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1 Abstract: In this work, an algorithm was developed to measure the respiration rate for an embedded
= device that can be used by a field robot for relief operation. With this algorithm, the rate measurement
s was calculated based on direct influences of respiratory-induced intensity variation (RIIV) on
«  blood flow in cardiovascular pathways. For that, a photoplethysmogram (PPG) sensor was used
s to determine changes in heartbeat frequencies. The PPG sensor readings were filtered using an
o Information Filter and a Fast Fourier transform (FFT) to determine the state of RIIV. With a relatively
»  light initialization, the information filter can estimate unknown variables based on a series of
s  measurements containing noise and other inaccuraties. Therefore, this filter is suitable for application
s on an embedded device. For faster calculation time in the implementation, the FFT analysis was
1o calculated only for a major peak in the frequency domain. Test and measurement of respiration rate
1 was conducted based on the device algorithm and spirometer. Heartbeat measurement was also
1z evaluated by comparing the heartbeat data of the PPG sensor and the medical tool kit. Based on the
1z test, the implemented algorithm can measure respiration rate with about 80% accuracy compared
12 with the spirometer.

1s  Keywords: Photoplethysmography (PPG), respiration rate, information filter

¢ 1. Introduction

"

17 In recent years, rapid technological advances have led to great developments in the field of
1= robotics, especially for medical purposes [1]. From a microscopic scale to a large robotic surgery
1o system, these developments bring significant progress in treatment and the health-care system [2-5].
20 The robot is also getting more portable and compact as it is needed for assessing first aid in a dangerous
a1 environment that cannot be accessed by personal medical help [6-13]. Furthermore, the robot needs to
22 be able to locate and preliminarily determine the physical state of an injured person so that a correct
2 course of treatment can be quickly performed by the medical help. Therefore, a medical sensory system
2a that can determine the physical state must be implemented in the robotic system, especially that which
= is related to vital health conditions, such as heartbeat and respiration rate.

26 Respiration rate is a vital biosignal state that determines the physical state of the pulmonary
2z system, which directly influences blood flow in cardiovascular pathways. Because of that, the
2s measurement of blood flow in cardiovascular pathways can reflect a heartbeat condition as inhale and
20 exhale activities can directly increase or decrease blood flow in those pathways [14-17]. Therefore,
3o by measuring the changes of blood flow or heartbeat frequencies in the cardiovascular stream, the
a1 respiration rate can also be determined. The parameter of respiratory-induced intensity variation
sz (RIIV) can also be analyzed based on those changes [15-22].
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33 Photoplethysmography (PPG) is a method that uses an optical measurement to detect blood
sa  volume changes in the body caused by the cardiovascular system [14-22]. The PPG measurement can
s be achieved by employing a light source and a photodetector. Red or near-IR light-emitting diode
s (LED) with a wavelength of more than 600 nm is commonly used as the light source for the PPG
sz sensor. This LED works as a transmitter that will illuminate the skin tissue and will be captured by
;s the photodetector. The variations of light intensity in the skin detected by the photodetector can be
30 associated with changes in blood volume in the captured area. Therefore, using such noninvasive
s method, the PPG sensor can be used to measure the blood flow rate caused by the cardiovascular
a1 system that reflects the heartbeat condition.

a2 In this work, an algorithm for measuring the respiration rate was developed for an embedded
«a device. A field robot for relief operation will be equipped with the device and will be deployed for
as search and rescue operations. Additionally, to be able to provide first aid in a critical situation, the robot
+s  will also carry other medical instruments, such as syringe and oxygen delivery system. Furthermore,
s the robot must be able to locate the victims and preliminarily determine their physiological state, such
a7 as their heartbeat, respiration rate, and body temperature. For that, the robot will deploy the embedded
s device from a safe compartment after removing obstruction in measurement area. Therefore, the device
4 must be small, lightweight, and low powered. Likewise, the algorithm should not be too complicated
so and can be run in such limited resources with reasonable reliability. Here, the algorithm was simplified
s1 5o that it can be implemented to an embedded device with dimension of about 50 x 40 x 30 mm and a
s2  weight of about 40 grams.

ss 2. Respiration Rate Measurement Algorithm

54 The algorithm for respiration rate measurement was derived from raw data readings of the PPG
ss  sensor. The raw data then filtered using information filter to remove noises in the heartbeat signal
s readings. Information filter or inverse covariance filter, is a well known filter that has same function
sz and procedures as Kalman Filter [23]. With a relatively light initialization, the information filter can
ss estimate unknown variables based on a series of measurements containing noise and other inaccuraties.
so Therefore, this filter can produce optimal parameters estimation of state and observation model from
e measurements with Gaussian noise, such as object tracking system [23-25].

o1 Same as Kalman Filter, the information filter procedure consists from initialization, propagation,
e and update [23]. Based on this, the filter’s algorithm can be derived from those three approaches. In
ez here, information filter will take signal from PPG sensor as measurement input and track its value aj
s and rate of change by from time k — 1 to time k (Tj;_1) as shown in equation 1.

ag Xk—1
=F 1
[bk] L’k—ll =

where:
1 T
Fo klk—1 o)
0 1
o5 During initialization, the information filter sets its state (y0|0) and covariance (P (}) to zero. This

es shows that information filter has very light initialization compared with kalman filter which needs
ez large number for its covariance to cover all input data during initialization time. Then the filter will
es propagate the state and covariance by using equation 3 and 4. In here, I is an identity matrix 2x2 and
e Qis calculated based on equation 7 with gdef equals to 0.375.
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p,;|k{l = (I1+AQ) A 4)


http://dx.doi.org/10.20944/preprints201808.0161.v1
https://doi.org/10.3390/s18124208

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 August 2018 d0i:10.20944/preprints201808.0161.v1

30f12
where:
I=1 ®)
_ p-Tp-1 -1
A=F"PB 5 4F 6)
i1 Tijen
3 3
Q = qdef T4 (7)
ko1 2
3 klk—1
qdef = 0.375 ®)
70 When PPG sensor captures a heartbeat signal at time k, the information filter will update its

= propagated state and covariance by using equation 9 and 10. In this update, value of matix H and R is
72 configured to reduce noise and avoid non-linearity from PPG signal value.

e = k-1 + H'R™'zk €
-1 _ p-1 Tp-1
Pe =Py +HRTH (10)
where:
10

H= 11
o o

50 50
R = 12
l50 501 12)
73 Finally, equation 13 can generate output of the information filter based on the updated state and

7a covariance (i.e. £x). In here, the filter output is a representative of variables in equation 1.

Uik = P;;|k132k|k (13)
75 After filtered, the changes in heartbeat signal frequencies were analyzed using an Fast Fourier
s transform (FFT) to get the RIIV distribution. The distribution was basically accumulated from a
» buffered FFT output in about a 20-second interval. Additionally, the distribution was updated every
data sampling period. Finally, based on a peak-to-peak detection on the RIIV distribution, the
o respiration rate was calculated for each second.

~

~

~
o

~

s 3. Implementation of Algorithm on Embedded Device

Figure 1. PPG Sensor Board, Laxtha RP520.

81 The embedded device consists of a PPG sensor, as shown in Figure 1, for heartbeat measurement,
e2 athermometer sensor to facilitate body temperature measurement, and a CPU of an ARM processor,
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es  as shown in Figure 2. A Teensy 3.2 board was chosen as a base for the hardware development of the
embedded device as the board has a small footprint with a 13-bit usable ADC and an ARM Cortex-M4
s processor. The system can be used with a low-powered battery of 3.3 V with a CPU speed of 72 MHz.
s Using this system, the algorithm results can also be logged to other devices via serial communication.

3
»

-]
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Figure 2. The Embedded Device for Respiration Rate Measurement.

87 The heartbeat signal from the PPG sensor in the embedded device was captured in a form
of discrete number with noises via a 13-bit ADC system. Because the computational speed of the
» embedded device is relatively slow compared to a high-end computer system, the algorithm of the
o respiration rate measurement must be simplified so that it can be used in such a limited system.
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Figure 3. Simplified Algorithm on The Embedded Device.

01 As shown in Figure 3, the heartbeat signal in the embedded device that was captured from a
= 13-bit ADC system and contains measurement noises, was approached using an information filter.
With this approach, the discrete numbers of ADC reading can be linearized and the noises can also be
« reduced so that it can be observed more effectively.
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Figure 4. Typical Signal Filtering.
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o5 Fig. 4 illustrates typical output signal of the information filter. In this figure, raw data from
ss ADC system were displayed as a solid line and the filter output were distributed in a dotted line in
oz every time step of about 50 ms. As shown in the figure, the PPG sensor took about 140 time step
9s (7 seconds) before it started measuring the heartbeat signal. During this time, the ADC output was
s raised to a maximum value and then significantly dropped non-linearly to zero. On the other hand,
10 the information filter output can follow linearly the ADC data on every time step with delay of about
11 3 time step or about 150 ms. Based on the figure, initial heartbeat detection will be calculated on
102 time step 180 which has a delay of about 30 time step or about 1.5 seconds from the first detected
103 heartbeat signal from PPG sensor. This means that the algorithm has about 1.5 seconds of delay or
104 initial detection time for heartbeat measurement.

108 Once filtered, the frequencies of the heartbeat signal were analyzed using an FFT. In the embedded
106 device, the analysis on the FFT was conducted on a major peak only and directly measured on the
w7 frequency domain. Because the FFT output can actually describe the changes in the input signal,
1e  changes of intensity in heartbeat signal due to intrathoracic pressure can also be measured by
100 mMonitoring the major peak’s variation. Then with a moving average filter and peak-to-peak detection,
1o the respiration rate can be calculated based on these variations that show the changes on the filtered
w1 heartbeat signal [15,16,22,26]. In here, the FFT analysis was configured with 64 data points and
u2 frequency resolution of 40 Hz. Additionally, the moving average filter was calculated based on 20
us  samples of FFT output with sampling time of 50 ms.

1 51 101 151 201 251 301 351
Step

—FFT  ---- Moving Average

Figure 5. FFT and Moving Average Signal.

114 Figure 5 shows FFT analysis and moving average filter output. The solid line illustrates the major
us peak’s distribution in each time step. On the other hand, moving average output that were calculated
us based on the major peak values, were distributed as a dotted line. As shown in the figure, when the
1z major peak intensity is changed, the moving average value will follow it linearly in a form of a signal
us peak. Therefore, in this figure, there are about four significant changes in about 300 time step which
e can be calculated as a respiration rate of about 0.27 Hz.

120 During implementation in the embedded device, the filter optimization was also tested with
11 induced-stress measurement of a test subject sitting on a chair after exercising. The exercise was
122 performed by running on a treadmill with inclination level of 2% and speed level of 5 for about 5
12 minutes. While the subject was still in recovery phase or post-exercise, measurement of heartbeat and
124 respiration rate was immediately conducted for about 120 seconds.

125 4. Experiment and Results

126 In the case of heartbeat frequency calculation, a pulse oximeter was used to measure the heartbeat
12z frequency of the test subject, as shown in Figure 6. In here, measurement outputs from the oximeter
122 and embedded device were logged simultaneously during the test.
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Pulse Oximeter
Figure 6. Test Setup with Subject’s Hand.
120 On the other hand, a spirometer (i.e., Vernier Spirometer with order code SPR-BTA) was utilized

130 to validate the respiration rate algorithm results, as shown in Figure 7. Here, the test subject held
131 the spirometer in one hand and breath through it while the other hand was put on the embedded
132 device and pulse oximeter, as shown in Figure 8. The spirometer was connected to Vernier SensorDAQ
133 that can send the spirometer signal data to a computer or PC. During the test, the embedded device
13s  was also connected to main PC via serial communication for data logging only. All computation and
135 algorithm process was conducted in embedded device. Data from the embedded device, spirometer,
136 and pulse oximeter then logged to a file using LabView interface.

Figure 7. Vernier Spirometer.
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Figure 8. Experiment Setup

This experiment has ten test subjects who have an average age of 30 years and are in a healthy
condition. For each subject, about 10 measurements was performed with one measurement time
of about 5-10 minutes for normal relaxed breathing and about 120 seconds for the post-exercise
measurement. Between measurements, there was a 60-second time interval for resetting and stabilizing
the measurement values of the oximeter and the embedded device. During this time interval, the
oximeter and the embedded device were detached and reattached to the test subject’s finger. Then
the differences between the algorithm results with the pulse oximeter and spirometer output were
calculated to validate the heartbeat and the respiration rate measurement.

The measurement results of the embedded algorithm was evaluated on two breathing conditions
(i.e., normal relaxed and post-exercise) using pulse oximeter and spirometer. Based on these,
performance of the embedded algorithm, especially that for respiration measurement, was calculated
for the two conditions.

Table 1. Comparison of Heartbeat (bpm) Measurement between Pulse Oximeter and Embedded

Algorithm.
Method / Tool Min Average Max
Pulse Oximeter 58 77 84
Embedded Algorithm 57 79 89

Table 2. Comparison of Respiration Rate (Hz) Measurement between Spirometer and Embedded
Algorithm.

Method / Tool Min Average Max

Spirometer 0.22 0.29 0.36
Embedded Algorithm  0.24 0.26 0.30
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149 On the other hand, the heartbeat measured by the algorithm in the embedded device was averaged
10 at 79 bpm as shown in Table 1. Based on the table, the heartbeat measurement value was similar to
11 that of a pulse oximeter with a maximum difference of 5 bpm. In Table 2, the respiration rate was
152 measured from 0.24 Hz to 0.30 Hz based on the embedded algorithm with a difference of 0.03 Hz on
153 the average value.

Table 3. Differences of The Algorithm in Embedded Device.

Parameter Min Average Max

Heartbeat Rate Diff. (%)  0.03 4.31 8.07
Respiration Rate Diff. (%) 0.43 8.12 18.8

154 Table 3 shows measurement differences of the embedded device on the test subject during normal
155 relaxed breathing and post-exercise. Here, the heartbeat rate difference is about 4.31% compared
1 With that of a pulse oximeter output. On the other hand, the respiration rate difference is averaged
1z at 8.12% compared with spirometer results. This result shows that the simplification procedures and
s filtering process of the raw heartbeat signal are successfully implemented in the embedded device
150 with reasonable average accuracies of about 90%.
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Figure 9. Bland-Altman Plot of Heartbeat Rate Differences (bpm)

160 Figure 9 illustrate these differences of heartbeat rate measurement result of the embedded device
161 compared with that of pulse oximeter output. Table 4 shows the plot parameter of heartbeat rate
162 differences. The figure and table describe a bias of -2.03 bpm, with lower limits of agreement of -8.06
163 bpm and upper limits of agreement of 4 bpm. With that, the average of the difference is about 4.31%
1es  With standard deviation of about 3.17.

Table 4. Parameter Values of Heartbeat Rate Differences (bpm)

Parameter Value
Bias -2.03
Standard Deviation =~ 3.17
Upper Bound 4.00
Lower Bound -8.06
165 Likewise, Figure 10 display differences of respiration rate measurement result of embedded

s algorithm compared with spirometer on the two breathing conditions. = As shown in
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1z Table reftable:barespparam, the bias is about 0.01 Hz with lower and upper limits of agreement
16 0f -0.03 Hz and 0.06 Hz respectively. Additionally, the average differences is about 8% with standard
1ee  deviation of about 0.02.
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Figure 10. Bland-Altman Plot of Respiration Rate Differences (Hz)

Table 5. Parameter Values of Heartbeat Rate Differences (bpm)

Parameter Value
Bias 0.01
Standard Deviation ~ 0.02
Upper Bound 0.06
Lower Bound -0.03
170 In addition to a validation test, the initial detection and settling time of the algorithm in

11 the embedded device was also calculated. Here, the distribution was calculated to observe the
12 computational time of the algorithm implementation in the embedded device. The initial detection
173 time was calculated between the first PPG signal detection and the first heartbeat and respiration rate
17a  calculation output.
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Figure 11. Heartbeat and Respiration Initial Time Distribution.
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175 Figs. 11 shows the average distribution of heartbeat and respiration measurement initial time of
1ze the embedded algorithm. On this figure, the initial heartbeat detection time is averaged on about 4
177 seconds with the fastest time is about 0.33 seconds from the first heartbeat signal which is detected by
17e  the PPG sensor. On the other hand, the initial respiration detection time is about 53 seconds due to FFT
e sampling time. With that, respiration rate output values of the algorithm in the embedded device are
10 converged in less than 90 seconds with fastest detection time is about 21 seconds, as shown in Table 6.
181 Table 6 shows initial detection time and measurement differences of the embedded device. In
12 here, the heartbeat rate difference is about 4.15% compared with that of pulse oximeter output. On
1e3  the other hand, respiration rate difference is averaged at 8.12% compared with spirometer on normal
1sa relaxed and post-exercise breathing conditions.

Table 6. Evaluation Result of The Algorithm in Embedded Device.

Parameter Min Average Max

Initial Heartbeat Detection Time (s) 0.33 3.81 7.43
Initial Respiration Detection Time (s) 21.14 53.32 86.14

Heartbeat Rate Diff. (%) 0.13 415 8.87
Respiration Rate Diff. (%) 0.43 8.12 18.8
1es 5. Conclusion
186 Simplified algorithm to measure respiration rate was successfully implemented to the embedded

1z device. The device utilized a PPG sensor to capture heartbeat signal which then was filtered using
1es information filter. Then FFT analysis was conducted to calculate the respiration rate based on RIIV
180 Observation from the filtered data. In here, the algorithm can measure heartbeat and respiration rate
10 with bias of -2.03 bpm and 0.01 Hz respectively. In addition, based on test results of ten subjects with
11 two breathing conditions (i.e. normal and post-exercise breathing), the algorithm computation has
102 standard deviation of 3.17 for the heartbeat measurement and 0.02 for the respiration.

103 Based on the results, it can be concluded that the algorithm in the embedded device can measure
10s  the heartbeat rate with a maximum of about 10% difference or about 90% accuracy. On the other hand,
105 the delay of the computational process is about 4 seconds from the first detected heartbeat signal by
s PPG sensor, with additional 7 seconds for the sensor initialization. Then, on normal and post-exercise
107 condition, the embedded device can measure the respiration rate with an average difference of about 8%
108 Or about 90% accuracy. Additionally, the maximum difference is about 19% (or accuracy of about 80%)
10 compared with the spirometer, which proves the effectiveness of information filter on the embedded
200 device.

2010 6. Future Work

202 In this current development, the heartbeat and respiration rate measurement was conducted on a
203 conscious person in a stable environment. The algorithm for the embedded device was successfully
204 implemented with a reasonable measurement value compared with other medical devices. For general
20s use and future development, the embedded device will be attached to a manipulator and tested
206 in a different environment. In addition, the measurement and test of the embedded device will be
20z conducted on a varying test condition, such as age and body posture, of an unconscious or sleeping
208 subject. Also, spontaneous and controlled breathing will be observed as it tends to affect the PPG
200 sensor reading, especially that for the RIIV measurements [22].
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211 "development of dependable soft manipulator and multi-function gadgets for relief operation” (ND 170004).
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