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Abstract: In this work, an algorithm was developed to measure the respiration rate for an embedded1

device that can be used by a field robot for relief operation. With this algorithm, the rate measurement2

was calculated based on direct influences of respiratory-induced intensity variation (RIIV) on3

blood flow in cardiovascular pathways. For that, a photoplethysmogram (PPG) sensor was used4

to determine changes in heartbeat frequencies. The PPG sensor readings were filtered using an5

Information Filter and a Fast Fourier transform (FFT) to determine the state of RIIV. With a relatively6

light initialization, the information filter can estimate unknown variables based on a series of7

measurements containing noise and other inaccuraties. Therefore, this filter is suitable for application8

on an embedded device. For faster calculation time in the implementation, the FFT analysis was9

calculated only for a major peak in the frequency domain. Test and measurement of respiration rate10

was conducted based on the device algorithm and spirometer. Heartbeat measurement was also11

evaluated by comparing the heartbeat data of the PPG sensor and the medical tool kit. Based on the12

test, the implemented algorithm can measure respiration rate with about 80% accuracy compared13

with the spirometer.14

Keywords: Photoplethysmography (PPG), respiration rate, information filter15

1. Introduction16

In recent years, rapid technological advances have led to great developments in the field of17

robotics, especially for medical purposes [1]. From a microscopic scale to a large robotic surgery18

system, these developments bring significant progress in treatment and the health-care system [2–5].19

The robot is also getting more portable and compact as it is needed for assessing first aid in a dangerous20

environment that cannot be accessed by personal medical help [6–13]. Furthermore, the robot needs to21

be able to locate and preliminarily determine the physical state of an injured person so that a correct22

course of treatment can be quickly performed by the medical help. Therefore, a medical sensory system23

that can determine the physical state must be implemented in the robotic system, especially that which24

is related to vital health conditions, such as heartbeat and respiration rate.25

Respiration rate is a vital biosignal state that determines the physical state of the pulmonary26

system, which directly influences blood flow in cardiovascular pathways. Because of that, the27

measurement of blood flow in cardiovascular pathways can reflect a heartbeat condition as inhale and28

exhale activities can directly increase or decrease blood flow in those pathways [14–17]. Therefore,29

by measuring the changes of blood flow or heartbeat frequencies in the cardiovascular stream, the30

respiration rate can also be determined. The parameter of respiratory-induced intensity variation31

(RIIV) can also be analyzed based on those changes [15–22].32
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Photoplethysmography (PPG) is a method that uses an optical measurement to detect blood33

volume changes in the body caused by the cardiovascular system [14–22]. The PPG measurement can34

be achieved by employing a light source and a photodetector. Red or near-IR light-emitting diode35

(LED) with a wavelength of more than 600 nm is commonly used as the light source for the PPG36

sensor. This LED works as a transmitter that will illuminate the skin tissue and will be captured by37

the photodetector. The variations of light intensity in the skin detected by the photodetector can be38

associated with changes in blood volume in the captured area. Therefore, using such noninvasive39

method, the PPG sensor can be used to measure the blood flow rate caused by the cardiovascular40

system that reflects the heartbeat condition.41

In this work, an algorithm for measuring the respiration rate was developed for an embedded42

device. A field robot for relief operation will be equipped with the device and will be deployed for43

search and rescue operations. Additionally, to be able to provide first aid in a critical situation, the robot44

will also carry other medical instruments, such as syringe and oxygen delivery system. Furthermore,45

the robot must be able to locate the victims and preliminarily determine their physiological state, such46

as their heartbeat, respiration rate, and body temperature. For that, the robot will deploy the embedded47

device from a safe compartment after removing obstruction in measurement area. Therefore, the device48

must be small, lightweight, and low powered. Likewise, the algorithm should not be too complicated49

and can be run in such limited resources with reasonable reliability. Here, the algorithm was simplified50

so that it can be implemented to an embedded device with dimension of about 50× 40× 30 mm and a51

weight of about 40 grams.52

2. Respiration Rate Measurement Algorithm53

The algorithm for respiration rate measurement was derived from raw data readings of the PPG54

sensor. The raw data then filtered using information filter to remove noises in the heartbeat signal55

readings. Information filter or inverse covariance filter, is a well known filter that has same function56

and procedures as Kalman Filter [23]. With a relatively light initialization, the information filter can57

estimate unknown variables based on a series of measurements containing noise and other inaccuraties.58

Therefore, this filter can produce optimal parameters estimation of state and observation model from59

measurements with Gaussian noise, such as object tracking system [23–25].60

Same as Kalman Filter, the information filter procedure consists from initialization, propagation,61

and update [23]. Based on this, the filter’s algorithm can be derived from those three approaches. In62

here, information filter will take signal from PPG sensor as measurement input and track its value ak63

and rate of change bk from time k− 1 to time k (Tk|k−1) as shown in equation 1.64 [
ak

bk

]
= F

[
xk−1

vk−1

]
(1)

where:

F =

[
1 Tk|k−1

0 1

]
(2)

During initialization, the information filter sets its state (ŷ0|0) and covariance (P−1
0|0 ) to zero. This65

shows that information filter has very light initialization compared with kalman filter which needs66

large number for its covariance to cover all input data during initialization time. Then the filter will67

propagate the state and covariance by using equation 3 and 4. In here, I is an identity matrix 2x2 and68

Q is calculated based on equation 7 with qde f equals to 0.375.69

ŷk|k−1 = (I + AQ)−1F−TYk−1|k−1 (3)

P−1
k|k−1 = (I + AQ)−1 A (4)
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where:
I = I2 (5)

A = F−T P−1
k−1|k−1F−1 (6)

Q = qde f

 T4
k|k−1

3
T4

k|k−1
3

T4
k|k−1

3 T2
k|k−1

 (7)

qde f = 0.375 (8)

When PPG sensor captures a heartbeat signal at time k, the information filter will update its70

propagated state and covariance by using equation 9 and 10. In this update, value of matix H and R is71

configured to reduce noise and avoid non-linearity from PPG signal value.72

ŷk|k = ŷk|k−1 + HT R−1zk (9)

P−1
k|k = P−1

k|k−1 + HT R−1H (10)

where:

H =

[
1 0
0 0

]
(11)

R =

[
50 50
50 50

]
(12)

Finally, equation 13 can generate output of the information filter based on the updated state and73

covariance (i.e. x̂k|k). In here, the filter output is a representative of variables in equation 1.74

ŷk|k = P−1
k|k x̂k|k (13)

After filtered, the changes in heartbeat signal frequencies were analyzed using an Fast Fourier75

transform (FFT) to get the RIIV distribution. The distribution was basically accumulated from a76

buffered FFT output in about a 20-second interval. Additionally, the distribution was updated every77

data sampling period. Finally, based on a peak-to-peak detection on the RIIV distribution, the78

respiration rate was calculated for each second.79

3. Implementation of Algorithm on Embedded Device80

Figure 1. PPG Sensor Board, Laxtha RP520.

The embedded device consists of a PPG sensor, as shown in Figure 1, for heartbeat measurement,81

a thermometer sensor to facilitate body temperature measurement, and a CPU of an ARM processor,82
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as shown in Figure 2. A Teensy 3.2 board was chosen as a base for the hardware development of the83

embedded device as the board has a small footprint with a 13-bit usable ADC and an ARM Cortex-M484

processor. The system can be used with a low-powered battery of 3.3 V with a CPU speed of 72 MHz.85

Using this system, the algorithm results can also be logged to other devices via serial communication.86

Figure 2. The Embedded Device for Respiration Rate Measurement.

The heartbeat signal from the PPG sensor in the embedded device was captured in a form87

of discrete number with noises via a 13-bit ADC system. Because the computational speed of the88

embedded device is relatively slow compared to a high-end computer system, the algorithm of the89

respiration rate measurement must be simplified so that it can be used in such a limited system.90

Figure 3. Simplified Algorithm on The Embedded Device.

As shown in Figure 3, the heartbeat signal in the embedded device that was captured from a91

13-bit ADC system and contains measurement noises, was approached using an information filter.92

With this approach, the discrete numbers of ADC reading can be linearized and the noises can also be93

reduced so that it can be observed more effectively.94

Figure 4. Typical Signal Filtering.
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Fig. 4 illustrates typical output signal of the information filter. In this figure, raw data from95

ADC system were displayed as a solid line and the filter output were distributed in a dotted line in96

every time step of about 50 ms. As shown in the figure, the PPG sensor took about 140 time step97

(7 seconds) before it started measuring the heartbeat signal. During this time, the ADC output was98

raised to a maximum value and then significantly dropped non-linearly to zero. On the other hand,99

the information filter output can follow linearly the ADC data on every time step with delay of about100

3 time step or about 150 ms. Based on the figure, initial heartbeat detection will be calculated on101

time step 180 which has a delay of about 30 time step or about 1.5 seconds from the first detected102

heartbeat signal from PPG sensor. This means that the algorithm has about 1.5 seconds of delay or103

initial detection time for heartbeat measurement.104

Once filtered, the frequencies of the heartbeat signal were analyzed using an FFT. In the embedded105

device, the analysis on the FFT was conducted on a major peak only and directly measured on the106

frequency domain. Because the FFT output can actually describe the changes in the input signal,107

changes of intensity in heartbeat signal due to intrathoracic pressure can also be measured by108

monitoring the major peak’s variation. Then with a moving average filter and peak-to-peak detection,109

the respiration rate can be calculated based on these variations that show the changes on the filtered110

heartbeat signal [15,16,22,26]. In here, the FFT analysis was configured with 64 data points and111

frequency resolution of 40 Hz. Additionally, the moving average filter was calculated based on 20112

samples of FFT output with sampling time of 50 ms.113

Figure 5. FFT and Moving Average Signal.

Figure 5 shows FFT analysis and moving average filter output. The solid line illustrates the major114

peak’s distribution in each time step. On the other hand, moving average output that were calculated115

based on the major peak values, were distributed as a dotted line. As shown in the figure, when the116

major peak intensity is changed, the moving average value will follow it linearly in a form of a signal117

peak. Therefore, in this figure, there are about four significant changes in about 300 time step which118

can be calculated as a respiration rate of about 0.27 Hz.119

During implementation in the embedded device, the filter optimization was also tested with120

induced-stress measurement of a test subject sitting on a chair after exercising. The exercise was121

performed by running on a treadmill with inclination level of 2% and speed level of 5 for about 5122

minutes. While the subject was still in recovery phase or post-exercise, measurement of heartbeat and123

respiration rate was immediately conducted for about 120 seconds.124

4. Experiment and Results125

In the case of heartbeat frequency calculation, a pulse oximeter was used to measure the heartbeat126

frequency of the test subject, as shown in Figure 6. In here, measurement outputs from the oximeter127

and embedded device were logged simultaneously during the test.128
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Figure 6. Test Setup with Subject’s Hand.

On the other hand, a spirometer (i.e., Vernier Spirometer with order code SPR-BTA) was utilized129

to validate the respiration rate algorithm results, as shown in Figure 7. Here, the test subject held130

the spirometer in one hand and breath through it while the other hand was put on the embedded131

device and pulse oximeter, as shown in Figure 8. The spirometer was connected to Vernier SensorDAQ132

that can send the spirometer signal data to a computer or PC. During the test, the embedded device133

was also connected to main PC via serial communication for data logging only. All computation and134

algorithm process was conducted in embedded device. Data from the embedded device, spirometer,135

and pulse oximeter then logged to a file using LabView interface.136

Figure 7. Vernier Spirometer.
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Figure 8. Experiment Setup

This experiment has ten test subjects who have an average age of 30 years and are in a healthy137

condition. For each subject, about 10 measurements was performed with one measurement time138

of about 5-10 minutes for normal relaxed breathing and about 120 seconds for the post-exercise139

measurement. Between measurements, there was a 60-second time interval for resetting and stabilizing140

the measurement values of the oximeter and the embedded device. During this time interval, the141

oximeter and the embedded device were detached and reattached to the test subject’s finger. Then142

the differences between the algorithm results with the pulse oximeter and spirometer output were143

calculated to validate the heartbeat and the respiration rate measurement.144

The measurement results of the embedded algorithm was evaluated on two breathing conditions145

(i.e., normal relaxed and post-exercise) using pulse oximeter and spirometer. Based on these,146

performance of the embedded algorithm, especially that for respiration measurement, was calculated147

for the two conditions.148

Table 1. Comparison of Heartbeat (bpm) Measurement between Pulse Oximeter and Embedded
Algorithm.

Method / Tool Min Average Max

Pulse Oximeter 58 77 84
Embedded Algorithm 57 79 89

Table 2. Comparison of Respiration Rate (Hz) Measurement between Spirometer and Embedded
Algorithm.

Method / Tool Min Average Max

Spirometer 0.22 0.29 0.36
Embedded Algorithm 0.24 0.26 0.30
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On the other hand, the heartbeat measured by the algorithm in the embedded device was averaged149

at 79 bpm as shown in Table 1. Based on the table, the heartbeat measurement value was similar to150

that of a pulse oximeter with a maximum difference of 5 bpm. In Table 2, the respiration rate was151

measured from 0.24 Hz to 0.30 Hz based on the embedded algorithm with a difference of 0.03 Hz on152

the average value.153

Table 3. Differences of The Algorithm in Embedded Device.

Parameter Min Average Max

Heartbeat Rate Diff. (%) 0.03 4.31 8.07
Respiration Rate Diff. (%) 0.43 8.12 18.8

Table 3 shows measurement differences of the embedded device on the test subject during normal154

relaxed breathing and post-exercise. Here, the heartbeat rate difference is about 4.31% compared155

with that of a pulse oximeter output. On the other hand, the respiration rate difference is averaged156

at 8.12% compared with spirometer results. This result shows that the simplification procedures and157

filtering process of the raw heartbeat signal are successfully implemented in the embedded device158

with reasonable average accuracies of about 90%.159

Figure 9. Bland-Altman Plot of Heartbeat Rate Differences (bpm)

Figure 9 illustrate these differences of heartbeat rate measurement result of the embedded device160

compared with that of pulse oximeter output. Table 4 shows the plot parameter of heartbeat rate161

differences. The figure and table describe a bias of -2.03 bpm, with lower limits of agreement of -8.06162

bpm and upper limits of agreement of 4 bpm. With that, the average of the difference is about 4.31%163

with standard deviation of about 3.17.164

Table 4. Parameter Values of Heartbeat Rate Differences (bpm)

Parameter Value

Bias -2.03
Standard Deviation 3.17

Upper Bound 4.00
Lower Bound -8.06

Likewise, Figure 10 display differences of respiration rate measurement result of embedded165

algorithm compared with spirometer on the two breathing conditions. As shown in166
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Table reftable:barespparam, the bias is about 0.01 Hz with lower and upper limits of agreement167

of -0.03 Hz and 0.06 Hz respectively. Additionally, the average differences is about 8% with standard168

deviation of about 0.02.169

Figure 10. Bland-Altman Plot of Respiration Rate Differences (Hz)

Table 5. Parameter Values of Heartbeat Rate Differences (bpm)

Parameter Value

Bias 0.01
Standard Deviation 0.02

Upper Bound 0.06
Lower Bound -0.03

In addition to a validation test, the initial detection and settling time of the algorithm in170

the embedded device was also calculated. Here, the distribution was calculated to observe the171

computational time of the algorithm implementation in the embedded device. The initial detection172

time was calculated between the first PPG signal detection and the first heartbeat and respiration rate173

calculation output.174

Figure 11. Heartbeat and Respiration Initial Time Distribution.
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Figs. 11 shows the average distribution of heartbeat and respiration measurement initial time of175

the embedded algorithm. On this figure, the initial heartbeat detection time is averaged on about 4176

seconds with the fastest time is about 0.33 seconds from the first heartbeat signal which is detected by177

the PPG sensor. On the other hand, the initial respiration detection time is about 53 seconds due to FFT178

sampling time. With that, respiration rate output values of the algorithm in the embedded device are179

converged in less than 90 seconds with fastest detection time is about 21 seconds, as shown in Table 6.180

Table 6 shows initial detection time and measurement differences of the embedded device. In181

here, the heartbeat rate difference is about 4.15% compared with that of pulse oximeter output. On182

the other hand, respiration rate difference is averaged at 8.12% compared with spirometer on normal183

relaxed and post-exercise breathing conditions.184

Table 6. Evaluation Result of The Algorithm in Embedded Device.

Parameter Min Average Max

Initial Heartbeat Detection Time (s) 0.33 3.81 7.43
Initial Respiration Detection Time (s) 21.14 53.32 86.14

Heartbeat Rate Diff. (%) 0.13 4.15 8.87
Respiration Rate Diff. (%) 0.43 8.12 18.8

5. Conclusion185

Simplified algorithm to measure respiration rate was successfully implemented to the embedded186

device. The device utilized a PPG sensor to capture heartbeat signal which then was filtered using187

information filter. Then FFT analysis was conducted to calculate the respiration rate based on RIIV188

observation from the filtered data. In here, the algorithm can measure heartbeat and respiration rate189

with bias of -2.03 bpm and 0.01 Hz respectively. In addition, based on test results of ten subjects with190

two breathing conditions (i.e. normal and post-exercise breathing), the algorithm computation has191

standard deviation of 3.17 for the heartbeat measurement and 0.02 for the respiration.192

Based on the results, it can be concluded that the algorithm in the embedded device can measure193

the heartbeat rate with a maximum of about 10% difference or about 90% accuracy. On the other hand,194

the delay of the computational process is about 4 seconds from the first detected heartbeat signal by195

PPG sensor, with additional 7 seconds for the sensor initialization. Then, on normal and post-exercise196

condition, the embedded device can measure the respiration rate with an average difference of about 8%197

or about 90% accuracy. Additionally, the maximum difference is about 19% (or accuracy of about 80%)198

compared with the spirometer, which proves the effectiveness of information filter on the embedded199

device.200

6. Future Work201

In this current development, the heartbeat and respiration rate measurement was conducted on a202

conscious person in a stable environment. The algorithm for the embedded device was successfully203

implemented with a reasonable measurement value compared with other medical devices. For general204

use and future development, the embedded device will be attached to a manipulator and tested205

in a different environment. In addition, the measurement and test of the embedded device will be206

conducted on a varying test condition, such as age and body posture, of an unconscious or sleeping207

subject. Also, spontaneous and controlled breathing will be observed as it tends to affect the PPG208

sensor reading, especially that for the RIIV measurements [22].209
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