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Abstract: We introduce poly-symplectic extension of Souriau Lie groups Thermodynamics based 
on higher-order model of statistical physics introduced by R.S. Ingarden. This extended model could 
be used for small data analytics and Machine Learning on Lie groups. Souriau Geometric Theory of 
Heat is well adapted to describe density of probability (Maximum Entropy Gibbs density) of data 
living on groups or on homogeneous manifolds. For Small Data Analytics (Rarified Gases , sparse 
statistical survey,…), density of maximum entropy should consider Higher Order Moments 
constraints (Gibbs density is not only defined by first moment but fluctuations request 2nd order 
and higher moments) as introduced by R.S. Ingarden. We use Poly-sympletic model introduced by 
Christian Günther, replacing the symplectic form by a vector-valued form. The poly-symplectic 
approach generalizes the Noether theorem, the existence of momentum mappings, the Lie algebra 
structure of the space of currents, the (non-)equivariant cohomology and the classification of G-
homogeneous systems. The formalism is covariant, i.e. no special coordinates or coordinate systems 
on the parameter space are used to construct the Hamiltonian equations. We underline the 
contextures of these models, and the process to build these generic  structures. 
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« … inviter les savants géomètres à traiter nos problèmes avec le soucis de la commodité et de 
l’agrément : qu’ils écartent tout ce qui n’a rien à voir avec la pénétration de l’esprit, seule qualité 
dont nous faisons grand cas et que nous nous sommes proposé d’éprouver et de couronner » - Blaise 
Pascal – Deuxième Lettre sur la roulette, Paris, 19 Juillet 1658  

 « Nous avons fait de la Dynamique un cas particulier de la Thermodynamique, une Science qui 
embrasse dans des principes communs tous les changements d’état des corps, aussi bien les 
changements de lieu que les changements de qualités physiques » - Pierre Duhem, Sur les 
équations générales de la Thermodynamique, 1891 [25] 

« Nous prenons le mot mouvement pour désigner non seulement un changement de position dans 
l’espace, mais encore un changement d’état quelconque, lors même qu’il ne serait accompagné 
d’aucun déplacement… De la sorte, le mot mouvement s’oppose non pas au mot repos, mais au mot 
équilibre. » - Pierre Duhem, Commentaire aux principes de la Thermodynamique, 1894 [26, 
27, 115] 

1. Introduction 

    These two Pierre Duhem’s citations (see [116] for English translation) make reference to Aristotle 
Definition of “motion” (can be found in the Physics), to designate not only a change of position in 
space, but also any change of state, even if not accompanied by any displacement. In this case, 
Dynamics appears as a special case of “General Thermodynamics”, to describe in common principles 
all changes in the state of the body, both changes of place and changes in physical qualities. Making 
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reference to Duhem’s “Energetics”, Stefano Bordini write in [113]:”This theoretical design led Duhem to 
rediscover and reinterpret the tradition of Aristotle’s natural philosophy and Pascal’s epistemology …This 
outcome was surprising and clearly echoed the Aristotelian language and concept of motion as change and 
transformation: within the framework of Aristotelian natural philosophy, motion in the modern physical sense 
was actually a special case of the general concept of motion. The mathematisation of thermodynamics coincided 
with a generalisation of mechanics, and this generalisation led to an unexpected connection between modern 
mathematical physics and ancient natural philosophy”(see [114] and [117] for more developments on 
filiation between Aristotle, Pascal and Duhem Philosophy). This conceptual and epistemology point 
of view was enlightened 75 years after by Jean-Marie Souriau through symplectic model of Geometric 
Mechanics applied to Statistical Mechanics and used to build a “Lie Groups Thermodynamics” of 
dynamical systems, where the Gibbs density is covariant with respect to the action of Lie group on 
the system (Dynamical groups as Galileo group). This Souriau theory is based on tools related to non-
equivariant cohomology and affine representation of Lie groups and Lie algebra (last approach was 
independently studied in mathematical domain by Jean-Louis Koszul to characterize homogeneous 
convex cones geometry).  

   In this paper, we will explore and compare the joint geometric contextures shared in Information 
theory (based on Koszul’s Information Geometry) and Heat theory (based on Souriau’s Lie Groups 
Thermodynamics) to highlights their joint elementary structures. Classically, we address analogies 
between mathematical or physical models by comparing their “structures” defined as the 
arrangement of and relations between the parts or elements, or as the way in which the parts are 
arranged or organized. Concept of “contexture” is more general and phenomenological and could be 
defined as the act, process, or manner of weaving parts into a whole. We have then replaced the 
relations between objects by the act to build these relations. Based on Souriau general definition of 
Entropy as Legendre transform of logarithm of Laplace transform and Symplectic structure 
associated to Lie Group coadjoint orbits, we will see how geometric structures of Information and 
Heat theories are generated by these Souriau’s “generative processes”. We will extend theses 
contextures in the vector-valued case based on poly-symplectic model of higher order Souriau’s Lie 
Groups Thermodynamics. 

   Symplectic structure has been introduced in Mathematics much earlier than the word symplectic, 
in works of the French Physicist Joseph Louis Lagrange (see paper on the slow changes of the orbital 
elements of planets in the solar system), who showed that this geometry is a fundamental tool in the 
mathematical model of any problem in Mechanics. Jean-Marie Souriau has shown that Lagrange’s 
parentheses are the components of the canonical symplectic 2-form on the manifold of motions of the 
mechanical system, in the chart of that manifold [45-46].  

   Jean-Marie Souriau, graduated from ENS ULM was the nephew of Etienne Souriau (Philosopher, 
collaborator of Gaston Bachelard in Paris Sorbonne University) and grandson of Paul Souriau 
(Philosopher) who both have worked on « aesthetic ». His book SSD (structure des systems 
dynamiques) was elaborated in Carthage and Marseille, where Souriau was installed with his wife 
Christiane Souriau-Hoebrecht.  In 1952 Souriau found a position at Institut des Hautes Études de 
Tunis (8 rue de Rome, Tunis) and was back in Marseille in a position in 1958 at Faculté des Sciences. 
The manuscript is given to the editor Dunod in 1969, but only edited in 1970. About the source of his 
book title, we are at the apogee or « acmé » of the STRUCTURALISM in anthropology / sociology / 
linguistic / philosophy / epistemology in France (Levi-Strauss, Barthes, Foucault, Althusser, 
Lacan,…). The word "structure" was in the air of time, fashionable at the moment, circulating on all 
the lips as described by François Dosse in “Histoire du structuralisme I & II”. After his ONERA PhD 
Defence in 1953, his PhD supervisor André Lichnerowicz made one comment « you have many anti-
symmetrical forms in your calculations, you should be interested in symplectic structures». 
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Figure 1. Institut des Hautes Etudes de Tunis, 8 rue de Rome where Souriau has developed his theory of 
Geometric Mechanics and Lie Groups Thermodynamics (http://www.ina.fr/video/AFE01000164) 

    As early as 1966, influenced by François Gallissot work (Souriau and Galissot both attended 
ICM’54 in Moscow ? Did they discuss about 1952 paper ?), Souriau applied his theory of geometric 
mechanics to statistical mechanics, developed in the Chapter IV of his book “Structure of Dynamical 
Systems” [1,2], what he called “Lie groups thermodynamics”. Using Lagrange’s viewpoint, in Souriau 
statistical mechanics, a statistical state is a probability measure on the manifold of motions. As we 
can read in his book, Souriau was influenced by François Gallisot to introduce the Lagrange(-Souriau) 
2-form. 

   In place of classical mechanical equations of a material point subjected to a force F, defined by 

its mass m and its position r at time t, the second order differential equations  
2
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If the force F is derived from a potential w, we have classical equations: 
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This idea of Lagrange, rediscovered by Souriau was to consider time t like the others variables. One 
should use then the 7-dimensional space V (evolution space): 
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Classical system of first order differential equations in phase space can then be rewritten in evolution 
space V by the homogeneous form: 


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0
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tvr

tFvm


                                                                                  

(4) 

   At each point y of V, these equations define the tangent direction to the curve x described by the 
point y during the evolution of the system. These curves are the leaves (lines of force) of the field of 
directions defined by the equations of the homogeneous form, as defined for foliated manifolds. 

 
Figure 2. Evolution space V, Space of motions U and classical space time (figure from Souriau Book 

SSD) 

   A dynamical system is then represented by a foliation of the evolution, where the foliation is 
determined by an antisymmetric covariant second order tensor, denoted by  and called Lagrange-
Souriau 2-form. The components of this tensor are expressions known as Lagrange brackets.   is 
considered as a bilinear operator on tangent vectors of V. If we choose two such vectors: 


















v

r

t

y





   and 

















v

r

t

y

'

'

'

'





                                

(5) 

  associates to them an antisymmetric scalar product: 

   tvrtFvmtvrtFvmyy   ,'''','                                         

(6) 

In Souriau-Lagrange model,   is a 2-form on the evolution space V, and the differential equation of 
motion  y  implies: 

   yyy '  ,  0'                                                                              
(7) 

which can be written 
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   0y   or     kery                                                                       
(8) 

For study of this Souriau-Lagrange 2-form, see papers of V. Obădeanu [60-62]. 

   Souriau has observed that this 2-form was introduced by Lagrange in a different language in his 
study of celestial mechanics in 1808. Souriau was also influenced by François Gallisot that used this 
2-form in [47, 48]. We will see in the following the Souriau’s “Moment Map ” in dual Lie algebra of 
the group G, and the study of coadjoint orbits of G, (Group G-action on moment map  canonically 
generates symplectic manifolds). Souriau has extended this model for Thermodynamics. For this new 
phenomenological approach of Mechanics, Thermodynamics and Information Theory, we can give 
reference to Souriau introduction of his paper “Quantique ? Alors c’est géométrique” [65] and video 
of his talk [66]: 

« Let's put ourselves first in the framework of classical mechanics. Let's study an isolated, non-dissipative 
mechanical system - we will briefly say a "thing". The set of movements of this “thing” is a symplectic 
manifold. Why ? It is enough to refer to the Analytical Mechanics of Lagrange (1811); the space of 
movements is treated as a differentiable manifold; the covariant and contravariant coordinates of the 
symplectic form are written there (these are the "parentheses" and "brackets" of Lagrange). Let's now talk 
about the geometry of the 20th century. Let G be a diffeological group (for example a Lie group);  a 
moment of G (a moment is a left invariant 1-form on G); then the action of the group on  canonically 
generates a symplectic space (these groups can have an infinite dimension). Epistemological 
presumption: behind each “thing” is hidden a group G (its “source"), and the movements of the 
“thing” are simply moments of G (mnemonic Latin Doublet: momentum-movimentum). The isolation 
of the “thing” then indicates that the group of Poincaré (respectively Galileo-Bargman) is inserted in G; 
here is the origin of the relativistic (respectively classical) conserved magnitudes associated with a 
movement x: they simply constitute the moment induced on the spacio-temporal group by the moment-
motion x. 

 [Plaçons-nous d’abord dans le cadre de la mécanique classique. Étudions un système mécanique isolé, 
non dissipatif - nous dirons brièvement une « chose ». L’ensemble des mouvements de cette « chose » est 
une variété symplectique. Pourquoi ? Il suffit de se reporter à la Mécanique Analytique de Lagrange (1811) 
; l’espace des mouvements y est traité comme variété différentiable ; les coordonnées covariantes et 
contravariantes de la forme symplectique y sont écrites (Ce sont les “parenthèses“ et “crochets“ de 
Lagrange). Évoquons maintenant la géométrie du 20éme siècle. Soit G un groupe difféologique (par 
exemple un groupe de Lie) ;   un moment de G (un moment, c’est une 1-forme invariante à gauche sur 
G); alors l’action du groupe sur   engendre canoniquement un espace symplectique (ces groupes 
pourront avoir une dimension infinie). Présomption épistémologique : derrière chaque « chose » est 
caché un groupe G (sa “source“), et les mouvements de la « chose » sont simplement des moments 
de G (Doublet latin mnémotechnique : momentum-movimentum). L’isolement de la « chose » indique 
alors que le groupe de Poincaré (respectivement de Galilée-Bargman) est inséré dans G; voilà l’origine des 
grandeurs conservées relativistes (respectivement classiques) associées à un mouvement x: elles 
constituent simplement le moment induit sur le groupe spacio-temporel par le moment-mouvement x.] » 

« There is a theorem dating back to the twentieth century. If we take a coadjoint orbit of a Lie group, 
it is provided with a symplectic structure. Here is an algorithm to produce symplectic 
manifolds: take coadjoint orbits from a group. So it suggests that behind this symplectic structure of 
Lagrange, there was a hidden group. Take the classic movement of a moment of the group, so this group is 
very "big" to have the whole solar system. But in this group is included the Galileo group, and any moment 
of a group generates moments of a subgroup. We will find like that the moments of the group of Galileo, 
and if we want relativistic mechanics, it will be Poincaré group. In fact with Galileo group, there is a small 
problem, it is not the moments of the Galileo group that are used, it is the moments of a central extension 
of the Galileo group, which is called the Bargman group, and that is of dimension 11. It is because of this 
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extension, that there is this famous arbitrary constant appearing in the energy. On the other hand, when 
we do special relativity, we take Poincaré group and there are no more problems because among the 
moments there is the mass and the energy is mc2. So the 11-dimensional group is an artifact that 
disappears, when we do special relativity.                     

[Il y a un théorème qui remonte au XXème siècle. Si on prend une orbite coadjointe d’un groupe de 
Lie, elle est pourvue d’une structure symplectique. Voici un algorithme pour produire des 
variétés symplectiques : prendre des orbites coadjointes d’un groupe. Donc cela laisse penser que 
derrière cette structure symplectique de Lagrange, il y avait un groupe caché. Prenons le mouvement 
classique d’un moment du groupe, alors ce groupe est très « gros » pour avoir tout le système solaire. Mais 
dans ce groupe est inclus le groupe de Galilée, et tout moment d’un groupe engendre des moments d’un 
sous-groupe. On va retrouver comme cela les moments du groupe de Galilée, et si on veut de la mécanique 
relativiste, cela va être du groupe de Poincaré. En fait avec le groupe de Galilée, il y a un petit problème, 
ce ne sont pas les moments du groupe de Galilée qu’on utilise, ce sont les moments d’une extension centrale 
du groupe de Galilée, qui s’appelle le groupe de Bargman, et qui est de dimension 11. C’est à cause de cette 
extension, qu’il y a cette fameuse constante arbitraire figurant dans l’énergie. Par contre quand on fait de 
la relativité restreinte, on prend le groupe de Poincaré et il n’y a plus de problèmes car parmi les moments 
il y a la masse et l’énergie c’est mc2. Donc le groupe de dimension 11 est un artéfact qui disparait, quand 
on fait de la relativité restreinte.]»  

   François Gallissot has observed that in his famous lessons on integral invariants, Elie Cartan has 
shown that all the properties of the differential equations of the dynamics of holonomic systems result 
from the existence of the integral invariant: 

 Hdtdqp ii 
i

   with                                                                       

(9) 

Thus every holonomic system whose forces derive from a force function is associated to a form  , 
the equations of motion being the characteristics of the exterior form d . Around 1950, the theory 
of exterior forms on differentiable manifolds has been established on new foundations under the 
influence of topologists. The question was then to wonder: 

 if classical mechanics cannot benefit from these models by placing an exterior form of degree 
two at its base 

 if thanks to the notion of manifold, the notion of connection cannot be introduced in a more 
natural way 

 if the paradoxal indeterminations/impossibilities in the Lagrangian framework could be 
explained more clearly 

 if the problem of integration of equations of motion could be enlightened, generated by a 
form   of degree two. 

   To reach these various objectives, François Gallissot has resumed first the study of the logical 
bases on which the Galilean mechanics is built. He thus shown that when it is proposed to find 
generating forms of the equations of motion of a material invariant point in the transformations of 
the Galilean group, the most interesting form is an exterior form of degree two defined on a variety 

TEE 3  ( 3E Euclidean space, T temporal). François Gallissot shown that any holonomic 
parametric system with n degrees of freedom is associated with a form   of degree 2n defined on 
a differentiable manifold whose characteristics are the equations of the movement. This form is 
expressed by means of 2n Pfaff forms and by dt, the Hamiltonian form being a simple special case. 
He gave a summary of how we can get rid of the servitude of coordinates in the study of dynamical 
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systems and the important role played by the operator  i  antiderivative introduced  by Henri 
Cartan, the characteristic field E of the form   being defined by the relation 0)( Ei . François 
Gallissot has then introduced the following theorem: 

Theorem: There are three types of differential forms generating equations of movement of a material 
point invariant in the transformations of the Galilean group 

 
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If we consider the last form “C” : 
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0d  constraints Pfaff form 
jiij dxF  to be closed, and to reduce the differential of function U :  
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It proves that   is the exterior derivative of: 
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(14) 

The form * d   generates Elie Cartan integral invariant. 

   In chapter IV of his book, Souriau applied this model based on Symplectic geometry for statistical 
mechanics. Souriau observed that Gibbs equilibrium is not covariant with respect to dynamic groups 
of Physics. To solve this braking of symmetry, Souriau introduced a new “geometric theory of heat” 
where the equilibrium states are indexed by a parameter   with values in the Lie algebra of the 
group, generalizing the Gibbs equilibrium states, where   plays the role of a geometric (Planck) 
temperature. Souriau observed that the group of time translations of the classical thermodynamics is 
not a normal subgroup of the Galilei group, proving that if a dynamical system is conservative in an 
inertial reference frame, it need not be conservative in another. Based on this fact, Souriau generalized 
the formulation of the Gibbs principle to become compatible with Galileo relativity in classical 
mechanics and with Poincaré relativity in relativistic mechanics. The maximum entropy principle is 
preserved, and the Gibbs density is given by the density of maximum entropy (among the 
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equilibrium states for which the average value of the energy takes a prescribed value, the Gibbs 
measures are those which have the largest entropy), but with a new principle “If a dynamical system is 
invariant under a Lie subgroup G’ of the Galileo group, then the natural equilibria of the system forms the 
Gibbs ensemble of the dynamical group G’ ”. The classical notion of Gibbs canonical ensemble is extended 
for a homogneous symplectic manifold on which a Lie group (dynamic group) has a symplectic 
action. In case of Galileo group, the symmetry is broken, and new “cohomological” relations should 
be verified in Lie algebra of the group. A natural equilibrium state will thus be characterized by an 
element of the Lie algebra of the Lie group, determining the equilibrium temperature  . The 
entropy )(Qs , parametrized by Q  the geometric heat (mean of energy U , element of the dual Lie 
algebra) is defined by the Legendre transform of the Massieu potential given by   , parametrized 
by   (    is the minus logarithm of the partition function    ): 

  gg 

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    and    ,  log)(   with  )(, *)(,        
(15) 

   Jean-Marie Souriau has proposed to study the statistical mechanics from the new point of view of 
Symplectic geometry, completing the work of Poincaré and Cartan on integral invariant, reinventing 
the Lagrangian symplectic form in place of classical variational formulation and geometrizing the 
Noether Theorem with a moment map as new conserved quantities. Firstly, Souriau Lie Groups 
Thermodynamics gives geometrical status to the (Planck) temperature and the Entropy with a new 
general definition of the Fisher Metric. Secondly, Souriau Relativistic Thermodynamics of continua 
provides a geometrization of the second principle by the permanence of the Entropy current, whose 
flux has positive divergence [71-75]. This 2nd model of Souriau Thermodynamics is described in 
appendix. Other authors have studied this Relativistic Thermodynamics of continua [69,70,76-81]. 

   For the case of a small data analytics and Machine Learning on Lie groups, when Gibbs density 
is fluctuating, we have a generalized Souriau model introducing a poly-symplectic generalization of 
Maximum entropy and Gibbs density in Lie Groups Thermodynamics. This Geometric theory of Heat 
allows us to generalize Information Geometry in more abstract spaces. 

   If some works have been done from 80’s by R.S. Ingarden [16-17] and R. Mrugala [18-22] and V.I. 
Arnold [107] to give a geometric structures to Thermodynamics, Souriau Lie Groups 
Thermodynamics was ignored more than 50 years until recent recover in [4-5]. 

2. Higher order Thermodynamics based on higher order temperatures 

   We will generalize Souriau theory [1][2], reconsidered in [5] and with links with Information 
Geometry in [4], in the framework of higher order thermodynamics as introduced by R.S. Ingarden 
[9-11] and W. Jaworski [7,8] for mesoscopic systems. We can make also reference to other publications 
of R.S. Ingarden [39-43], W. Jaworsky [35-38] and T. Nakagomi [44] on higher order thermodynamics. 
The Gibbs canonical state results from the Maximum Entropy principle when the statistical mean 
value of energy is supposed to be known. A Polish School has studied the maximum entropy 
inference with higher-order moments of energy (when not only mean values but also statistical 
moments of higher order of some physical quantities are taken into account).  Ingarden in 1963 and 
Jaworski in 1981 have introduced the concept of second and higher-order temperatures, by assuming 
a distribution function which includes information not only on the average of the energy but also on 
higher-order moments, in particular 2nd moment related to fluctuations. This case should be 
considered in situations where fluctuations are not negligible, such as near phase transitions or 
critical points, in metastable states in systems with a small number of degrees of freedom. Ingarden 
idea is that if we can measure more details, such as the first n cumulants of the energy, we can then 
introduce n high-order temperature, as the Lagrange multipliers when we maximize the Entropy 
with respect to these values: 
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(16)                                                  

   Ingarden proposed that if we can measure the second cumulant of the energy (the fluctuation of 
the energy), the equilibrium state is not the canonical state, but would need two temperatures. 
Ingarden argues that for a macroscopic system there is very little difference between the two states, 
and that we would need a mesoscopic or microscopic system to be able to detect the higher 
temperature. W. Jaworski [7,8] has shown that the contribution to the total entropy, arising from the 
extra information corresponding to the higher-order moments, is o(N) , when N tends to infinity and 
N/V ratio is constant, with  N the number of particles and V the volume. The main result of W. 
Jaworski is that from a purely thermodynamic point of view, the information corresponding to the 
higher-order moments of extensive physical quantities is not essential and can be neglected in the 
maximum entropy procedure. Jaworski showed that the maximum entropy inference has a certain 
stability property with respect to information corresponding to higher order moments of extensive 
quantities. It can serve as an argument in favor of the maximum entropy method in statistical physics 
and to understand better why these methods are successful. R.F. Streater [3] has prefered to say that 
the states with generalized temperatures are not in equilibrium, assuming that the final state, at large 
times, will be the canonical or grand canonical state depending on mixing properties. R. F. streater 
[3] intends that this occur even for a mesoscopic system, such as a few atoms, adding that his 
approach is equivalent to Ingarden model if the relaxation time from the state with generalized 
temperatures to the final equilibrium is very long. 

Some examples of higher order maximum Entropy are given by Ingarden: 

 1st example of Higher Oder Maximum Entropy Density: 

Density of maximum Entropy 




 dxxPxPPS )(log)()(                               
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is given by:  
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with the following parameters  
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where   012 kxE  and         
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Figure 3. Higher order maximum entropy density for constraints (18) from Ingarden paper 

 2nd example of Higher Oder Maximum Entropy Density: 

Density of maximum Entropy 
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with the following parameters  
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Figure 4. Higher order maximum entropy density for constraints (22) from Ingarden paper 
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As soon as 1963, R. S. Ingarden has introduced this concept of higher order temperatures for 
statistical systems such as thermodynamics. In physics, the concept of temperature is connected with 
the mean value of kinetic energy of molecules in an ideal gas. For a general physical system with 
interactions among particles (the case of non-ideal gas: liquid or solid), an equilibrium probability 
distribution depends on temperature T as the only statistical parameter of the Gibbs state:

 
)(.1

)( xHe
Z

xP 
 

  with 
Tk

 1
  and  qpHxH ,)(   where p is position, q the mechanical 

momentum and k the Boltzmann constant (a factor to insure that H.  is dimensionless). If there 

are no stochastic interactions between particles (ideal gas), the partition function Z has the property 
to be integrable and we can obtain Gauss distribution in the momentum space deduced from the 
result of the limit theorem for large N. Ideal gas model of Boltzmann can fail if the number of particles 
is not large enough in the case of mesoscopic systems, and also if the interactions between particles 
are not weak enough. Gibbs hypothesis can also fail in other cases when stochastic interactions with 
the environment are not sufficiently weak. As remarked by R.S. Ingarden, nobody has never observed 
thermal Gibbs equilibrium in large and complex systems (cosmic systems, Earth's atmosphere, 
biological organisms), but only in cases of turbulence, flows or pumping, by replacing classical 
approach by local temperature and concept of thermodynamic flows (non-equilibrium 
thermodynamics and thermo-hydrodynamics), that is non-coherent with the classical concept of 
temperature which is, by definition, global/intensive and does not depend on position. R.S. Ingarden 
proposed to consider the stationary case using of the concept of higher order temperatures given by 
the Gibbs density: 
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(26) 
where  HEU   is the mean energy. This mean energy has been introduced to preserve the the total 
energy invariance with respect to an arbitrary additive constant, and   nZ  ,...,log 10   the 
constant of normalization. The new constants 

k  are said to be -temperatures of order k.  )(xH is 
usually defined as a quadratic function of x. The probability distribution is uniquely defined from 
statistical moments which should be measured experimentally. But if values number is too high to 
make this method practical, we are only able to measure the lowest moments up to some order (if we 
can neglect the higher orders that do not change the result to a given accuracy), and to fix -
temperatures defined as Lagrange multipliers by maximization of entropy of distribution

    dxxPxPS
nn

)(log)( ,...,,..., 11  , with the given moments as constraints. R.S. Ingarden observed 

that the entropy maximization randomizes higher moments in a symmetric way, and it cancel any 
possible bias with respect to their special values, and it gives the best estimate to a given accuracy. 
The values of   can be found by: 
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(28) 
R.S. Ingarden has applied this model for linguistic statistics, assuming the appearance of higher 

order temperatures since there occur rather strong statistical correlations between phonemes and 
words as elements of these statistics. He argued his choice observing that in the case of word statistics, 
the existence of strong correlations is given by grammatical or semantical studies [9]. R. S. Ingarden 
made the conjecture that his high order thermodynamics is the model of statistically interacting, 
biological living systems, and small systems although the calculation/observation are more difficult.  
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Ingarden higher order temperatures could be defined in the case when no variation is 
considered, but when a probability distribution depending on more than one parameter. It has been 
observed by Ingarden, that Gibbs assumption can fail if the number of components of the sum goes 
to infinity and the components of the sum are stochastically independent, and if stochastic 
interactions with the environment are not sufficiently weak. In all these cases, we never observe 
absolute thermal equilibrium of Gibbs type but only flows or turbulence. Non-equilibrium 
thermodynamics could be indirectly addressed by means of high order temperatures.  

3. Model of Souriau Lie Groups Thermodynamics 

For introduction to Symplectic Geometry, we make reference to C.M. Marle book [64] and J.L. 
Koszul Book [6]. In 1969, Souriau [1-2] introduced the concept of co-adjoint action of a group on its 
momentum space, based on the orbit method works, that allows to define physical observables like 
energy, heat and momentum or moment as pure geometrical objects. The moment map is a constant 
of the motion and is associated to symplectic cohomology. In a first step to establish new foundations 
of thermodynamics, Souriau has defined a Gibbs canonical ensemble on a symplectic manifold M for 
a Lie group action on M. In classical statistical mechanics, a state is given by the solution of Liouville 
equation on the phase space, the partition function. As symplectic manifolds have a completely 
continuous measure, invariant by diffeomorphisms, the Liouville measure  all statistical states will 
be the product of the Liouville measure by the scalar function given by the generalized partition 
function )(,)(  Ue  defined by the energy U  (defined in the dual of the Lie algebra of this 
dynamical group) and the geometric temperature  , where   is a normalizing constant such the 

mass of probability is equal to 1,  
M

U de   )(,log)( . Jean-Marie Souriau then generalizes the 

Gibbs equilibrium state to all symplectic manifolds that have a dynamical group. Souriau has 
observed that if we apply this theory for Galileo group, the symmetry has been broken. For each 
temperature  , element of the Lie algebra g, Souriau has introduced a tensor 

~ , equal to the sum 

of the cocycle ~ and the heat coboundary (with [.,.] Lie bracket):  
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~
22121 1

ZadQZZZZ Z 
                                                       

(29)                        
This tensor 

~  has the following properties: YXYX ),(),(
~  where the map   is the 

symplectic one-cocycle of the Lie algebra g with values in *g , with  )()( eXTX e  where   

the one-cocycle of the Lie group G.  YX ,
~  is constant on M and the map    gg:,

~
YX  is a 

skew-symmetric bilinear form, and is called the symplectic two-cocycle of Lie algebra g  associated to 
the moment map J , with the following  properties:  

    MapMoment     the  with  ,),(
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, JJJJYX YXYX                                              

(30) 
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~  YXZXZYZYX                                                       
(31)              

where 
XJ  linear application from g  to differential function on M :

XJXRMC   ),,(g
and the associated differentiable application J , called moment(um) map: 

gg*  XXxJxJxJxMJ X  ,),()( such that      )(, :                                         

(32) 
The geometric temperature, element of the algebra g , is in the the kernel of the tensor ~ :

  ~
 Ker  such that       ,   0,

~ g                                                        

(33)  
The following symmetric tensor        2121 ,,

~
,,, ZZZZg    , defined on all values of 

 ,.(.)  ad  is positive definite, and defines extension of classical Fisher metric in Information 

Geometry (as hessian of the logarithm of partition function): 
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       .Im  ,   ,   ,
~

,, 212121   adZZZZZZg  g                                         

(34) 
With     .Im,   ,   0, 2121  adZZZZg                                                             

(35) 
These equations are universal, because they are not dependent on the symplectic manifold but only 

on the dynamical group G, the symplectic two-cocycle  , the temperature   and the heat Q . 
Souriau called it “Lie groups thermodynamics”.  

 
Souriau Theorem of Lie Groups Thermodynamics  
Let   be the largest open proper subset of g , Lie algebra of G, such that  

M

U de  )(,  and  

M

U de   )(,.  

are convergent integrals, this set   is convex and is invariant under every transformation (.)gAd . Then, 

the fundamental equations of Lie Groups Thermodynamics are given by the action of the group: 
 Action of Lie group on Lie algebra: )( gAd                                              

(36) 
 Characteristic function after Lie group action:    ,1 g                               

(37) 
 Invariance of entropy with respect to action of Lie group: ss                    

(38) 
 Action of Lie group on geometric heat:  gQAdQgaQ g  )(),( *                            

(39) 
 
Souriau equations of Lie Groups Thermodynamics are summarized in the following Figures. 
 

 
Figure 5. Global Souriau scheme of Lie Groups Thermodynamics. 
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Figure 6.  Broken symmetry on geometric heat Q due to adjoint action of the group on temperature β 

as an element of the Lie algebra. 
 

   In the framework of Lie group action on a symplectic manifold, equivariance of moment 
could be studied to prove that there is a unique action a(.,.) of the Lie group G  on the dual *g  of 
its Lie algebra for which the moment map J  is equivariant, that means for each Mx : 
    )()())(,()( * gxJAdxJgaxJ gg                                                         

(40)  
 
   We could observe that Souriau Lie Groups Thermodynamics is compatible with Balian & 
Valentingauge theory of thermodynamics [24], that is obtained by symplectization in dimension 2n 
+ 2 of contact manifold in dimension 2n + 1. All elements of the Souriau geometric temperature vector 
are multiplied by the same gauge parameter. Balian & Valentin Model was first explored in [23] and 
has been recently developed by A. der Schaft and B. Maschke in [87-88]. 
 

  4. Extended Koszul study of Souriau non-equivariant model associated to a class of 
Cohomology 

Jean-Louis Koszul has deepened Souriau model in his book “Introduction to symplectic geometry” 
[6] as explained in [92]. In the historical Foreword of this book, Koszul write “The development of 
analytical mechanics provided the basic concepts of symplectic structures. The term symplectic structure is due 
largely to analytical mechanics. But in this book, the applications of symplectic structure theory to mechanics 
is not discussed in any detail”. Koszul considers in this book purely algebraic and geometric 
developments of Geometric/Analytic Mechanics developed during the 60th, more especially Jean-
Marie Souriau works detailed in chapter 4 and 5. The originality of this book lies in the fact that 
Koszul develops new points of view, and demonstrations not considered initially by Souriau and 
after by Geometrical Mechanics community. 

To highlight the importance of this Koszul book, we will illustrate the links of the detailed tools, 
including demonstrations or original Koszul extensions, with Souriau's Lie Groups 
Thermodynamics. Koszul originally developed Souriau model, in the case of non-equivariance, of 
the action of the group G on the moment map. As explained in [109] by Thomas Delzant at 2010 CIRM 
conference “Action Hamiltoniennes: invariants et classification”, organized with Michel Brion: “The 
definition of the moment map is due to Jean-Marie Souriau…. In the book of Souriau, we find a proof of the 
proposition: the map J is equivariant for an affine action of G on g* whose linear part is Ad *…. In Souriau's 
book, we can also find a study of the non-equivariant case and its applications to classical and quantum 
mechanics. In the case of the Galileo group operating in the phase space of space-time, obstruction to 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2018                   doi:10.20944/preprints201808.0196.v1

Peer-reviewed version available at Entropy 2018, 20, 840; doi:10.3390/e20110840

http://dx.doi.org/10.20944/preprints201808.0196.v1
http://dx.doi.org/10.3390/e20110840


 

equivariance (a class of cohomology) is interpreted as the inert mass of the object under study”. We can 
uniquely define the moment map up to an additive constant of integration, that can always be chosen 
to make the moment map equivariant (a moment map is G-equivariant, when G acts on g∗  via the 
coadjoint action) if the group is compact or semi-simple. In 1969, Souriau has considered the non-
equivariant case where the coadjoint action must be modified to make the map equivariant by a 1-
cocycle on the group with values in dual Lie algebra g∗.  

The concept and seminal idea of moment map was in the Sophus Lie’s book 2nd volume 
published in 1890, developed for homogeneous canonical transformations. Professor Marsden has 
summarized the development of this concept by Jean-Marie Souriau and Bertram Kostant based on 
their both testimonials: “In Kostant’s 1965 Phillips lectures at Haverford, and in the 1965 U.S.–Japan 
Seminar, Kostant introduced the momentum map to generalize a theorem of Wang and thereby classified all 
homogeneous symplectic manifolds; this is called today ‘Kostant’s coadjoint orbit covering theorem’…. Souriau 
introduced the momentum map in his 1965 Marseille lecture notes and put it in print in 1966. The momentum 
map finally got its formal definition and its name, based on its physical interpretation, by Souriau in 1967. 
Souriau also studied its properties of equivariance, and formulated the coadjoint orbit theorem. The momentum 
map appeared as a key tool in Kostant’s quantization lectures in 1970 [111], and Souriau discussed in 1970 it 
at length in his book [1]. Kostant and Souriau realized its importance for linear representations, a fact 
apparently not foreseen by Lie”. Souriau book reference date is 1970, but it was published by Dunod in 
1969. For information, Jean-Louis Koszul knew very well Souriau and Kostant works, and as soon as 
1958, Koszul made a survey of first Kostant’s works at Bourbaky seminar [112]. 
 
   In this Book in chapter 4, Koszul calls symplectic G-space a symplectic manifold (M; ) on which 
a Lie group G acts by a symplectic action (an action which leaves unchanged the symplectic form ). 
Koszul then introduces and develop properties of the moment map  (Souriau’s invention) of a 
Hamiltonian action of the Lie algebra g. Koszul also defines the Souriau 2-cocycle, considering that 
the difference of two moments of the same Hamiltonian action is a locally constant application on M 
,showing that when  is a moment map, for every pair (a;b) of elements of g, the function  

   ( , ) , , , , ,c a b a b a b      is locally constant on M, defining an antisymmetric 

bilinear application of gxg in H0(M; R) which verifies Jacobi's identity. This is the 2-cocycle introduced 
by Jean-Marie Souriau in Geometric Mechanics, that will play a fundamental role in Souriau Lie 
Groups Thermodynamics to define an extension of the Fisher Metric from Information Geometry : 
“Fisher-Souriau metric”. 
 

The antisymmetric bilinear map (31) and (32), with definition (27) and (28) , introduced by 
Souriau is exactly equal to the mathematical object extensively studied in chapter 4 of Koszul’s book: 

   ( , ) , , , , ,c a b a b a b                                                            

(41) 
In this book, Koszul has studied this antisymmetric bilinear map considering the following 

developments. For any moment map  , Koszul defines the skew symmetric bilinear form  c a,b  

on Lie algebra by: 
  g baba ,  ,  ),(dba,c                                                                     

(42)                                                                
Koszul observes that if he uses: 

)()()()()()()()( ***** tAdsxAdAdtxAdsxAdstxst stssst                      

(43)                  
by developing g aMxadxadaxd a

t ,  ,  )()()(  , he obtains: 

    g baMx(x)bbabaxbaxd ,,  , ,,a, ),(d,),(),(                              

(44)                       
He has then: 
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      g bababab ,  ,  ),(d,,,,a,ba,c                                            

(45)                          
and the property: 

         g cbabaccacbc ,,  ,  0,,,,c,ba,c                                               

(46)                                   
Koszul concludes by observing that if the moment map is transform as '     then we have:  

 ' ( , ) ( , ) , ,c a b c a b a b                                                                        

(47)                                           
Finally using       g bababab ,  ,  ),(d,,,,a,ba,c   , koszul highlights the property 

that: 
        


  cbabacbababa ,),(,,,,)(),( ****                                     

(48)                        
   In chapter 4, Koszul introduces the equivariance of the moment map . Based on the definitions 
of the adjoint and coadjoint representations of a Lie group or a Lie algebra, Koszul proves that when 
(M; ) is a connected Hamiltonian G-space and  *gM:  a moment of the action of G, there 
exists an affine action of G on g*, whose linear part is the coadjoint action, for which the moment   
is equivariant. This affine action is obtained by modifying the coadjoint action by means of a cocycle. 
This notion is also developed in chapter 5 for studying Poisson manifolds. 
Defining classical operation g  aGssasaAds ,   ,   1 ,   gg,  bababad a    ,   ,  and 

GsAdAd t
s     ,   1-s

*  with classical properties: 

  g aadAd aa    ,  expexp  or   g aadAd a
t

a    ,  exp*
exp

                                      

(49)                               
Koszul considers:  

Mxsxx   ,   , *gM:                                                                    
(50)                                                
From which, he obtains:  

 vaxavd ,),(                                                                               

(51)                                                      
Koszul then study *g MAds sM :*   , and develops: 

aAddadAdaAdd
sss 1,,, **
                                                          

(52)                                             
      )(,),(,,),( 1

1 vasdasvdsvasxvasxsaAdvd Ms
  

                           

(53)                       
asdaAdd Ms ,,*     and then proves that 0,*  aAdsd sM                        

(54)                 
Koszul considers the cocycle given by GsxAdsxs s    ,  )()()( * , and observes that: 

GtsAdsst s  ,  ,  (t))()( *
                                                               

(55)                                                
From this action of the group on dual Lie algebra: 

)(),(, * sAdssG s   ** gg                                                          

(56)                                   
Koszul introduces the following properties: 

MxGssxAdxssx s  ,  ,  )()()()( *
                                                 

(57)                                  
     )()()(,, * xxeAdeeG e** gg                                      

(58)                            
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    *g











,,  ,  )()()(

)()()()(

212112
**

21

2
*

1
**

21
*

21

21

12121

GssssssAdAdss

sAdsAdAdssAdss

ss

sssss                               

(59)                                            
This Koszul study of the moment map   equivariance, and the existence of an affine action of G on g*, 

whose linear part is the coadjoint action, for which the moment  is equivariant, is at the cornerstone of Souriau 
Theory of Geometric Mechanics and Lie Groups Thermodynamics. 

 
   We have also to make reference to Muriel Casalis papers [89-90] on this topic. 

5. Souriau model of generalized Entropy based on Legendre and Laplace transforms 

   At the step of the development of Souriau Lie Groups Thermodynamics, we will introduce 
generalized Souriau definition of Entropy.  Souriau first start to define “Laplace Transform”:  
Let E  a vector space of finite size,   a measure of its dual *E , then the function given by : 


*

)(
E

M dMMe                                                                              

(60) 
for all E  such that the integral is convergent. This function is called (generalized) Laplace 
transform.  This transform F  of the measure   is differentiable inside is definition set )(Fdef . 
Its p-th derivative is given by the following convergent integral for all point inside )(Fdef : 

 
*

)(...)()(

E

p dMMMMMF                                                             

(61) 
 
Souriau Theorem: 
Let E  a vector space of finite size,   a non-zero positive measure of dual space *E , F  its 
Laplace transform, then: 

- F  is semi-definite convex function,   )(,0 FdefF                                 
(62) 

- Ff log  is convex and semi-continuous 
- Let   an interior point of )(Fdef  then: 

o 0))((2 fD                                                                    
(63) 

o   
*

2

)())(())((2

E

M dMMfDMefD                                       

(64) 
o ))((2 fD  inversible  Affine envelop(support(  )) *E                       

(65) 
 
See [28], for links between dual convex functions and optimization. 
Before introducing Entropy, Souriau introduced the following lemma: 
 
Lemma: 
Let X  be a locally compact space, Let   a positive measure of X , having X  as support, then 
the following function   is convex: 

 
X

Xh XChdxxeh )(  ,  )(log)( )(                                                            

(66) 
such that the integral is converging. 
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The integral is strictly positive when it converges, and then insures existence of its logarithm. The 

epigraph of    is the set of 







y

h  such that  

X

yxh dxxe 1)()(  .  Convexity of exponential shows 

that this epigraph is convex. 
 
Finally, Souriau introduced the “negentropy” as Legendre transform of the function  : 
 
Souriau Entropy Definition: 
We call “Boltzmann Law” (relative to  ) all measure   of X such that the set of real values 

)()( hh  ,   defh  and h is integrable                                                
(67) 
 
   This definition of Entropy by Souriau is a general scheme that can be extended to highly abstract 
spaces preserving Legendre structure [31], if we can define generalized Laplace transform. These 
operations of Laplace and Legendre transforms are the core contextures of theory of Information and 
Heat, generating the well-defined structures, from which we can preserve the definition of “average 
value”. Jean-Marie Souriau explained this contexture property in the following sentence: 
“It is obvious that one can only define average values on objects belonging to a vector (or affine) space; 
Therefore—so this assertion may seem Bourbakist—that we will observe and measure average values only as 
quantity belonging to a set having physically an affine structure. It is clear that this structure is necessarily 
unique—if not the average values would not be well defined.            
[Il est évident que l’on ne peut définir de valeurs moyennes que sur des objets appartenant à un espace vectoriel 
(ou affine); donc—si bourbakiste que puisse sembler cette affirmation—que l’on n’observera et ne mesurera de 
valeurs moyennes que sur des grandeurs appartenant à un ensemble possédant physiquement une structure 
affine. Il est clair que cette structure est nécessairement unique—sinon les valeurs moyennes ne seraient pas 
bien définies.] “ 
 
See also papers of B. Kostant [52] and Leray [56] for Generalized Laplace Transforms. 

6. Souriau Thermodynamics of butter churn (device used to convert cream into butter) [“La 
Thermodynamique de la crémière”] 

   P. Duhem [82-85] and H. Poincaré [86] have studied statistical mechanics model of Centrifuge. 
We will illustrate Souriau Lie Groups Thermodynamics for Souriau Gibbs states for Hamiltonian 
actions of subgroups of the Galilean group, as illustrated in Souriau book [1] and more recentltly by 
Charles-Michel Marle [5]. 

Consider Galilean Lie Group: 
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(68) 

Galilean Lie Algebra:   
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Action of Lie Group: 
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(70) 

Galilean Transformation on position and speed is given by: 
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(71) 

Souriau has proved that this action is Hamiltonian, with the map J, defined on the evolution space 
of the particle, with value in the dual g* of the Lie algebra G, as momentum map: 
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(72) 

Where the coupling formula is given by: 

   

  


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(73) 
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(74) 

Souriau gave the demonstration for Galilean moment map for a free particle, considering the 
definition of moment map: 
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   dpZJdpdp    ,  ,                                                                  

(75) 

and the definition of tangent vector field:  

 )()( papZ VV                                                                             
(76) 
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(77) 

Then, as General Lagrange 2 Form for a Force F is: 
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If F is equal to zero, we obtain: 
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(79) 

and the Cocycle is given by: 
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(80) 

The main Souriau idea was to define the Gibbs states for one-parameter subgroups of the Galilean 
group. Souriau has proved that action of the full Galilean group on the space of motions of an isolated 
mechanical system is not related to any Equilibrium Gibbs state (the open subset of the Lie algebra, 
associated to this Gibbs state, is empty). Then, if we consider the 1-parameter subgroup of the 
Galilean group generated by b element of Lie Algebra, is the set of matrices: 
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Then, Gibbs state defined for a gas enclosed in a moving box could be computed by Souriau formula. 
If we fix the affine Euclidean reference frame  zyx eee,


,,0  at 0t , if we set the value  /t , 

moving frame  )(),(),(0 tetete, zyx

  velocity and acceleration are given by the vector field related to 

  element of the Lie algebra. For each point, we can associate a rotation speed  /
 , a speed  /


 

and an acceleration  /
 .  If we consider a gas made of N point particles, indexed by i ∈ {1,2, . . . 

,N}, enclosed in a box with rigid and undeformable walls, whose motion is described by the action of 
the 1-parameter subgroup of the Galilean group,  /tA  where t ∈ R. If we consider )(),(, tvtrm iii , 
respectively the mass, position vector and velocity vector of the ith particle at time t. If we assume free 
particle and we neglect contributions given by the collisions of the particles between themselves 
collisions with the walls, then we can write: 
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(83) 

The important idea is to observe that ,iJ  is invariant by the action of 1-parameter subgroup. 

The proof of ,iJ  invariance is based on Souriau equation for default of equivariance with cocyle. 

If the action of the 1-parameter subgroup is 





 
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exp , according to Souriau equation:  
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We obtain for: 
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and 
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(86) 

To obtain Souriau Gibbs Maximum Entropy density, we have to use the following change of 
variables: 
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ε
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*
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1                                                                           

(87) 
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We can then write: 
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(89) 

and finally, the Souriau Gibbs density is given by: 
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(91) 

If we consider the case of the centrifuge (as for a butter churn, device used to convert cream into 
butter), the parameter of Galilean group Lie algebra are reduced to: 
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with variables: 
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We obtain the closed form for Maximum Entropy Souriau-Gibbs density: 
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(94) 

   This equation describes the behaviour of a gas made of point particles of various masses in a 
centrifuge rotating at a constant angular velocity and explains the observation that the heavier 
particles concentrate farther from the rotation axis than the lighter ones. 
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Figure 7.  Most simple use-case of Souriau Lie Groups Thermodynamics: the thermodynamics of 

centrifuge of butter churn (device used to convert cream into butter) 

   Souriau Lie Groups Thermodynamics provides right results if we apply it to subgroups of Galileo 
group, as previous example of a cylindrical box with fluid with an invariance sub-group of size 2 
(rotation along the axis, time translation) providing a 2-dimensional Souriau (Planck) Temperature-
Vector. Souriau has observed that the process, by which a refrigerated centrifuge transmits its own 
Temperature-Vector to its content, has two names: thermal conduction and viscosity, depending on 
the Temperature-Vector component that is considered. Conduction and viscosity should therefore be 
unified in a fundamental theory of irreversible processes (theory that remains to be constructed). 

   In appendix, we develop solution given by Roger Balian [63] for the previous case of centrifuge 
thermodynamics based on classical methods. Roger Balian recover the same Gibbs density but by 
introducing additional Lagrange hyper-parameter associated to total angular momentum. Balian has 
computed the Boltzmann-Gibbs distribution without knowing Souriau equations (exercice 7b of []). 
Balian started by considering the constants of motion that are the energy and the component zJ  of 

the total angular momentum  i i
i

J r p  . Balian observed that he must add to the Lagrangian 

parameter, given by (Planck) temperature   for energy, an additional one associated with zJ . He 

identifies this additional multiplier with   by evaluating the mean velocity at each point. He 
then introduced the same results also by changing the frame of reference, the Lagrangian and the 
Hamiltonian in the rotating frame and by writing down the canonical equilibrium in that frame. He 
uses the resulting distribution to find, through integration, over the momenta, an expression for the 
particles density as the function of the distance from the cylinder axis. 

   Main Souriau model advantage is that we can define covariant Gibbs density for dynamical 
systems, only by applying formulas without any considerations [2]. 

7. Higher-Order Model of Thermodynamics Lie Groups Thermodynamics based on vector 
valued model 

As observed by Jean-Marie Souriau in chapter IV of [1], the Gausian density is a maximum 
entropy density of 1st order. Considering Multivariate Gaussian density, this remark is clear if we 
replace classical parameterization z  and ),( Rm  by the new parameterization, linked to 
Information Geometry coordinates,   and  : 
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We can observe in previous equations that classical Multivariate Gaussian density, classically 

expressed by 
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can observe that classical Multivariate Gaussian Density ,
ˆ

1
( )   p e

Z
 


  is a maximum Entropy 

Gibbs density of 1st order with respect to the tensorial variable  ˆ
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m RR z m z m p z dz   . The question 

is then, could we define a Gaussian density of higher order ? 
 

   We have seen that Souriau has replaced classical Maximum Entropy approach by replacing 
Lagrange parameters by only one geometric “temperature vector” as element of Lie algebra. In 
parallel, Ingarden has introduced second and higher order temperature of the Gibbs state that could 
be extended to Souriau theory of thermodynamics.  The question is then, how to extend Souriau 
model to define an higher order Lie Groups Thermodynamics. For this purpose, we propose to 
consider multi-symplectic geometry and more particularly poly-symplectic geometry [67]. The 
variational problems generalization with several variables was developed by V. Volterra in two 
papers [94-95] where two different generalizations of the Hamilton system of equations are 
introduced. In parallel, De Donder [96] has also studied this approach in a geometrical framework 
based on Elie Cartan idea of invariant structure with no dependence to local coordinates and based 
on affine multisymplectic manifold. We can also formalize the Multisymplectic Geometry with an 
extension of the Poincaré-Cartan invariant integrals. Frédéric Hélein has observed the fact that 
different theories could cohabitate was considered jointly by T. Lepage [97], P. Dedecker [98-99] and 
J. Kijowski [32-34]. The Lepage–Dedecker theory was developed by F. Hélein [101], and the modern 
formulation using the multisymplectic (n + 1)-form as the fundamental structure of the theory starts 
with J. Kijowski papers. The geometrical multisymplectic approach uses the generalized Legendre 
correspondence introduced by Lepage and Dedecker and Hamiltonian formalism developed by 
Hélein [102]. 

 
Among all multi-symplectic models, the more natural multi-valued one that preserve the notion 

of (poly-)moment map has been initiated by Christian Günther based on n-symplectic model. 
Günther has shown that the symplectic structure on the phase space remains true, if we replace the 
symplectic form by a vector valued form, that is called poly-symplectic. The Günther formalism is 
based on the notion of a poly-symplectic form, which is a vector valued generalization of symplectic 
forms. Hamiltonian formalism for multiple integral variational problems and field theory is 
presented in a global geometric setting. Günther has introduced in this poly-symplectic formalism: 
Hamiltonian equations, canonical transformations, Lagrange systems, symmetries, Field theoretic 
moment mappings, a classification of G-homogeneous field theoretic systems on a generalization of 
coadjoint orbits.  
 
Günther has defined 6 conditions for a multidimensional Hamiltonian formalism : 

 C0: For each field system, an evolution space can be constructed, which describes the states 
of the system completely. 

 C1: The evolution space carries a geometric structure, which assigns to each function 
(Hamiltonian density) its Hamiltonian equations. 

 C2: The geometry of the evolution space gives 'canonical transformations’, i.e. the general 
symmetry group of a system independently of the choice of Hamiltonian density. 

 C3: The formalism is covariant, i.e. no special coordinates or coordinate systems on the 
parameter space are used to construct the Hamiltonian equations. 

 C4: There is an equivalence between regular Lagrange systems and certain (regular) 
Hamiltonian systems. 
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 C5: For one dimensional parameter space the theory reduces to the ordinary Hamiltonian 
formalism on symplectic manifolds in classical mechanics. 

Günther has observed that Hamiltonian field theory by J.E. Marsden is not covariant, because 
C3 is not verify and causes problems in relativistic theories, and that Multisymplectic approach by 
Tulczyjew, based on general theory by Dedecker, do not satisfy C1 and C2.  
 
The key idea of Günther for this generalized Hamiltonian formalism is to replace the symplectic form 
in classical mechanics by a vector valued, so called poly-symplectic form with the property that: 

 the evolution space of a classical field will appear as the dual of a jet bundle, which carries 
naturally a polysymplectic structure.  

 canonical transformations are bundle isomorphisms leaving this poly-symplectic form 
invariant. 

The polysymplectic approach recovers all classical results also generalize the Noether theorem 
based on canonical transformations and preserve the existence of momentum mappings. Christian 
Günther work was inspired by the symplectic formulation of classical mechanics by Jean-Marie 
Souriau and by the work of Edelen [49-50] and Rund [51] on a local Hamiltonian formulation of field 
theory. D. G. B. Edelen work is a coordinate version of the local polysymplectic approach of Günther. 
 

   Initiated by C. Gunther [12] and [13] based on n-symplectic model [14,15], it has been shown 
that the symplectic structure on the phase space remains true, if we replace the symplectic form by a 
vector valued form, that is called polysymplectic. This extension defines an action of G over 
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)(

* ... gg 
n

, we can define a n-coadjoint orbit 
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   Extending Souriau approach, equivariance of poly-moment could be studied to prove that there 

is a unique action a(.,.) of the Lie group G  on *
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 for which the polymoment map 
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nn MJJJ  verifies Mx  and Gg  : 
    )()())(,()( )()()*()()( gxJAdxJgaxJ nnn

g
n

g
n                                               

(97) 
with    n
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nn
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(98) 
and  )(),...,()( 1)( ggg nn                                                                    
(99) 

( ) ( )n g is a poly-symplectic one-cocycle. We can also defined poly-symplectic two-cocycle 
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where    )()( eXTX k

e
k                                                                   

(101) 
Finally, we propose to define the poly-symplectic Souriau-Fisher metric by the following expression: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2018                   doi:10.20944/preprints201808.0196.v1

Peer-reviewed version available at Entropy 2018, 20, 840; doi:10.3390/e20110840

http://dx.doi.org/10.20944/preprints201808.0196.v1
http://dx.doi.org/10.3390/e20110840


 

          nkβ adZZ,ZZΘdiagZZg
k

  ,...,,.Im,  ,  
~

,, 1212121  g                       

(102)                                                  
with         )(,,

~,...,
,

~
221

1
21 1

ZadQZZZZΘ Zk
k

k

n
βk








                       

(103)                                 
Compared to Souriau model, heat is replaced by previous polysymplectic model:  
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with characteristic function:  


de
M

U

n

n

k

k
k




 


1

)(,

1 log),...,(                          

(105) 
We extrapolate Souriau results, who proved in [1][2] that 
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defined as a tensorial product [1]. 
Entropy is defined by Legendre transform of Souriau-Massieu characteristic function: 
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(106) 
The Gibbs density could be then extended with respect to high order temperatures by: 
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(107) 

8. Conclusion and possible extensions 

We have introduced contextures of Geometric theory of Information and Heat based on Souriau 
approach, but Information Geometry is at the interface between different geometries. First, 
Information Geometry is at the intersection between “Riemannian Geometry”, “Complex Geometry” 
and “Symplectic Geometry”. Based on seminal work of Elie Cartan on homogeneous domains and 
other works [103-106], Information Geometry is jointly founded by: 

 Geometry of Jean-Marie Souriau: Study of homogeneous symplectic manifolds geometry 
with the action of dynamical groups. Introduction of the Lie Groups Thermodynamics in 
statistical mechanics [1][6]. 

 Geometry of Jean-Louis Koszul: Study of homogeneous bounded domains geometry, 
symmetric homogeneous spaces and sharp convex cones. Introduction of an invariant 2-form 
[53, 54,91,93,108]. 

 Geometry of Erich Kähler: Study of differential manifolds geometry equipped with a unitary 
structure satisfying a condition of integrability. The homogeneous Kähler case studied by 
André André Lichnerowicz [110]. 
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Figure 8.  Three Sources of Geometric Structures for Information and Heat 

 
  We have extended Souriau Lie Groups Thermodynamics by vector-valued model based on poly-
symplectic geometry, introducing higher order Souriau-Gibbs density with higher order Souriau 
temperatures, elements of Lie algebra. This model preserves all contextures of Souriau 
Thermodynamics with covariance of Gibbs density with respect to dynamical groups in physics. 
Poly-moment map are compliant with Noether theorem generalization in vector-valued case. 
   Jean-Marie Souriau model and equations were extensively studied in the Jean-Louis Koszul 
Lecture given in China in 1986 “Introduction to Symplectic Geometry”, in Chinese. This book should 
be translated in English in 2019. Chuan Yu Ma has written on Koszul book: “This beautiful, modern 
book should not be absent from any institutional library. …. During the past eighteen years there has been 
considerable growth in the research on symplectic geometry. Recent research in this field has been extensive 
and varied. This work has coincided with developments in the field of analytic mechanics. Many new ideas have 
also been derived with the help of a great variety of notions from modern algebra, differential geometry, Lie 
groups, functional analysis, differentiable manifolds and representation theory. [Koszul's book] emphasizes the 
differential-geometric and topological properties of symplectic manifolds. It gives a modern treatment of the 
subject that is useful for beginners as well as for experts.” 

 
Figure 9.  koszul Lecture on “Introduction of Symplectic Geometry” where Souriau model of non-

equivariance is developed 
 
We have seen that in Geometrical Mechanics, the Galileo Group related to classical mechanics: 
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(108) 
and its central extension given by Bargman group: 
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(109) 
and Poincaré group in Relativity. We then observe, that Affine Group or its sub-groups are at 
cornerstone of different disciplines as: 

 In robotics, the Special Euclidean Group SE(3) which is the homogeneous Galileo group 
(robotics also consider the group of similitudes SIM(3)): 

3

(3)'
  ,  

1 0 1 1

SOZ t Z

t R

      
             

                                                

(110) 
 In Information Geometry, General Affine Group is involved A(n,R) for exponential family: 
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(111) 
with particular case of Gaussian density, associated by Cholesky factorisation of covariance 
matrix, where covariance matrix square root is triangular matrix with positive elements on 
its diagonal (it is a group): 
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(112) 
 In study of homogeneous bounded domains, as the simplest one given by Poincaré upper-

half plane: 
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(113) 
 

Jean-Marie Souriau was motivated by Group invariance, not only in Physics but also in 
neuroscience. Souriau intuition was highly premonitory, because this neuroscience domain has been 
developed few decades after by Alain Berthoz at College de France 
(http://public.weconext.eu/academie-sciences/2017-10-03_5a7/video_id_002/index.html) and by  
Daniel Bennequin (https://www.youtube.com/watch?v=a-ctwxBpJxE) to study the brain sense of 
movment. We can read in Souriau text the very interesting remarks on Geometry and neuroscience: 

“I said to myself, because of meeting groups everywhere, there is something hidden there. The metaphysical 
category of groups that hovers in the empyrean of mathematics, which we discover and adore, must be connected 
with something closer to us. Listening to many presentations by neurophysiologists, I ended up learning the 
primitive role of moving objects. We know how to manipulate these movements mentally with great virtuosity. 
That allows us to manipulate ourselves, to walk, run, jump, catch up when we fall, and so on. This is not true 
only for us, it is true also for monkeys; they are much more adroit than we are to anticipate the results of a trip. 
For some basic "reading" operations, they are even ten times faster than us. Many neurophysiologists think 
that there is a special structure genetically inscribed in the brain, the wiring of a group… When there is an 
earthquake, we witness the death of Space. ... We live with our habits that we think universal. ... Neuroscience 
rarely deals with geometry ... For monkeys living in trees, some of Euclid's group properties are better wired in 
their brains.  
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[Je me suis dit, à force de rencontrer des groupes, il y a quelque chose de caché là-dessous. La catégorie 
métaphysique des groupes qui plane dans l'empyrée des mathématiques, que nous découvrons et que nous 
adorons, elle doit se rattacher à quelque chose de plus proche de nous. En écoutant de nombreux exposés faits 
par des neurophysiologistes, j'ai fini par apprendre le rôle primitif du déplacement des objets. Nous savons 
manipuler ces déplacements mentalement avec une très grande virtuosité. Ce qui nous permet de nous 
manipuler nous-même, de marcher, de courir, de sauter, de nous rattraper quand nous tombons, etc. Ce n'est 
pas vrai seulement pour nous, c'est vrai aussi pour les singes ; ils sont beaucoup plus adroits que nous pour 
anticiper les résultats d'un déplacement. Pour certaines opérations élémentaires de «  lecture », ils vont même 
dix fois plus vite que nous. Beaucoup de neurophysiologistes pensent qu'il y a une structure spéciale 
génétiquement inscrite dans le cerveau, le câblage d'un groupe … Lorsque il y un tremblement de terre, nous 
assistons à la mort de l’Espace. … Nous vivons avec nos habitudes que nous pensons universelles. … La 
neuroscience s’occupe rarement de la géométrie … Pour les singes qui vivent dans les arbres, certaines 
propriétés du groupe d’Euclide sont mieux câblées dans leurs cerveaux.] “ 

 

 
Figure 10.  Mediterranean sources of Souriau Book on Structure of Dynamical systems at Carthage 

and Massilia where souriau wrote this text and theory  

 « Il est une Cosmologie avec laquelle la Thermodynamique générale présente une 
analogie non-méconnaissable ; cette Cosmologie, c’est la Physique péripatéticienne 
… Parmi les attributs de la substance, la Physique péripatéticienne confère une égale 
importance à la catégorie de la quantité et à la catégorie de la qualité ; or, par ses 
symboles numériques, la Thermodynamique générale représente également les 
diverses grandeurs des quantités et les diverses intensités des qualités. Le mouvement 
local n’est, pour Aristote, qu’une des formes du mouvement général, tandis que les 
Cosmologies cartésienne, atomistique et newtonienne concordent en ceci que le seul 
mouvement possible est le changement de lieu dans l’espace. Et voici que la 
Thermodynamique générale traite, en ses formules, d’une foule de modifications telles 
que les variations de températures, les changements d’état électrique ou 
d’aimantation, sans chercher le moins du monde à réduire ces variations au 
mouvement local » - Pierre Duhem – La théorie Physique : son objet, sa 
structure 

« Pour la théorie de la connaissance mais aussi pour les sciences est fondamentale la 
notion de perspective. Or, les expériences faites dans la géométrie algébriques, dans 
la théorie des nombres, et dans l’algèbre abstraite m’induisent à tenter une 
formulation mathématique de cette notion pour surmonter ainsi au moyen de 
raisonnements d’origine géométrique la géométrie. Il me semble en effet, que la 
tendance vers l’abstraction observée dans les mathématiques d’aujourd’hui, loin 
d’être l’ennemi de l’intuition ait le sens profond de quitter l’intuition pour la faire 
renaitre dans une alliance entre « esprit de géométrie » et « esprit de finesse », alliance 
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rendue possible par les réserves énormes des mathématiques pures dont Pascal et 
Goethe ne pouvaient pas encore se douter » -  Erich Kähler – Sur la théorie des 
corps purement algébriques, 1952 
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Appendix A: Günther Polysymplectic model 
 
We recall in this appendix, a synthesis of Christian Günther Poly-symplectic model with his initial 
notation [12]. 

We set: 
Q:U

Q


 valuesfield of space :                                                               

(114) 
The bundle of linear maps from Rn into the tangent spaces of Q 

  *, nnn RTQTQRHomQI                                                                 
(115) 
If a base of Rn is chosen, can also be interpreted as n-tangent υectors of Q, there is the isomophy : 

TQQI nn
1                                                                                  

(116) 
The natural projection is given by: 

QQI nn
Q :                                                                                 

(117) 
In analogy to the canonical forms on the cotangent bundle, the cojet space  TQRHom n ,                   
carries a natural Rn-valued: 
 one-form: 0  (canonical one-form) 
 two-form: 00  d  closed & non-degenerate (canonical polysymplectic form) 

In the natural bundle coordinates the canonical forms on  TQRHom n ,  have the local 

representation: 
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Following diffeomorphism leaves invariant one and two forms: 

   
    00

**
00

**

*

   and   

,,:   and   :





fIfI

RTQHomRTQHomfIQQf
nn

nnn

                                          

(114) 
Definition:  
A closed nondegenerate Rn-valued two-form Ω on a manifold M is called a polysymplectic form. 
The pair (M, Ω) is a polysymplectic manifold. 
 
The classification of linear polysymplectic forms is not trivial, because two polysymplectic forms are 
not necessarily locally equivariant.  
 
Definition:  
A polysymplectic form Ω on a manifold M is called a standard form iff M has an atlas of canonical 
charts for Ω, i.e. charts in which locally Ω is written as the canonical evaluation form on Q x Lin 
(Q,Rn). (M, Ω) is called a standard polysymplectic manifold. 
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The polysymplectic structure provides the procedure which assigns to a function on M, the 
Hamiltonian,  its associated Hamiltonian equations. Let (M, Ω) a polysymplectic manifold: 
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(120) 

An affine sub bundle of   TQRHom n ,  is defined by: 
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(121) 
Definition: 

 dH1#  is called the system of Hamiltonian partial differential equations associated with the 

Hamiltonian function H. A smooth map MU : is a solution of  dH1#  iff:  
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(122) 
 
Theorem:  
Let (M, Ω) be a standard polysymplectic manifold, (p,q) canonical coordinates for Ω on M, and H a 

Hamiltonian function. A smooth map MU :  is a solution of  dH1#  iff in canonical 

coordinates: 
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If a base nee ,...,1  of Rn is chosen and  )(),...,()( 1 upupup n  with respect to this base, then the 

equations take the form: 
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Proof:  
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(126) 
Example: 

Consider a scalar field where 4  and  ,4 RRMRQn  with scalar coordinates  41,...,, ppq  

Let   



4

1

22
41 2

1
,...,,

i
i mqpppqH  an Hamiltonian on M, the canonical polysymplectic form Ω is 

given by: 


 




4

1i i
i x

dpdq                                                                         

(127) 
The Hamiltonian equations for a scalar field: 
        4144114141 ,...,,...,,...,,,...,,..., xxpxxpxxqxx                                            

(128) 
are  










4

1

  and  
i

i
ii

i p
x

q
mq

x

p                                                                     

(129) 
 
Definition:  

Let (M, Ω) be a polysymplectic manifold, dHX  )(# , H  is called an momentum tensor  iff  

dHtrd H                                                                                    

(130) 
 
Proposition: 

00 X ,   0L 0 Xtrd  and   00L  XtrHdtr X                                  

(131) 
Proof: 



 



















i i
qi

i i i
pq

i
i

x
XpX

p
X

q
XX

x
dqp

i

0

0   and  
                                              

(132) 

 
  000

000L




trdXdHdXdXtr

dXdXtrtr X                                                        

(133) 
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The classification of symplectic homogeneous spaces by coadjoint orbits by Souriau belong to the 
major achievements in Hamiltonian mechanics. C. Günther has extend these results to 

polysymplectic manifolds. Let LGLGGAd :  be the adjoint action. We denote by nAd  

induced action on  LGRLin n , : 

   
    GgRxLGRLinfxfAdxfAd

LGRLinLGRLinGAd
nn

g
n
g

nnn





,,,  ,  )())((         

,,:
                                

(134)                   

The dual of nAd  is denoted by #Ad : 

n
gg

nn AdAdRLGRLGGAd   )(   ,   : #**#                                         

(135) 

       LGRLinfGgfAdfuuAd nn
g

nn
ggg ,, allfor   )()( **                       

(136)  
Günther Proposition:  
Let MMG  : be a strongly polysymplectic group action with momentum map 

  nn RLGRLGLinM  *,: .  Assume M  is connected. Then the map: 

   )(#

*

mAdmm

RLGM

gg

n

 




                                                                   

(137)                                                               
is a constant on M  for all Gg   

 
Corollary:  
There is a smooth map  : 

   )()(  ,  : #* mAdmgRLGG gg
n                                                

(138) 
with the following properties: 

 1-   is a 1-cocyle for all Ghg ,  then     )()(# hgAdgh h                      

(139) 

 2 - bilinear map   on LG : nn RLGLGRLGLGL  :  ,  :: *    is a 2 cocycle 

         LGwvuvuwuwvwvu  ,,  ,  0,,,,,,                                  

(140) 
Proof: 
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     
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)()()(

#

####

#

hAdghg
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hghg


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


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
                        

(141) 
Günther Theorem (Vector-valued extension of Souriau Theorem): 

Let MMG  :  be a polysymplectic action with momentum map nRLGM  *: .                                        

Then the map:  

  )(,

:
#

**

gAdg

RLGGRLGG

g

nn

 


                                                             

(142) 

is an affine operation of G  on nRLG * , and commutes for all Gg   and   is G-equivariant. 

Proof: 

 
      



,,)()(,

)()()(,
*#

###

ghhAdgAdhgh

AdAdAdghAdghgh

gh

ghhgh



 
                                    

(143) 
  is an action. 

    )()()()(

)()()(
##

#

mmAdmAdmm

mAdgm

ggggg

gg












                                     

(144) 
Christian Günther in 1987 paper has written that “The mathematical framework developed in this paper is 
used in a separate publication to provide a rigorous foundation for field theory”, but this paper has not been 
found. For more recent study of Günther Poly-Symplectic model, we make reference to [100]. 
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Appendix B: Fisher Metric for Multivariate Gaussian Density 

We will in the following illustrate information geometry for multivariate Gaussian  
density: 

 
  )(
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1
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e
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(145) 

If we develop: 

   

mRmzRmzRz
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(146) 

We can write the density as a Gibbs density: 
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We can then rewrite density with canonical variables: 
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(148) 

The first potential function (free energy / logarithm of characteristic function) is given by: 

        2logdet)2(log
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
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
 

 
(149) 

We verify the relation between the first potential function and moment: 
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The second potential function (Shannon entropy) is given as a Legendre transform of the  
first one: 
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This remark was made by Jean-Souriau in his book as soon as 1969. He has observed, as illustrated 

in following Figure that if we take vector with tensor components 
z

z z


 
   

, components of ̂  

will provide moments of the first and second order of the density of probability ˆ ( )p

 . He used this 

change of variable 1/2 1/2'z H z H a  , to compute the logarithm of the characteristic  
function ( ) : 

 
Figure 11.  Introduction of potential function for multivariate Gaussian law in Souriau book  
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Appendix C: Geometric Definition of Legendre Transform by Chasles as reciprocal polar with 
respect to a paraboloid 

   Legendre Transform plays a central role related to duality and convexity. Adrien-Marie Legendre 
[58] has introduced Legendre transform to solve a minimal surface problem given by Monge (Monge 
requested him to consolidate its proof), with link to Poncelet Duality [59]. Chasles and Darboux 
interpreted Legendre Transform as reciprocal polar with respect to a paraboloid (re-used by 
Hadamard and Fréchet in calculus of variations). Before Legendre, Alexis Clairaut introduced a 
Clairaut Equation that has been developed by Maurice Fréchet to characterize « distinguished 
densities » (densities with parameters that have covariance matrix reaching the Fréchet-Cramer-Rao 
Bound) [91]. 
Legendre Transform transformes one fonction defined by its value in one point in a fonction defined 
by its tangent 

  

Figure 12.  Legendre Transform and duality  
 

   Darboux gave in his book one interpretation of Chasles : « Ce qui revient suivant une remarque 
de M. Chasles, à substituer à la surface sa polaire réciproque par rapport à un paraboloïde ». In the 
lecture « Leçons sur le calcul des variations », J. Hadamard, followed by M.E. Vessiot, used reciprocal 
polar of figurative, and figuratrice. This has also been developed by of Paul Belgodère presented by 
Elie Cartan on « Extrémale d’une surface » [29-30]. Polarity on the plane is a transformation taking 
points to lines and dually lines to points. A polarity preserves incidence and has degree 2. For a point 
P (that we name the pole) a conic polarity transforms it to its image which is a line p (that we name 
the polar) as follows: from P we draw the two tangents to the conic, which touch it in the points Q, 
R. If we now connect points Q, R with a line p we obtain the polar line of the pole P. A Self-conjugate 
point Q is incident with its polar q; that is Q lies on q. 
   Geometric Interpretation of Legendre Transform by Reciprocal Polar with respect to a paraboloid 
is given by the following simple development. First, let’s consider the surface: 

y

z
q

x

z
pyxfz








   and     with   ),(                                                    

(153) 
We consider the equation of the paraboloid: 

zyx 222                                                                            

(154) 
Reciprocal Polar with respect to paraboloid has coordinates: ZYX ,,  
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the Polar plan with respect to paraboloid of this Reciprocal Polar 0 ZzYyXx                                  

should be equal to tangent plan of the surface at point  000 ,, zyx : 

    0)( 000000000000  zyqxpzyqxpyyqxxpzz                        

(155) 
This equality provides: 

0000000   ,    ,  zyqxpZqYpX                                                     

(156) 
This is the Legendre Transform. 

So in classical thermodynamics, Legendre transform Φ(β)β,QS(Q)   is linked with polar 

reciprocal with respect to the paraboloid: 

)(22 QSQ                                                                                    

(157) 
 

We can develop other properties of Legengre transform. Let’s 
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   and     with   ),(  

and zqypxZqYpX    ,    ,   the Legendre Transform.  

We compute the first derivative of Z: 
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(158) 
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(159) 
We compute 2nd derivative of Z:  
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(160) 

2 2

2 2 2
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(161) 
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The link with with Contact transformations is then the following. Considering new variables X,Y,Z 
and P,Q the derivatives of Z with respect to X and Y, problem of finding in which case this five 
quantities could be express of x,y,z,p and q est the same problem where we look for five functions 
X,Y,Z,P and Q of five independant variables x,y,z,p and q satisfying the differential equation: 

 qdypdxdzQdYPdXdZ                                                       

(162) 
where   is a function of x,y,z,p and q . 
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(163) 
and the reciprocal  
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                                                                        

(164)  
Links with Ampere transformation is given then by following developments. 
Let’s consider Ampere transformation: 

 

qdypdxdzQdYpdXdZ
-yQpP

qYxXz-qyZ

ydqpdxqyzdqdypdxdz











,

,,
Set 

                            

(165) 
Then 1 , and we have a contact transformation, also valid when Legendre transform is no longer 

valide (when 02  srt , p and q are not independant) 
The link between Legendre transformation and Ampere transformation is then deduced. Legendre 
transform is obtained by same equality: 

  ydqxdpqypxzdqdypdxdz                                                 

(166) 
We can set: 

yQxP

qypxzZqYpX




,

,,
                                                            

(167) 
 
For complement studies on Legendre Transform, we can make reference to [55][57]. 
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Appendix D: Centrifuge Thermodynamics by Roger Balian based on classical approach 
Roger Balian has studied the case of gas enclosed in a vessel rotating with an angular velocity   in 

thermal equilibrium, and proved that the density of the gas is proportional to 
2 2

2

m r

kTe


, with classical 

approach. The density is increased at the periphery due to centrifugal effects. 
Balian has computied the Boltzmann-Gibbs distribution without knowing Souriau equations 
(exercice 7b of [24]). Balian started by considering the constants of motion that are the energy and the 

component zJ  of the total angular momentum  i i
i

J r p  . Balian observed that he must add 

to the Lagrangian parameter, given by (Planck) temperature   for energy, an additional one 

associated with zJ . He identifies this additional multiplier with   by evaluating the mean 

velocity at each point. He then introduced the same results also by changing the frame of reference, 
the Lagrangian and the Hamiltonian in the rotating frame and by writing down the canonical 
equilibrium in that frame. He uses the resulting distribution to find, through integration, over the 
momenta, an expression for the particles density as the function of the distance from the cylinder 
axis. The fluid carried along by the walls of the rotating vessel acquires a non-vanishing average 

angular momentum zJ  around the axis of rotation, that is a constant of motion. In order to be 

able to assign to it a definite value, Balian proposed to associate with it a Lagrangian multiplier  , 
in exactly the same way as we classicaly associate the multiplier   with the energy in canonical 

equilibrium. The average zJ  will be a function of  . The Gibbs density for rotating gas is given 

by Balian as: 

 
21 1

exp
2

z

i i

H J i
i y i x

i

p
D e x p y p

Z Z m
             

   
                                    

(168) 
With the energy and the average angular momentum given by 

ln 1Z
U

kT


  


 and 
ln

z

Z
J




 


                                                    

(169) 
The Lagrangian parameter   has a mechanical nature. To identify this parameter, Balian compared 
microscopic and macroscopy descriptions of fluid mechanics. He described the single-particle 
reduced density by: 

   

   

2

2 2
2 2

, exp
2

           exp
2 2

y x

p
f r p xp yp

m

m m
p r x y

m

 

 
 

 
    

 
          

   

                                   

(170) 
Whence Balian find the velocity distribution at a point r to be proportional to: 
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 
2

1
exp

2

m
v r

kT




       
   

                                                              

(171) 
The mean velocity of the fluid at the point r is equal to: 

 1
v r


                                                                               

(172) 

and can be identified with the velocity  r  in an uniform rotation with angular velocity  . By 

comparison, Balian put 



  . Balian made the remarks that “The angular momentum is imparted 

to the gas when the molecules collide with the rotating walls, which changes the Maxwell distribution at every 
point, shifting its origin. The walls play the role of an angular momentum reservoir. Their motion is 
characterized by a certain angular velocity, and the angular velocities   of the fluid and of the walls become 
equal at equilibrium, exactly like the equalization of the temperature through energy exchanges.” 
Considering Invariance principle, Balian observed that the Lagrangian can be taken as remaining 
under any change of reference frame, because the stationary action principle is independent of the 
frame. Comparing Hamiltonian in two frames for a single particle with position 'r  and the velocity 

'v  in the rotating frame: 

  22
1

1 1
' '

2 2
L mv m v r                                                                

(173) 
Balian then considered the conjugate momentum of 'r : 

  1' ' '
'

L
p m v r

v


   


                                                                 

(174) 
and the Hamiltonian in the rotating frame: 

    
2

1 1

'
' '. ' . ' '

2

p
H p v L r p

m
                                                          

(175) 
The Gibbs density in the rotating frame is then given by: 

'1 HD e
Z

                                                                                 

(176) 
where H’ is the sum over N particles: 

  
2

1

'
' . ' '

2

N
i

i i
i i

p
H r p

m




 
   

 
                                                              

(177) 
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At this step, Balian observed that to switch back to the original coordinates, 'p  and  ' 'r p  can 

be derived from p  and  r p , respectively, by means of the same change of coordinates that 

leads from r  to 'r .  Balian then got: 

 ' .H H J                                                                              

(178) 
And identified density D with the earlier expression, provided    . 

 
   Balian observed that as in the case of equilibrium of a gas in a gravitational field, the result could 
have obtained by a macroscopic calculation from Thermodynamics and Fluid Mechanics, using 
locally the perfect gas law and the balance between the forces, here centrifugal forces and pressure 
gradients. Balian recalled that we should fix the value of these Lagrangian multipliers by requiring 
that on the average the angular and linear momenta vanish. For symmetry reasons these quantities 
vanish at the same time as the corresponding multipliers, and we have: 

 
2 2

2 22 2 0

ln 1 2 1

21 exp 2
z

Z kT
J Nm R NmR

m Rm R
kT


 

  

 
          

               

(179) 
and the energy: 

ln 3 1

2 2 z

Z
U NkT J




   


                                                           

(180) 
Roger Balian observed that in the change of frame, the linear momentum 'mv  is no longer equal to 
the momentum 'p because the velocity /v p m in the fixed frame is transformed in 

 ' '/ 'v p m r    in the rotating frame. Balian made the analogy with a particle of charge q  in 

a magnetic field characterized by a velocity   /p qA m .  

Balian wrote “Whereas positions and velocities are physical quantities, momenta have a certain amount of 
arbitrariness which is connected with the fact that we can change the Lagrangian by adding to it a time 
derivative without changing the equations of motion.” Balian gave the example in a Gallilean 
transformation with velocity u  with the procedure where the Lagragian is assumed to be invariant 

'i ip p  whereas 'i iv v u  , the Hamiltonian becomes ' ,H H u P  , where P  is the total 

momentum. Balian observed that another procedure, that better exhibits the Gallielan Invariance 
consists in adding to the Lagrangian the ineffective term  

   2 21 1
'. .

2 2i i i
i i

d
m v u u m u t r u

dt

           
    

                                         

(181) 
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When we change coordinates  ,i ir v  to  ', 'i ir v , the momentum which is conjugate to 'ir  is 

'''i i i i ip p m u m v    and not 'i ip p  and the Hamiltonian   21
'' .

2
H H u P Mu    has in 

terms of the ''
ip  exactly the same form as H  in terms of the ip . 

   Balian presented these argues to be regarded as a microscopic justification of such a calculation 
and wrote “As in the case of equilibrium of a gas in a gravitational field, we could have obtained the result by 
a macroscopic calculation from thermodynamics and fluid mechanics, using locally the perfect gas laws and the 
balance between the forces, here centrifugal forces and pressure gradients.” 
   Roger Balian observed that usually no conditions are unquired about the Lagrangian multipliers 
for dynamical constants of motion sur as the angular or the linear momentum. Balian proposes to fix 
the values of these multipliers by requiring that on the average the angular and linear momenta 
vanish. Balian observed that for symmetry reasons, these quantities vanish at the same time as the 
corresponding multipliers, and we have: 

2 2

2
2 2/2

2

0

ln 1 2

1
1

        
2

z m R KT

Z kT
J Nm R

m Re

NmR






 







        


                                      

(182) 

The angular momentum zJ  is to lowest order in   the same as for the rotation of a cylinder 

with uniform density, which has a moment of inertia equal to 21

2
NmR . The energy contains a 

contribution due to the motion, and is given by: 

ln 3 1

2 2z z

Z
J NkT J




   


                                                        

(183) 

The entropy also depends on the rotational velocity, but only to order 4 . It decreases with  , as 
the rotation produces changes in density which increase the spatial order. 
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Appendix E: Proof of convergence for Poly-symplectic model based on Souriau proof 
Jean-Marie Souriau has given the following definition: 
Souriau Generalized Temperature Definition: 

Let G  a Lie group acting on a symplectic Manifold  ,M   by an Hamiltonian action 

: G M M   , g  is Lie algebra and *:J M g  a moment map of the action, a generalized 

temperature is an element  g such that the integral 
,J

M

e d


                                                                                  

(184) 
is normally convergent. 
 
Normal convergence means that there exist an open neighborhood V from   to g , and a 

function :f M  integrable on M relative to Liouville measure  , such that : 

,, JV e f                                                                           

(185) 
Lebesgue theorem on dominated convergence gives the proof. 
 
Jean-Marie Souriau then introduced the following proposition: 
Souriau Differentiability proposition: 
Consider  , a non-empty set of generalized temperatures,   is a convex open set of Lie algebra 
g  that doesn’t depend on the choice of the choice of the moment map J  associated with the 

Hamiltonian action. The partition function :I   given by ,
0 ( ) J

M

I e d
   is infinitely 

differentiable on  . Its nth differentiation is given by the tensorial integral: 
,( ) Jn

n

M

I J e d
                                                                       

(186) 
and is normally convergent. 
 
Let  

 0 1,    

 0 1,V V  neighborhoods respectively of 0 1,   

 0 1,f f  positive integrable function on M such that: 
0

1

',
0 0 0

',
1 1 1

, if '

, if '

J

J

e f V

e f V













  


 
                                                            

(187) 
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    0 1 0 0 1 10,1 , 1 ' '/ ' , 'V V V             is a neighborhood of   given by 

  0 11      , and the function    0 11f f f      is integrable on M  and 
', , 'Je f V

      . Then    proving that   is convex. 
 

nth differential of ,Je   is given: 

   , ,1
nJ Jn nD e J e                                                                   

(188) 
Selecting a norm on Lie algebra g , and considering Sup Norm on space  ,L g of n-multilinear 

forms on g . We can deduce on *g  and on * n
  g  a norm of multi-linear map: 

,nJ Sup J


                                                                              

(189) 

Let ,,   0  and  , if  '   and  'Je f          g                             

(190) 

Let ''   and  ''
2

    g  , for all   and  1X X g , then: 

'' ,, '', 222 2
, ,

n
X JX J n Jnn n

X J e X J e e
 

 

 
      

 
                             

(191) 
Last relation is established by considering: 

 
1 2

0

2
, , 2 1

nn pn n
p npn n

n
p

n sh e e C e
n n

  
      



          
 

              

(192) 
If we select X g  and ,X J  : 

 
2 1,

0

2
, 1

n pn Xn p nJ p
n

p

e X J C e
n


      



                                              

(193) 
, ,

0,   ,  if  ,
2 2

nJ J ne f e X J n f V                                      

(194) 

For X  unitary, and by setting 
2

X J


  

, 2
,

n
n J n

X J e f


    

 
                                                                 

(195) 

In 
'' ,

'', 22
,

n
X Jn J n

X J e e




 
    

 
, the sign   is selected such that , 0X J  .  

As ''
2

X
     , the final result is deduced: 

 '', '',2 2
n n

J Jn nn n
D e f J e f 

 
            

                                        

(196)                               
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It proves that the n-differential of ,Je   is normally integrable on M with respect to Liouville 
measure, the partition function is infinitely differentiable on  . 
By considering the taylor expansion of exponential function: 

 
2

1 , 0,1
2

e e                                                                     

(197) 
From which, we deduce that: 

, , , ,1 21
( ) ( )( )

2
X J J J X Jn n n ne J e J e J X e J X X                                      

(198) 
Where ( )T X  means the contraction of a covariant tensor with vector X . Then: 

   2 2
2, ,2 22 2 2 21 1

( )( )
2 2

n n

J X Jn nn n
J e f e J X X f X  

 

 

        
     
   

     

(199) 

By integration on V  and using .
V

f Vol a   , we obtain: 

    2
2

1 0

2 2
( ) ( )   if ,  and 

2 4 4

n

n n n

na
I X I I X B X

     






           
  

  (200) 

It proves that the function :nI   g  is continuous and derivable in a neighborhood of 0 , 

and its derivative is given 1nI  . Then 0I  is an infinite derivable function with nI  as nth derivable. 
 
Thes demonstrations can be extended for poly-symplectic model of Souriau Lie Groups 
Thermodynamic by considering the polysymplectic partition function: 

1

, ( )

0

n
k

k
k

J
poly

M

I e d
 







                                                                      

(201) 
and its n-th derivatices given by: 

1

,
0

,

n
k

k
k

n J
poly nk

n i n
i M

I
I J e d













 
                                                            

(202) 

where 
( )

k ...  
k

J J J J    is defined as a tensorial product . 
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Appendix F: Relativistic Souriau Thermodynamics of continua 

   We will summarize in this appendix the Souriau Relativistic thermodynamics of fluids. This 
Souriau model about relativistic Thermodynamics of continua will give a solution to Duhem’s 
General Thermodynanics: “We made dynamics a special case of thermodynamics, and science that embraces 
common principles in all changes of state bodies, changes of places as well as changes in physical qualities” 
[Nous avons fait de la dynamique un cas particulier de la thermodynamique, une Science qui embrasse dans 
des principes communs tous les changements d’état des corps, aussi bien les changements de lieu que les 
changements de qualités physiques] “. 

   Kinematics is defined by the vector field   and the measurement of number of molecules: using 
two state functions, Souriau has built a (thermo-)dynamic according to the two principles: 
conservation of the Noetherian quantities attached to the Poincaré group, positive Entropy 
production. Such a dissipative fluid has movements in which the Entropy production is nil;   is 
then a Killing vector; the equations of motion fully integrate; Souriau found in particular the results 
of kinetic theory at equilibrium. This method can be used to study perfect fluids; Souriau recover the 
classic Lichnerowicz results; moreover, we can build, even in the non-isentropic case, an space-time 
2-Form   which is Integral invariant (in the sense of Cartan-Poincaré) of the temperature vector 
 ; this provides a generalization of Helmholtz's theorem. In weakly dissipative movements, 
naturally occur the two viscosity coefficients, as well as the thermal conductivity coefficient; they are 
accompanied by two other coefficients that may be measurable on actual fluids. 

Jean-Marie Sourias has first considered Kinematic of relativistic simple fluid, considering the 
following Space-Time Vectors Field by Temperature vector X   with:  

: Unitary quadri-vector
  1

0  (Boltzman 1)

U
U

k
T





  

  

                                                    

(203) 

  generates a group with a parameter of diffeomorphisms of space-time E4; the group's orbits (the 
current lines of the fluid) form an abstract space V3 (has a manifold structure of dimension 3, 
characterized by the fact that  the following projection is a restricted submersion:  

4 3X E x V                                                                           
(204) 

Let the metric tensor g Lie derivative (for the vector field  4X E  ) :  

1

2 L g

X

 



 

  

                                                                                 

(205) 

Killing Formula gives the symmetric tensor: 

1

2                                                                               

(206) 

Let consider Positive density n of quotient manifold 3V : 
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3x V n                                                                                    
(207)  

Integral of n  on 3V  gives the number of molecules. Its reciprocal image by projection is defined 
by: 

4X E N                                                                                 
(208)                           

Particules conservation is given by: 

0N 
   with N Un                                                                     

(209) 

Direction of U  or   defines a foliation of space-time E4.  Leaves are current lines solutions of: 

c

dX
U

ds
                                                                                      

(210) 

           

      
Figure 12.  Legendre Transform and duality  

Thermodynamic 1st Principle in this model is given by: 

0T 
   with T T                                                                   

(211) 

The energy-momentum density tensor T   has been built by Souriau using the kinematic 
quantities, such as to verify the second principle. 

Souriau Lemma:  

Let  ,n   a differentiable function, then there is a symmetric tensor T 
 such that: 
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N T 
      


   with U   et N Un                                          

(212) 

2n
T g U U n U U

n
      

 
      


                                                 

(213) 

We assume that there exist  , ,n     such this function is convex and energy-momentum 

density are given by: 

T 










                                                                                 

(214) 

If We assume that    0 T T 
   


 then the following vector has a                       

positive divergence: 

S N T  
                                                                            

(215) 

The Thermodynamic 2nd principle is given by: 

0S 
                                                                                      

(216) 

Proof is given by: 

S T T  
     


 

           0 0 0S T T  
                 


                        

(217) 

0S 
  Souriau proposed to define the dynamics of the fluid by means of the two functions   

and        which give at each point the energy tensor T   and the entropy flux S   by 
following formulas. These functions being determined, we have 5 equations to determine the 5 

variables  ,n   and, moreover, the S  ; 0S 
   will express the 2nd principle. 

 

 

, ,

,   with    and  

1

2

0  and  0

n
T

S N n T U N Un

T N





  


    

 
 

 


  



 
 

      

         

   

                                   

(218) 
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Jean-Marie Souriau has then considered the case of non-dissipative movements. 

If   is strictly convex for variable  then: 

0 0  infinitesimal isometryS 
                                                

(219) 

For non-dissipative solution of movement equations,   is a Killing vector, associated to an element 
of Lie algebra of Poincaré group: 

0 0

  
   

 
                                                                                

(220) 

with 

       0
,

X
U

U


      



       
  

                                         

(221) 

The equations of motion integrate through an arbitrary constant: 

n Cste n
n

 
  


                                                                       

(222) 

Thermodynamics constants are the following: 

 1specific molecular volume: u n                                                 

(223) 

 
1

specific mass: n
u

 
 

 
   

 
                                                

(224) 

 
2 1

pressure: 
n

n u

 
 
 

   
 

                                                   

(225) 

In case of a nill entropy production: 

3

3

0 ,
0

0 0 0 0 ,
.

0

variable  and  are constant on current lines 

U x V

S U N U n n x V n
X

U U

n




   
   


  

  


 



     
                        

   





(226) 

We can also deduce the following equations: 
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2.
0  and  0

0

X n
U U n

n nN
 

 


 


                    
                              

(227) 

From tensor Computation, Souriau has computed Energy-Momentum density currents: 

0

1 1

2 2 2

N N N U n n
n

U U U U

g U U

   
    

            

  
  

   


  

  

                 

                       

    

                       

(228) 

with the following developments: 

2

 unitary 1 0

0 0

U U U g U U U U U U U

N U n U n

n
T g U U n U U

n

      
     

  
  

     

 

 
 

        

      

       

                

(229) 

For this Non dissipative movements, we can prove: 

2

00

and 0

0 0

n UU
n

U

U n U U
n






 

   

 



 

              
           

                                             

(230) 

2

2 2

n
T g U U n U U

n

n n n
T g n g n

n n n

     

  
  

 
 

    
    

      
                                 

             

(231) 

 constant on current lines
0

integrable on
 constant in space-time0

n
T

nN
n







 

    
   

                           

(232) 

Souriau has proved that the entropy vector preserves the Legendre Transform: 
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2

  and  

S N T

n
T g U U n U U S N

n
U N Un

S N s s

  


       

 



   
  


 


   


                 
  



   



                      

(233) 

With the Enropy per molecule: s u                                                     
(234) 

  is the Massieu Potential (Massieu Charcateristic Function): 

  with : Helmoltz Free Energy

   with : Free Gibbs-Duhem Energy

F u Ts
F

T T
G F pu

n G
n T T






   

 
    


                        

(235) 

The link with Souriau 2-form and Poincaré-Cartan Integral Invariant is given by the following 
developments. Consider the 1-form given by Enthalpy: 

    with   
p

H hU h u p
n 
 

                                                       

(236) 

Its 2-form given by exterior differentiation 

H H                                                                                 

(237) 

Movement’s equation are replaced by: 

00

00

NN

sT





 

    
       

                                                          

(238) 

  is a Poincaré-Cartan Integral invariant of the field:  

 

0
0   for  

0

if  0 (isentropic movment) ker

L

s
s X

s


 









         
   

                                         

(239) 

Jean-Marie Souriau has then considered weakly dissipative movements. If we cannot know                              

 , ,n    , it can be approximated by 2nd order development in   variable:  
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(240) 

Entropy production is given by: 

,

, ,Onsager Reciprocity

vq
vq

vq vq

S T T C

C C

   
  

 

       
 


                                                   

(241) 

55 coefficients of Transport coefficients ,vqC  are reduced to 5 coefficients (by fluid symetries and 
Onsager reciprocity): A, B, C, E & F. 

Souriau then obtained Relativistic (Fourier) Equation of Heat. Let consider constraints tensor: 

 speed, zero at the poi, 1, 2,3  and nt conside red  

l
jk jk jk vis l vis j k k j

j

T p v B v v
t

j k v

                   


                                

(242) 

With the equations given by: 

 Heat Flux: 0

j

j v
T F grad

t
 
           


                                             

(243) 

 Specific Mass-Energy:  00T C B div v
t

 
  




                                  

(244) 

with: 

2
3vis

EA     , vis E  , 
1

T
   and 2Thermo-conductivity:F

T
 

Variables A,B,C, E & F are functions of   and n , and convexity of   induces:    

0, 0, 0, 0,A C E F B AC                                                           

(245) 

  

, ,
0

1

2
vq vq

vq vqT C T T T C     
 



     



       


 
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