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Abstract: Current numerical methods for simulating biophysical processes in aquatic 11 
environments are typically constructed in a grid-based Eulerian framework or as an 12 
individual-based model in a particle-based Lagrangian framework. Often, the biogeochemical 13 
processes and physical (hydrodynamic) processes occur at different time and space scales, and 14 
changes in biological processes do not affect the hydrodynamic conditions. Therefore, it is possible 15 
to develop an alternative strategy to grid-based approaches for linking hydrodynamic and 16 
biogeochemical models that can significantly improve computational efficiency for this type of 17 
linked biophysical model. In this work, we utilize a new technique which links hydrodynamic 18 
effects and biological processes through a property-carrying particle model (PCPM) in a 19 
Lagrangian/Eulerian framework. The model is tested in idealized cases and its utility is 20 
demonstrated in a practical application to Sandusky Bay. Results show the integration of 21 
Lagrangian and Eulerian approaches allows for a natural coupling of mass transport (represented 22 
by particle movements and random walk) and biological processes in water columns which is 23 
described by a nutrient-phytoplankton-zooplankton-detritus (NPZD) biological model. This 24 
method is far more efficient than traditional tracer based Eulerian biophysical models for 3-D 25 
simulation, particularly for a large domain and/or ensemble simulations. 26 

Keywords: Property-carrying Particle Model; coupled models; Ecosystem Simulation; Biophysical 27 
Modeling; Sandusky Bay; Great Lakes 28 

1. Introduction 29 

Current numerical methods for simulating biogeochemical processes in aquatic environments 30 
are typically constructed as Individual-based models (IBMs) using Lagrangian particles [1-3] or as 31 
grid-based concentration models in an Eulerian framework [4-6]. IBMs allow for a mechanistic 32 
description of individuals and of interactions among individuals, represented by an ensemble of 33 
particles. Each individual contains a set of state variables (e.g., age, size, and nutrient quota) with 34 
corresponding physiological traits and behavioral traits [3], and the population-level properties 35 
emerge as a result of the cumulative behavior of the individuals [7]. IBMs have rapidly gained 36 
popularity in ecological modeling, particularly when simulating complete life cycles, adaptive 37 
behavior, and intrapopulation variability in response to internal and external environmental 38 
conditions becomes essential [8, 9]. Large computational demand has long been known as one of the 39 
hallmark problems for IBM [2,7,8]. This is still true even with increased computational resources and 40 
implementation of the strategic approaches for reducing the number of individuals explicitly 41 
simulated in the model such as introducing the super individual particles or representative spaces 42 
[2].  43 

On the other hand, the traditional grid-based Eulerian approach is also widely used in the 44 
coupled physical-biogeological modeling [6,7,10,11] in the inland water and ocean modeling 45 
communities [12-18]. The Eulerian (concentration) model assumes average properties (state 46 
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variables) of a population within a control volume, and estimate the change of the property using 47 
mass balance and reaction equations [19]. It does not describe intrapopulation variability but focuses 48 
on characteristics of the population mean, which is appropriate when growth kinetics are 49 
formulated as a function of the external conditions [7].  50 

In general, the Eulerian model employs finite difference or finite element schemes to solve the 51 
governing reaction-transport equations [4, 6]. Equations for the time evolution of state variables of 52 
the biophysical model include advection and diffusion terms which depend on hydrodynamic 53 
variables, as well as source and sink terms representing growth, decay, and interaction with other 54 
biogeochemical variables [6,11,22]. The property concentration fields (C , i = 1,2,3….) are often 55 
calculated using a set of advection-diffusion equations: 56 

+ + + − 퐾 −퐷퐹 = 퐶 , − 퐶 ,  (1) 57 

where D is the total water depth, 푢, 푣,	and 푤 are the x, y, and 푧 components of the water velocity, 58 
퐾 	is the vertical thermal diffusion coefficient, 퐹 	is the horizontal diffusion term, and 퐶 ,   and 59 
퐶 ,  represents the sources and sinks of 퐶  , respectively, due to the biological processes which are 60 
typically described using a set of biological process equations.  61 

However, even in the relatively simple, less computationally demanding Eulerian model, a 62 
major practical challenge is that the biological submodel often involves a large group of parameters 63 
for calibration and confirmation which requires a considerable amount of computational time to 64 
tune the model.  As shown in Equation 1, tuning the simulation of biological processes (e.g., 65 
changes in parameterization, initial and boundary conditions) requires a complete time integration 66 
of the entire equation, although bio-physical coupled models can have different time steps for 67 
physical and biological process terms as they may have different time and space scales. However, 68 
biophysical processes are generally not two-way coupled. In other words, one can often assume that 69 
changes in biological processes (in our case, the resulting changes in 70 
nutrient-phytoplankton-zooplankton-detritus (NPZD) property concentration) do not affect the 71 
hydrodynamic condition (currents, temperature, mixing, etc.). This indicates that there may be a 72 
more computationally efficient approach to resolve the impact of hydrodynamics on the biological 73 
processes rather than explicit integration of Equation 1 for each biological component every time the 74 
biological submodel is tuned.  75 

The property-carrying particle model (PCPM) is developed to test the feasibility of an 76 
alternative strategy to grid-based approaches for linking hydrodynamic and biogeochemical models 77 
in the Eulerian framework that may reduce the problems mentioned above, particularly in regions 78 
where advection-diffusion plays a key role in regulating biogeochemcal processes. Instead of 79 
grid-based, time-averaging of hydrodynamic variables, the hydrodynamic model is used to calculate 80 
the Lagrangian trajectories of a large number of current-following tracer particles; these trajectories 81 
become the linking mechanism between the hydrodynamic model and the biogeochemical model. In 82 
the hybrid Lagrangian-Eulerian PCPM, each current-following tracer particle carries with it a 83 
number of time-varying properties which correspond to the state variables of the Eulerian 84 
biogeochemical model. The PCPM also employs its own horizontal grid system or series of regions 85 
which is independent of the hydrodynamic model grid and is used to calculate local average values 86 
of the particle-based properties. These cell-based properties allow all particles within a PCPM cell to 87 
influence the properties of other particles within the same cell or region and allow for display and 88 
analysis of biogeochemical fields. PCPM also differs from typical IBMs in that the tracer particles in 89 
PCPM typically carry 'field' based properties like concentration, as opposed to properties associated 90 
with an individual organism. 91 

PCPM uses a computational grid system which is independent of the grid system used to 92 
compute currents for particle trajectories. The PCPM computational cells are used to define regions 93 
in which the properties carried by the particles are allowed to interact with one another. In this 94 
respect, PCPM is conceptually similar to the classic Particle-in-Cell (PIC) method with PM 95 
(particle-mesh) interactions [23, 24], popularly used in plasma simulation [24, 25]. PIC methods can 96 
also be mesh-independent by allowing direct particle-particle (PP) interactions, or a combination of 97 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 September 2018                   doi:10.20944/preprints201808.0246.v3

Peer-reviewed version available at J. Mar. Sci. Eng. 2018, 6, 109; doi:10.3390/jmse6040109

http://dx.doi.org/10.20944/preprints201808.0246.v3
http://dx.doi.org/10.3390/jmse6040109


 3 of 21 

 

PM and PP [23-26]. In PCPM, a basic simplifying assumption is that only particles within a single 98 
PCPM cell are allowed to interact, such as the PIC-PM method. The advantage of this approach is 99 
that it is conceptually intuitive to implement and computationally efficient to program.  100 

An alternative approach to implementing a PCPM would allow particle-based properties to 101 
influence particle trajectories, perhaps through buoyancy or sinking. In this case, the PCPM would 102 
have to be directly coupled with the particle trajectory calculation. In the initial implementation of 103 
PCPM in this paper, we consider only the uncoupled case. 104 

 To illustrate more clearly the type of application envisioned for PCPM, we constructed and 105 
applied a rudimentary biophysical model to an actual aquatic system, Sandusky Bay, where the 106 
physical transport of flow and nutrient loading from the Sandusky River has proven to be critical to 107 
the ecosystem [27, 28]. Since the mid-1990s, harmful algal blooms (HABs) have become the new 108 
norm for summer months in the Lake Erie ecosystem [29]. Harmful algal blooms occur in the system 109 
when cyanobacteria are provided the right temperature, light, and nutrient conditions to proliferate 110 
[28]. When these blooms transpire, they have many adverse impacts. At the local ecosystem level, 111 
HABs result in depleted dissolved oxygen levels below the lake’s surface threatening the survival of 112 
organisms living below the surface [31]. Additionally, some cyanobacteria species produce a toxin, 113 
such as microcystin, which affects the nervous system, liver, and kidney further impeding aquatic 114 
organisms and humans [31].  115 

  “Whereas the colonial cyanobacterium Microcystis dominates the cHAB community in 116 
offshore regions of western Lake Erie, filamentous Planktothrix has been shown to persist in 117 
N-limited bays and tributaries” [28], such as in Sandusky Bay [27,28,32]. Situated on Lake Erie’s 118 
southwestern coast, Sandusky Bay borders Ohio’s Ottawa, Erie, and Sandusky counties (Figure 1). 119 
From a physical aspect, Sandusky Bay is relatively shallow bay with an average depth of roughly 2.6 120 
meters as well as occupying a relatively small area [32]. The primary draining watershed to 121 
Sandusky Bay is originates from the Sandusky River on the west end of the bay. The Sandusky River 122 
drains a 1,420 square mile area; of which, over 80% is dedicated to agricultural production [31]. This 123 
largely agricultural watershed leads to high nitrogen and phosphorus entering Sandusky Bay. 124 
Combining these high nutrient loads with the physical aspects leads to very high concentrations of 125 
nitrogen and phosphorus within Sandusky Bay, thus resulting in these cyanobacteria blooms 126 
(Planktothrix agardhii) [27,28,32]. 127 

The intent of this study is to test the feasibility of PCPM for biological-physical coupled 128 
modeling and examine its effectiveness and computational efficiency in practical application by 129 
implementing it in relation to HABs in Sandusky Bay. The remaining sections of this paper are 130 
organized as follows: Details of PCPM and the design of numerical experiments are described in 131 
section 2. The model results of idealized cases and the practical application to Sandusky Bay are 132 
presented in section 3. A discussion and summary of the PCPM applications are included in section 133 
4. 134 

 135 
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 136 
Figure 1.  Sandusky Bay is situated on Lake Erie's southwest coast occupying a small portion of the 137 
Great Lake's coastline. Sandusky Bay is relatively shallow bay with an average depth of ~2.6 meters. 138 
The primary draining watershed to Sandusky Bay originates from the Sandusky River on the west 139 
end of the bay. Sampling stations ODNR1 and EC1163 are denoted with green dots. 140 

2. Methods 141 

2.1 PCPM 142 

In this implementation of PCPM, particle trajectories are pre-computed based on the output of a 143 
hydrodynamic model and are independent of the particle properties. An initial particle density (i.e., 144 
total number of particles / volume of computational domain) is selected and particles are randomly 145 
distributed throughout the computational domain. Particles are not allowed to leave the 146 
computational domain except at hydrodynamic outflows. At hydrodynamic inflows, new particles 147 
are introduced with the same density as the initial distribution. The total number of active particles 148 
is not strictly preserved, but if there is a net balance of hydrodynamic inflows and outflows, the total 149 
number of particles is approximately constant. 150 

Any suitable method can be used to generate the Lagrangian particle trajectories. Typically, the 151 
trajectories are calculated from a time integration of the Lagrangian equations of motion: 152 

= 푢, = 푣, = 푤         (2) 153 

where (x,y,z) is the particle’s position in 3 dimensions, (u,v,w) is the local fluid velocity vector, and t 154 
is time. For the two idealized examples presented in this paper, the trajectories are calculated 155 
semi-analytically from a simple, idealized flow field. The third, more realistic example, 156 
demonstrates the use of a full hydrodynamic model of a natural basin (i.e., Sandusky Bay) to 157 
compute currents and trajectories. 158 

Each computational time step in the PCPM consists of six intermediate steps: 159 
 160 
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1. Read particle locations (x, y, z) and temperature. This step simply updates the location of each 161 
particle that is being used in the computation. Figure 2 is a conceptual representation of a 162 
PCPM computational cell, Particles (m1, m2, m3, …) move in and out of the cell at each PCPM 163 
time step based on their trajectories as computed from the hydrodynamic model. The total 164 
number of particles for a particular computation is assumed to be fixed for the duration of the 165 
computation, although some particles may enter or leave the PCPM domain during the 166 
computation. Water temperature or other physical properties from the hydrodynamic 167 
calculation can be stored along with the pre-computed particle trajectories and can be included 168 
as one of the properties (P1, P2, P3, …) carried by the particle. 169 

2. Determine the PCPM cell for each particle. In Figure 2, the PCPM cell is represented by the 170 
enclosing rectangle. The PCPM domain need not coincide with the domain that was used for 171 
the hydrodynamic simulation and computation of particle trajectories. It can be regular or 172 
irregular, as long as there is a prescribed method to calculate which PCPM cell contains a 173 
prescribed particle position (x, y, z). The PCPM cells are the volumes within which particle 174 
properties can interact, that is, during a single time step, all particles within a PCPM cell can 175 
influence the evolution of particle properties within that cell, but are independent of other 176 
cells. 177 

3. Apply boundary conditions to any particle-based properties that require them. If there is a 178 
property (e.g., concentration of a dissolved nutrient) that needs to be specified as a boundary 179 
condition, then particles within the cell where the boundary condition needs to be applied will 180 
have that property adjusted to meet the boundary condition. For example, in a cell that is 181 
associated with an inflow to the domain, the properties that are being carried into the domain 182 
through the inflow are adjusted to take account of the change in that property for particles 183 
within that cell. Alternatively, if particles from the hydrodynamic-based trajectory calculation 184 
are entering a PCPM cell, the values of the associated properties for each particle need to be 185 
specified. 186 

4. Calculate PCPM cell-based averages of each property. In this step, the averages of 187 
퐾 	property for cell n are calculated as 188 

푃퐾 	= ∑ 푃퐾 /퐿         (3) 189 
where the summation includes all 퐿 particles (m1, m2,..푚 ) currently within cell n. L is the 190 
number of particles within that cell. If no particles are present in a particular cell, PCPM uses 191 
the values of 푃퐾   from the previous time step. 192 

5. Calculate the time evolution of the cell-based properties (and particle-based properties if 193 
necessary) using the process equation defined for that property. The process equations can 194 
incorporate terms which depend on either particle-based or cell-based properties, or both, i.e.  195 

푃퐾 (푡 + ∆푡) = 퐹푁(푃1 (푡), 푃2 (푡),푃3 (푡),…푃1 (푡), 푃2 (푡),푃3 (푡),… )   (4) 196 
Note that M indicates m1, m2,..푚 . The form of FN is completely general and depends on the 197 
problem being solved. For instance, in a NPZD model, the 푃푖, (푖 = 1,2,3… )would be N, P, Z, 198 
D, and water temperature, and the FN would be the process equations relating these 199 
properties. 200 
Since the cell-based averages have already been computed, the right-hand side of equation 4 is 201 
independent of the left-hand side, so the computation of the evolution equations can be carried 202 
out in parallel. This is another key design feature of PCPM allowing it to take full advantage of 203 
multiprocessing computer environments, both Symmetric Multi-Processing (SMP) and 204 
Massively Parallel Processing (MPP). 205 

6. Redistribute cell-based properties to particles within each cell by replacing the particle-based 206 
property with a weighted average of the cell-based property. After the evolution equations 207 
have been carried out (Step 5), particles within an individual cell most likely carry a range of 208 
different values of the various properties, which vary around the new cell-based average 209 
computed in Step 5, 푃퐾 (푡 + ∆푡). PCPM provides an optional step to reduce the variance of 210 
the new particle-based properties within each cell. This optional step is applied as a ‘nudging’ 211 
term, i.e. 212 
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푃퐾	 (푡 + ∆푡) = (1 − 훼 )푃퐾 (푡) + 훼 푃퐾 (푡 + ∆푡)     (5) 213 
where 0<훼 <1 is the redistribution weight (i.e. nudging) factor. If 훼 =0, no adjustment is carried 214 
out and particle-based property remain unchanged. If 훼 =1, then all particles within a cell are 215 
assigned the cell-based average of that property. This step can be useful to smooth results 216 
when limited particle density results in excessive within-cell variability. 217 

 218 
Figure 2. Conceptual representation of a PCPM computational cell n and particles (m1, m2, m3, m4, 219 
m5…) within the cell n. PCPM cell-based average of each property (푃1 ,	푃2 , 푃3 ,…) is determined 220 
by the property values carried by the particles that have entered in this cell. After time evolution of 221 
PCPM properties using process equations, the updated PCPM cell-based properties (푃1 ,	푃2 , 222 
푃3 ,…) are redistributed to particles with a weighted average. Then the particles move around 223 
carrying the updated properties to different PCPM computational cell in the next cycle. 224 

Note that all steps except 3 and 5 are independent of the specific problem, i.e., they will be 225 
carried out the same way no matter how many properties are attached to the particles or what 226 
those properties represent. More importantly, steps 1 and 2 only need to be run once regardless 227 
of modifications in biological processes at the later stage. These are two of the key designs of 228 
PCPM that contribute to enhanced computational efficiency. 229 

2.2 Idealized Case 1: Advection-diffusion plume 230 

In PCPM, diffusion is provided mainly by particle trajectories, although the cell-based 231 
averaging of particle properties and the (optional) redistribution of cell-based properties to 232 
particles within the cell can also act as diffusive terms. To demonstrate the effect of particle 233 
trajectory diffusion on particle properties, we constructed a 500 m wide x 2000 m long channel 234 
divided into 10 m square cells. Particles were introduced at random locations along the center 235 
400 m section of the left edge of the channel at the rate of 100/sec. The particles were assigned an 236 
along-channel velocity of 2 m/sec. Horizontal diffusion was added using a random-walk 237 
perturbation to the particle trajectories of 2푟 2푘 ∆푡 in both cross-channel and long-channel 238 
directions. Here, 푟 is a uniformly distributed random number in the range [-1,1], 푘  is the 239 
horizontal diffusion coefficient (10 m2/sec in this experiment), and ∆푡 is the time step for the 240 
particle trajectory calculation (1 sec). 241 
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In this example, PCPM particles carry only one property, concentration (P1=C), and there is no 242 
time evolution equation (step 5, above). The purpose of this example is to illustrate how PCPM 243 
simulates horizontal diffusion through a combination of the particle trajectories and the 244 
cell-based averaging in step 6. To simulate a concentration plume, particles introduced in the 245 
center of the left wall (-50 m < y < 50 m) are assigned the initial condition C = 1. Particles 246 
entering the channel outside this region have an initial condition of C = 0. 247 

2.3 . Idealized Case 2: Vertical settling 248 

Since this implementation of PCPM does not allow the properties carried by the particles to 249 
influence particle trajectories, the question arises of how to simulate the vertical transport of a 250 
property when the vertical transport depends on the property itself, such as sediment settling or 251 
biologically generated buoyancy. In PCPM, the answer is simply to solve the vertical transport at the 252 
PCPM cell-based Eulerian framework in step 5 as a traditional cell-based method. Interaction of 253 
particle properties with adjacent cell averages is technically not allowed in the basic PCPM 254 
framework, but an exception is made in this case. The vertical advection-diffusion equation for 255 
sediment concentration is shown below 256 

= 푤 + 푘           (6) 257 

where 푤  is the bulk settling velocity of the suspended material and 푘  is the vertical diffusion 258 
coefficient. 259 

Since vertical diffusion is already included in the particle trajectories, PCPM only needs to 260 
consider the first term on the right-hand side of (7) to account for the additional vertical transport 261 
that depends on the property itself. To implement this term in PCPM, the process equation for a 262 
particle carrying a property Cm in vertical cell k looks like 263 

퐶 (푡 + ∆푡) = 퐶 (푡) + 푤 ∆푡 퐶 (푡) − 퐶 (푡)	 ∆푧 + (표푡ℎ푒푟	푝푟표푐푒푠푠	푡푒푟푚푠) (7) 264 

where 퐶 (푡)		is the average concentration in vertical cell k, 퐶 (푡)	 is the average concentration in 265 
the next higher vertical cell, and ∆푧 is the spacing between the centers of the cells. For particles in 266 
the top cell (k=0), we set 267 

퐶 (푡 + ∆푡) = 퐶 (푡) − 푤 ∆푡퐶 (푡)∆푧 + (표푡ℎ푒푟	푝푟표푐푒푠푠	푡푒푟푚푠)   (8) 268 

and for particles in the bottom cell (k=kmax), we set 269 

퐶 (푡 + ∆푡) = 퐶 (푡) − 푤 ∆푡퐶 (푡)∆푧 + (표푡ℎ푒푟	푝푟표푐푒푠푠	푡푒푟푚푠)  (9)  270 

As a test case, we examine the vertical settling in a one-dimensional water column of depth d with 271 
particles moving vertically only through vertical diffusion. Particles are initially distributed 272 
randomly in the column and then move with a random walk velocity of 2푟 2푘 ∆푡 where 푟 is a 273 
uniformly distributed random number in the range [-1,1] and 푘  is the vertical diffusion coefficient. 274 
Particles are not allowed to cross the surface or bottom boundaries. Thus, in this experiment, the 275 
number of particles is constant and the particles are always approximately uniformly distributed in 276 
the vertical due to vertical mixing. 277 

For the experiment, we set C = 1 as the bottom boundary condition by assigning this value at 278 
the beginning of each time step to all particles in the lower half of the bottom cell. The initial 279 
condition in other cells is C = 0. For the test case, we set the number of particles to 1000, d = 20 m, 푘  280 
= 10-4 m2s-1, and the redistribution parameter  = 0.1. Three runs were made with 5, 10, and 20 vertical 281 
cells respectively. PCPM is integrated in time with ∆푡 = 1 hr. 282 
2.4 Sandusky Bay Model 283 

The hydrodynamic model used in this study is FVCOM (Finite Volume Community Ocean 284 
Model) [33].  FVCOM is an unstructured-grid, finite-volume, three-dimensional (3-D) primitive 285 
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equation ocean model with a generalized, terrain-following coordinate system in the vertical and a 286 
triangular mesh in the horizontal. The unstructured grid can be designed to provide a customized 287 
variable resolution to both coastline and bathymetry. With the merits of ideal geometric fitting and 288 
local refinement of mesh resolution, FVCOM has been used in numerous applications to estuaries, 289 
coastal oceans, and the Great Lakes [34-40]. These characteristics make the model well suited for the 290 
study of Sandusky Bay.   291 

Although this study focuses on Sandusky Bay, FVCOM is configured to simulate physical 292 
dynamics for all of Lake Erie, thus providing reliable representation of large-scale background 293 
circulation and the role of remote forcing impacting the water movement in the bay through the 294 
opening; additionally, this configuration avoids the impact of setting an artificial numerical 295 
boundary condition for our target region. The hydrodynamic model is well-calibrated for the Lake 296 
Erie, based on the next-generation NOAA Lake Erie Operational Forecast System [LEOFS; see Kelley 297 
et al., [40] for detailed model validation], a real-time nowcast and forecast model that is built on the 298 
FVCOM. In the upgraded NOAA operational model for Lake Erie [40], the FVCOM model is 299 
developed with horizontal resolution ranging from 100 to 2500 meters, and 21 uniform vertical 300 
sigma (terrain-following) layers for Lake Erie. The advantage of our model setting is that model 301 
resolution varies from 100-2500 m (coarse) in the open lake to 10-50 m (fine) in Sandusky Bay, 302 
affording a high degree of resolution across the 20 km x 3 km study site and adequately resolving the 303 
geographic complexity and coastal hydrodynamic conditions of that system (Figure 3). The model 304 
configuration yields a total of 73,000 grid elements (cells) in the horizontal plane with 50,000 of them 305 
resolving the bay. 306 

In the PCPM implementation, 86,000 initial particles are randomly distributed throughout 307 
Sandusky Bay with a total water volume of 3.01 x 10  m .  With PCPM cell resolution of 200 x 200 308 
m and the mean water depth of 2.6 m in Sandusky Bay, each PCPM cell contains 30 particles on 309 
average. New particles are introduced from the Sandusky River with the same density as the initial 310 
distribution. The number of new particles released from the river mouth varies greatly in accordance 311 
with the river flow rate. Table 1 presents the number of new particles released each month, based on 312 
the total water volume input from the Sandusky River. For example, 205,367 particles are released in 313 
March due to the highest river discharge in this month,  which approximately equals the total 314 
number of particles (207,050) released from April to October. 315 

Table 1. The number of new particles released and the total water volume input from the 316 
Sandusky River in each month. 317 

 318 
 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
 331 
 332 
 333 

Month Monthly Discharge (10 	푚 ) Particles(number) 

Jan 0.364 10,405 

Feb 2.27  64,980 
Mar 7.19 205,367 
Apr 1.53 43,741 
May 0.443 12,640 
Jun 3.00 85,754 
Jul 1.97 56,347 
Aug 0.129 3,680 
Sep 0.089 2,544 
Oct 0.093 2,654 
Nov 0.133 3,798 
Dec 1.15 32,951 
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 334 
 335 
Figure 3. FVCOM model mesh for Lake Erie (upper panel) and linked with a high-resolution mesh 336 
for Sandusky Bay (lower panel). Only a portion of the Sandusky Bay mesh is displayed for a clear 337 
representation of the mesh's resolution. 338 

2.5 Sandusky Bay Biological Model 339 

The biological model used in this work is a general 3-D NPZD model [17]. As a common 340 
approach, the biological model is constructed by implementing 1-D NPZD models for each vertical 341 
column of PCPM cells that are distributed spatially across the 2-D domain to form a 3-D 342 
representation of the system. Exchange of properties between adjacent water columns occurs across 343 
their shared interface through advection and dispersion. Figure 4 displays the interactions among 344 
state variables in the NPZD model.    345 

⎩
⎪⎪
⎨

⎪⎪
⎧ − 퐾 −퐹 = −푃(푢푝푡푎푘푒) + 푍(푟푒푠푝푖푟푎푡푖표푛) + 푃(푟푒푠푝푖푟푎푡푖표푛) + 퐷(푟푒푚푖푛푒푟푎푙푖푧푎푡푖표푛)																						

− 퐾 −퐹 = 푃(푢푝푡푎푘푒) − 푃(푟푒푠푝푖푟푎푡푖표푛) − 푃(푚표푟푡푎푙푖푡푦) − 푍푃(푔푟푎푧푖푛푔) + 푃(푠푖푛푘푖푛푔)																			

− 퐾 −퐹 = 푍푃(푔푟푎푧푖푛푔) + 푍퐷(푔푟푎푧푖푛푔) − 푍(푟푒푠푝푖푟푎푡푖표푛) − 푍(푚표푟푡푎푙푖푡푦)																																										

− 퐾 −퐹 = 푃(푚표푟푡푎푙푖푡푦) + 푍(푚표푟푡푎푙푖푡푦) − 푍퐷(푔푟푎푧푖푛푔) − 퐷(푟푒푚푖푛푒푟푎푙푖푧푎푡푖표푛) + 퐷(푠푖푛푘푖푛푔)	

		  (10) 346 
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 347 
Fig. 4. A schematic representation of the NPZD model. 348 

The governing equations for the model framework are based on Luo et al. [17], and the 349 
mathematical expressions for each term of the system of equations 10 is presented in Appendix A. 350 
Several equations in the governing equations are modified for this study based on literature review. 351 
The light-limited, nutrient-limited, and temperature-limited functions 푓(퐼), 푓(푁), 푓(푇)  , 352 
respectively, that contribute to the 푃(푢푝푡푎푘푒) are taken from Platt et al. [41] and Nicklisch et al. [42]. 353 
Also, the light attenuation functions are adjusted to Rowe et al. [18]. 354 

푓(퐼) = (1	 − 	푒 	 )푒 	
       (11) 355 

푓(푁) =           (12) 356 

푓(푇) = exp	(−2.3( ) )       (13) 357 

퐼 = 퐼 exp(−푘 ℎ)          (14) 358 
 359 

where 훼 , 훽  are the initial linear slope at low irradiance and the negative slope at the high 360 
irradiance that characterizes photoinhibition [43], 휇  is the maximum potential growth rate, and	퐼 361 
is the light intensity. The nutrient threshold  푁  represents the pool of nutrient that was assumed to 362 
be biologically unavailable.  푇  and 푇  are the optimal growth temperature and minimal 363 
growth temperature, respectively.  푘  is the light attenuation coefficient that accounts for the 364 
impact of water turbidity, phytoplankton, and detritus on the light attenuation. Model 365 
parameterization is based on literature review [17,18,41,43] and subjective tuning for the Sandusky 366 
Bay simulation as there is no established NPZD model for the Sandusky Bay region. (See Table 2 for 367 
model parameterization).  368 

3. Results  369 

3.1. Idealized Case 1: Advection-diffusion plume 370 
To illustrate the effect of the cell-based averaging (step 6), we show results of the first idealized 371 

case for four different values of the cell-based redistribution parameter (훼 = 0, 0.01, 0.1, 0.5) in Figure 372 
5. In Figure 5, there are three panels for each value of 훼. The top panel shows the locations of 373 
particles after 720 time steps (12 minutes). The particles are colored using a blue-to-red scale for 374 
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concentration values from 0 to 1. Particles with a concentration value of exactly 0 are colored light 375 
gray. The second panel shows the average concentration in each 10 m square cell with the same blue 376 
to red scale as the top panel, except cells with C = 0 are black. The third panel compares 377 
concentration along the centerline of the plume from the second panel to the analytical solution for a 378 
diffusive plume [44,45], i.e., 379 

퐶(푥) = erf	([ ([1.4푥 + 1] . − 1)] . )      (15) 380 

where 퐶(푥) is the centerline concentration 푥 meters away from the channel entrance. In the case 381 
훼 = 0 , there is no cell-based redistribution of properties, so all particles retain their initial 382 
concentration values of either C=0 (light gray in panel 1) or C=1 (red in panel 1). As seen in the 383 
second and third panels, the random-walk diffusion in the particle trajectories does provide a rough 384 
approximation to the analytical solution by mixing of C=0 and C=1 particles in PCPM cells. Of course 385 
increasing the number of particles in the simulation would provide a more accurate approximation, 386 
but would also increase the computational load. Setting the cell-based redistribution parameter to 387 
even the small value of 훼 = 0.01 provides a significant improvement in the solution with the same 388 
number of particles, particularly for x > 500 m. Now particles can have any value of C between 0 and 389 
1. Increasing the redistribution parameter to 훼 = 0.1 further improves the solution for x < 500 m. 390 
Further increasing 훼 to 0.5 does not significantly improve the solution in comparison to 훼 = 0.1.  391 

 392 

 393 
Figure 5. PCPM simulation of concentration plume in an idealized channel with four different values 394 
of the cell-based redistribution weight parameter ( = 0, 0.01, 0.1, 0.5). There are three panels for each 395 
value of The top panel shows the locations of particles after 720 time steps (12 minutes). The 396 
second panel shows the average concentration in each 10 m square cell with the same blue to red 397 
scale as the top panel, except cells with C = 0 are black. The third panel compares concentration along 398 
the centerline of the plume from the second panel to the analytical solution for a diffusive plume. 399 
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3.2. Idealized Case 2: Vertical settling 400 

The results at the end of 5,000 time steps of the second idealized case are shown in Figure 6. In 401 
Figure 6, the dots represent the locations of the particles on the vertical axis and the value of 402 
concentration they are carrying on the horizontal axis. The thin line is the cell average concentration. 403 
The thick line is the analytical solution, 404 

퐶 = 푒           (11) 405 
As shown in Figure 6, the model properly simulates the change in concentration due to vertical 406 
settling and mixing while allows the particles to remain approximately uniformly distributed in the 407 
vertical.  The simulation accuracy increases with increased resolution of vertical layers. The model 408 
result with 20 vertical layers shows a close agreement with the analytical solution. Specifically, 409 
Figure 7 shows the evolution in time of the root mean square difference (RMSD) between the cell 410 
averages and the analytical solution for the three cases. While the RMSD in the simulation with 5 411 
layers remains above 0.2 (the magnitude of initial error) over the entire simulation, the RMSD 412 
decreases quickly to 0.02 after 500 time steps and remains stable at this level when vertical resolution 413 
is increased to 20 layers. 414 

 415 
Figure 6. The PCPM simulation of vertical settling in comparison to the analytical solution at the end 416 
of 5,000 time steps. Three runs were made with 5, 10, and 20 vertical cells, respectively. The dots 417 
represent the locations of the particles on the vertical axis with their respective concentration on the 418 
horizontal axis. The thin line represents the cell average concentration and the thick line represents 419 
the analytical solution. 420 
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 421 
Figure 7. The time evolution of the root mean square difference (RMSD) between the cell averages 422 
and the analytical solution for the three cases presented in the Figure 3 (dark line for 5 cells, medium 423 
line for 10 cells, and light line for 20 cells). 424 

3.3 Application to Sandusky Bay 425 
To ensure the validity of the 1-D NPZD biological model, it was configured to duplicate several 426 

scenarios (not shown) from Edwards et al. [46]. The model demonstrated the expected linear 427 
stability of a vertically-distributed, NPZ ecosystem model when it was used in the scenarios that 428 
incorporate the impact of vertical mixing on biological dynamics. Scenarios include stable profiles, 429 
damping oscillatory dynamical trajectories, and vertically phase-locked systems, depending on the 430 
depth and choice of parameters and strength of vertical diffusion, which can be discerned from the 431 
eigenvalues in linear stability analysis [46]. The 1-D NPZD model used in this study reproduced all 432 
of these cases almost identically. 433 

Before examining the impact of physical transport on the biological dynamics in Sandusky Bay, 434 
we first tested the ability of PCPM to simulate the advection-diffusion of a passive tracer in a natural 435 
setting. The Sandusky river plume is simulated using the conventional soluble-tracer model based 436 
on Equation 1 and compared to the PCPM model approach in Figure 8.  It is clear that the plumes 437 
simulated using the two methods show a very similar pattern, indicating the validity of the PCPM. 438 
Upon closer review, the plume simulated with soluble-tracer model shows a smoother evolution 439 
and sharper gradient near the plume front. We speculate this is partly due to the constant 440 
random-walk scale (10 푚 /푠 ) used in the current particle-tracking model configuration. 441 
Nonetheless, the attractiveness of PCPM is its computational efficiency; it runs ~100 times faster than 442 
the soluble-tracer model which will be discussed in detail in the following section and table 2. 443 
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 444 
Figure 8.  River plumes simulated with conventional soluble-tracer model (left panels) and PCPM 445 
model (right panels). The color scale represents the nitrogen concentration. 446 

To aid in model development, several datasets are gathered from literature as well as data 447 
acquisition organizations. Sandusky River daily discharge and nitrogen concentration are available 448 
from the National Center for Water Quality Research (https://ncwqr.org/monitoring/data/). 449 
Nitrogen, Chlorophyll concentration, and in-situ temperature data are available from two 450 
observational sites (ODNR1 and EC1163) in the eastern bay from May – October 2015, sampled by 451 
Bowling Green State University [28].  452 

Using the PCPM-NPZD model, the importance of physical transport is demonstrated by 453 
comparing model results between the PCPM-NPZD-NOADV simulation and the realistic 454 
PCPM-NPZD-REAL simulation. In the PCPM-NPZD-NOADV simulation, the model is configured 455 
the same as the PCPM-NPZD-REAL, except the movement of particles is driven only by turbulent 456 
diffusion without including advective processes due to the Sandusky River and wind field. Each 457 
simulation consists of three cases that use a high initial nutrient concentration of 9 mg N/L in June 458 
(case 1), medium initial concentration of 0.46 mg N/L averaged from July to September (case 2), and 459 
low initial concentration of 0.0075 mg N/L in August (case 3), respectively. The concentration values 460 
are estimated as total nutrient loading from the Sandusky River to the Bay 461 
(https://ncwqr.org/monitoring/data/) divided by the total water volume of the bay. The comparison 462 
of model results is presented in Figure 9. The simulation of PCPM-NPZD-NOADV without 463 
resolving the advective transport processes shows a significant discrepancy from observational data 464 
(Figure 9, upper panels). The model fails to capture both the timing and magnitude of the blooms in 465 
all three cases, and model results are sensitive to the initial nutrient concentration. 466 

On the other hand, after the impact of advective processes is resolved in the 467 
PCPM-NPZD-REAL simulation, the model accurately depicts the magnitude of the chlorophyll peak 468 
in mid-August (Figure 9, lower panels), and model results are insensitive to the initial condition, but 469 
determined by Sandusky River discharge and its nutrient loading. Three cases show nearly 470 
indentical results. Results also support the field sampling study in Salk et al. [28]. Their study finds a 471 
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strong, nonlinear connection between the bloom occurrence and the hydraulic residence time of the 472 
bay, which varies dramatically from 8 days to several months depending on the Sandusky River 473 
flow rate in the physical transport process. Although further development of the NPZD is 474 
undoubtedly necessary to resolve the onset and variability of the algal blooms by refining the 475 
structure of the biological model and improve the model parameterization, it is beyond the scope of 476 
this work, in which we focus on demonstrating the feasibility of linking hydrodynamic effects and 477 
biological processes through the PCPM in a Lagrangian/Eulerian framework. Further development 478 
of the biological model and its application to the study of mechanisms responsible for the HABs in 479 
Sandusky Bay will be presented in another paper. 480 

 481 
Figure 9. Observed and model simulated Chlorophyll concentration at the sampling stations EC1163 482 
and ODNR1. The upper panels are results from the PCPM-NPZD-NOADV model simulations; the 483 
lower panel are the results from the realistic PCPM-NPZD model simulations where the three cases 484 
show nearly identical results, so only one result is plotted. 485 

5. Summary and Conclusions 486 
In this paper, we describe a novel method by integrating a property-carrying particle model 487 

(PCPM) and an Eulerian concentration biological model for ecosystem modeling. The model is 488 
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tested in idealized cases and its utility is demonstrated in a practical application to Sandusky Bay. 489 
The novelty of this new technique lies in its integration of hydrodynamic effects via the 490 
property-carrying particle tracking model and Eulerian grid-based biological modeling approach. 491 
Overall, there are several advantages of the PCPM over traditional Eulerian-based tracer 492 
approaches. The PCPM is simpler to implement and more efficient as it does not need to solve the 493 
advection-diffusion equation. Instead, the PCPM uses pre-computed particle trajectories to resolve 494 
the hydrodynamic condition based on currents from a hydrodynamic model. This means that the 495 
hydrodynamic model only needs to be run once giving one the ability to run different biological 496 
scenarios for the same physical characteristics; ultimately saving significant computational time.  497 

As summarized in Table 2, a 30-day hydrodynamic simulation for the Lake Erie-Sandusky Bay 498 
FVCOM model takes 15 hours to complete using 64 CPUs. This step is necessary for both the 499 
PCPM-NPZD model and the traditional Eulerian, grid-based biophysical model. Once the 500 
hydrodynamic simulation is complete, PCPM-NPZD requires to calculate the Lagrangian 501 
trajectories of a large number of current-following tracer particles; it takes 1.5 hours using single 502 
CPU to track ~290,000 particles in the domain in March, which tracks the largest number of particles 503 
in the bay within a single month. The PCPM-NPZD model simulation using the particle trajectories 504 
as input completes a 30-day simulation within 5 minutes using a single CPU while it takes 5 hours 505 
for traditional Eulerian, grid-based biophysical model to complete the same simulation using 32 506 
CPUs. If compared with the same computational power (e.g., single CPU), the PCPM-NPZD 507 
approach runs ~100 times faster for the biophysical modeling (Table 2; Scenario 1). 508 

More importantly, in the PCPM framework, the hydrodynamics and associated water transport 509 
and mixing represented by particle trajectories are “reserved” and not affected by biochemical 510 
properties. In other words, it only takes another 5 minutes to run the PCPM-NPZD for a different set 511 
of parameters and property configurations. This is extremely useful during the model calibration 512 
and or ensemble simulations. The PCPM-NPZD would take 11.5 hours to complete 100 runs using a 513 
single CPU, while traditional method would require 500 hours simulation using 32 CPUs (Table 2; 514 
Scenario 2). Such a high level of efficiency is not available from tracer-based models because one will 515 
have to re-run the Eulerian-based biological model for any change in parameter configuration or 516 
estimation of different property concentration. Also, the PCPM is capable of providing comparable 517 
simulation results to the soluble-tracer model, although the global and local mass conservation is not 518 
strictly preserved with finite particles. Above all, it is the PCPM’s computational efficiency and 519 
coupling flexibility which makes it an attractive alternative method to the traditional approach. 520 
 521 
 522 
 523 
 524 
 525 

Table 2. The comparison of total run time using the method developed in this study (new 526 
method) and the grid-based Eulerian method (traditional method) in two scenarios. Scenario 1: 527 
Conduct coupled biophysical model only once; Scenario 2: Run ensemble simulation of the coupled 528 
biophysical model for 100 simulations with different biological parameterization. 529 

 530 
        Scenario 1 Scenario 2 

  
Simulation 
period (day) 

# of 
CPUs 

Time per 
run (hour) 

Required 
runs  

Total 
Time 

Required 
runs  

Total 
Time 

Hydrodynamic 
simulation 

(required for both 
methods) 

30 64 15  1 15 hrs 1 15 hrs 
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Biological 
simulation 

              

New Method               
Particle trajectory 

model 
30 1 1.5  1 1.6 hrs 

(1 CPU) 
1 11.5 hrs 

(1 CPU) 
PCPM-NPZD 30 1 0.1  1 100 
Traditional 

Method 
              

Eulerian, 
grid-based 
simulation 

30 32 5 1 
5 hrs 

(32 CPUs) 
100 

500 hrs 
(32 CPUs) 

 531 
 532 

Appendix A. Biological Model Formulation and Parameters; the original value of the parameters 533 
is provided in ( ) if tuned value was used.  534 

Parameters Description Units Value used References 

푘  Half-Saturation constant µmol N/L 3 (0.6) [17] 
푁표 Nutrient threshold µmol N/L 0 (1.4) [18] 

훼  
Initial linear slope at low 
irradiances 

mgC ∙ 푚
푚푔퐶ℎ푙 · 퐸푖푛푠푡 

7 [18] 

훽  
Negative slope at high 
irradiances 

mgC ∙ 푚
푚푔퐶ℎ푙 · 퐸푖푛푠푡 

0 [43] 

푢  
Maximum potential growth 
rate 

mgC
푚푔퐶ℎ푙 · ℎ 2.4 [43] 

푇  Optimum temperature ℃ 27.2 [42] 
푇  Minimum temperature ℃ 5.5 [42] 
푢 ( ) Maximum growth rate for P day	  1.1 

 
훾  Phytoplankton respiration 

coefficient 
day	  0.01 [17] 

훾  
Exponential for 
Temperature forcing 

dimensionless 0.07 [17] 

훾  
Remineralization rate of 
detritus 

day	  0.015 [17] 

퐺  
Maximum P grazing rate by 
Z 

day	  0.4 [17] 

휎  
Preference coefficient of Z 
on P 

(푚푚표푙	퐶	푚 )  0.5 [17] 

휎  
Preference coefficient of Z 
on D 

(푚푚표푙	퐶	푚 )  0.1 [17] 

휖  Mortality rate of P day	  0.005(0.01) [17] 
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The mathematical expressions for the biological terms in the system of equations (10) are listed 535 
below, where the definition and value of each parameter in the equations is above. 536 

푃(푢푝푡푎푘푒) = 푢 ( ) ∙ 푓(푇) ∙ 푓(퐼) ∙ 푓(푁) ∙ 푃     (A1) 537 
푃(푟푒푠푝푖푟푎푡푖표푛) = 훾 ∙ 푃 ∙ 푒푥푝(훾 ∙ 푇)      (A2) 538 
푍(푟푒푠푝푖푟푎푡푖표푛) = 훾 ∙ Zexp(훾 ∙ T)       (A3) 539 
퐷(푟푒푚푖푛푒푟푎푙푖푧푎푡푖표푛) = 훾 ∙ D ∙ exp(훾 ∙ T)      (A4) 540 

푍푃(푔푟푎푧푖푛푔) = 퐺 푍       (A5) 541 

푍퐷(푔푟푎푧푖푛푔) = 퐺 푍          (A6) 542 

푃(푚표푟푡푎푙푖푡푦) = 휖 푃          (A7) 543 
푍(푚표푟푡푎푙푖푡푦) = 휖 푍          (A8) 544 

푃(푠푖푛푘푖푛푔) = −푊                           (A9) 545 

퐷(푠푖푛푘푖푛푔) = −푊                                   (A10) 546 

푓(퐼) = (1	 − 	푒 	 )푒 	        (A11) 547 

푓(푁) =           (A12) 548 

푓(푇) = exp	(−2.3( ) )       (A13) 549 

퐼 = 퐼 exp(−푘 ℎ)          (A14) 550 
푘 = 푎 + 푎 푃 + 푎 퐷                                (A15) 551 

 552 
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휖  Mortality rate of Z day	  0.2 (0.01) [17] 
푊  Sink velocity of P m/day 0.6 [17] 

푊  Sink velocity of D m/day 0.6 [17] 

푎  
Water attenuation 
coefficient 

m	  0.07 [18] 

푎  Phytoplankton attenuation 
coefficient 

mg퐶ℎ푙 푚  0.03 [18] 

푎  
Detritus attenuation 
coefficient 

g	푑푒푡푟푖푡푢푠	퐶 푚  0.2 [18] 
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