it is inferred that population-balance methods can contribute to the solution of problems 
in opinion dynamics. In a broad outlook, some further possibilities of how the two fields can possibly 
benefit from a close interaction are outlined.

Keywords: social sciences; opinion dynamics; Deffuant-Weisbuch model; population balance model; 
mass transfer; interdisciplinarity16

1. Introduction17

Population balance modeling (PBM) is a powerful tool to study the dynamics of18

property-distributed systems. Even though, the range of applications is expanding, so far, PBM19

is mainly used in the engineering and natural sciences to describe particulate systems. However,20

distributed properties subject to temporal and spatial variations are also ubiquitous in the social21

domain. Examples of such properties are age and income. Another distributed property of interest is22

individual opinion. Processes of change and formation of public opinion are studied empirically and23

by means of different modeling approaches in a field called opinion dynamics. In opinion dynamics,24

other research areas such as social psychology, economics, sociophysics, and complex system science25

overlap. Contributing researchers also come from mathematics, physics, and computer science [1–3].26

Studying processes of opinion formation and the influences thereon is motivated by various27

reasons. For example, human opinion has a direct influence on politics and finance. However, as28

individual opinion is an important driving force for all human actions, opinion dynamics is indirectly29

relevant for virtually every topic, from migration to urbanization, from health issues to the environment30

[2]. Of the various influences on the formation of individual opinion, questions of media, and especially31

social media, are currently studied [2,4].32

From the characterization provided at the beginning of this section, it follows that there is33

a big overlap between opinion dynamics and population balance modeling. On the one hand,34

however, scientists working on opinion dynamics do not seem to be familiar with the theory and35

methods of population balance modeling even though they deal with populations characterized by36

distributed properties. On the other hand, the population-balance community is apparently unaware37
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of the interesting application of opinion formation and change. Our thesis, therefore, is that both38

disciplines can benefit from each other. Accordingly, a way to approach opinion dynamics from a39

population-balance perspective is outlined in this contribution.40

Different modeling techniques are used in opinion dynamics. In the first place, opinions can be41

either expressed as discrete or continuous variables. Secondly, either discrete agents are considered42

or a continuous population of agents is used. The former is referred to as agent-based modeling,43

the latter as density-based modeling [1]. Some of the most popular models in opinion dynamics are44

continuous in the opinion but use discrete agents; these models are usually simply referred to as45

continuous models in the literature. A highly influential approach sharing these characteristics, namely46

discrete agents and continuous opinions, is the Deffuant-Weisbuch (DW) model [5,6]. The model is47

widely referred to, extended, or used as a benchmark [1,2]. For example, the DW model was used and48

analyzed by Urbig et al. [7]. Convergence analyses of different model variants were shown by Zhang49

and Hong [8], Zhang and Hong [9], and Zhang and Chen [10]. The DW model was even used as a50

basis for such unconventional applications as image segmentation [11].51

In the original formulation of the Deffuant-Weisbuch model, the domain of opinions is [0, 1].
Note that in other formulations also a range from -1 to 1 is used [2]. Perfect mixing is assumed in the
simplest model variant, therefore, all discrete agents can interact with all others. Interaction is modeled
by pairwise random encounters. As a further item of phenomenological knowledge, the constraint is
included that agents only update their opinion upon encounter with others if their original opinions
are similar enough, i.e., if their opinions differ in less than some threshold d. This restriction on opinion
exchange is referred to as bounded confidence in the literature [1], therefore, also d is called bounded
confidence parameter. In other works, d is interpreted as “open-mindedness” [12]. Formally, if the
opinions of two agents previous to their encounter are xk and x′k, they only update their opinion if
|xk − x′k| < d. This condition being met, the agents adjust their opinions according to

xk+1 =xk + µ · (x′k − xk) (1)

x′k+1 =x′k + µ · (xk − x′k) , (2)

where k is the discrete time step of interactions between agents. µ is referred to as the convergence52

parameter and describes how strongly two meeting agents adjust their opinions; it ranges from 0,53

which corresponds to no change in opinion, to 0.5, which corresponds to both agents having the same54

opinion after the meeting. The basic procedure of opinion exchange is illustrated in Figure 1. Please55

note that only the original DW model is presented here. For example, there are similar models which56

consider an asymmetric d, i.e., the bounded confidence parameter differs if the other agent’s x is57

smaller or larger [13]. Also, individual differences in d were investigated [14]. The original DW model58

only included internal information, i.e., exchange of opinions between equal agents. To overcome this59

limitation, also external information, provided, e.g., by experts or mass media, were included in some60

extensions of the model, as reported by Sîrbu et al. [2].61

2. Population Balance Model62

2.1. Model Formulation63

Our reference model, the Deffuant-Weisbuch model, is now reformulated such that it can be
expressed as a population balance equation (PBE). In this case, the rate with which agents meet and
potentially adapt their opinion is given by

β(x1, x2) · n(t, x1) · n(t, x2), (3)

where n is the number density function of agents having opinion x at time t. Note that t is omitted64

from now on for reasons of brevity.65
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Figure 1. Illustration of opinion exchange according to the Deffuant-Weisbuch model; darker shades of
blue correspond to higher values on the opinion scale x.

In the terminology of population balance modeling, we refer to β as the opinion exchange rate
kernel. It comprises the frequency of encounters γ0 and the probability η for the encounter to be
effective. Corresponding to the DW model from Section 1, β0 is a constant reflecting the discrete time
steps (arbitrarily set to 1 here). Opinion adaption probability η can be expressed as

η (x1, x2; d) =

{
0 |x1 − x2| > d
1 otherwise .

(4)

The dependence of η on d will be omitted further on in the notation for increased readability. The66

first condition, as in the original formulation, excludes adaptation of opinions that are too different67

from each other. Obviously, many other formulations are conceivable from non-constant frequency of68

encounters to much more elaborate opinion adaptation probabilities.69

An effective encounter of two agents of opinion x1 and x2 shifts the opinions of the respective
agents according to:

x̂1 =x1 + µ · (x2 − x1) (5)

x̂2 =x2 + µ · (x1 − x2) . (6)

Note that in order to form a new opinion x from an encounter with an agent with opinion x1,70

the interacting agent need to have one of the two following complementing opinions x2,c1 and x2,c2,71

respectively. This complementing opinion is obtained by solving Equations (5) and (6) for x2 with the72

left hand side (x̂) set to x:73

x2,c1(x1, x) =x1 +
x− x1

µ
(7)

x2,c2(x1, x) =
x− µx1

1− µ
. (8)
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The resulting population balance formulation comprises one sink term and one source term:

∂n(x)
∂t

=− β0 · n(x) ·
∫ 1

0
η(x1, x) · n(x1)dx1︸ ︷︷ ︸

Sink

+
β0

µ
·
∫ min

(
1, x

1−µ

)
max

(
0, x−µ

1−µ

) η (x1, x2,c1(x1, x)) · n(x1) · n (x2,c1(x1, x)) dx1︸ ︷︷ ︸
Source

. (9)

Equation (9) is derived in detail in Appendix A and is only explained here. One can observe74

some differences to conventional PBE formulations from chemical engineering. The source term is75

not divided by two, because two agents emerge again after each interaction event. An exchange of76

opinions between two agents creates two new opinions that are both in between the the original ones.77

Therefore, the integration cannot be limited to the interval [0, x], but rather is limited to the more78

complicated domain [max(0, 1 + x−1
µ ), min(1, x

µ )]. Figure A1 in the appendix provides an illustration79

of this modified domain. We use the somewhat unusual formulation of the PBM as a warrant for our80

claim that problems in opinion dynamics also offer new perspectives to the formulation and simulation81

of population balances. In Section 4, we provide an example of such an opinion dynamics-inspired82

model formulation concerning mass transfer, i.e., concentration exchange, between liquid droplets.83

It is important to mention that a similar continuous formulation of the DW model was presented84

by Lorenz [1] where the equation, however, was not interpreted as a population balance. Even more85

importantly, Boudin and Salvarani [15] approached opinion dynamics from a PBM-like perspective.86

They took the DW model as a starting point and reformulated it as an equation similar to the Boltzmann87

equation. As Marchisio and Fox [16] showed that the Boltzmann equation is a PBE if the number88

of particles is sufficiently high, one could count the work by Boudin and Salvarani [15] as the first89

formulation of opinion dynamics in a PBM framework. The reader is also referred to newer work by90

the same authors [17,18]. However, also the latter authors do neither explicitly interpret their models91

as PBMs nor perform the following analyses.92

2.2. Initial distribution93

In 2007, Lorenz [1] observed that most studies relied on initially uniformly distributed opinions.94

He stated the importance of the initial opinion distribution on opinion formation and declared it as a95

promising subject for future work. In the meantime, different research has addressed this question.96

Some authors included non-uniform initial distributions in agent-based simulations [2,19]. Shang97

[20] derived a critical threshold of the bounded confidence parameter for which opinions converge98

toward the average value of the initial opinion distribution, provided the initial distribution has a99

finite second order moment. He also used agent-based simulations for uniform, beta, power-law, and100

normal distributions, and showed a faster convergence behavior for unimodal initial distributions.101

Recently, Antonopoulos and Shang [21] investigated the influence of bounded confidence and initial102

opinion distribution analytically and numerically by agent-based simulations. They especially stressed103

the importance of the interaction between these two factors.104

We continue the analysis of the influence of initial opinion distributions on consensus formation105

along similar lines. However, our method is based on the population-balance formulation presented106

in Secion 2.1 which allows for different analysis methods compared to the literature just cited. In the107

present study, the beta distribution is used to characterize the initial distribution, because it is only108

defined on [0, 1] and can be completely characterized in term of the initial variance σ2
0 and the initial109

mean x̄0 [22]. With σ2
0 = 1

12 and x̄0 = 1
2 , the beta distribution can represent a uniform distribution. For110

decreasing values of the variance, it approaches a peak at 0.5, and for higher values of the variance, it111

yields an initially polarized population with beliefs of 0 and 1 only.112

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 August 2018                   doi:10.20944/preprints201808.0308.v1

Peer-reviewed version available at Processes 2018, 6, 164; doi:10.3390/pr6090164

http://dx.doi.org/10.20944/preprints201808.0308.v1
http://dx.doi.org/10.3390/pr6090164


5 of 20

2.3. Model Analysis113

As a first analysis, the PB formulation of the DW model is formally analyzed in terms of moments.114

As the total number of agents has to be conserved, visual inspection of the model equations can lead to115

the conjecture that also the total belief B is conserved. This hypothesis is underpinned by rigorous116

analysis, as shown in Appendix B. It is proven that the zeroth and first moment indeed stay constant117

for the basic DW model. The same results were also observed by Lorenz [1] and Ben-Naim et al.118

[23]. However, these authors did not show it by rigorous analysis but concluded it from the dynamic119

updating rules. Furthermore, it should be mentioned that a constant B is not a necessary property of120

general opinion dynamics models. For example, the Hegselmann-Krause model [13], another standard121

opinion-dynamics model which is in other respects quite similar to the DW model, does not have this122

property [1].123

An analysis of the second order moment allows insights about the variance, as shown in124

Appendix B. First of all, an analytical solution for the variance is derived for d = 1. Therefore, for this125

special case numerical simulations are only necessary to obtain the full distribution. Subsequently, it is126

shown that the variance monotonically decreases for any d > 0. This implies that, if the distribution127

changes, it always changes towards a local consensus. The same behavior has been observed by Lorenz128

[1] and Ben-Naim et al. [23], but has not been proven before. Therefore, we use the conducted moment129

analysis as evidence for our thesis that PBM methods offer new ways of thinking about and analyzing130

problems in opinion dynamics.131

2.4. Numerical methods132

All computations were performed with MATLAB (version: 2017b, supplier: The MathWorks,133

Natick/Massachusetts). The continuous PBE was discretized using the Fixed Pivot technique [24].134

A mesh with 201 pivots at the position i
N−1 with i ∈ N0 ≤ N − 1 was used. The system of ordinary135

differential equations (ODE) was solved using the MATLAB-integrated ODE-solver ode23t with an136

equal relative and absolute tolerance of 1× 10−6 and the analytically computed Jacobian matrix. In137

Appendix B.7, it is shown that for at least one case (d = 1) the steady state distribution is reached at138

infinite time. This makes it impossible to simulate until the system reaches the steady state. Therefore,139

the simulations were run for at least 1000 time units and until the norm of the derivative with respect to140

time was less than 1× 10−7. From this almost steady state, the steady state was estimated. Peaks were141

identified as clusters with the amount of agents at a pivot never less than 1× 10−6. The number of142

agents in these clusters and their mean belief was computed. From this, the variance in the estimated143

steady steady was computed. This variance is almost identical to the variance computed from the144

distribution at the end of solving the ODEs. Accordingly, the state at the end of solving the ODEs145

should be sufficiently close to the steady state.146

3. Numerical Results147

Some exemplary results obtained by our PBE formulation of the DW model are shown in this148

section. First, we focus especially on the influence of the convergence parameter µ and the bounded149

confidence parameter d for an initially uniform opinion distribution. In a second step, also the influence150

of the initial distribution is studied.151

3.1. Uniform initial distribution152

Figure 2a shows the evolution of the initially uniform opinion distribution over time for µ = 0.5153

and d = 0.5. Note that the uniform distribution corresponds to a beta distribution with mean belief x̄154

equal to 0.5 and a variance of 1
12 . It can be observed that all opinions converge over time to a value of155

x = 0.5, i.e., all individuals settle on the mean opinion.156

Decreasing the value of µ from 0.5 to 0.1 leads to the same steady state but with different157

dynamics and different intermediate states, as shown in Figure 2b. This is well in agreement with the158
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Figure 2. Time evolution of number density n of opinions for bounded confidence parameter d = 0.5;
results for convergence parameter µ = 0.5 (a) and µ = 0.1 (b).

nomenclature of the parameter, and it was also observed in the literature that µ only influences the159

dynamics but not the steady state [1].160

In contrast, the steady state is strongly influenced by the bounded confidence parameter d, as
shown in Figures 3a and 3b. It can be seen that the number of peaks increases with decreasing bounded
confidence. Whereas with d = 0.5, as shown in Figure 2a, all individuals could interact with each
other, smaller d values result in a decreased interaction behavior which influences the steady state. It
was also observed that the number of the forming opinion clusters c for uniformly distributed initial
opinion can be approximated as [2,12]

c ≈
⌊

1
2d

⌋
(10)

which is in good agreement with our simulation results. For d = 0.5 (see Figures 2a and 2b) and 0.1161

(see Figure 3b) our simulations yield 1 and 5 clusters, which is also predicted by Equation (10). For162

d = 0.2 (see Figure 3a), we obtain 3 clusters, whereas Equation (10) predicts 4 clusters. Almost no163

agents, however, are represented by cluster three at x = 0.5. Therefore, the Monte-Carlo approach164

used to derive Equation (10) [2,12] might not have resolved the unlikely event of agents having this165

belief.166

The shown qualitative as well as the quantitative results are well in agreement with the original167

publications of the DW model [5,6] as well as with the further model uses cited above. We, therefore,168

conclude that our implementation of the PBM is a suitable equivalent to the original agent-based form169

of the DW model.170

3.2. Influence of initial distribution171

The initial distribution is plotted for several values of the variance and a mean opinion of 0.5172

in Figure 4a. The resulting variance of the steady state distribution is shown in Figure 4b for three173

different values of d. Unless d is equal to 1, the variance stays constant for an initial value of 0.25, which174

corresponds to a population completely polarized into two radical opinions at 0 and 1. For d = 0.5, the175

steady state variance becomes 0 for initial variances less than 0.2, which means that the steady state176
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Figure 3. Time evolution of number density n of opinions for convergence parameter µ = 0.5; results
shown for bounded confidence parameter d = 0.2 (a) and d = 0.1 (b).

distribution has just a single peak, if the steady state distribution is not too strongly polarized into177

two radical extremes. The variance goes slowly to 0 for smaller values of d. Thus, only for initially178

low dispersions of opinion, does the distribution converge to one opinion. The fraction of agents in179

clusters of the steady state distribution is shown in Figure 5a, and the corresponding mean opinion180

of the clusters is presented in Figure 5b. Because the distribution is symmetric around 0.5, only the181

clusters with an opinion of less than 0.5 are shown. For d = 0.5, the distribution has only one cluster182

at 0.5 for all variances less than 0.2. For a variance of 0.2, there are two clusters: One with half the183

agents at 0.076 and mirrored at 0.924. For d = 0.2, almost all agents are within three clusters: One at184

the center, and two closer to the extreme opinion. If the variance is decreased, these two clusters move185

closer to the center. Close to an initially uniformly distributed belief, (almost) no agents have a belief186

of 0.5, as was shown in Figure 3a. If the initial variance decreases below 1

2
3
8 ·12

, the number of agents187

in the cluster at 0.5 increases suddenly and the remaining clusters are closer to the extreme beliefs.188

With a decrease in initial variance, the fraction of agents in the central cluster increases and the initial189

clusters converge to the cluster in the center. There are more clusters than the clusters discussed here,190

but almost no agents are represented by them. For d = 0.1, there are at least 5 clusters: One at 0.5 and191

the other four closer to the extreme opinion. Again, the importance of the central cluster increases,192

until close to an initially uniformly distributed belief for which the central cluster becomes relatively193

unimportant, as can be seen in Figure 3b. For smaller variances, the central cluster becomes dominant194

and the remaining clusters diminish in fraction of agents and move closer to the center.195

4. Transfer to Engineering196

The presented opinion dynamics models, formulated as PBEs, may also provide useful grounds197

for approaching chemical-engineering phenomena that to our knowledge have not been addressed198

in a detailed manner yet. One such phenomena could be liquid-liquid disperse systems undergoing199

coalescence and breakage.200

There is a large number of population balance-related work on the formation of emulsions, e.g.,201

[25]. One is typically interested in the evolution of the droplet size distribution which is governed by the202
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Figure 4. Variation of initial distribution; used initial distributions with mean value x̄0 = 0.5 and
several values of variance σ2

0 (a); estimated steady state variance over initial variance for three different
values of the bounded confidence parameter d (b).
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Figure 5. Fraction of agents and mean opinion of clusters over variance for three different values of
bounded confidence parameter d; points used for the cluster with mean opinion 0.5, circles for the
cluster with the maximal fraction of agents, and x for the cluster with the second largest fraction of
agents; the dashed line marks initially uniformly distributed belief. Results shown for fraction of agents
within clusters (a) and mean opinion of clusters (b).

hydrodynamic conditions inducing breakage and coalescence terms. If, however, the emulsion droplets203

have a specific concentration, one may immediately end up with an at least two-dimensional problem.204
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This is prominently the case for liquid-liquid extraction columns [26,27]. There, the coalescence and205

breakage not only affects droplet sizes but additionally leads to mass transfer by temporarily coalesced206

droplets. It is, however, implicitly assumed that the concentration exchange is much faster than the207

time scale of coalescence and breakage. Though this may be the case for many applications, the given208

opinion dynamics framework presents the means to easily avoid this assumption. In a case where209

coalescence and breakage may be very fast but concentration exchange might be hindered, it is easily210

conceivable that the droplet size reaches a dynamic equilibrium quickly. Then the concentration211

exchange within colliding droplets is no longer complete but the concentration evolves according212

to the frequent coalescence and breakage events. The only characterizing variable of the emulsion213

droplets then is the concentration.214

Another example is the use of microdisperse systems as microreactor systems, e.g., employed215

for nanoparticle preparation. In the so-called two-emulsion methods, two emulsions with different216

composition, typically one precursor in a solvent in each of the two emulsions, are mixed by coalescence217

(and potentially breakage) followed by a reaction/precipitation within the droplet [28]. Apart from the218

many experimental studies, see Niemann et al. [29] and references therein, there are some studies using219

population balance concepts to address various aspects of the corresponding process. As the goal of220

the process eventually is the formation of nanoparticles, most studies aim towards the prediction of221

the particle formation, e.g., [30]. Hatton et al. [31] proposed a population dynamics framework that222

considered different modes of concentration exchange after coalescence, namely random, cooperative,223

and repulsive distribution. While in the cooperative and repulsive exchange mode, the exchange is224

affected (promoted/hindered, respectively) by the presence of the already formed solute molecules225

or nanoparticles, the random mode considers unaffected exchange. Several aspects of the process226

have been studied by stochastic simulations. Natarajan et al. [32], Bandyopadhyaya et al. [33], Kumar227

et al. [34] as well as Jain and Mehra [35] assume complete mixing of coalescing droplets followed by228

redistribution of the reactants and products. In some cases, the size of the droplets is in the order of229

nanometers. Then, the very low number of precursor molecules leads to a discrete characterizing230

variable for the population balance formulation, e.g. [36]. Also, the effect of micromixing within the231

droplets has been studied in a population-balance framework [37].232

The analogy of these disperse systems to the above introduced opinion-dynamics framework is233

largely apparent. Instead of opinion adaptation of individuals, there is a concentration adaptation of234

droplets upon encounter. Similar as opinion does not have to settle on a common opinion, neither235

does the droplet concentration have to become fully equilibrated. Of course, dispersity in size of the236

droplets could directly be implemented in the scheme yielding a multi-variate population balance237

formulation. Here, we only use a simple scenario to illustrate such emulsion mixing processes without238

considering any further reaction to show the analogy to the opinion dynamics case. The initial state239

comprises two different types of emulsions for which the total volume fraction of each emulsion phase240

is φ1 = V1
V1+V2

and φ2 = V2
V1+V2

, respectively. The two initial emulsion phases are distinguished by their241

initial concentration of the two precursors A or B only.242

We use a non-dimensional concentration measure to be able to directly employ the opinion
dynamics framework presented above. A dynamic steady state with respect to droplet size is assumed.
Considering the molar concentrations in the constant single-droplet volume V as cA (t) = nA(t)

V and

cB (t) = nB(t)
V , respectively, the chosen concentration measure uniquely characterizing an arbitrary

droplet is

x (t) =
cA (t)

cA,0 + ccB,0

=
nA (t)

nA,0 + cnB,0

. (11)

Adapting the formulations to other concentration measures is straightforward. Droplets undergo243

permanent coalescence and immediate breakage at a certain rate β0, depending on the prevailing244

hydrodynamic conditions. In contrast to opinion dynamics, it is less plausible that there are245

coalescence/breakage events that do not at all lead to a concentration exchange. Thus, the246

bounded confidence parameter can be set to unity. However, depending on the hydrodynamics,247
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the concentration exchange may vary. Similar as above, the convergence parameter µ reflects this248

behavior. µ can be given a physical meaning in this case: If one imagines that with one collision249

only a certain volume is exchanged and, in turn, perfectly mixed within both interacting droplets,250

then the convergence factor is this volume divided by twice the total volume. The basic procedure of251

concentration exchange is illustrated in Figure 6. Note that this process, given the above concentration252

measures and model assumptions, is described by the very same equation as used in the DW model,253

namely Equation (9).254

Figure 6. Illustration of concentration exchange between two droplets according to the newly
formulated model; darker shades of blue correspond to higher values of the concentration measure x.

Using the initial condition

n(x, t = 0) =
φ1

φ1 + φ2
δ (x) +

φ2

φ1 + φ2
δ (x− 1) (12)

results in the initial mean x̄(t = 0) = φ2
φ1+φ2

and the initial variance σ2(t = 0) =
(

φ1−φ2
φ1+φ2

)2
. The time255

evolution of the variance is given by Equation (A32) in the appendix. The parameter µ, therefore,256

controls the speed of decay of the variance. We simulated the time evolution of the system for several257

values of µ and φ1
φ2

. The results for three values of µ are shown in Figures 7a and 7b. In order to258

compare the results in these figures, the times were selected such that all three curves have the same259

variance. One can see that variance is not sufficient to describe the state. Furthermore, even for two260

colliding droplets having equal concentration afterwards (µ = 0.5), one requires a distribution to261

describe the amount of droplets with a given concentration. This distribution is also important, if a262

non-linear reaction occurs, because the reaction in each droplet would depend on the concentration of263

A and B in the droplet, as it has already been highlighted in the study by Singh and Kumar [37]. If a264

reaction occurs, then no analytical solution for the variance is known and one would have to solve the265

PBE numerically.266

5. Conclusions and Outlook267

In this contribution, we presented opinion dynamics as an interesting application for the use of268

PBM methods. To illustrate this case, the Deffuant-Weisbuch model, a classical approach in the field of269

opinion dynamics, was introduced and reformulated as a PBE. Exemplary results were shown and270

agreement to results from literature was observed. Furthermore, we analyzed our PB formulation271

of the DW model to prove that total belief is conserved. It was also proven for the first time that272

the variance monotonically decreases for all values of the bounded confidence parameter larger than273

zero. This implies that, if the distribution changes, it always changes towards a local consensus. We274

use these analyses to underpin our thesis that PBM methods offer new ways of thinking about and275

analyzing problems in opinion dynamics.276

It must be highlighted, however, that this contribution is not the first work that approaches277

opinion dynamics from a PBM-like perspective. As already mention earlier in the text, the reader is278
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Figure 7. Number density distribution at σ2(t) =
σ2

0
10 for three different values of the convergence

parameter µ; results shown for total volume fraction of each phase φ1 = φ2 (a) and φ1 = 3 · φ2 (b).

explicitly referred to work by Boudin and Salvarani [15,17,18] as well as Lorenz [1,14]. However, in279

the opinion of the authors, this is the first contribution where an explicit connection between PBM and280

opinion dynamics is made and possible benefits of an exchange between these two fields are asserted.281

To warrant the claim that there are indeed mutually beneficial effects, as suggested by the title of282

this article, a transfer of the opinion-dynamics approach to engineering was formulated for the example283

of concentration exchange between monosized droplets. It was illustrated that this scenario can be284

described by the same formulation as used in the Deffuant-Weisbuch model, given suitable model285

assumptions and concentration measures. Besides the shown example of concentration exchange, also286

tribolelectric charging of particles can be mentioned as a similar application. In this case, insulating287

particles exchange and also generate electric charge due to inter-particle collisions. Usually, the particle288

sizes remain constant during this process. The similarity to opinion dynamics lies in the modification289

of a given property of single elements, here their electrical charge, upon contact with other elements290

[38,39].291

Besides these possible benefits for the formulation of novel models, some further, more292

methodological, advantages of an exchange between PBM and opinion dynamics are outlined now.293

PBM can offer a flexible and efficient computational framework for the field of opinion dynamics.294

Especially continuous PBMs have the benefit of a high computational efficiency compared to the295

agent-based modeling techniques that are mostly used so far in the field of opinion dynamics.296

Computational efficiency, in turn, is an important prerequisite for further model uses such as parameter297

estimation and optimization. Additionally, multidimensional problems are often encountered in298

classical PB research and various solution strategies are known. In a similar manner, one can easily299

imagine corresponding multidimensional problems in opinion dynamics [2], e.g., systems that are300

distributed in opinions on different subjects or in opinion, age, and income, to pick up the example301

from the introduction. Such multidimensional problems would, thus, benefit from the knowledge302

and methods available in the PBM community. Furthermore, PB can easily be coupled with other303

transport equations. In this manner, it is straightforward to move from perfectly mixed systems to more304

realistic scenarios of opinion exchange. The use of PBM could, therefore, foster new developments in305
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opinion dynamics. However, not only the field of opinion dynamics can benefit from PBM. Also the306

PBM community might benefit from a completely new and different application. The new problems307

posed by opinion dynamics require new formulations for the corresponding birth and death terms308

which might, in turn, cause specific numerical challenges and, therefore, encourage extension and309

modification of existing numerical methods. In summary, we suggested to extend the application of310

PBM also to the social domain and showed that opinion dynamics is a very promising candidate for311

such a transdisciplinary endeavor.312
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The following abbreviations are used in this manuscript:322

323

DW model Deffuant-Weisbuch model
PB population balance
PBE population balance equation
PBM population balance model

324

Appendix A Derivation of Population Balance Equation325

A detailed derivation of the model formulation discussed in Section 2.1 of the main text is presented in
this appendix. The rate with which two agents meet is given by Equation (3). If two agents interact,
they adapt their opinion according to Equation (5) and (6). Thus, by multiplying the meeting rate with
a sum of two Dirac deltas one can obtain the rate of two agents with opinion x1 and x2 producing an
agent with opinion x (either by adaption from x1 or x2). If one integrates over all possible encounters
(over all x1 and x2), one obtains the rate of generating agents with opinion x

∫ 1

0

∫ 1

0

(
δ(x− (x1 + µ · (x2 − x1))

2
+

δ(x− (x2 + µ · (x1 − x2))

2

)
β0 · η(x1, x2) · n(x1) · n(x2)dx2 dx1 .

(A1)
The terms in the Dirac delta can be expressed in terms of x2,c1(x1, x) (see Equation (7)). Additionally,
the integral is split in two parts and β0

2 is taken out of the integrals:

β0

2
·
∫ 1

0

∫ 1

0
δ[µ · (x2 − x2,c1(x1, x))] · η(x1, x2) · n(x1) · n(x2)dx2 dx1

+
β0

2
·
∫ 1

0

∫ 1

0
δ[−µ · (x1 − x2,c1(x2, x)] · η(x1, x2) · n(x1) · n(x2)dx2 dx1 . (A2)

Not all values of x and x1 produce a valid complement x2,c1 that is a complement within the domain
[0, 1]. If the complement is not valid, the Dirac delta will be zero and, therefore, limiting the outer
integral limits to only producing valid complements does not change the value of the integral. Solving
the two linear inequalities x2,c1 ≤ 1 and x2,c1 ≥ 0 leads to the linear inequalities x1 ≥ x−µ

1−µ and x1 ≤ x
1−µ .

Furthermore, x1 ∈ [0, 1], which leads to the admissible domain for x1 shown in Figure A1. The limits
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Figure A1. Region of x and x1 that results in a valid complement x2,c1; for illustration purposes µ was
set to 0.7.

of integration for the outer integral of the first term are thus max
(

0, x−µ
1−µ

)
≤ x1 ≤ min

(
1, x

1−µ

)
.

Switching the order of integration for the second term allows using the same argumentation yields

β0

2
·
∫ min

(
1, x

1−µ

)
max

(
0, x−µ

1−µ

) ∫ 1

0
δ[µ · (x2 − x2,c1(x1, x))] · η(x1, x2) · n(x1) · n(x2)dx2 dx1

+
β0

2
·
∫ min

(
1, x

1−µ

)
max

(
0, x−µ

1−µ

) ∫ 1

0
δ[−µ · (x1 − x2,c1(x2, x)] · η(x1, x2) · n(x1) · n(x2)dx1 dx2 . (A3)

Now using the sifting and scaling property of the Dirac delta [40], the inner integrals can be
evaluated:

β0

2 · |µ| ·
∫ min

(
1, x

1−µ

)
max

(
0, x−µ

1−µ

) η(x1, x2,c1(x1, x)) · n(x1) · n(x2,c1(x1, x))dx1

+
β0

2 · | − µ| ·
∫ min

(
1, x

1−µ

)
max

(
0, x−µ

1−µ

) η(x2,c1(x2, x), x2) · n(x1) · n(x2,c1(x2, x))dx2 . (A4)

Because η(x, x1) = η(x1, x) and | − µ| = |µ| = µ, the two integrals are the same and only one integral
is required:

β0

µ
·
∫ min

(
1, x

1−µ

)
max

(
0, x−µ

1−µ

) η(x1, x2,c1(x1, x)) · n(x1) · n(x2,c1(x1, x))dx1 . (A5)

Having clarified the production term, one can use the sink term from Ramkrishna [41] and write the
PBE in the final form

∂n(x)
∂t

=− β0 · n(x) ·
∫ 1

0
η(x1, x) · n(x1)dx1

+
β0

µ
·
∫ min

(
1, x

1−µ

)
max

(
0, x−µ

1−µ

) η (x1, x2,c1(x1, x)) · n(x1) · n (x2,c1(x1, x)) dx1 . (A6)
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Appendix B Moment analysis326

In this appendix, the moment analysis referred to in Section 2.3 of the main text is explained in detail.327

First, some definitions are made. Then it is shown that the total number of agents and the total belief328

stays constants. Subsequently, the solution for the variance for d = 1 is derived. Finally, it is shown the329

variance monotonically decreases for an arbitrary d.330

Appendix B.1 Definition of moments331

The i-th order moment is defined as

Mi =
∫ 1

0
xi · n(x)dx. (A7)

The zeroth order moment is the total amount of agents. The first order moment is the total belief B.
According to Pruim [42], the variance σ2 can be computed from the second, first, and zeroth order
moment:

σ2 =
M2

M0
−
(

M1

M0

)2
. (A8)

Appendix B.2 Transformation to a square integration domain for the source term332

In Figure A1, the region of x and x1 that yields a valid complement x2,c1 is shown. If one looks
at the right side, one can see that given a x1 the linear inequalities for the valid x that result in a
x2,c1 ∈ [0, 1] are simpler. They are (1− µ) · x1 ≤ x ≤ (1− µ) · x1 + µ. The integral of any function
f (x1, x) over the blue region in Figure A1 can thus be stated in two ways:

∫ 1

0

∫ min
(

1, x
1−µ

)
max

(
0, x−µ

1−µ

) f (x1, x)dx1 dx =
∫ 1

0

∫ (1−µ)·x1+µ

(1−µ)·x1

f (x1, x)dx dx1 . (A9)

Switching the order of integration leads to a more straightforward integral. A further simplification is
possible, if one transforms the inner integration variable x to x2,c1. The transformed limits of integration
are then

x2,c1(x1, (1− µ) · x1 + µ) =1 (A10)

x2,c1(x1, (1− µ) · x1) =0 . (A11)

Thus, if one integrates over the complements, the integration is performed over the unit square. The
value of x corresponding to x1 and x2,c1 is given by Equation (5). Changing the integration variable
leads to a scaling:

dx2,c1 =
dx
µ

. (A12)

Thus, the integral over f can be written as

∫ 1

0

∫ min
(

1, x
1−µ

)
max

(
0, x−µ

1−µ

) f (x1, x)dx1 dx = µ ·
∫ 1

0

∫ 1

0
f (x1, x1 + µ · (x2,c1 − x1))dx2,c1 dx . (A13)
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Appendix B.3 Derivation of ordinary differential equation for the moments333

Multiplying the PBE with xi and integrating over the domain yields an ordinary differential
equation for the i-th order moment, because integration with respect to x and differentiation with
respect to time can be exchanged:

dMi
dt

=− β0 ·
∫ 1

0
xi · n(x) ·

∫ 1

0
η(x, x1) · n(x1)dx1 dx︸ ︷︷ ︸

Sink

+
β0

µ
·
∫ 1

0
xi ·

∫ min
(

1, x
1−µ

)
max

(
0, x−µ

1−µ

) η (x1, x2,c1(x1, x)) · n(x1) · n(x2,c1(x1, x))dx1 dx︸ ︷︷ ︸
Source

. (A14)

Following the same procedure as in Section B.2 for the source integral leads to

β0 ·
∫ 1

0
n(x1) ·

∫ 1

0
(µ · x2,c1 + (1− µ)x1)

i · η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1 . (A15)

Appendix B.4 Constant number of agents334

For the zeroth order moment i = 0, the source integral simplifies to

β0 ·
∫ 1

0
n(x1) ·

∫ 1

0
η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1 . (A16)

As this is equal to the sink term of Equation (A14), the equation for the evolution of the total number
of agents N is

dM0

dt
=

dN
dt

= 0 . (A17)

Therefore, the total number of agents stays constant as expected.335

Appendix B.5 Constant total belief336

For the first order moment i = 1, the source term (Equation (A15)) becomes

β0 ·
∫ 1

0
n(x1) ·

∫ 1

0
(µ · x2,c1 + (1− µ)x1) · η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1 (A18)

=β0 · µ ·
∫ 1

0
n(x1) ·

∫ 1

0
x2,c1 · η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1

+ β0 · (1− µ) ·
∫ 1

0
n(x1) · x1 ·

∫ 1

0
η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1 . (A19)

If one switches the order of integration, one obtains

β0 · µ ·
∫ 1

0
n(x1) ·

∫ 1

0
x2,c1 · η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1 (A20)

+ β0 · (1− µ) ·
∫ 1

0
n(x2,c1) ·

∫ 1

0
x1 · η (x1, x2,c1) · n(x1)dx1 dx2,c1 . (A21)

Because η is symmetric, the inner integrals will have the same value and the double integrals are equal.
Thus, the sum of both is equal to the sink term of Equation (A14). The equation for the total belief is
then

dM1

dt
=

dB
dt

= 0. (A22)

Therefore, the total belief stays constant.337
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Appendix B.6 Ordinary differential equation for the variance338

For the second order moment i = 2, which results in the following formulation for the source
term:

β0 ·
∫ 1

0
n(x1) ·

∫ 1

0
(µ · x2,c1 + (1− µ) · x1)

2 · η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1 . (A23)

By using binominal expansion, this can be rewritten as

β0 · µ2 ·
∫ 1

0
n(x1) ·

∫ 1

0
x2

2,c1 · η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1

+β0 · 2 · µ · (1− µ) ·
∫ 1

0
n(x1) · x1 ·

∫ 1

0
x2,c1 · η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1

+β0 · (1− 2 · µ + µ2) ·
∫ 1

0
n(x1) · x2

1 ·
∫ 1

0
η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1 . (A24)

As the order of integration can be switched and the η is symmetric, one can include the first double
integral in the third

β0 · 2 · µ · (1− µ) ·
∫ 1

0
n(x1) · x1 ·

∫ 1

0
x2,c1 · η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1

+β0 · (1− 2 · µ + 2 · µ2) ·
∫ 1

0
n(x1) · x2

1 ·
∫ 1

0
η (x1, x2,c1) · n(x2,c1)dx2,c1 dx1 . (A25)

Subtraction of the sink term yields the prefactor 1− 2 · µ + 2 · µ2 − 1 = −2 · µ · (1− µ) for the second
term. Thus, the second order moment evolves according to

dM2

dt
=2 · β0 · µ · (1− µ) ·

(∫ 1

0
n(x1) · x1 ·

∫ 1

0
x · η (x1, x) · n(x)dx dx1

−
∫ 1

0
n(x1) · x2

1 ·
∫ 1

0
η (x1, x) · n(x)dx dx1

)
. (A26)

Because the zeroth and first order moments are constant, the derivative of the variance is equal to the
derivative of the second order moment divided by the zeroth order moment (see Equation (A8)):

dσ2

dt
=

d
(

M2
M0
−
(

M1
M0

)2
)

dt
=

1
M0
· dM2

dt
(A27)

dσ2

dt
=2 · β0 ·

1
M0
· µ · (1− µ) ·

(∫ 1

0
n(x1) · x1 ·

∫ 1

0
x · η (x1, x) · n(x)dx dx1

−
∫ 1

0
n(x1) · x2

1 ·
∫ 1

0
η (x1, x) · n(x)dx dx1

)
. (A28)

Appendix B.7 Exponential decay of variance for d = 1339

If one considers the case with d = 1, which implies that η is always equal to one, then the ordinary
differential equation for σ2 can be simplified to

dσ2

dt
=

2 · β0 · µ · (1− µ)

M0
·
(∫ 1

0
n(x1) · x1 ·

∫ 1

0
x · n(x)dx dx1 −

∫ 1

0
n(x1) · x2

1 ·
∫ 1

0
n(x)dx dx1

)
(A29)

=
2 · β0 · µ · (1− µ)

M0
·
(

M2
1 −M2 ·M0

)
= 2 · β0 · µ · (1− µ) ·M0 ·

(
M2

1
M2

0
− M2

M0

)
. (A30)
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Utilizing the definition of the variance (Equation (A8)), one obtains the final form:

dσ2

dt
= −2 · β0 · µ · (1− µ) ·M0 · σ2 . (A31)

Thus, the variance decays exponentially for d = 1, if µ ∈ (0, 1
2 ]:

σ2(t) = σ2(t = 0) · exp(−2 · β0 ·M0 · µ · (1− µ) · t) . (A32)

Appendix B.8 Variance for an arbitrary d340

The next goal is to show that σ2 monotonically decreases for µ ∈ (0, 1
2 ] and d ∈ [0, 1], i.e.,

∀d ∈ [0, 1] :
dσ2

dt
≤ 0. (A33)

If and only if the initial distribution is a Dirac delta, the initial variance is equal to zero. In this case,
the initial distribution does not change and the variance stays zero:

∀d ∈ [0, 1] :
dσ2

dt
= 0. (A34)

Thus, Equation (A33) is always satisfied, if the initial variance is equal to zero. The case with an initial
variance of zero is, therefore, excluded from the further discussion. For d = 1 it was derived that σ2

decreases exponentially with time:

d = 1 :
dσ2

dt
< 0. (A35)

If one considers the case with d = 0, which implies that η is always equal to zero, then the right hand
side is equal to zero and the variance is constant:

d = 0 :
dσ2

dt
= 0. (A36)

If the derivative of the right hand side of Equation (A28) with respect to d is always non-positive, the
variance has to monotonically decrease in the interval d ∈ (0, 1) as it has been already shown for the
borders:

∀d ∈ (0, 1) :
∂
(

dσ2

dt

)
∂d

≤ 0⇒ ∀d ∈ [0, 1] :
dσ2

dt
≤ 0. (A37)

The derivative of the right hand side of Equation (A28) is

2 · (1− µ) · µ · β0

M0
·
∫ 1

0
n(x1) · x1 ·

∫ 1

0

∂η(x, x1; d)
∂d

· n(x) · (x− x1)dx dx1 . (A38)

For µ ∈ (0, 1
2 ], the constant term 2 · (1− µ) · µ · β0

M0
> 0. We, therefore, focus on the double integral

and aim to show that this integral is non-positive:

∫ 1

0
n(x1) · x1 ·

∫ 1

0

∂η(x, x1; d)
∂d

· n(x) · (x− x1)dx dx1 ≤ 0. (A39)

Because η(x, x1; d) (see Equation (4)) depends only on d and the difference between x and x1 and not
x or x1, one can introduce the variable ∆x = x− x1 and a simpler expression for η in terms of this
variable:

η̂(∆x; d) =

{
1 |∆x| ≤ d
0 otherwise.

(A40)
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Using this function and the transformation allows rewriting the integral (see Equation (A39)) as

∫ 1

0
n(x1) · x1 ·

∫ 1−x1

−x1

∂η̂(∆x; d)
∂d

· n(∆x + x1) · ∆x d∆x dx1

=
∫ 1

0
n(x1) · x1 ·

∫ 0

−x1

∂η̂(∆x; d)
∂d

· n(∆x + x1) · ∆x d∆x dx1

+
∫ 1

0
n(x1) · x1 ·

∫ 1−x1

0

∂η̂(∆x; d)
∂d

· n(∆x + x1) · ∆x d∆x dx1 . (A41)

The derivative of η̂ with respect to d is

∂η̂

∂d
= δ(d− ∆x) + δ(d + ∆x). (A42)

Using the sieving property of the Dirac delta, the first inner integral becomes

∫ 0

−x1

(δ(d− ∆x) + δ(d + ∆x)) · n(∆x + x1) · ∆x d∆x =

{
−d · n(−d + x1) x1 ≥ d
0 otherwise.

(A43)

Substituting this into the double integral and changing the limits of the outer integral allows writing a
simpler form

∫ 1

0
n(x1) · x1 ·

∫ 0

−x1

∂η̂(∆x; d)
∂d

· n(∆x + x1) · ∆x d∆x dx1

=
∫ 1

0
n(x1) · x1 ·

{
−d · n(−d + x1) x1 ≥ d
0 otherwise

}
dx1 = −d ·

∫ 1

d
x1 · n(x1) · n(x1 − d)dx1 . (A44)

A similar argument permits to express the second double integral as

∫ 1

0
n(x1) · x1 ·

∫ 1−x1

0

∂η̂(∆x; d)
∂d

· n(∆x + x1) ·∆x d∆x dx1 = d ·
∫ 1−d

0
x1 · n(x1) · n(x1 + d)dx1 . (A45)

Introducing the substitution x = x1 + d, the equation can be further simplified:

d ·
∫ 1−d

0
x1 · n(x1) · n(x1 + d)dx1 = d ·

∫ 1

d
(x− d) · n(x− d) · n(x)dx (A46)

=d ·
∫ 1

d
x · n(x− d) · n(x)dx− d2 ·

∫ 1

d
n(x− d) · n(x)dx . (A47)

Adding Equations (A44) and (A47), one obtains

∫ 1

0
n(x1) · x1 ·

∫ 1

0

∂η(x, x1; d)
∂d

· n(x) · (x− x1)dx dx1 = −d2 ·
∫ 1

d
n(x− d) · n(x)dx . (A48)

Because n ≥ 0, the remaining integral is always greater or equal to zero. Furthermore, unless n consists341

out of Dirac deltas at least d apart the remaining integral is greater than zero. Thus, the derivative of342

the right hand side of Equation (A28) is always less than (or equal to for Dirac deltas at least d apart)343

zero and the derivative of σ2 with respect to time is always less than (or equal to for Dirac deltas at344

least d apart) zero. If n consists out of Dirac deltas at least d apart, the time derivative of n is zero.345

Thus, if n changes, it always evolves towards a (local) consensus.346
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