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Abstract: We introduce poly-symplectic extension of Souriau Lie groups Thermodynamics based
on higher-order model of statistical physics introduced by R.S. Ingarden. This extended model could
be used for small data analytics and Machine Learning on Lie groups. Souriau Geometric Theory of
Heat is well adapted to describe density of probability (Maximum Entropy Gibbs density) of data
living on groups or on homogeneous manifolds. For Small Data Analytics (Rarified Gases , sparse
statistical survey,...), density of maximum entropy should consider Higher Order Moments
constraints (Gibbs density is not only defined by first moment but fluctuations request 2nd order
and higher moments) as introduced by R.S. Ingarden. We use Poly-sympletic model introduced by
Christian Giinther, replacing the symplectic form by a vector-valued form. The poly-symplectic
approach generalizes the Noether theorem, the existence of momentum mappings, the Lie algebra
structure of the space of currents, the (non-)equivariant cohomology and the classification of G-
homogeneous systems. The formalism is covariant, i.e. no special coordinates or coordinate systems
on the parameter space are used to construct the Hamiltonian equations. We underline the
contextures of these models, and the process to build these generic structures.

Keywords: Higher Order Thermodynamics; Lie Groups Thermodynamics; Homogeneous
Manifold; Poly-Symplectic Manifold; Dynamical Systems; Non-equivariant Cohomology

« ... inviter les savants géometres a traiter nos problémes avec le soucis de la commodité et de
Vagrément : qu’ils écartent tout ce qui n’a rien a voir avec la pénétration de 'esprit, seule qualité
dont nous faisons grand cas et que nous nous sommes proposé d'éprouver et de couronner » - Blaise
Pascal — Deuxiéme Lettre sur la roulette, Paris, 19 Juillet 1658

« Nous avons fait de la Dynamique un cas particulier de la Thermodynamique, une Science qui
embrasse dans des principes communs tous les changements d’état des corps, aussi bien les
changements de lieu que les changements de qualités physiques » - Pierre Duhem, Sur les
équations générales de la Thermodynamique, 1891 [25]

« Nous prenons le mot mouvement pour désigner non seulement un changement de position dans
I'espace, mais encore un changement d’état quelconque, lors méme qu’il ne serait accompagné
d’aucun déplacement... De la sorte, le mot mouvement s’oppose non pas au mot repos, mais au mot
équilibre. » - Pierre Duhem, Commentaire aux principes de la Thermodynamique, 1894 [26,
27, 115]

1. Introduction

These two Pierre Duhem’s citations (see [116] for English translation) make reference to Aristotle
Definition of “motion” (can be found in the Physics), to designate not only a change of position in
space, but also any change of state, even if not accompanied by any displacement. In this case,
Dynamics appears as a special case of “General Thermodynamics”, to describe in common principles
all changes in the state of the body, both changes of place and changes in physical qualities. Making
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reference to Duhem’s “Energetics”, Stefano Bordini write in [113]:” This theoretical design led Duhem to
rediscover and reinterpret the tradition of Aristotle’s natural philosophy and Pascal’s epistemology ...This
outcome was surprising and clearly echoed the Aristotelian language and concept of motion as change and
transformation: within the framework of Aristotelian natural philosophy, motion in the modern physical sense
was actually a special case of the general concept of motion. The mathematisation of thermodynamics coincided
with a generalisation of mechanics, and this generalisation led to an unexpected connection between modern
mathematical physics and ancient natural philosophy”(see [114] and [117] for more developments on
filiation between Aristotle, Pascal and Duhem Philosophy). This conceptual and epistemology point
of view was enlightened 75 years after by Jean-Marie Souriau through symplectic model of Geometric
Mechanics applied to Statistical Mechanics and used to build a “Lie Groups Thermodynamics” of
dynamical systems, where the Gibbs density is covariant with respect to the action of Lie group on
the system (Dynamical groups as Galileo group). This Souriau theory is based on tools related to non-
equivariant cohomology and affine representation of Lie groups and Lie algebra (last approach was
independently studied in mathematical domain by Jean-Louis Koszul to characterize homogeneous
convex cones geometry).

In this paper, we will explore and compare the joint geometric contextures shared in Information
theory (based on Koszul’s Information Geometry) and Heat theory (based on Souriau’s Lie Groups
Thermodynamics) to highlights their joint elementary structures. Classically, we address analogies
between mathematical or physical models by comparing their “structures” defined as the
arrangement of and relations between the parts or elements, or as the way in which the parts are
arranged or organized. Concept of “contexture” is more general and phenomenological and could be
defined as the act, process, or manner of weaving parts into a whole. We have then replaced the
relations between objects by the act to build these relations. Based on Souriau general definition of
Entropy as Legendre transform of logarithm of Laplace transform and Symplectic structure
associated to Lie Group coadjoint orbits, we will see how geometric structures of Information and
Heat theories are generated by these Souriau’s “generative processes”. We will extend theses
contextures in the vector-valued case based on poly-symplectic model of higher order Souriau’s Lie
Groups Thermodynamics.

Symplectic structure has been introduced in Mathematics much earlier than the word symplectic,
in works of the French Physicist Joseph Louis Lagrange (see paper on the slow changes of the orbital
elements of planets in the solar system), who showed that this geometry is a fundamental tool in the
mathematical model of any problem in Mechanics. Jean-Marie Souriau has shown that Lagrange’s
parentheses are the components of the canonical symplectic 2-form on the manifold of motions of the
mechanical system, in the chart of that manifold [45-46].

Jean-Marie Souriau, graduated from ENS ULM was the nephew of Etienne Souriau (Philosopher,
collaborator of Gaston Bachelard in Paris Sorbonne University) and grandson of Paul Souriau
(Philosopher) who both have worked on «aesthetic ». His book SSD (structure des systems
dynamiques) was elaborated in Carthage and Marseille, where Souriau was installed with his wife
Christiane Souriau-Hoebrecht. In 1952 Souriau found a position at Institut des Hautes Etudes de
Tunis (8 rue de Rome, Tunis) and was back in Marseille in a position in 1958 at Faculté des Sciences.
The manuscript is given to the editor Dunod in 1969, but only edited in 1970. About the source of his
book title, we are at the apogee or « acmé » of the STRUCTURALISM in anthropology / sociology /
linguistic / philosophy / epistemology in France (Levi-Strauss, Barthes, Foucault, Althusser,
Lacan,...). The word "structure" was in the air of time, fashionable at the moment, circulating on all
the lips as described by Francois Dosse in “Histoire du structuralisme I & II”. After his ONERA PhD
Defence in 1953, his PhD supervisor André Lichnerowicz made one comment « you have many anti-
symmetrical forms in your calculations, you should be interested in symplectic structures».
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Figure 1. Institut des Hautes Etudes de Tunis, 8 rue de Rome where Souriau has developed his theory of
Geometric Mechanics and Lie Groups Thermodynamics (http://www.ina.fr/video/AFE01000164)

As early as 1966, influenced by Francois Gallissot work (Souriau and Galissot both attended
ICM’54 in Moscow ? Did they discuss about 1952 paper ?), Souriau applied his theory of geometric
mechanics to statistical mechanics, developed in the Chapter IV of his book “Structure of Dynamical
Systems” [1,2], what he called “Lie groups thermodynamics”. Using Lagrange’s viewpoint, in Souriau
statistical mechanics, a statistical state is a probability measure on the manifold of motions. As we
can read in his book, Souriau was influenced by Frangois Gallisot to introduce the Lagrange(-Souriau)
2-form.

In place of classical mechanical equations of a material point subjected to a force F, defined by

2
its mass m and its position r at time ¢, the second order differential equations md_f =F is
dt

rewritten by a system of first order differential equations in phase space [rJ:
%

If the force F is derived from a potential w, we have classical equations:
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This idea of Lagrange, rediscovered by Souriau was to consider time ¢ like the others variables. One
should use then the 7-dimensional space V (evolution space):
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Classical system of first order differential equations in phase space can then be rewritten in evolution
space V by the homogeneous form:

mov—Fot=0
or—vot=0
4)

At each point y of V, these equations define the tangent direction to the curve x described by the
point y during the evolution of the system. These curves are the leaves (lines of force) of the field of
directions defined by the equations of the homogeneous form, as defined for foliated manifolds.

Evolution space V Space of motions U

B o [ o =

—

Figure 2. Evolution space V, Space of motions U and classical space time (figure from Souriau Book
SSD)

space-time

A dynamical system is then represented by a foliation of the evolution, where the foliation is
determined by an antisymmetric covariant second order tensor, denoted by ¢ and called Lagrange-
Souriau 2-form. The components of this tensor are expressions known as Lagrange brackets. ¢ is
considered as a bilinear operator on tangent vectors of V. If we choose two such vectors:

o o't
@/= S5 and éwy = or

ov o'v
®)

o associates to them an antisymmetric scalar product:

o()o'y)=(mév—Fot,8'r —vS't)—(md'v—F8't,6r —vet)
6)

In Souriau-Lagrange model, o is a2-form on the evolution space V, and the differential equation of
motion §y e ¢ implies:

o(ov)o'y)=0,Vs'y
@)

which can be written
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a(d)=0 or Sy e ker(o)

For study of this Souriau-Lagrange 2-form, see papers of V. Obadeanu [60-62].

Souriau has observed that this 2-form was introduced by Lagrange in a different language in his
study of celestial mechanics in 1808. Souriau was also influenced by Frangois Gallisot that used this
2-form in [47, 48]. We will see in the following the Souriau’s “Moment Map " in dual Lie algebra of
the group G, and the study of coadjoint orbits of G, (Group G-action on moment map x canonically
generates symplectic manifolds). Souriau has extended this model for Thermodynamics. For this new
phenomenological approach of Mechanics, Thermodynamics and Information Theory, we can give
reference to Souriau introduction of his paper “Quantique ? Alors c’est géométrique” [65] and video
of his talk [66]:

« Let's put ourselves first in the framework of classical mechanics. Let’s study an isolated, non-dissipative
mechanical system - we will briefly say a "thing”. The set of movements of this “thing” is a symplectic
manifold. Why ? It is enough to refer to the Analytical Mechanics of Lagrange (1811); the space of
movements is treated as a differentiable manifold; the covariant and contravariant coordinates of the
symplectic form are written there (these are the "parentheses” and "brackets” of Lagrange). Let’s now talk
about the geometry of the 20th century. Let G be a diffeological group (for example a Lie group); u a
moment of G (a moment is a left invariant 1-form on G); then the action of the group on u canonically
generates a symplectic space (these groups can have an infinite dimension). Epistemological
presumption: behind each “thing” is hidden a group G (its “source”), and the movements of the
“thing” are simply moments of G (mnemonic Latin Doublet: momentum-movimentum). The isolation
of the “thing” then indicates that the group of Poincaré (respectively Galileo-Bargman) is inserted in G;
here is the origin of the relativistic (respectively classical) conserved magnitudes associated with a
movement x: they simply constitute the moment induced on the spacio-temporal group by the moment-
motion x.

[Placons-nous d’abord dans le cadre de la mécanique classique. Etudions un systéme mécanique isolé,
non dissipatif - nous dirons briévement une « chose ». L’ensemble des mouvements de cette « chose » est
une variété symplectique. Pourquoi ? 11 suffit de se reporter a la Mécanique Analytique de Lagrange (1811)
; espace des mouvements y est traité comme variété différentiable ; les coordonnées covariantes et
contravariantes de la forme symplectique y sont écrites (Ce sont les “parenthéses” et “crochets” de
Lagrange). Evoquons maintenant la géométrie du 20éme siécle. Soit G un groupe difféologique (par
exemple un groupe de Lie) ; 4 un moment de G (un moment, c’est une 1-forme invariante a gauche sur
G); alors I'action du groupe sur u  engendre canoniquement un espace symplectique (ces groupes
pourront avoir une dimension infinie). Présomption épistémologique : derriére chaque « chose » est
caché un groupe G (sa “source”), et les mouvements de la « chose » sont simplement des moments
de G (Doublet latin mnémotechnique : momentum-movimentum). L'isolement de la « chose » indique
alors que le groupe de Poincaré (respectivement de Galilée-Bargman) est inséré dans G; voila 'origine des
grandeurs conservées relativistes (respectivement classiques) associées a un mouvement x: elles
constituent simplement le moment induit sur le groupe spacio-temporel par le moment-mouvement x.] »

« There is a theorem dating back to the twentieth century. If we take a coadjoint orbit of a Lie group,
it is provided with a symplectic structure. Here is an algorithm to produce symplectic
manifolds: take coadjoint orbits from a group. So it suggests that behind this symplectic structure of
Lagrange, there was a hidden group. Take the classic movement of a moment of the group, so this group is

very "big” to have the whole solar system. But in this group is included the Galileo group, and any moment
of a group generates moments of a subgroup. We will find like that the moments of the group of Galileo,
and if we want relativistic mechanics, it will be Poincaré group. In fact with Galileo group, there is a small
problem, it is not the moments of the Galileo group that are used, it is the moments of a central extension
of the Galileo group, which is called the Bargman group, and that is of dimension 11. It is because of this


http://dx.doi.org/10.20944/preprints201808.0196.v1
http://dx.doi.org/10.3390/e20110840

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2018 d0i:10.20944/preprints201808.0196.v1

extension, that there is this famous arbitrary constant appearing in the energy. On the other hand, when
we do special relativity, we take Poincaré group and there are no more problems because among the
moments there is the mass and the energy is mc2. So the 11-dimensional group is an artifact that
disappears, when we do special relativity.

[1l y a un théoréeme qui remonte au XXéme siécle. Si on prend une orbite coadjointe d’un groupe de
Lie, elle est pourvue d'une structure symplectique. Voici un algorithme pour produire des
variétés symplectiques : prendre des orbites coadjointes d’un groupe. Donc cela laisse penser que

derriére cette structure symplectique de Lagrange, il y avait un groupe caché. Prenons le mouvement
classique d’un moment du groupe, alors ce groupe est trés « gros » pour avoir tout le systeme solaire. Mais
dans ce groupe est inclus le groupe de Galilée, et tout moment d’un groupe engendre des moments d'un
sous-groupe. On va retrouver comme cela les moments du groupe de Galilée, et si on veut de la mécanique
relativiste, cela va étre du groupe de Poincaré. En fait avec le groupe de Galilée, il y a un petit probléme,
ce ne sont pas les moments du groupe de Galilée qu’on utilise, ce sont les moments d une extension centrale
du groupe de Galilée, qui s’appelle le groupe de Bargman, et qui est de dimension 11. C’est a cause de cette
extension, qu'il y a cette fameuse constante arbitraire figurant dans l'énergie. Par contre quand on fait de
la relativité restreinte, on prend le groupe de Poincaré et il n’y a plus de problémes car parmi les moments
il y a la masse et l'énergie c’est mc2. Donc le groupe de dimension 11 est un artéfact qui disparait, quand
on fait de la relativité restreinte.]»

Francois Gallissot has observed that in his famous lessons on integral invariants, Elie Cartan has
shown that all the properties of the differential equations of the dynamics of holonomic systems result
from the existence of the integral invariant:

Iw with o= Zpidq,. — Hdt
©)

Thus every holonomic system whose forces derive from a force function is associated to a form @,
the equations of motion being the characteristics of the exterior form dw . Around 1950, the theory
of exterior forms on differentiable manifolds has been established on new foundations under the
influence of topologists. The question was then to wonder:

o if classical mechanics cannot benefit from these models by placing an exterior form of degree
two at its base

e if thanks to the notion of manifold, the notion of connection cannot be introduced in a more
natural way

e if the paradoxal indeterminations/impossibilities in the Lagrangian framework could be
explained more clearly

e if the problem of integration of equations of motion could be enlightened, generated by a
form Q of degree two.

To reach these various objectives, Frangois Gallissot has resumed first the study of the logical
bases on which the Galilean mechanics is built. He thus shown that when it is proposed to find
generating forms of the equations of motion of a material invariant point in the transformations of
the Galilean group, the most interesting form is an exterior form of degree two defined on a variety
E*xExT ( E’ Euclidean space, T temporal). Francgois Gallissot shown that any holonomic
parametric system with n degrees of freedom is associated with a form Q of degree 21 defined on
a differentiable manifold whose characteristics are the equations of the movement. This form is
expressed by means of 2n Pfaff forms and by dt, the Hamiltonian form being a simple special case.
He gave a summary of how we can get rid of the servitude of coordinates in the study of dynamical
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systems and the important role played by the operator j( ) antiderivative introduced by Henri
Cartan, the characteristic field E of the form Q being defined by the relation ;(£)Q = 0. Frangois

Gallissot has then introduced the following theorem:

Theorem: There are three types of differential forms generating equations of movement of a material
point invariant in the transformations of the Galilean group

1 3

2m i=l
3

mdv - Fdl

(dx -V, dt)z

N\s

j=1

B:f= 25 dx, —vdt)(mdv —th) with &; krénecker symbol

C: o= z 9, (mdv, — Fdt) /\(dxj - vjdt)
1
(10)

If we consider the last form “C” :

3
o= Zé‘ij (mdv, — Fdt) /\(dxj - vjdt)= modv, Adx, —md,v,dv; Adt+06,Fdx, ndt

(11)
dw =0 constraints Pfaff form é‘l.j E.dxj to be closed, and to reduce the differential of function U :

@=moydv, ndx, —dH ndt
(12)

with H=T-U and T =
(13)

It proves that @ is the exterior derivative of:

3
do=" mvdx, - Hdt

i=1

(14)
The form o" =dw generates Elie Cartan integral invariant.

In chapter IV of his book, Souriau applied this model based on Symplectic geometry for statistical
mechanics. Souriau observed that Gibbs equilibrium is not covariant with respect to dynamic groups
of Physics. To solve this braking of symmetry, Souriau introduced a new “geometric theory of heat”
where the equilibrium states are indexed by a parameter g with values in the Lie algebra of the
group, generalizing the Gibbs equilibrium states, where g plays the role of a geometric (Planck)
temperature. Souriau observed that the group of time translations of the classical thermodynamics is
not a normal subgroup of the Galilei group, proving that if a dynamical system is conservative in an
inertial reference frame, it need not be conservative in another. Based on this fact, Souriau generalized
the formulation of the Gibbs principle to become compatible with Galileo relativity in classical
mechanics and with Poincaré relativity in relativistic mechanics. The maximum entropy principle is
preserved, and the Gibbs density is given by the density of maximum entropy (among the
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equilibrium states for which the average value of the energy takes a prescribed value, the Gibbs
measures are those which have the largest entropy), but with a new principle “If a dynamical system is
invariant under a Lie subgroup G’ of the Galileo group, then the natural equilibria of the system forms the
Gibbs ensemble of the dynamical group G””. The classical notion of Gibbs canonical ensemble is extended
for a homogneous symplectic manifold on which a Lie group (dynamic group) has a symplectic
action. In case of Galileo group, the symmetry is broken, and new “cohomological” relations should
be verified in Lie algebra of the group. A natural equilibrium state will thus be characterized by an
element of the Lie algebra of the Lie group, determining the equilibrium temperature g . The
entropy s(Q), parametrized by ¢ the geometric heat (mean of energy U, element of the dual Lie
algebra) is defined by the Legendre transform of the Massieu potential given by ®(4), parametrized
by g (®(p) is the minus logarithm of the partition function y ,(4)):

Os
—eq

3 B . __ -(BU&) :62 * =
(0)=(5.0)~0(p) vith () =-log[e " Vdw, 0=TF ea” and p=7 7 a5)

Jean-Marie Souriau has proposed to study the statistical mechanics from the new point of view of
Symplectic geometry, completing the work of Poincaré and Cartan on integral invariant, reinventing
the Lagrangian symplectic form in place of classical variational formulation and geometrizing the
Noether Theorem with a moment map as new conserved quantities. Firstly, Souriau Lie Groups
Thermodynamics gives geometrical status to the (Planck) temperature and the Entropy with a new
general definition of the Fisher Metric. Secondly, Souriau Relativistic Thermodynamics of continua
provides a geometrization of the second principle by the permanence of the Entropy current, whose
flux has positive divergence [71-75]. This 2nd model of Souriau Thermodynamics is described in
appendix. Other authors have studied this Relativistic Thermodynamics of continua [69,70,76-81].

For the case of a small data analytics and Machine Learning on Lie groups, when Gibbs density
is fluctuating, we have a generalized Souriau model introducing a poly-symplectic generalization of
Maximum entropy and Gibbs density in Lie Groups Thermodynamics. This Geometric theory of Heat
allows us to generalize Information Geometry in more abstract spaces.

If some works have been done from 80’s by R.S. Ingarden [16-17] and R. Mrugala [18-22] and V L
Arnold [107] to give a geometric structures to Thermodynamics, Souriau Lie Groups
Thermodynamics was ignored more than 50 years until recent recover in [4-5].

2. Higher order Thermodynamics based on higher order temperatures

We will generalize Souriau theory [1][2], reconsidered in [5] and with links with Information
Geometry in [4], in the framework of higher order thermodynamics as introduced by R.S. Ingarden
[9-11] and W. Jaworski [7,8] for mesoscopic systems. We can make also reference to other publications
of R.S. Ingarden [39-43], W. Jaworsky [35-38] and T. Nakagomi [44] on higher order thermodynamics.
The Gibbs canonical state results from the Maximum Entropy principle when the statistical mean
value of energy is supposed to be known. A Polish School has studied the maximum entropy
inference with higher-order moments of energy (when not only mean values but also statistical
moments of higher order of some physical quantities are taken into account). Ingarden in 1963 and
Jaworski in 1981 have introduced the concept of second and higher-order temperatures, by assuming
a distribution function which includes information not only on the average of the energy but also on
higher-order moments, in particular 2°¢ moment related to fluctuations. This case should be
considered in situations where fluctuations are not negligible, such as near phase transitions or
critical points, in metastable states in systems with a small number of degrees of freedom. Ingarden
idea is that if we can measure more details, such as the first n cumulants of the energy, we can then
introduce n high-order temperature, as the Lagrange multipliers when we maximize the Entropy
with respect to these values:
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P(ﬂlsﬁz) Z(ﬂl , ﬂz )
(16)

Ingarden proposed that if we can measure the second cumulant of the energy (the fluctuation of
the energy), the equilibrium state is not the canonical state, but would need two temperatures.
Ingarden argues that for a macroscopic system there is very little difference between the two states,
and that we would need a mesoscopic or microscopic system to be able to detect the higher
temperature. W. Jaworski [7,8] has shown that the contribution to the total entropy, arising from the
extra information corresponding to the higher-order moments, is o(N) , when N tends to infinity and
N/V ratio is constant, with N the number of particles and V the volume. The main result of W.
Jaworski is that from a purely thermodynamic point of view, the information corresponding to the
higher-order moments of extensive physical quantities is not essential and can be neglected in the
maximum entropy procedure. Jaworski showed that the maximum entropy inference has a certain
stability property with respect to information corresponding to higher order moments of extensive
quantities. It can serve as an argument in favor of the maximum entropy method in statistical physics
and to understand better why these methods are successful. R.F. Streater [3] has prefered to say that
the states with generalized temperatures are not in equilibrium, assuming that the final state, at large
times, will be the canonical or grand canonical state depending on mixing properties. R. F. streater
[3] intends that this occur even for a mesoscopic system, such as a few atoms, adding that his
approach is equivalent to Ingarden model if the relaxation time from the state with generalized
temperatures to the final equilibrium is very long.

Some examples of higher order maximum Entropy are given by Ingarden:

e 1st example of Higher Oder Maximum Entropy Density:

Density of maximum Entropy §(P)=— I P(x)log P(x)dx
17)

under the constraints: P(x) >0, jP(x)dx =1 and E(xz" ): sz”P(x)dx =g

—o0

(18)
is given by:
1 x2n
P(x) = 1 exp[_ 21’102)1 ] = fn (x)
22n) " o T(1+1/2n)
(19)

with the following parameters

1 _2r(1+1/2n) B 1
br= g BN =m0 S(P)=logZ(f, )+

n

(20)

where E(xZH): 0 and _M — ot = E(xlk)z (2n)"" o T (1+(2k +1)/2n)
ap, 2k +1)r(1+1/2n)
(1)
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Figure 3. Higher order maximum entropy density for constraints (18) from Ingarden paper

e 2nd example of Higher Oder Maximum Entropy Density:

Density of maximum Entro S(P)=— | P(x)log P(x)dx under the constraints:
y Py S(P) (x)log P(x)
0

P20, [Prdr=1 and E(x")= [ xP(x)de=o"

(22)

n

X
n

is givenby:  p(x)= 1 exp(—
n'oX(1+1/n) i

J-seo
(23)

with the following parameters

1 1
B,=— z(ﬂn):r(l%}/"), S(P)=logZ(B,)+—
no P, n
(24)
where _0108Z(B,) _ ot = E(x)= n" o T(1+ (k +1)/n)
ap, (k+1)r(1+1/n)
(25)
f,(x) T
%,
o]
Q4
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un~ :
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Figure 4. Higher order maximum entropy density for constraints (22) from Ingarden paper
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As soon as 1963, R. S. Ingarden has introduced this concept of higher order temperatures for
statistical systems such as thermodynamics. In physics, the concept of temperature is connected with
the mean value of kinetic energy of molecules in an ideal gas. For a general physical system with
interactions among particles (the case of non-ideal gas: liquid or solid), an equilibrium probability
distribution depends on temperature T as the only statistical parameter of the Gibbs state:

Py(x) = ! e #H®  with ﬂ:L and H(x)=H(p,q) where p is position, g the mechanical

Z(B) k,T

momentum and & ; the Boltzmann constant (a factor to insure that g7 is dimensionless). If there

are no stochastic interactions between particles (ideal gas), the partition function Z has the property
to be integrable and we can obtain Gauss distribution in the momentum space deduced from the
result of the limit theorem for large N. Ideal gas model of Boltzmann can fail if the number of particles
is not large enough in the case of mesoscopic systems, and also if the interactions between particles
are not weak enough. Gibbs hypothesis can also fail in other cases when stochastic interactions with
the environment are not sufficiently weak. As remarked by R.S. Ingarden, nobody has never observed
thermal Gibbs equilibrium in large and complex systems (cosmic systems, Earth's atmosphere,
biological organisms), but only in cases of turbulence, flows or pumping, by replacing classical
approach by local temperature and concept of thermodynamic flows (non-equilibrium
thermodynamics and thermo-hydrodynamics), that is non-coherent with the classical concept of
temperature which is, by definition, global/intensive and does not depend on position. R.S. Ingarden
proposed to consider the stationary case using of the concept of higher order temperatures given by

the Gibbs density:
1 Z ”
P et e AH@AH@U) o, (H)U)
(ﬂl""’ﬁ”)( ) Z(ﬁl""’ﬁ")
(26)

where U = E(H) is the mean energy. This mean energy has been introduced to preserve the the total
energy invariance with respect to an arbitrary additive constant, and g, =—log Z(f,,..., 8,) the
constant of normalization. The new constants g, are said to be f-temperatures of order k. [ (x)is

usually defined as a quadratic function of x. The probability distribution is uniquely defined from
statistical moments which should be measured experimentally. But if values number is too high to
make this method practical, we are only able to measure the lowest moments up to some order (if we
can neglect the higher orders that do not change the result to a given accuracy), and to fix £
temperatures defined as Lagrange multipliers by maximization of entropy of distribution

that the entropy maximization randomizes higher moments in a symmetric way, and it cancel any
possible bias with respect to their special values, and it gives the best estimate to a given accuracy.
The values of g can be found by:

n

op, OlogZ : k Sk 72 pit k
Elx")=—%= with E\x")=Z"|x"e ™ dx=|x"P, . (x)dx
(x ) B, P, ( ) I J. (B
27)
7= J‘ e_;w dx and the relation: S = Zn:ﬂkE(xk )+ logZ :Zn: B, %_ﬂo
par o OB,
(28)

R.S. Ingarden has applied this model for linguistic statistics, assuming the appearance of higher
order temperatures since there occur rather strong statistical correlations between phonemes and
words as elements of these statistics. He argued his choice observing that in the case of word statistics,
the existence of strong correlations is given by grammatical or semantical studies [9]. R. S. Ingarden
made the conjecture that his high order thermodynamics is the model of statistically interacting,
biological living systems, and small systems although the calculation/observation are more difficult.
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Ingarden higher order temperatures could be defined in the case when no variation is
considered, but when a probability distribution depending on more than one parameter. It has been
observed by Ingarden, that Gibbs assumption can fail if the number of components of the sum goes
to infinity and the components of the sum are stochastically independent, and if stochastic
interactions with the environment are not sufficiently weak. In all these cases, we never observe
absolute thermal equilibrium of Gibbs type but only flows or turbulence. Non-equilibrium
thermodynamics could be indirectly addressed by means of high order temperatures.

3. Model of Souriau Lie Groups Thermodynamics

For introduction to Symplectic Geometry, we make reference to C.M. Marle book [64] and ].L.
Koszul Book [6]. In 1969, Souriau [1-2] introduced the concept of co-adjoint action of a group on its
momentum space, based on the orbit method works, that allows to define physical observables like
energy, heat and momentum or moment as pure geometrical objects. The moment map is a constant
of the motion and is associated to symplectic cohomology. In a first step to establish new foundations
of thermodynamics, Souriau has defined a Gibbs canonical ensemble on a symplectic manifold M for
a Lie group action on M. In classical statistical mechanics, a state is given by the solution of Liouville
equation on the phase space, the partition function. As symplectic manifolds have a completely
continuous measure, invariant by diffeomorphisms, the Liouville measure 4, all statistical states will
be the product of the Liouville measure by the scalar function given by the generalized partition
function ¢®? "V defined by the energy U (defined in the dual of the Lie algebra of this
dynamical group) and the geometric temperature 3, where @ is a normalizing constant such the

mass of probability is equal to 1, ®(f) =-log I ¢ Y g), Jean-Marie Souriau then generalizes the
M

Gibbs equilibrium state to all symplectic manifolds that have a dynamical group. Souriau has
observed that if we apply this theory for Galileo group, the symmetry has been broken. For each
temperature 4, element of the Lie algebra g Souriau has introduced a tensor @ﬂ, equal to the sum
of the cocycle @ and the heat coboundary (with [.,.] Lie bracket):
0,(2,,2,)=6(2,,2,)+(0.ad, (2,))
(29)

This tensor @ﬂ has the following properties: (X, Y):<®( X),Y> where the map ® is the
symplectic one-cocycle of the Lie algebra g with values in o', with O(X)= Tee()( (e)) where @

the one-cocycle of the Lie group G. @(X , Y) is constant on M and the map @(X Y ): axg—N isa
skew-symmetric bilinear form, and is called the symplectic two-cocycle of Lie algebra g associated to
the moment map J, with the following properties:
O(X,Y) =J1xy] ~{J.,J,} with J the Moment Map
(30)
o(x,r] 2)+6(r,z] x)+6(z,x] Y)=0
(G2
where J, linear application from g to differential function on M :g— C”(M,R), X > J,

and the associated differentiable application J, called moment(um) map:
J:M—>q ,xJ(x) suchthat], (x)=(J(x),X), X g

(32)

The geometric temperature, element of the algebra g, is in the the kernel of the tensor ©) ’E
ﬂeKer@ﬂ such that @ﬂ(ﬁ,ﬁ)zo , Vfeg
(33)

The following symmetric tensor g ([8,2,]1[8,2,])=0,(Z,,[8,Z,]), defined on all values of
ad ﬂ(.):[ﬁ,,] is positive definite, and defines extension of classical Fisher metric in Information

Geometry (as hessian of the logarithm of partition function):
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6,(8.212,)-6,(2,.2,) . vZ, <5, vZ, elmlad, ()
(34)
With ,(2,,2,)20 , vz,,2, elmlad,())
(35)

These equations are universal, because they are not dependent on the symplectic manifold but only
on the dynamical group G, the symplectic two-cocycle ®, the temperature g and the heat Q.

Souriau called it “Lie groups thermodynamics”.

Souriau Theorem of Lie Groups Thermodynamics
Let Q be the largest open proper subset of w, Lie algebra of G, such that j e PV 2 and J' éz.e%/w(s‘)) di
M M

are convergent integrals, this set Q is convex and is invariant under every transformation Ad,(.). Then,

the fundamental equations of Lie Groups Thermodynamics are given by the action of the group:

e  Action of Lie group on Lie algebra: B—A4d,(B)
(36)

o Characteristic function after Lie group action: oD —<6’(g_1 ), ﬂ>
37)

e Invariance  of  entropy  with  respect  to  action  of  Lie  group: s =8
(38)

e Action of Lie group on geometric heat: 0—a(g,0)=A4d,(0)+ 0(g)
(39)

Souriau equations of Lie Groups Thermodynamics are summarized in the following Figures.

TEMPERATURE HEAT
In Lie Algebra G In Dual Lie Algebra Fisher-Souriau Metric

gﬂ([ﬁ’zll[ﬁ’zl]): C:)ﬁ(Zl,[ﬂ,Zl])Z 0

a0 - : v g .
\ Glbbes:sa:::r;llceal ' Q a qu) 52 log J'e—(ﬁl (§)>d/i
4dg(,3) 4d;(0)+6(g) I(B) = 1(‘4dg(ﬁ)): 5" \16,83
1.

Souriau Entropy is invariant

with respect to action of
s(0)={(B.0)-2(8B) Dynamic Groups

s(0)=(B.0)- ®(p)=(07(0).0)-@(©7(0))

R R
Logarirthm of partition function | Entropy o® =
(characteristic function) 0=0(8)= ﬁe o (Q)ex

Figure 5. Global Souriau scheme of Lie Groups Thermodynamics.
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© 0 =0(ud,(B)= 4d:©Q)+6(g)

Figure 6. Broken symmetry on geometric heat Q due to adjoint action of the group on temperature 3
as an element of the Lie algebra.

In the framework of Lie group action on a symplectic manifold, equivariance of moment
could be studied to prove that there is a unique action a(.,.) of the Lie group G on the dual g* of
its Lie algebra for which the moment map J is equivariant, that means for each xeM :
J(®, ()= alg. () = 4d; (J()+0(e)

(40)

We could observe that Souriau Lie Groups Thermodynamics is compatible with Balian &
Valentingauge theory of thermodynamics [24], that is obtained by symplectization in dimension 2n
+ 2 of contact manifold in dimension 2n + 1. All elements of the Souriau geometric temperature vector
are multiplied by the same gauge parameter. Balian & Valentin Model was first explored in [23] and
has been recently developed by A. der Schaft and B. Maschke in [87-88].

4. Extended Koszul study of Souriau non-equivariant model associated to a class of
Cohomology

Jean-Louis Koszul has deepened Souriau model in his book “Introduction to symplectic geometry”
[6] as explained in [92]. In the historical Foreword of this book, Koszul write “The development of
analytical mechanics provided the basic concepts of symplectic structures. The term symplectic structure is due
largely to analytical mechanics. But in this book, the applications of symplectic structure theory to mechanics
is not discussed in any detail”. Koszul considers in this book purely algebraic and geometric
developments of Geometric/Analytic Mechanics developed during the 60th, more especially Jean-
Marie Souriau works detailed in chapter 4 and 5. The originality of this book lies in the fact that
Koszul develops new points of view, and demonstrations not considered initially by Souriau and
after by Geometrical Mechanics community.

To highlight the importance of this Koszul book, we will illustrate the links of the detailed tools,
including demonstrations or original Koszul extensions, with Souriau's Lie Groups
Thermodynamics. Koszul originally developed Souriau model, in the case of non-equivariance, of
the action of the group G on the moment map. As explained in [109] by Thomas Delzant at 2010 CIRM
conference “Action Hamiltoniennes: invariants et classification”, organized with Michel Brion: “The
definition of the moment map is due to Jean-Marie Souriau.... In the book of Souriau, we find a proof of the
proposition: the map ] is equivariant for an affine action of G on g* whose linear part is Ad *.... In Souriau’s
book, we can also find a study of the non-equivariant case and its applications to classical and quantum
mechanics. In the case of the Galileo group operating in the phase space of space-time, obstruction to
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equivariance (a class of cohomology) is interpreted as the inert mass of the object under study”. We can
uniquely define the moment map up to an additive constant of integration, that can always be chosen
to make the moment map equivariant (a moment map is G-equivariant, when G acts on g* via the
coadjoint action) if the group is compact or semi-simple. In 1969, Souriau has considered the non-
equivariant case where the coadjoint action must be modified to make the map equivariant by a 1-
cocycle on the group with values in dual Lie algebra g*.

The concept and seminal idea of moment map was in the Sophus Lie’s book 2nd volume
published in 1890, developed for homogeneous canonical transformations. Professor Marsden has
summarized the development of this concept by Jean-Marie Souriau and Bertram Kostant based on
their both testimonials: “In Kostant’s 1965 Phillips lectures at Haverford, and in the 1965 U.S.—Japan
Seminar, Kostant introduced the momentum map to generalize a theorem of Wang and thereby classified all
homogeneous symplectic manifolds; this is called today ‘Kostant’s coadjoint orbit covering theorem’.... Souriau
introduced the momentum map in his 1965 Marseille lecture notes and put it in print in 1966. The momentum
map finally got its formal definition and its name, based on its physical interpretation, by Souriau in 1967.
Souriau also studied its properties of equivariance, and formulated the coadjoint orbit theorem. The momentum
map appeared as a key tool in Kostant’s quantization lectures in 1970 [111], and Souriau discussed in 1970 it
at length in his book [1]. Kostant and Souriau realized its importance for linear representations, a fact
apparently not foreseen by Lie”. Souriau book reference date is 1970, but it was published by Dunod in
1969. For information, Jean-Louis Koszul knew very well Souriau and Kostant works, and as soon as
1958, Koszul made a survey of first Kostant’s works at Bourbaky seminar [112].

In this Book in chapter 4, Koszul calls symplectic G-space a symplectic manifold (M; ) on which
a Lie group G acts by a symplectic action (an action which leaves unchanged the symplectic form ).
Koszul then introduces and develop properties of the moment map u (Souriau’s invention) of a
Hamiltonian action of the Lie algebra g. Koszul also defines the Souriau 2-cocycle, considering that
the difference of two moments of the same Hamiltonian action is a locally constant application on M
,showing that when x4 is a moment map, for every pair (4;b) of elements of g the function
c,(a,b)= {<,u, a> , <,u, b>} - <,u, {a,b}> is locally constant on M, defining an antisymmetric
bilinear application of gxg in H(M; R) which verifies Jacobi's identity. This is the 2-cocycle introduced
by Jean-Marie Souriau in Geometric Mechanics, that will play a fundamental role in Souriau Lie
Groups Thermodynamics to define an extension of the Fisher Metric from Information Geometry :
“Fisher-Souriau metric”.

The antisymmetric bilinear map (31) and (32), with definition (27) and (28) , introduced by
Souriau is exactly equal to the mathematical object extensively studied in chapter 4 of Koszul’s book:
c,(a,b)={(s,a),(,b)} = (1. {a,b})

(41)

In this book, Koszul has studied this antisymmetric bilinear map considering the following
developments. For any moment map s, Koszul defines the skew symmetric bilinear form c, (a,b)
on Lie algebra by:
c,(a,b)=(d6,(a).b) , a,beg
(42)

Koszul observes that if he uses:

0, (st) = pu(stx) — Ad, pu(x) =0, (s) + Ad  pu(ix) — Ad Ad, p(x) =0, (s) + Ad ;0,,(¢)
(43)

by developing du(ax)="ad , u(x)+d0,(a) , x € M,a g, he obtains:

(dpu(a),b) = (u(x).[a, b)) +(d0, (@), b) = {{1.a), (. b)}f), xeM,a,beg

(44)

He has then:
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¢, (a.b)={(ma), (.b)}~ (11.[a,b]) =(d6,(a).b) , a,beq

(45)

and the property:

cﬂ([a,b],c)+ cﬂ([b,c],a)+ cy([c,a],b)zo , a,b,ceq

(46)

Koszul concludes by observing that if the moment map is transform as y'= g+ ¢ then we have:

c,(a,b)=c,(a,b) —<¢,[a,b]>

(47)

Finally using ¢, (a,b)= {(y, a), (4, b>}—<,u, [a,b]) = <d(9# (a),b> , a,b e q, koszul highlights the property
that:

W @, )= (b)) = 4" (a.b]+ ¢, (a.b))= p" {a, b},

(48)

In chapter 4, Koszul introduces the equivariance of the moment map . Based on the definitions
of the adjoint and coadjoint representations of a Lie group or a Lie algebra, Koszul proves that when
(M; ) is a connected Hamiltonian G-space and 4:M — g  a moment of the action of G, there
exists an affine action of G on g* whose linear part is the coadjoint action, for which the moment x
is equivariant. This affine action is obtained by modifying the coadjoint action by means of a cocycle.
This notion is also developed in chapter 5 for studying Poisson manifolds.

Defining classical operation Ada=sas" , s€eGaeq , ad,b=[a,b], acgbeg and

Ad ='Ad_, , seG with classical properties:
Ad,, =exp(~ad,), aeg or Ad.

expa
(49)
Koszul considers:

=exp'(ad,), acg

XH>sx , xeM, y:M—)g*

(50)

From which, he obtains:

<d,u(v), a> = w(ax,v)

Q)

Koszul then study pos, —Ad. o u:M —>g, and develops:

d(Ad] o y,a)=(Ad dy,a) = (du, Ad ,a)

(52)

<d,u(v), Ad a> = a)(s “asx, v) = a)(asx, sv) = <d,u(sv), a> = (d(,u 08,5 a>Xv)

(53)

d<Ad: o ,u,a> =d(uos,,a) and then proves that d<yosM —Ad; oy,a> =0
(54)

Koszul considers the cocycle given by ), (s) = u(sx) — 4d; u(x) , s € G, and observes that:
0,(st)=0,(s)— Ad:Hy ®, steG

(35)

From this action of the group on dual Lie algebra:

Gxg —>a (5, sE=Ad E+6,(s)

(56)

Koszul introduces the following properties:

H(sx) =su(x) = Ad:,u(x) +0,(5), VseG,xeM

(57)

Gxa’ >0, (e,&) el =Ad E+0,(e) =&+ u(x) - u(x) =&
(58)
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*

(5,5,) =Ad; E+0,(s,5,) = Ad, Ad £ +0,(s,) + Ad 0, (s,)
(s,5,)¢= Ad:l (Ad;é + Hﬂ (sz))+ Hﬂ (s))= sl(szé) , Vs,,8,€G, &€ o’
(59)
This Koszul study of the moment map u equivariance, and the existence of an affine action of G on g%

whose linear part is the coadjoint action, for which the moment p is equivariant, is at the cornerstone of Souriau
Theory of Geometric Mechanics and Lie Groups Thermodynamics.

We have also to make reference to Muriel Casalis papers [89-90] on this topic.

5. Souriau model of generalized Entropy based on Legendre and Laplace transforms

At the step of the development of Souriau Lie Groups Thermodynamics, we will introduce
generalized Souriau definition of Entropy. Souriau first start to define “Laplace Transform”:
Let E a vector space of finite size, ; a measure of its dual E", then the function given by :

ar> [ u(M)dm
J.

(60)

for all ¢ € E such that the integral is convergent. This function is called (generalized) Laplace
transform. This transform F of the measure 4 is differentiable inside is definition set def (F).
Its p-th derivative is given by the following convergent integral for all point inside def (F):

F® (a)= jM ®M...® Mu(M)dM

E

(61)

Souriau Theorem:
Let E a vector space of finite size, ;4 a non-zero positive measure of dual space E*, F its

Laplace transform, then:
- F is semi-definite convex function, F(a)>0,Vaedef(F)
(62)
- f=logF isconvex and semi-continuous

- Let a aninterior point of def (F) then:

o D*(f)@)20
(63)

o D(f)@)=[e"[M - D)) uM)dm
(64)

o D*(f)a) inversible < Affine  envelop(support( x4 ) =E°
(65)

See [28], for links between dual convex functions and optimization.
Before introducing Entropy, Souriau introduced the following lemma:

Lemma:
Let X be a locally compact space, Let 1 a positive measure of X, having X as support, then
the following function @ is convex:

®(h) =log [ " A(x)dx , VheC(X)
X

(66)
such that the integral is converging.
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The integral is strictly positive when it converges, and then insures existence of its logarithm. The
h

epigraph of @ is the set of (
y

j such that J‘ "7 J(x)dx <1. Convexity of exponential shows
X

that this epigraph is convex.
Finally, Souriau introduced the “negentropy” as Legendre transform of the function ®:

Souriau Entropy Definition:
We call “Boltzmann Law” (relative to A ) all measure x4 of X such that the set of real values

u(h)—®(h) , h € def ((D) and h is p—integrable
(67)

This definition of Entropy by Souriau is a general scheme that can be extended to highly abstract
spaces preserving Legendre structure [31], if we can define generalized Laplace transform. These
operations of Laplace and Legendre transforms are the core contextures of theory of Information and
Heat, generating the well-defined structures, from which we can preserve the definition of “average
value”. Jean-Marie Souriau explained this contexture property in the following sentence:

“It is obvious that one can only define average values on objects belonging to a vector (or affine) space;
Therefore—so this assertion may seem Bourbakist —that we will observe and measure average values only as
quantity belonging to a set having physically an affine structure. It is clear that this structure is necessarily
unique —if not the average values would not be well defined.

[11 est évident que I'on ne peut définir de valeurs moyennes que sur des objets appartenant a un espace vectoriel
(ou affine); donc—si bourbakiste que puisse sembler cette affirmation—que ’on n’observera et ne mesurera de
valeurs moyennes que sur des grandeurs appartenant a un ensemble possédant physiquement une structure
affine. 1l est clair que cette structure est nécessairement unique —sinon les valeurs moyennes ne seraient pas
bien définies.]

See also papers of B. Kostant [52] and Leray [56] for Generalized Laplace Transforms.

6. Souriau Thermodynamics of butter churn (device used to convert cream into butter) [“La
Thermodynamique de la crémiére”]

P. Duhem [82-85] and H. Poincaré [86] have studied statistical mechanics model of Centrifuge.
We will illustrate Souriau Lie Groups Thermodynamics for Souriau Gibbs states for Hamiltonian
actions of subgroups of the Galilean group, as illustrated in Souriau book [1] and more recentltly by
Charles-Michel Marle [5].

Consider Galilean Lie Group:

A e SO(3):rotation

pod £
. b € R’ :boost
0 1 e]| with < _
0 0 1 d € R’ : space translation
e :time translation
(68)

Galilean Lie Algebra:
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a)V

N L - b=|w, | dand 6 €R’, R
](a)) a o o

0 1 ¢|with : .

0 00 } e 9 o

j@)=] . 0 -0 |eso?), (@ =axF
-0, o 0

(69)
Action of Lie Group:

A b d\F AF +th +d X

01 eft|= t+e with7 =| y

0 0 1 1 z

(70)

Galilean Transformation on position and speed is given by:

PV (A4 b d\F v\ (AF+tb+d Av+b
ro1l=l0 1 et 1|=| t+e 1
1 0/ (0o 0 1)1 0 1 0
(71)

Souriau has proved that this action is Hamiltonian, with the map J, defined on the evolution space
of the particle, with value in the dual g* of the Lie algebra G, as momentum map:

7 XV 0 0
J(;,t,‘_/:,m)Zm F_ﬁ 0 0 =m{7x§,7—ﬁ,\7,;||§||z}eg¥
- 1~
T

(72)

Where the coupling formula is given by:

(73)
j@) a &

with z_| 0 1 ¢ ={@,&,5,e}eg
0 0 0

(74)

Souriau gave the demonstration for Galilean moment map for a free particle, considering the
definition of moment map:
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oldp)ep)=-d(J,Z) , Vdp
(75)

and the definition of tangent vector field:

Z,(p)= 5[‘11/ (p)]

(76)
fl@) @ & a=¢
Z=| 0 1 = & =@Xr, +at+0
2, (p)=slay(»]| /
0 0 W, =dxv, +ad
(77)

Then, as General Lagrange 2 Form for a Force F is:

dt &
dp=|dr|and & =| & |= oldp)dp)=(mdv— Fdt,& —vét) - (mdv — Fot,dr — vdt)
dv ov

(78)
If F is equal to zero, we obtain:

o(dp)(Sp)= Z<mdv,g?)><rj +&t+5—v5>—<m(ﬁ)xvj +07),dr—vdt>
o(dp)(6p)==-d(J,Z)=-dJ, =—dH
(79)

and the Cocycle is given by:

0(g)=J(4d,Z)- 4d’(J(2))= {J xb,d —be,b,

]

The main Souriau idea was to define the Gibbs states for one-parameter subgroups of the Galilean
group. Souriau has proved that action of the full Galilean group on the space of motions of an isolated
mechanical system is not related to any Equilibrium Gibbs state (the open subset of the Lie algebra,
associated to this Gibbs state, is empty). Then, if we consider the 1-parameter subgroup of the
Galilean group generated by b element of Lie Algebra, is the set of matrices:

1
2
(80)

A(r) b(r) d(7) A(7) = exp(7i(@)) and b(r)= [ij(j(@))ilJ&
exp(zf)=| 0 1 e | with o :l i ! (81)
i@ a &
" =] 0 1 ¢leq
0o 0 0

(82)
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Then, Gibbs state defined for a gas enclosed in a moving box could be computed by Souriau formula.
If we fix the affine Euclidean reference frame (O,é'x,é'y,é'z) at +=0, if we set the value r=¢/¢,

moving frame (O, e.(0),e,(0),e. (t)) velocity and acceleration are given by the vector field related to
B element of the Lie algebra. For each point, we can associate a rotation speed HE)H /&, aspeed /&

and an acceleration @/¢. If we consider a gas made of N point particles, indexed by i €{1,2, . ..
,NJ, enclosed in a box with rigid and undeformable walls, whose motion is described by the action of
the 1-parameter subgroup of the Galilean group, A(¢/ g) where t €R. If we consider m,,r(t),v,(t),

2"
respectively the mass, position vector and velocity vector of the it particle at time f. If we assume free
particle and we neglect contributions given by the collisions of the particles between themselves
collisions with the walls, then we can write:

2
8)

The important idea is to observe that <Jl., ﬂ> is invariant by the action of 1-parameter subgroup.

M=

{J.8)=
(83)

Vi

i

Uﬁﬂ)wﬁh(L@Jﬁ@mﬂﬂ)zm{@@xﬁ}{ﬁ—ﬁ)&+ﬁ5—;

The proof of <J ) > invariance is based on Souriau equation for default of equivariance with cocyle.

If the action of the 1-parameter subgroup is exp(t /3) , according to Souriau equation:
&£

a(g.,J) = 4d,(J)+0(2)

(84)

We obtain for:
(P B)=(Ad; (J,(p,), B) +{0(2). B) = (1. (o), Ad. ., B)+(6(2), B)

that can be reduded by using the properties:

Ad _p=p
{ g = (J,(p). B)=(J.(,). B)

(0(2).8)=0
(85)

and

R - S, i
:mz(vio( XVio +§)—r10 a_a i 25)
(86)
To obtain Souriau Gibbs Maximum Entropy density, we have to use the following change of
variables:
I
U =7( XV +0 )
€

(87)
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2

et 3

Us,-0

2

(Gt ) =mef -
(88)

We can then write:

Pio

<Jl-(;‘;0,i)i0)’ﬂ> :—8(_2:’1

i

2+m,.fl.(ﬁ.0)j with £=———
KT
l_jio = miWiO = m'(‘_;' _U*)

with

AR

Lo
(89)

and finally, the Souriau Gibbs density is given by:

=1i[pi(ﬁ) with pi(ﬁ)=1)eXp(_<Jiaﬂ>)

(g
(90)
P(B)= J-eXp(—<J,-,/3>>M@ 0, J'J exp(- (J,.B8) }1/1 et P(p :ﬁ
©n |

If we consider the case of the centrifuge (as for a butter churn, device used to convert cream into
butter), the parameter of Galilean group Lie algebra are reduced to:

ST

b=wé.,d=0and 6 =0 j@) a
Rotati g2 with p= 01 s eg
otation spee = 0 0 0

92)

with variables:

with A= ||e X r0|| distance to axis z

-y w0 602
fi(rio)_ 28
(93)

We obtain the closed form for Maximum Entropy Souriau-Gibbs density:
2
2, m (0] o
2T \ &

This equation describes the behaviour of a gas made of point particles of various masses in a
centrifuge rotating at a constant angular velocity and explains the observation that the heavier
particles concentrate farther from the rotation axis than the lighter ones.

p.(B)=

(94)

P,.(lﬂ) eXP(_ <J,- > ﬂ>) =cst. exp(_ szKT ‘ P
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Figure 7. Most simple use-case of Souriau Lie Groups Thermodynamics: the thermodynamics of
centrifuge of butter churn (device used to convert cream into butter)

Souriau Lie Groups Thermodynamics provides right results if we apply it to subgroups of Galileo
group, as previous example of a cylindrical box with fluid with an invariance sub-group of size 2
(rotation along the axis, time translation) providing a 2-dimensional Souriau (Planck) Temperature-
Vector. Souriau has observed that the process, by which a refrigerated centrifuge transmits its own
Temperature-Vector to its content, has two names: thermal conduction and viscosity, depending on
the Temperature-Vector component that is considered. Conduction and viscosity should therefore be
unified in a fundamental theory of irreversible processes (theory that remains to be constructed).

In appendix, we develop solution given by Roger Balian [63] for the previous case of centrifuge
thermodynamics based on classical methods. Roger Balian recover the same Gibbs density but by
introducing additional Lagrange hyper-parameter associated to total angular momentum. Balian has
computed the Boltzmann-Gibbs distribution without knowing Souriau equations (exercice 7b of []).

Balian started by considering the constants of motion that are the energy and the component J_ of

the total angular momentum J = Z (rt. X pl.) . Balian observed that he must add to the Lagrangian

parameter, given by (Planck) temperature [ for energy, an additional one associated with J_. He

identifies this additional multiplier with —f@ by evaluating the mean velocity at each point. He
then introduced the same results also by changing the frame of reference, the Lagrangian and the
Hamiltonian in the rotating frame and by writing down the canonical equilibrium in that frame. He
uses the resulting distribution to find, through integration, over the momenta, an expression for the
particles density as the function of the distance from the cylinder axis.

Main Souriau model advantage is that we can define covariant Gibbs density for dynamical
systems, only by applying formulas without any considerations [2].

7. Higher-Order Model of Thermodynamics Lie Groups Thermodynamics based on vector
valued model

As observed by Jean-Marie Souriau in chapter IV of [1], the Gausian density is a maximum
entropy density of 1t order. Considering Multivariate Gaussian density, this remark is clear if we
replace classical parameterization z and (m,R) by the new parameterization, linked to

Information Geometry coordinates, & and g:
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1 7l(zfm)TR’1(zfm) 1 —-m"R IZ+IZTR
p(m’R)(Z):We 2 — [ 2 }

(20)* der(iy e

R E
Piny(2)= p§<§)—— 9 with &= {} » o {E[ZJ]HMHLM}

—R'm

and f= lR*I
2

a (95)
= {H} where (B,&)=a"z+z"Hz= Tr[zaT + ZZTHT]

£=0(f)="2> and f=0"() with B(f)=-logy,(f)=~log [ e"Tds

Fisher:[(ﬂ)zallogl//g(lb’) [Glogpﬁ(f)alogpﬁ(é)} [(5 5)(9& 5”

op’ op op

We can observe in previous equations that classical Multivariate Gaussian density, classically

1 —l(z—m)TR’I(z—m)
2

could be rewritten in a new parameterization in
( )n/2 d t(R)UZ

expressed by P (D) =

a Gibbs density form P; ( é)_i ~A<)  with tensor variable E= { ZT}, where $= E[eg]:{ m }

zz R+mm"
—R'm

1 =

and tensor parameterization f=
= 1
2

{ a } with the following definition of duality braket given
H

by < B, §> =a'z+7"Hz = Tr[ zal +zz"HT ] also  written in the initial parameterization

< B, §> ——m'R 'z + % R\ z=Tr [—zmr R +% 2T Rl} . To understand the meaning of these tensors, we

T
can consider them as homeomorph to the following respective matrices gz{zz Z} ,

0,, 0
1 __ _
£= {R +mm' m} and B= ER " -R'm| with (B.&)= Tr[ﬁfr] (see [4] for more details).
0. 0
xXn 0 O

Ixn

Z is the classical normalization constant that is equal to log(Z)= ﬁlog(Zn)lelog det(R) _,_l m R 'm- In
2 2 2
this new parameterization, we can express the Entropy by Legendre transform S(é) - <625 ﬂ> -@(p) of

Massieu characteristic function @(g)=—logy,,(8)=—-log J‘ ¢Pégq¢e (minus logarithm of partition

Q
function v (B) = J‘ ¢ P4 q¢g), with the Souriay (Planck) geometric temperature given by B=07"()
where the function @(.)is the inverse of the function given by é =0(f) = (B (the temperature is
op

also given by p— 6S(?E) given by Lagendre transform; where we recover classical definition of

Entropy by Clausius dS:Qwhen B _1 and £=0 heat). We can also defined Fisher metric of
T T

Information Geometry by 1(8) = 0” log vo(B) or
op

1(,5')=—E|:62 loag;ﬁ(f):l l:@loga;ﬂ(é) alogaZﬂ(f) :l [(5 5)(5 5) } From this development, we
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can observe that classical Multivariate Gaussian Density pé(g):l ¥ is a maximum Entropy
z

Gibbs density of 1 order with respect to the tensorial variable £_ E[£]= " . Classicaly
R+mm"
Gaussian density is considered as a Maximum Entropy Gibbs density of 24 order where

1 T 1
% e BEm e solution to _J’ Ponio (2108, 1) (2)dz under the constraints
(27)"" det(R)"

that first two moments are known ;= I 2Dy (z)dz and R= ‘[( z— m)( z— m)T Py (2)dz - The question

p(m,R)(Z) =

is then, could we define a Gaussian density of higher order ?

We have seen that Souriau has replaced classical Maximum Entropy approach by replacing
Lagrange parameters by only one geometric “temperature vector” as element of Lie algebra. In
parallel, Ingarden has introduced second and higher order temperature of the Gibbs state that could
be extended to Souriau theory of thermodynamics. The question is then, how to extend Souriau
model to define an higher order Lie Groups Thermodynamics. For this purpose, we propose to
consider multi-symplectic geometry and more particularly poly-symplectic geometry [67]. The
variational problems generalization with several variables was developed by V. Volterra in two
papers [94-95] where two different generalizations of the Hamilton system of equations are
introduced. In parallel, De Donder [96] has also studied this approach in a geometrical framework
based on Elie Cartan idea of invariant structure with no dependence to local coordinates and based
on affine multisymplectic manifold. We can also formalize the Multisymplectic Geometry with an
extension of the Poincaré-Cartan invariant integrals. Frédéric Hélein has observed the fact that
different theories could cohabitate was considered jointly by T. Lepage [97], P. Dedecker [98-99] and
J. Kijowski [32-34]. The Lepage-Dedecker theory was developed by F. Hélein [101], and the modern
formulation using the multisymplectic (n + 1)-form as the fundamental structure of the theory starts
with J. Kijowski papers. The geometrical multisymplectic approach uses the generalized Legendre
correspondence introduced by Lepage and Dedecker and Hamiltonian formalism developed by
Hélein [102].

Among all multi-symplectic models, the more natural multi-valued one that preserve the notion
of (poly-)moment map has been initiated by Christian Giinther based on n-symplectic model.
Giinther has shown that the symplectic structure on the phase space remains true, if we replace the
symplectic form by a vector valued form, that is called poly-symplectic. The Giinther formalism is
based on the notion of a poly-symplectic form, which is a vector valued generalization of symplectic
forms. Hamiltonian formalism for multiple integral variational problems and field theory is
presented in a global geometric setting. Giinther has introduced in this poly-symplectic formalism:
Hamiltonian equations, canonical transformations, Lagrange systems, symmetries, Field theoretic
moment mappings, a classification of G-homogeneous field theoretic systems on a generalization of
coadjoint orbits.

Glinther has defined 6 conditions for a multidimensional Hamiltonian formalism :

e C0: For each field system, an evolution space can be constructed, which describes the states
of the system completely.

e C1: The evolution space carries a geometric structure, which assigns to each function
(Hamiltonian density) its Hamiltonian equations.

e (C2: The geometry of the evolution space gives 'canonical transformations’, i.e. the general
symmetry group of a system independently of the choice of Hamiltonian density.

e (C3: The formalism is covariant, i.e. no special coordinates or coordinate systems on the
parameter space are used to construct the Hamiltonian equations.

e C4: There is an equivalence between regular Lagrange systems and certain (regular)
Hamiltonian systems.
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e C5: For one dimensional parameter space the theory reduces to the ordinary Hamiltonian
formalism on symplectic manifolds in classical mechanics.
Giinther has observed that Hamiltonian field theory by J.E. Marsden is not covariant, because
C3 is not verify and causes problems in relativistic theories, and that Multisymplectic approach by
Tulczyjew, based on general theory by Dedecker, do not satisfy C1 and C2.

The key idea of Glinther for this generalized Hamiltonian formalism is to replace the symplectic form
in classical mechanics by a vector valued, so called poly-symplectic form with the property that:

e the evolution space of a classical field will appear as the dual of a jet bundle, which carries

naturally a polysymplectic structure.

e canonical transformations are bundle isomorphisms leaving this poly-symplectic form

invariant.

The polysymplectic approach recovers all classical results also generalize the Noether theorem
based on canonical transformations and preserve the existence of momentum mappings. Christian
Giinther work was inspired by the symplectic formulation of classical mechanics by Jean-Marie
Souriau and by the work of Edelen [49-50] and Rund [51] on a local Hamiltonian formulation of field
theory. D. G. B. Edelen work is a coordinate version of the local polysymplectic approach of Giinther.

Initiated by C. Gunther [12] and [13] based on n-symplectic model [14,15], it has been shown
that the symplectic structure on the phase space remains true, if we replace the symplectic form by a
vector valued form, that is called polysymplectic. This extension defines an action of G over

(n)

g’ x..xg called n-coadjoint action:
. RGN L,

Ad" :Gx(g X ..XQ J—)g X..XQ

gX lul X,..X,Lln = Ad;(”) (lul 7'"alun ): (Ad;lul 7""Ad;1un )

(96)
0)
Let p=(u,u,) @ poly-momentum, element of g’ x..xg", we can define a n-coadjoint orbit

Oy = O( at the point u for which the canonical projection

Hyseeos Fn)
* (Vl) * * : . . .
Pr,:g x.xg —>g (pr v, ) v, induces a smooth map between the n-coadjoint orbit O” and

the coadjoint orbit o,: 7:0,=0, , =0, that is a surjective submersion with (KerTz, = o}

k=1

Extending Souriau approach, equivariance of poly-moment could be studied to prove that there

0
is a unique action a(.,.) of the Lie group G on g x..xg for which the polymoment map
(m)
Jm :(Jl,",’J"):M%g*x,,,xg* verifies xeM and geG:

JO(@, () =a(g,J" (x) = 4d." (7" (x))+ 0" ()

97)
with Ad (7 ()= (4d T AdC T
98)
and 6" ()=(6'(2).-.0"())
(99)
6" (g) is a poly-symplectic one-cocycle. We can also defined poly-symplectic two-cocycle
6" =(6'....6") with o' (x.1)= (0" (0. ¥) =}, - Ut .t}
(100)
where O (X)=T,0"(X(e))
(101)

Finally, we propose to define the poly-symplectic Souriau-Fisher metric by the following expression:
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g,g([:H’Zl ],Zz):diag[@ﬂk (2,2, )]k » VZ, €q,YZ, Elm(adﬁ(.)),ﬂ:( 1o By)

(102)
i ~ oo(p,... B,) ~
with 0, (Zl,Zz)=—w{;ﬂm:®k(zl,22)+<gk,adzl(zz)>
k
(103)
Compared to Souriau model, heat is replaced by previous polysymplectic model:
—i USRS
) ] IU®k (g)e k:1< >da)
0=(0,...0,)ea x..xg’ with 0 - 0Oy B) _ s
k n
By > (BeU )
Ie - do
M
(104)
with characteristic function: OB, p,) =—log J.e—;(ﬂk,v v(§)>da)
M
(105)

We extrapolate Souriau results, who proved in [1][2] that J U (5).ef<'8‘ @) de is locally
M

*)
normally convergent using multi-linear norm HUWH = Sup(E, U>k and where U®* =U®U..®U is
U

defined as a tensorial product [1].
Entropy is defined by Legendre transform of Souriau-Massieu characteristic function:

n 38(0,.,...,0,
5(015-20,)= £(51.0,)- @5, 5,) where p =)
k= k
(106)
The Gibbs density could be then extended with respect to high order temperatures by:
OB -3 (AU ) e—;@a o)
pGibbs (é) =e . == -
2 {BUH@)
Ie . do
M
(107)

8. Conclusion and possible extensions

We have introduced contextures of Geometric theory of Information and Heat based on Souriau
approach, but Information Geometry is at the interface between different geometries. First,
Information Geometry is at the intersection between “Riemannian Geometry”, “Complex Geometry”
and “Symplectic Geometry”. Based on seminal work of Elie Cartan on homogeneous domains and
other works [103-106], Information Geometry is jointly founded by:

o Geometry of Jean-Marie Souriau: Study of homogeneous symplectic manifolds geometry
with the action of dynamical groups. Introduction of the Lie Groups Thermodynamics in
statistical mechanics [1][6].

o Geometry of Jean-Louis Koszul: Study of homogeneous bounded domains geometry,
symmetric homogeneous spaces and sharp convex cones. Introduction of an invariant 2-form
[53, 54,91,93,108].

o Geometry of Erich Kihler: Study of differential manifolds geometry equipped with a unitary
structure satisfying a condition of integrability. The homogeneous Kahler case studied by
André André Lichnerowicz [110].
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Seminal work of Elie Cartan

Geometry of Jean-Marie Souriau
Study of homogeneous symplectic
manifolds geometry with the action of
dynamical groups. Introduction of the
Lie Groups Thermodynamicsin
statisticalmechanics.

Geometry of Jean-Louis Koszul
Study of homogeneous bounded
domains geometry, symmetric
homogeneous spaces and sharp
convex cones. Introduction of an
invariant 2-form.

Geometry of Erich Kahler

Study of differential manifolds geometry
equipped with a unitary structure
satisfying a condition of integrability.
The homogeneous Kahler case studied
by André André Lichnerowicz.

Figure 8. Three Sources of Geometric Structures for Information and Heat

We have extended Souriau Lie Groups Thermodynamics by vector-valued model based on poly-
symplectic geometry, introducing higher order Souriau-Gibbs density with higher order Souriau
temperatures, elements of Lie algebra. This model preserves all contextures of Souriau
Thermodynamics with covariance of Gibbs density with respect to dynamical groups in physics.
Poly-moment map are compliant with Noether theorem generalization in vector-valued case.

Jean-Marie Souriau model and equations were extensively studied in the Jean-Louis Koszul
Lecture given in China in 1986 “Introduction to Symplectic Geometry”, in Chinese. This book should
be translated in English in 2019. Chuan Yu Ma has written on Koszul book: “This beautiful, modern
book should not be absent from any institutional library. .... During the past eighteen years there has been
considerable growth in the research on symplectic geometry. Recent research in this field has been extensive
and varied. This work has coincided with developments in the field of analytic mechanics. Many new ideas have
also been derived with the help of a great variety of notions from modern algebra, differential geometry, Lie
groups, functional analysis, differentiable manifolds and representation theory. [Koszul’s book] emphasizes the
differential-geometric and topological properties of symplectic manifolds. It gives a modern treatment of the
subject that is useful for beginners as well as for experts.”

17.2. &8 % (M, o) R—EF#K Hamilton G-251],

u M-—>g*
& (M, o) l—44E8 0

251 J. M. Sourien, Structures des Pari, 1969,

EEEabIe

) HERR € G, Pysic, 1. D, 399374, 1980
9u(6) = #sx) — 42" DC) | PO i e £ 7 S R e
-3 n‘(QJ)K:;Tﬁr €M M—ATK. :2“’: 1%“2 SIS, STl ity Wk P i, S, 1,
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eala, B) = (dgu(a), 83, Dl Finy X ORTBIRE AR Sy LRHS R AR s
en BO5E SLIL 816,

®it. M G X o* F ¢* PuBR S
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Figure 9. koszul Lecture on “Introduction of Symplectic Geometry” where Souriau model of non-
equivariance is developed

We have seen that in Geometrical Mechanics, the Galileo Group related to classical mechanics:

x' R u
t"|=10 1
1 0 0

(108)
and its central extension given by Bargman group:

— Q I

X
t| ,ReSOQ), ii,weR’ecR
1
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U w
0 1 0 e
2
0 0 0 1]

(109)
and Poincaré group in Relativity. We then observe, that Affine Group or its sub-groups are at
cornerstone of different disciplines as:
e In robotics, the Special Euclidean Group SE(3) which is the homogeneous Galileo group
(robotics also consider the group of similitudes SIM(3)):

[z [Q t][z Qe SO(3)
1] |0 1[1]" |ter®

(110)
e In Information Geometry, General Affine Group is involved A(n,R) for exponential family:

[z [4 ][z AeGL(n)
1] o 1][1] " lrer

(111)

with particular case of Gaussian density, associated by Cholesky factorisation of covariance
matrix, where covariance matrix square root is triangular matrix with positive elements on
its diagonal (it is a group):

172 +
Y R X "
- " , {(R": Cholesky de R)
1 0 11
me R"
(112)
e In study of homogeneous bounded domains, as the simplest one given by Poincaré upper-
half plane:
X' a bilX .
= ,acR et beR
1 0 1|1
(113)

Jean-Marie Souriau was motivated by Group invariance, not only in Physics but also in
neuroscience. Souriau intuition was highly premonitory, because this neuroscience domain has been
developed few  decades after by Alain Berthoz at College de  France
(http://public.weconext.eu/academie-sciences/2017-10-03_5a7/video id 002/index.html) and by
Daniel Bennequin (https://www.youtube.com/watch?v=a-ctwxBp]xE) to study the brain sense of
movment. We can read in Souriau text the very interesting remarks on Geometry and neuroscience:

“I'said to myself, because of meeting groups everywhere, there is something hidden there. The metaphysical
category of groups that hovers in the empyrean of mathematics, which we discover and adore, must be connected
with something closer to us. Listening to many presentations by neurophysiologists, I ended up learning the
primitive role of moving objects. We know how to manipulate these movements mentally with great virtuosity.
That allows us to manipulate ourselves, to walk, run, jump, catch up when we fall, and so on. This is not true
only for us, it is true also for monkeys; they are much more adroit than we are to anticipate the results of a trip.
For some basic "reading” operations, they are even ten times faster than us. Many neurophysiologists think
that there is a special structure genetically inscribed in the brain, the wiring of a group... When there is an
earthquake, we witness the death of Space. ... We live with our habits that we think universal. ... Neuroscience
rarely deals with geometry ... For monkeys living in trees, some of Euclid’s group properties are better wired in
their brains.
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[Je me suis dit, a force de rencontrer des groupes, il y a quelque chose de caché la-dessous. La catégorie
métaphysique des groupes qui plane dans l'empyrée des mathématiques, que nous découvrons et que nous
adorons, elle doit se rattacher a quelque chose de plus proche de nous. En écoutant de nombreux exposés faits
par des neurophysiologistes, j'ai fini par apprendre le role primitif du déplacement des objets. Nous savons
manipuler ces déplacements mentalement avec une trés grande virtuosité. Ce qui nous permet de nous
manipuler nous-méme, de marcher, de courir, de sauter, de nous rattraper quand nous tombons, etc. Ce n'est
pas vrai seulement pour nous, c’est vrai aussi pour les singes ; ils sont beaucoup plus adroits que nous pour
anticiper les résultats d'un déplacement. Pour certaines opérations élémentaires de « lecture », ils vont méme
dix fois plus vite que nous. Beaucoup de neurophysiologistes pensent qu'il y a une structure spéciale
génétiquement inscrite dans le cerveau, le cdblage d’un groupe ... Lorsque il y un tremblement de terre, nous
assistons a la mort de I'Espace. ... Nous vivons avec nos habitudes que nous pensons universelles. ... La
neuroscience s’occupe rarement de la géométrie ... Pour les singes qui vivent dans les arbres, certaines
propriétés du groupe d’Euclide sont mieux ciblées dans leurs cerveaux.] *

Carthage
(Tunis)

BRAUDEL

La Méditerranée

Lospace.
ot Thistoire

. / Héméroskopeion Battle between

R 2 Carthage & Massilia, 490 BJC
s\ '\ ~ Massilia oo
A A (Marseille '

En effet, son mari
est nommé en 1952 4 I'Institut des Hautes Etudes de Tunis ; leur installation en Tuni-
sie, plus précisément 4 Carthage, lui apporte la vision d’un monde nouveau

Jallais donc rue de Rome, ol était situé I'Institut, et fit la connaissance du secrétaire,
Smerly, frére d'un grand potte tunisien. Par la suite, je rencontrai les collegues, les historiens
cien membre de I'Ecole de Rome, Ganiage, historien de I'époque moderne, les
juristes Percerou, De Bemis, les scientifiques Diacono, Souriau, etc.

Figure 10. Mediterranean sources of Souriau Book on Structure of Dynamical systems at Carthage
and Massilia where souriau wrote this text and theory

« Il est une Cosmologie avec laquelle la Thermodynamique générale présente une
analogie non-méconnaissable ; cette Cosmologie, c’est la Physique péripatéticienne
... Parmi les attributs de la substance, la Physique péripatéticienne confére une égale
importance a la catégorie de la quantité et a la catégorie de la qualité ; or, par ses
symboles numériques, la Thermodynamique générale représente également les
diverses grandeurs des quantités et les diverses intensités des qualités. Le mouvement
local n’est, pour Aristote, qu'une des formes du mouvement général, tandis que les
Cosmologies cartésienne, atomistique et newtonienne concordent en ceci que le seul
mouvement possible est le changement de lieu dans l'espace. Et wvoici que la
Thermodynamique générale traite, en ses formules, d’une foule de modifications telles
que les wvariations de températures, les changements d’état électrique ou
d’aimantation, sans chercher le moins du monde a réduire ces wvariations au
mouvement local » - Pierre Duhem - La théorie Physique : son objet, sa
structure

« Pour la théorie de la connaissance mais aussi pour les sciences est fondamentale la
notion de perspective. Or, les expériences faites dans la géométrie algébriques, dans
la théorie des nombres, et dans l'algébre abstraite m’induisent a tenter une
formulation mathématique de cette notion pour surmonter ainsi au moyen de
raisonnements d’origine géométrique la géométrie. Il me semble en effet, que la
tendance vers l'abstraction observée dans les mathématiques d’aujourd’hui, loin
d’étre 'ennemi de 'intuition ait le sens profond de quitter lintuition pour la faire
renaitre dans une alliance entre « esprit de géométrie » et « esprit de finesse », alliance
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rendue possible par les réserves énormes des mathématiques pures dont Pascal et
Goethe ne pouvaient pas encore se douter » - Erich Kadhler — Sur la théorie des
corps purement algébriques, 1952
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Appendix A: Giinther Polysymplectic model

We recall in this appendix, a synthesis of Christian Giinther Poly-symplectic model with his initial
notation [12].
O :space of field values

o:U—>Q

We set:

(114)

The bundle of linear maps from R” into the tangent spaces of Q

"0 = Hom(R", TQ)=TO®R"

(115)

If a base of R" is chosen, can also be interpreted as n-tangent vectors of Q, there is the isomophy :
1"Q=&/TO

(116)

The natural projection is given by:

7,:1"0—>0

(117)

In analogy to the canonical forms on the cotangent bundle, the cojet space Hom(R" , T Q)

carries a natural R*-valued:
e one-form: ®, (canonical one-form)

e two-form: Q) =-dO, closed & non-degenerate (canonical polysymplectic form)
In the natural bundle coordinates the canonical forms on Hom(R",T Q) have the local

representation:

" B
0,=Y pdg®-
0 ;p, 48—

i

(118)

: 0
Q, =) dgndp, ® —
0 ; q pz ax

(119)

Following diffeomorphism leaves invariant one and two forms:
f:0—>0 and I"f: Hom(TQ,R”)—) Hom(TQ,R”)

(" fyo,=0, and (I"f]Q,=0Q,

(114)

Definition:

A closed nondegenerate R"-valued two-form (2 on a manifold M is called a polysymplectic form.

The pair (M, Q) is a polysymplectic manifold.

The classification of linear polysymplectic forms is not trivial, because two polysymplectic forms are

not necessarily locally equivariant.

Definition:
A polysymplectic form  on a manifold M is called a standard form iff M has an atlas of canonical
charts for (), i.e. charts in which locally Q2 is written as the canonical evaluation form on Q x Lin

(QRn). (M, Q) is called a standard polysymplectic manifold.
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The polysymplectic structure provides the procedure which assigns to a function on M, the

Hamiltonian, its associated Hamiltonian equations. Let (M, (2) a polysymplectic manifold:
Q* : Hom(TM,R") > T"M
and X, Q' (x,)=r(Q" o X,,)

{Qb :TM — Hom(TM ,R")
with tr(Qb o X, )vm = —tr(Qb W,)eX, )

Wm = vam) (wm ) = Q(vm ’ Wm )
(120)

An affine sub bundle of Hom(R" i Q) is defined by:

Q*'(aH )= {x,, e Hom(R",TQ)/Q*(X, )= dH (m)}

(121)
Definition:

Q#fl(dH ) is called the system of Hamiltonian partial differential equations associated with the
Hamiltonian function H. A smooth map  :U — M is a solution of Q#"l(dH ) iff:

Ty eQ"  (dH(y(u))) YueU

(122)

Theorem:

Let (M, Q) be a standard polysymplectic manifold, (p,q) canonical coordinates for 2 on M, and H a

Hamiltonian function. A smoothmap y :U — M is a solution of Q"' (dH ) iff in canonical

coordinates:
OH OoH
trdp(u)=—af(w<u>) and Dq(u)=—(y(u))
q op
(123)

If a base e,...,e, of R"is chosen and p(u):(pl(u),,,,, D, (u)) with respect to this base, then the

equations take the form:

n

op. 0 O 0.
ga‘;(u)=—£(w<u)) and a;fi(u)=;’.(w<u>)

(124)

i i

Proof:

X(y @)= Dy () e Lin(R",T,,M)
X(m)=X,(m)+X,(m) , X,(m)eLin(R",Q), X,(m)e Lin(R", Lin(0,R"))
v(m) = §(m)+ p(m) , G(m)eQ , p(m)e Lin(Q,R")

(125)
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Q' (X)v=trQ" o X(v)=—trQ" (v)o X

Q' (¢, p) (4. p)=p(q) , (§.p)eTM

Q' (X)4, p) = ~tr(X ()~ po X,)=dH (4, p)

dH=a£dq+Za—Hdpi =>-rX, _ot , a£=Xq
oq = op; dq ~ op

(126)

Example:

Consider a scalar field where n=4,0=R and M = Rx R" with scalar coordinates (q, Dioees p4)

4
Let ]—[(q,p1 e p4): %Z pi2 + qu an Hamiltonian on M, the canonical polysymplectic form Q is

i-1
given by:

4 0
Q= Z dgndp, ® .

i=1 x,’

(127)

The Hamiltonian equations for a scalar field:

(//(xl,...,x4): (q(xl,...,x4), pl(xl,...,x4),...,p4(x1,...,x4))

(128)
are
L, Op, oq
t=mq and —=p,
= Ox, 1 ox, P
(129)
Definition:
Let (M, Q) be a polysymplectic manifold, Q*(X)=dH, H is called an momentum tensor iff
trdH = dH
(130)

Proposition:

X—0, =0 , d(rL ,©,)=0 and L, ®, = —d(H - tr(X-0,))
(131)
Proof:
0} =Zp.dq®i and X =X i+ZX i
’ i ox, fog " op;

d
= X-0, = Z X, ®67,.

(132)

L 0, = tr(dX—0, + X~dO,)
tr(dX—0, + X—d®,) = —dH + trdX—0,

(133)


http://dx.doi.org/10.20944/preprints201808.0196.v1
http://dx.doi.org/10.3390/e20110840

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2018 d0i:10.20944/preprints201808.0196.v1

The classification of symplectic homogeneous spaces by coadjoint orbits by Souriau belong to the
major achievements in Hamiltonian mechanics. C. Gilinther has extend these results to

polysymplectic manifolds. Let Ad:GxLG — LG be the adjoint action. We denote by Ad”
induced action on Lin(R" ,LG):
Ad" :Gx Lin(R",LG)~> Lin(R", LG)

Ad"(f)(x)=4d,(f(x)) , [ eLin(R",LG)xeR",geG

(134)
The dual of Ad" is denoted by Ad":

Ad":GxLG ®R" - LG ®R" , Adj(a)=aoAd,
(135)
Mad )= N, (Aw)= N2 (f) =2 (4d"f) forall g e G, f e Lin(R", LG)

(136)

Giinther Proposition:

Let A:GxM — M be a strongly polysymplectic group action with momentum map

UM — Lin(LG,R")z LG ®R". Assume M is connected. Then the map:

M —> LG ®R"
mis (A jm)— Ad” (u(m))

(137)

isaconstanton M forall geG

Corollary:
There is a smooth map 4 :

7:G—>LG ®R", 1(g)=ulA m)- Ad! (u(m))

(138)

with the following properties:

e 1- , is a 1lcocyle for all g heG then  y(gh)=Ad}(x(g))+ x(h)
(139)
* 2 - bilinear map ¢ on LG: @=L, LG > LG ®R" , p: LGxLG — R" is a 2 cocycle

go(u, [v, w])+ QJ(V, [w,u])+ ¢(w, [u,v]) =0, Yu,v,we LG
(140)

Proof:
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x(hg) = oA, (m)— Ad,, u(m)
2(hg) = po A (Am)=Ad] o pl(Aym)+ Ad] o (A, m)—Ad} Ad) o p(m)
x(hg) = x(g)+Ad! (x(h))

(141)

Giinther Theorem (Vector-valued extension of Souriau Theorem):

Let A:GxM — M be a polysymplectic action with momentum map u: M — LG QR".

Then the map:

Z:GxLG ' ®R" - GxLG ®R"
Eg.n)=Adin+ x(g)

(142)

is an affine operation of G on LG " ®R", and commutes for all geG and g is G-equivariant.

Proof:

S(gh.1)= 2(gh)+ Ad g+ 2 () + 1(g)° Ad, + Ady o Ad,1

E(gh,n) = 2(h)+ Ad}(z(2)+ Ad;h)==(h.Z(g.n))

(143)

E isan action.

E, o u(m)= x(g)+ Ad,, o yu(m)

=, 0 u(m) = A )~ Ad ] (um))+ Ad p(m) = pro A (m)

(144)

Christian Giinther in 1987 paper has written that “The mathematical framework developed in this paper is

used in a separate publication to provide a rigorous foundation for field theory”, but this paper has not been

found. For more recent study of Giinther Poly-Symplectic model, we make reference to [100].
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Appendix B: Fisher Metric for Multivariate Gaussian Density

We will in the following illustrate information geometry for multivariate Gaussian
density:
| Lo e

(27)"" det(R)" ¢ (145)

P &=
If we develop:

1(z—m)TR'l (z—-m)= l[ZTR'IZ —-m'R'z—z"R'm+ mTR'lm]
2 2

| | (146)
=—z"R'z —mTR’lz-i—EmTR’lm

We can write the density as a Gibbs density:

Tp-1 1 T p-1
1 —|-m"Rz+—z' R’z 1 _
PG e e -l
(27)" det(R)"? e?
—R m a
E= and f= o= with <§,ﬂ> =a'z+z"Hz =Tr|za" +HTZZT]
zz" 2R H

(147)

We can then rewrite density with canonical variables:

p: &= ﬁe%é’ﬂ) = %e’@’m with log(Z) =nlog(2x)+ %log det(R) + %mTR’lm

[ed
z E[z] m a1 [~R'm o (148)
§:|:ZZT:|’§:|:E[ZZT]:|:|:R+mmT:|’ﬂ:|:H:| {2R 1 ‘| with <§ ﬂ> Tr[za +H zz ]
R:E[(Z_m)(z_m)r]zE[ZZT—mzr—zmr+mmr]=E[zzT]—mmT

The first potential function (free energy / logarithm of characteristic function) is given by:
1 - "
Vo) = [ ds and ©(8)=-logy,(B) = 3 [-1dEad" |+ 10d(2)" dett]- nlog(27)] (149)
&

We verify the relation between the first potential function and moment:

o(p) _ o[-logya(A)] il :

= = A= |Ep.(&déE =

o5 of Qfﬂe*mdg £ J;pf(é) £=¢

>

oD(p) (150)
B _|“aa || m } :

op | 0PB) | | R+mm"
OH

The second potential function (Shannon entropy) is given as a Legendre transform of the

first one:

B _/2 A\ DB SE) _
S<§>—<§,ﬁ> op) with ==& and T

~(£.8) (151)
s(é)= J1 je T j:'@‘ﬂ% = om0z

o

()=~ [ p; ©)logp, )¢ = lloe)” de-' |+ ntogl2re)] - logdei ]+ nlogl2rel (152)
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This remark was made by Jean-Souriau in his book as soon as 1969. He has observed, as illustrated

A

z
in following Figure that if we take vector with tensor components & = , components of &

will provide moments of the first and second order of the density of probability p £ (£) . He used this

change of variable z'=H P2+ H"a |, to compute the logarithm of the characteristic

function ®(f):

1 Exemple : (loi normale) :

X
Prenons le cas ¥ = R", 1 = mesure de Lebesgue, ¥{(x) = 2
¥ x®x
un ¢lément Z du dual de E peut se définir par la formule
Z(P(x) =a.x + ix.H.x

[ & R"; H = matrice symétrique]. On vérifie qué la convergence de 1'inté-

grale Iy a lieu si la matrice"H est positive (') ; dans ce cas la loi de Gibbs
: s’appelle loi normale de Gauss ; on calcule facilement f; en faisant fe chan-
i, gement de variable x* = H'Y? x + H™'? a (*); il vient '

3?3.
:
2

i

ot

z=%[a@.H '.a — log(dét (H)) + nlog (2 m)]

o

i alors la convergence de 7y a lieu également ; on peut donc calculer M, qui
é est défini par les moments du premier et du second ordre de la loi (16.196) ;

] le calcul montre que le moment du premier ordre est égal &4 — H ! .a
af, el que les composantes du tenseur varignce (16.196) sont égales aux

b=

3 ¢léments de la matrice H =" le moment du second ordre s’en déduit immé-
:'?i diatement. i
La formule (16.20057) donne I'entropie :

i
S

| s =2 10g (2 ne) —-lilog(dét =y |

") Voir Caleul finéaire, tome IT.
(*) Cest-i-dire en recherchant Pimage de la loi par application x -+ x*.

Figure 11. Introduction of potential function for multivariate Gaussian law in Souriau book
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Appendix C: Geometric Definition of Legendre Transform by Chasles as reciprocal polar with
respect to a paraboloid

Legendre Transform plays a central role related to duality and convexity. Adrien-Marie Legendre
[58] has introduced Legendre transform to solve a minimal surface problem given by Monge (Monge
requested him to consolidate its proof), with link to Poncelet Duality [59]. Chasles and Darboux
interpreted Legendre Transform as reciprocal polar with respect to a paraboloid (re-used by
Hadamard and Fréchet in calculus of variations). Before Legendre, Alexis Clairaut introduced a
Clairaut Equation that has been developed by Maurice Fréchet to characterize « distinguished
densities » (densities with parameters that have covariance matrix reaching the Fréchet-Cramer-Rao
Bound) [91].

Legendre Transform transformes one fonction defined by its value in one point in a fonction defined
by its tangent

+ D(x) Slope . @(x")=(x"x)- ()

. _dOw) _ o) -0'(x) /
dx x=0

wf x

dd (x

dd(x) .

with =x and

x dx

Classical Geometry Plucker Geometry
(curveis given by a (curveis given by the
continuum of points) envelop ofits tangents )

Figure 12. Legendre Transform and duality

Darboux gave in his book one interpretation of Chasles : « Ce qui revient suivant une remarque
de M. Chasles, a substituer a la surface sa polaire réciproque par rapport a un paraboloide ». In the
lecture « Legons sur le calcul des variations », ]. Hadamard, followed by M.E. Vessiot, used reciprocal
polar of figurative, and figuratrice. This has also been developed by of Paul Belgodére presented by
Elie Cartan on « Extrémale d'une surface » [29-30]. Polarity on the plane is a transformation taking
points to lines and dually lines to points. A polarity preserves incidence and has degree 2. For a point
P (that we name the pole) a conic polarity transforms it to its image which is a line p (that we name
the polar) as follows: from P we draw the two tangents to the conic, which touch it in the points Q,
R. If we now connect points Q, R with a line p we obtain the polar line of the pole P. A Self-conjugate
point Q is incident with its polar q; that is Q lies on q.

Geometric Interpretation of Legendre Transform by Reciprocal Polar with respect to a paraboloid

is given by the following simple development. First, let’s consider the surface:

0Oz Oz
z= f(x, with p=— and g =—
J(x) P mda=g
(153)
We consider the equation of the paraboloid:
X +y =2z
(154)

Reciprocal Polar with respect to paraboloid has coordinates: X,Y,Z
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the Polar plan with respect to paraboloid of this Reciprocal Polar Xx+Yy—-z-Z=0

should be equal to tangent plan of the surface at point (xo, Vos zo):

z—2z =po(x_x0)+QO(y_yo):>pox+‘10y_z_(poxo +490) —zo)=0

(155)
This equality provides:

X=py,Y=q,, Z=pyX,+q,¥, 2

(156)

This is the Legendre Transform.

So in classical thermodynamics, Legendre transform S(Q):(ﬂ,Q)—(DC[)’) is linked with polar

reciprocal with respect to the paraboloid:

0* =25(0)

(157)

We can develop other properties of Legengre transform. Let's z = f(x,y) with p= % and g = %

and X=p,Y=q,Z=px+qy—z theLegendre Transform.

We compute the first derivative of Z:

dZ = PdX +0dY with P=2% and 0=%
ox oY

(158)
Z=px+qy—z=dZ=pdx+qdy—dz+xdp+ydq = dZ=xdX+yd0=P=x,0=y
Yohaia
(159)
We compute 2nd derivative of Z:
_0Z _oP_ox L OZ OP_0Q o &  OZ 00
oX* oXx oxX ' oXoY oY oX oY ox = oy oY oY
(160)
dX = rdx+ sdy ¢ s
dY = sdx +tdy N dxzrt_sde_rt—sde
2 2 2 —
p=l2,202 0 02 Ngy=——ax+—"—av
ax ay axay rt—s rt—s
Rza_xz 4 3 r:—T 2
oX rt-s RT-S
Ox —s )
=>i8§=—= s =E———
oY rt—s RT-S
oy r R
= —= t=—
oY rt—s’ RT -§°

(161)
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The link with with Contact transformations is then the following. Considering new variables X,Y,Z
and P,Q the derivatives of Z with respect to X and Y, problem of finding in which case this five
quantities could be express of x,y,zp and g est the same problem where we look for five functions

X,Y,Z,P and Q of five independant variables x,,z,p and g satisfying the differential equation:
dZ —PdX —-QdY = p(dz— pdx—qdy)

(162)
where p is a function of x,y,z,pand g .
Proof

0

éézw—pw—w@=o:dz=hw+gwe: ég
o C=or
(163)

and the reciprocal
oz P oX oY

(164)
Links with Ampere transformation is given then by following developments.

Let’s consider Ampere transformation:

dz—pdx—qdy=d(z—qy)—pdx+ydq
Z: - ’X: ’Y:
Sa{ gy, X =x,Y =q

= dZ — pdX —QdY = dz — pdx — qdy
P=p,0=-y

(165)

Then p =1, and we have a contact transformation, also valid when Legendre transform is no longer
valide (when rt—s® =0, p and q are not independant)

The link between Legendre transformation and Ampere transformation is then deduced. Legendre
transform is obtained by same equality:

dz — pdx—qdy =d(z—px—qy)—xdp—ydq

(166)

We can set:
X=pY=q,2=2z-px—qy
P=x,0=y

(167)

For complement studies on Legendre Transform, we can make reference to [55][57].
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Appendix D: Centrifuge Thermodynamics by Roger Balian based on classical approach
Roger Balian has studied the case of gas enclosed in a vessel rotating with an angular velocity @ in

m(ozrz

2kT

thermal equilibrium, and proved that the density of the gas is proportional to e , with classical
approach. The density is increased at the periphery due to centrifugal effects.
Balian has computied the Boltzmann-Gibbs distribution without knowing Souriau equations

(exercice 7b of [24]). Balian started by considering the constants of motion that are the energy and the

component J, of the total angular momentum J = Z (rl. X pl.) . Balian observed that he must add

1

to the Lagrangian parameter, given by (Planck) temperature [ for energy, an additional one
associated with J_. He identifies this additional multiplier with —f@ by evaluating the mean

velocity at each point. He then introduced the same results also by changing the frame of reference,
the Lagrangian and the Hamiltonian in the rotating frame and by writing down the canonical
equilibrium in that frame. He uses the resulting distribution to find, through integration, over the
momenta, an expression for the particles density as the function of the distance from the cylinder

axis. The fluid carried along by the walls of the rotating vessel acquires a non-vanishing average

angular momentum <J > around the axis of rotation, that is a constant of motion. In order to be

z

able to assign to it a definite value, Balian proposed to associate with it a Lagrangian multiplier A,

in exactly the same way as we classicaly associate the multiplier f with the energy in canonical
equilibrium. The average <J z> will be a function of A . The Gibbs density for rotating gas is given

by Balian as:

| R 1 Lo’
D=—e " = —ex —+A(xp, -,

Z Z P Z,: 2m ( Py ylpx’)
(168)

With the energy and the average angular momentum given by

_aan:L and <Jz>:
o kT

_61nZ
oA

U =

(169)

The Lagrangian parameter A has a mechanical nature. To identify this parameter, Balian compared
microscopic and macroscopy descriptions of fluid mechanics. He described the single-particle
reduced density by:

f(r.p)ec CXP{—ﬂz—Z—ﬂ(xpy —ypx)}

=exp —2’8 (er%[/ixr]J +n;/1

2m
(170)

Whence Balian find the velocity distribution at a point r to be proportional to:
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2
exp —%(v+%[/l X r]]
(171)

The mean velocity of the fluid at the point r is equal to:

(v)=—5laxr]

172)

and can be identified with the velocity [a) X r] in an uniform rotation with angular velocity @.By

A
comparison, Balian put @ = —— . Balian made the remarks that “The angular momentum is imparted

to the gas when the molecules collide with the rotating walls, which changes the Maxwell distribution at every
point, shifting its origin. The walls play the role of an angular momentum reservoir. Their motion is
characterized by a certain angular velocity, and the angular velocities @ of the fluid and of the walls become
equal at equilibrium, exactly like the equalization of the temperature through energy exchanges.”

Considering Invariance principle, Balian observed that the Lagrangian can be taken as remaining
under any change of reference frame, because the stationary action principle is independent of the
frame. Comparing Hamiltonian in two frames for a single particle with position 7' and the velocity

v' in the rotating frame:

L :%mv2 :%m(v%[a)xr'])z

173)
Balian then considered the conjugate momentum of 7':
p':a—L" = m(v'+[a)>< r'])
ov
(174)
and the Hamiltonian in the rotating frame:

12

Hl':(p'.v')—L1 :p——(a).[r'xp'])

2m
(175)
The Gibbs density in the rotating frame is then given by:
poLpan
VA4
(176)

where H’ is the sum over N particles:

H.:i(pf " (ofrxn, '])]

i=1 2mi

177)
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At this step, Balian observed that to switch back to the original coordinates, p' and [r X p '] can

be derived from p and [r>< p], respectively, by means of the same change of coordinates that

leads from 7 to r'. Balian then got:
H'=H—(wJ)

(178)
And identified density D with the earlier expression, provided A =—-fw.

Balian observed that as in the case of equilibrium of a gas in a gravitational field, the result could
have obtained by a macroscopic calculation from Thermodynamics and Fluid Mechanics, using
locally the perfect gas law and the balance between the forces, here centrifugal forces and pressure
gradients. Balian recalled that we should fix the value of these Lagrangian multipliers by requiring
that on the average the angular and linear momenta vanish. For symmetry reasons these quantities

vanish at the same time as the corresponding multipliers, and we have:

(J):—aILZ:Nma;RZ l — - 2sz2 ~ L oNmr?
oA l—exp(—ma’ RAkT) m’R* |@>02
(179)
and the energy:
v=-02_3 niri L)
op 2 2
(180)

Roger Balian observed that in the change of frame, the linear momentum mv' is no longer equal to

the momentum p' because the velocity v=p/m in the fixed frame is transformed in

vi=p'/m- [a) X7 '] in the rotating frame. Balian made the analogy with a particle of charge ¢ in

a magnetic field characterized by a velocity ( p— qA) /m.

Balian wrote “Whereas positions and velocities are physical quantities, momenta have a certain amount of
arbitrariness which is connected with the fact that we can change the Lagrangian by adding to it a time
derivative without changing the equations of motion.” Balian gave the example in a Gallilean

transformation with velocity u# with the procedure where the Lagragian is assumed to be invariant
p,' = p, whereas v,'=v, —u, the Hamiltonian becomes H'=H —<u,P>, where P is the total

momentum. Balian observed that another procedure, that better exhibits the Gallielan Invariance

consists in adding to the Lagrangian the ineffective term

Y ((v,. u)+%uj=%(2m Guzt_(m)D

(181)
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When we change coordinates (r.,v.) to (rl. LV, ') , the momentum which is conjugate to 7' is

1 1

b =pi_miu=miv; and not p;'=p

i

1
and the Hamiltonian H"=H —(u.P)+§Mu2 has in

terms of the pl exactly the same form as /{ in terms of the p,.

Balian presented these argues to be regarded as a microscopic justification of such a calculation
and wrote “As in the case of equilibrium of a gas in a gravitational field, we could have obtained the result by
a macroscopic calculation from thermodynamics and fluid mechanics, using locally the perfect gas laws and the
balance between the forces, here centrifugal forces and pressure gradients.”

Roger Balian observed that usually no conditions are unquired about the Lagrangian multipliers
for dynamical constants of motion sur as the angular or the linear momentum. Balian proposes to fix
the values of these multipliers by requiring that on the average the angular and linear momenta
vanish. Balian observed that for symmetry reasons, these quantities vanish at the same time as the

corresponding multipliers, and we have:

oInZ 1 2kT
<J >: _ = ]\/VI’I’lCl)R2 —ma’R2KT ’R?
Y} l—¢ ma R

~ la)NmR2

o—>0 2
(182)

The angular momentum <J z> is to lowest order in @ the same as for the rotation of a cylinder

1
with uniform density, which has a moment of inertia equal to ENmR2 . The energy contains a

contribution due to the motion, and is given by:

olnZ 3 1
(J.)=- Y —ENkT+Ea)<JZ>
(183)

The entropy also depends on the rotational velocity, but only to order @* . Tt decreases with @, as
the rotation produces changes in density which increase the spatial order.
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Appendix E: Proof of convergence for Poly-symplectic model based on Souriau proof
Jean-Marie Souriau has given the following definition:

Souriau Generalized Temperature Definition:

Let G a Lie group acting on a symplectic Manifold (M ,a)) by an Hamiltonian action

I':GxM — M, g is Lic algebra and J: M — q a moment map of the action, a generalized

temperature is an element [ € @such that the integral

[e"da,
M
(184)

is normally convergent.

Normal convergence means that there exist an open neighborhood V from f to g, and a

function f:M — R integrable on M relative to Liouville measure A_, such that:

vpev, < f

(185)

Lebesgue theorem on dominated convergence gives the proof.

Jean-Marie Souriau then introduced the following proposition:

Souriau Differentiability proposition:

Consider (), a non-empty set of generalized temperatures, () is a convex open set of Lie algebra

g that doesn't depend on the choice of the choice of the moment map J associated with the

Hamiltonian action. The partition function /:Q <> R givenby [ (f)= J.ef<ﬁ “id A, is infinitely
M

differentiable on 2. Its nt differentiation is given by the tensorial integral:

L= [ e,
M

(186)

and is normally convergent.

Let
o B,.BeQ
e V.V, neighborhoods respectively of £, 3,
. fo, f1 positive integrable function on M such that:
e < £ if B eV,
e_<ﬂ1"']> S b ifﬂlve V1
(187)
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VﬂE[O,l],Vl={(1—/1)ﬂ0'+/1ﬂ1'/ﬂ0'6Vo,ﬂl'eVl} is a neighborhood of f, given by
ﬂl=(1—/1)ﬂ0+/1,31 , and the function fl:(l—ﬂ,)fo +Af, is integrable on M and
e i) <f,,VpB,'€V,. Then B, €Q proving that Q is convex.

nth differential of e_<ﬂ’J> is given:
D (V) =(-1)" e
(188)

Selecting a norm on Lie algebra g, and considering Sup Norm on space L(g,iR) of n-multilinear
forms on g. We can deduceon g and on [g* :|®" anorm of multi-linear map:
-l

(189)
Let BeQ, £>0 and e < f,if feg and |B'-p<s
(190)

Let f"eq and ||,3"—ﬂ||£§ ,forall X eg and ”X”:l,then:

s

&

Sk

2
o< 22 o or,

(191)
Last relation is established by considering:

2sh (gj
n
(192)

If we select X € and a=<X,J>:

n n

2a

/A

YaeR,Vne\N, < = — (_1)1’ C:e’[’“z%%

e’ —e

n

p=0

n

2 e, ) <[3 (1) cre PR
n 0
(193)
e < foePINX I <L -5 % 4 s%
(194)
For X unitary, and by setting X =J g
for.a e <(22) 1
&
(195)
In ||<X, J> ") < (2_71) e_<ﬂ"iEXJ>, the sign + is selected such that <i8X, J> >0.
&
As |- "i%X < &, the final result is deduced:
nf ~p"J 2n] ®n_—(B"J 2n]
‘D () s{—} f=leet s[—} f
5 &

(196)
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~(8.J)

measure, the partition function is infinitely differentiable on Q.
By considering the taylor expansion of exponential function:

It proves that the n-differential of e is normally integrable on M with respect to Liouville

e —1- a—O; e, 1e[0,1]

(197)
From which, we deduce that:

e—<ﬂ—X,J>J®n _e—<ﬂ,J>J®n _e—<ﬂ,J>J®n+l (X) — %e<ﬂ—/1X,J>J®n+2 (X)(X)

(198)
Where T(X) means the contraction of a covariant tensor with vector X . Then:

n+2 n+2
2 2 2 2
om0 < {_W ’ q £ = L pona xyx) < {—W ’ q Flxf
& 2 2 £
(199)
By integration on V' and using I f Vol =a <+, we obtain:

Vv

2 2 n+2 ,
||1n(ﬁ—X)—Jn(ﬂ)—Im(ﬂ)”s%[#} Y ifﬂe>B[ﬂo,§j and ||X||£§ (200)

It proves that the function /, : f €@ — R is continuous and derivable in a neighborhood of £,

and its derivative is given I 441+ Then 1 o is aninfinite derivable function with I , asnth derivable.

Thes demonstrations can be extended for poly-symplectic model of Souriau Lie Groups
Thermodynamic by considering the polysymplectic partition function:

—Z B J®k<§>>
poly — J'

(201)

and its n-th derivatices given by:

o 0l _ e S,
B3

(202)

(k)
where J® =J® J...®J is defined as a tensorial product .
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Appendix F: Relativistic Souriau Thermodynamics of continua

We will summarize in this appendix the Souriau Relativistic thermodynamics of fluids. This
Souriau model about relativistic Thermodynamics of continua will give a solution to Duhem’s
General Thermodynanics: “We made dynamics a special case of thermodynamics, and science that embraces
common principles in all changes of state bodies, changes of places as well as changes in physical qualities”
[Nous avons fait de la dynamique un cas particulier de la thermodynamique, une Science qui embrasse dans
des principes communs tous les changements d’état des corps, aussi bien les changements de lieu que les
changements de qualités physiques] “.

Kinematics is defined by the vector field ® and the measurement of number of molecules: using
two state functions, Souriau has built a (thermo-)dynamic according to the two principles:
conservation of the Noetherian quantities attached to the Poincaré group, positive Entropy
production. Such a dissipative fluid has movements in which the Entropy production is nil; ® is
then a Killing vector; the equations of motion fully integrate; Souriau found in particular the results
of kinetic theory at equilibrium. This method can be used to study perfect fluids; Souriau recover the
classic Lichnerowicz results; moreover, we can build, even in the non-isentropic case, an space-time
2-Form () which is Integral invariant (in the sense of Cartan-Poincaré) of the temperature vector
® ; this provides a generalization of Helmholtz's theorem. In weakly dissipative movements,
naturally occur the two viscosity coefficients, as well as the thermal conductivity coefficient; they are
accompanied by two other coefficients that may be measurable on actual fluids.

Jean-Marie Sourias has first considered Kinematic of relativistic simple fluid, considering the
following Space-Time Vectors Field by Temperature vector X > @ with:

U : Unitary quadri-vector

®=Us 1
£ :? >0 (Boltzman k =1)

(203)

©® generates a group with a parameter of diffeomorphisms of space-time Es; the group's orbits (the
current lines of the fluid) form an abstract space Vs (has a manifold structure of dimension 3,
characterized by the fact that the following projection is a restricted submersion:

XeE, > xel,
(204)

Let the metric tensor g Lie derivative (for the vector field X € E, > 0):

1

7:5 L8

oX =0
(205)

Killing Formula gives the symmetric tensor:

Vi :%[apﬂ +0,0, |

(206)

Let consider Positive density 7 of quotient manifold V:
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xelV,—n
(207)

Integral of n on V; gives the number of molecules. Its reciprocal image by projection is defined

by:

XeE,—N
(208)

Particules conservation is given by:
o,N" =0 with N =Un
(209)

Direction of U or © defines a foliation of space-time Es. Leaves are current lines solutions of:

ax
ds,
(210)

=U

XeE, —»0=Us

= l and U fluid unitary speed

Space-Time E,
{F 1
5, (/,/(EE > N =Un V=508
ox=0

™

P
O : ;XeE > xel, 1
AR v =310:0,+0,0,]
vy — T
xelV,—>n

Figure 12. Legendre Transform and duality

Thermodynamic 1%t Principle in this model is given by:

0,T* =0 with T# =T*
(211)

The energy-momentum density tensor I’ “ has been built by Souriau using the kinematic
quantities, such as to verify the second principle.

Souriau Lemma:

Let (n, 8) > ¢ a differentiable function, then there is a symmetric tensor T* such that:


http://dx.doi.org/10.20944/preprints201808.0196.v1
http://dx.doi.org/10.3390/e20110840

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2018 d0i:10.20944/preprints201808.0196.v1

0,[N*¢]=-T"y,, with @=Us et N=Un
(212)

2

T =”_%[g*” —U’IU”]—n%UlU”
g On o€

(213)

We assume that there exist @ = (p(n, Q,y ) such this function is convex and energy-momentum

density are given by:

Tl;t — 5(0
a]/ly
(214)

If We assume that {7@ =0}:>{T o } then the following vector has a

positive divergence:

A _ A Au
§S*=NC+T"0,
(215)

The Thermodynamic 24 principle is given by:
0,5°>0
(216)

Proof is given by:

0,5 <[~y

0,5 ={p(r)-0(0)-T"y,,} +{0(0)-@(r)-T*(-7,.)} 20
(217)

0,8 * > 0 Souriau proposed to define the dynamics of the fluid by means of the two functions ¢

and @ which give at each point the energy tensor I’ “# and the entropy flux S * by
following formulas. These functions being determined, we have 5 equations to determine the 5

variables (n, @’1) and, moreover, the S*; 0 S A >0 will express the 2nd principle.

_99(n,0,7)
ayﬂ,ﬂ
S*=N*¢(n,e)+T*0, with ®=Ugs and N =Un

Viu = %[al@)ﬂ +0,0, ]

0,T* =0 and O,N* =0
(218)

T



http://dx.doi.org/10.20944/preprints201808.0196.v1
http://dx.doi.org/10.3390/e20110840

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2018 d0i:10.20944/preprints201808.0196.v1

Jean-Marie Souriau has then considered the case of non-dissipative movements.

If ¢ isstrictly convex for variable y then:

0,8 =0 7, =0 < O infinitesimal isometry
(219)

For non-dissipative solution of movement equations, ® is a Killing vector, associated to an element
of Lie algebra of Poincaré group:

AT
O =
0 0
(220)
with
@,=A,X"+T, (A, +A, =0)

O=U¢
(221)

=U¢

The equations of motion integrate through an arbitrary constant:

§’+a—§n =Cste=>n
on

(222)

Thermodynamics constants are the following;:

e specific molecular volume: u = %

(223)
e specific mass: p = _nc'}_g“ = _1og
oe u oe
(224)
2
e pressure: p = _nog = _1d¢
& On & Ou

(225)

In case of a nill entropy production:

U'0,e=0=3e,xeV,>¢

-0
aﬂsi=o:>{7 =10,U" =0=[0,N =0=U*0,n=0]=In,xeV, o n

O=AX+T (226)

Y _
eU"0,U,+0,6=0
= variable n and ¢ are constant on current lines

We can also deduce the following equations:
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®=AX+T 2
l U0, | ™08 | 0 and U, {na—g}o
0,N* =0 a

& on
(227)
From tensor Computation, Souriau has computed Energy-Momentum density currents

6/1N/1 =0=0, [Nig] = N/la/lé, = Ul”{%azn"'%@z‘c’}
on o€
1 g 1
Vi :E[aﬁ” +5ﬂ®4] :E[a‘U" +aﬂUi]+5[U18#g+Uyaie}
= g’“‘“ﬂ =e0,U"+U"0,¢
(228)

with the following developments:

U unitary =>U,U* =g, U'U* =1=U"0 U, =0=U"U"y,, =U"0,¢

O,N'=0=U"0,n+0,Un=0

2

N :"—%[gﬂ” —UﬂU”]—na—gUﬁUﬂ
& On oe

(229)

For this Non dissipative movements, we can prove:

2
U’e, {”—%} 0 [U%8,6=0
d
& o and{9,U" =0
ua,| ne =0 U*o,U,+0,6=0
2 n@n = & U, +0,6=

2
T =”—a—§[gif‘ —U*U“]—na—;UlU”
g On oe
2 2
& On & | € on os & on

(231)
n constant on current lines

0,T* =0,
integrable on e _ )
+ ¢ constant in space-time

n——

0. N*=0 0
A on

(232)
Souriau has proved that the entropy vector preserves the Legendre Transform:
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A a7l p)
St =N'¢+T™0,

2
T :”_%[gl” —UﬁU”]—na—gUﬂU” =S5*=N* [;—g%}

& 0 oe oe
®=Ug¢ and N=Un
SlzN’ls:s:;’—ga—;
o¢
(233)

With the Enropy per molecule: § =¢ + pug
(234)

¢ is the Massieu Potential (Massieu Charcateristic Function):

= —% = —# with F: Helmoltz Free Energy
S+ %n __G__Frpu with G: Free Gibbs-Duhem Energy
on T T
(235)

The link with Souriau 2-form and Poincaré-Cartan Integral Invariant is given by the following
developments. Consider the 1-form given by Enthalpy:

. p+p
H,=hU, with h:—n :u[p+p]
(236)
Its 2-form given by exterior differentiation

Q, =0,H,-0,H,
(237)

Movement'’s equation are replaced by:

o,N*=0 |9,N*=0
Au = H —
0,T*=0 |Q,0"+0,5=0
(238)

Q) is a Poincaré-Cartan Integral invariant of the field:

0s=0
Q,0"+0,5s=0= for 60X =0
0,Q=
if 9,5 =0 (isentropic movment) = @ € ker(Q)
(239)

Jean-Marie Souriau has then considered weakly dissipative movements. If we cannot know

Q= ¢)(n, 0,y ) , it can be approximated by 2nd order developmentin y variable:
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=@, + ]’:l‘u]//w +%Clﬂ’vq]//w}/vq = Tl‘u = Tlﬂ = —667/(0 = fiﬂ + Cl,u,vq}/vq (240)
An

Entropy production is given by:

0,8 =[ T =Ty, =C" 7,7,

Onsager Reciprocity = C*" = C**
(241)

55 coefficients of Transport coefficients C #4 are reduced to 5 coefficients (by fluid symetries and
Onsager reciprocity): A, B, C, E & F.

Souriau then obtained Relativistic (Fourier) Equation of Heat. Let consider constraints tensor:

o€
r,=-T, =0, {—p + 4,0V _BE} + U, [8ij + akv_,]
( J>k=1,2,3 and v, speed, zero at the point considered)
(242)
With the equations given by:

—

e HeatFlux T/°={F grad&‘—&‘aa—‘;
(243)

e Specific Mass-Energy: T = p+ Cg—j - Bé‘div(f/')
(244)

with:
1
A = [A - 2% } &, u,=Fe, e¢= T and Thermo-conductivity:1’%,2

Variables A,B,C, E & F are functions of & and 7, and convexity of ¢ induces:

B|<~NAC

A>0,C>0,E>0,F >0,
(245)
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