

Article

Design and Implementation of Respiration Rate Measurement System Using Information Filter on Embedded Device

Radius Bhayu Prasetyo ¹, Kyu-Sang Choi ² and Gi-Hun Yang ^{3,†*}

¹ University of Science and Technology, South Korea / Korea Institute of Industrial Technology; jq_rbp@yahoo.com

² Manufacturing System Group, Korea Institute of Industrial Technology; kschoi@kitech.re.kr

³ Robotics Group, Korea Institute of Industrial Technology; yanggh@kitech.re.kr

* Correspondence: yanggh@kitech.re.kr; Tel.: +82-031-8040-6389

† Current address: Korea Institute of Industrial Technology (KITECH) A-#335, 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-910, South Korea

Version August 8, 2018 submitted to Preprints

Abstract: In this work, an algorithm was developed to measure the respiration rate for an embedded device that can be used by a field robot for relief operation. With this algorithm, the rate measurement was calculated based on direct influences of respiratory-induced intensity variation (RIIV) on blood flow in cardiovascular pathways. For that, a photoplethysmogram (PPG) sensor was used to determine changes in heartbeat frequencies. The PPG sensor readings were filtered using an Information Filter and a Fast Fourier transform (FFT) to determine the state of RIIV. With a relatively light initialization, the information filter can estimate unknown variables based on a series of measurements containing noise and other inaccuracies. Therefore, this filter is suitable for application on an embedded device. For faster calculation time in the implementation, the FFT analysis was calculated only for a major peak in the frequency domain. Test and measurement of respiration rate was conducted based on the device algorithm and spirometer. Heartbeat measurement was also evaluated by comparing the heartbeat data of the PPG sensor and the medical tool kit. Based on the test, the implemented algorithm can measure respiration rate with about 80% accuracy compared with the spirometer.

Keywords: Photoplethysmography (PPG), respiration rate, information filter

1. Introduction

In recent years, rapid technological advances have led to great developments in the field of robotics, especially for medical purposes [1]. From a microscopic scale to a large robotic surgery system, these developments bring significant progress in treatment and the health-care system [2–5]. The robot is also getting more portable and compact as it is needed for assessing first aid in a dangerous environment that cannot be accessed by personal medical help [6–13]. Furthermore, the robot needs to be able to locate and preliminarily determine the physical state of an injured person so that a correct course of treatment can be quickly performed by the medical help. Therefore, a medical sensory system that can determine the physical state must be implemented in the robotic system, especially that which is related to vital health conditions, such as heartbeat and respiration rate.

Respiration rate is a vital biosignal state that determines the physical state of the pulmonary system, which directly influences blood flow in cardiovascular pathways. Because of that, the measurement of blood flow in cardiovascular pathways can reflect a heartbeat condition as inhale and exhale activities can directly increase or decrease blood flow in those pathways [14–17]. Therefore, by measuring the changes of blood flow or heartbeat frequencies in the cardiovascular stream, the respiration rate can also be determined. The parameter of respiratory-induced intensity variation (RIIV) can also be analyzed based on those changes [15–22].

33 Photoplethysmography (PPG) is a method that uses an optical measurement to detect blood
 34 volume changes in the body caused by the cardiovascular system [14–22]. The PPG measurement can
 35 be achieved by employing a light source and a photodetector. Red or near-IR light-emitting diode
 36 (LED) with a wavelength of more than 600 nm is commonly used as the light source for the PPG
 37 sensor. This LED works as a transmitter that will illuminate the skin tissue and will be captured by
 38 the photodetector. The variations of light intensity in the skin detected by the photodetector can be
 39 associated with changes in blood volume in the captured area. Therefore, using such noninvasive
 40 method, the PPG sensor can be used to measure the blood flow rate caused by the cardiovascular
 41 system that reflects the heartbeat condition.

42 In this work, an algorithm for measuring the respiration rate was developed for an embedded
 43 device. A field robot for relief operation will be equipped with the device and will be deployed for
 44 search and rescue operations. Additionally, to be able to provide first aid in a critical situation, the robot
 45 will also carry other medical instruments, such as syringe and oxygen delivery system. Furthermore,
 46 the robot must be able to locate the victims and preliminarily determine their physiological state, such
 47 as their heartbeat, respiration rate, and body temperature. For that, the robot will deploy the embedded
 48 device from a safe compartment after removing obstruction in measurement area. Therefore, the device
 49 must be small, lightweight, and low powered. Likewise, the algorithm should not be too complicated
 50 and can be run in such limited resources with reasonable reliability. Here, the algorithm was simplified
 51 so that it can be implemented to an embedded device with dimension of about 50 × 40 × 30 mm and a
 52 weight of about 40 grams.

53 2. Respiration Rate Measurement Algorithm

54 The algorithm for respiration rate measurement was derived from raw data readings of the PPG
 55 sensor. The raw data then filtered using information filter to remove noises in the heartbeat signal
 56 readings. Information filter or inverse covariance filter, is a well known filter that has same function
 57 and procedures as Kalman Filter [23]. With a relatively light initialization, the information filter can
 58 estimate unknown variables based on a series of measurements containing noise and other inaccuracies.
 59 Therefore, this filter can produce optimal parameters estimation of state and observation model from
 60 measurements with Gaussian noise, such as object tracking system [23–25].

61 Same as Kalman Filter, the information filter procedure consists from initialization, propagation,
 62 and update [23]. Based on this, the filter's algorithm can be derived from those three approaches. In
 63 here, information filter will take signal from PPG sensor as measurement input and track its value a_k
 64 and rate of change b_k from time $k - 1$ to time k ($T_{k|k-1}$) as shown in equation 1.

$$\begin{bmatrix} a_k \\ b_k \end{bmatrix} = F \begin{bmatrix} x_{k-1} \\ v_{k-1} \end{bmatrix} \quad (1)$$

where:

$$F = \begin{bmatrix} 1 & T_{k|k-1} \\ 0 & 1 \end{bmatrix} \quad (2)$$

65 During initialization, the information filter sets its state ($\hat{y}_{0|0}$) and covariance ($P_{0|0}^{-1}$) to zero. This
 66 shows that information filter has very light initialization compared with kalman filter which needs
 67 large number for its covariance to cover all input data during initialization time. Then the filter will
 68 propagate the state and covariance by using equation 3 and 4. In here, I is an identity matrix 2x2 and
 69 Q is calculated based on equation 7 with $qdef$ equals to 0.375.

$$\hat{y}_{k|k-1} = (I + AQ)^{-1} F^{-T} Y_{k-1|k-1} \quad (3)$$

$$P_{k|k-1}^{-1} = (I + AQ)^{-1} A \quad (4)$$

where:

$$I = I_2 \quad (5)$$

$$A = F^{-T} P_{k-1|k-1}^{-1} F^{-1} \quad (6)$$

$$Q = qdef \begin{bmatrix} \frac{T_{k|k-1}^4}{3} & \frac{T_{k|k-1}^4}{3} \\ \frac{T_{k|k-1}^4}{3} & T_{k|k-1}^2 \end{bmatrix} \quad (7)$$

$$qdef = 0.375 \quad (8)$$

When PPG sensor captures a heartbeat signal at time k , the information filter will update its propagated state and covariance by using equation 9 and 10. In this update, value of matrix H and R is configured to reduce noise and avoid non-linearity from PPG signal value.

$$\hat{y}_{k|k} = \hat{y}_{k|k-1} + H^T R^{-1} z_k \quad (9)$$

$$P_{k|k}^{-1} = P_{k|k-1}^{-1} + H^T R^{-1} H \quad (10)$$

where:

$$H = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad (11)$$

$$R = \begin{bmatrix} 50 & 50 \\ 50 & 50 \end{bmatrix} \quad (12)$$

Finally, equation 13 can generate output of the information filter based on the updated state and covariance (i.e. $\hat{x}_{k|k}$). In here, the filter output is a representative of variables in equation 1.

$$\hat{y}_{k|k} = P_{k|k}^{-1} \hat{x}_{k|k} \quad (13)$$

After filtered, the changes in heartbeat signal frequencies were analyzed using an Fast Fourier transform (FFT) to get the RIIV distribution. The distribution was basically accumulated from a buffered FFT output in about a 20-second interval. Additionally, the distribution was updated every data sampling period. Finally, based on a peak-to-peak detection on the RIIV distribution, the respiration rate was calculated for each second.

3. Implementation of Algorithm on Embedded Device

Figure 1. PPG Sensor Board, Laxtha RP520.

The embedded device consists of a PPG sensor, as shown in Figure 1, for heartbeat measurement, a thermometer sensor to facilitate body temperature measurement, and a CPU of an ARM processor,

83 as shown in Figure 2. A Teensy 3.2 board was chosen as a base for the hardware development of the
 84 embedded device as the board has a small footprint with a 13-bit usable ADC and an ARM Cortex-M4
 85 processor. The system can be used with a low-powered battery of 3.3 V with a CPU speed of 72 MHz.
 86 Using this system, the algorithm results can also be logged to other devices via serial communication.

Figure 2. The Embedded Device for Respiration Rate Measurement.

87 The heartbeat signal from the PPG sensor in the embedded device was captured in a form
 88 of discrete number with noises via a 13-bit ADC system. Because the computational speed of the
 89 embedded device is relatively slow compared to a high-end computer system, the algorithm of the
 90 respiration rate measurement must be simplified so that it can be used in such a limited system.

Figure 3. Simplified Algorithm on The Embedded Device.

91 As shown in Figure 3, the heartbeat signal in the embedded device that was captured from a
 92 13-bit ADC system and contains measurement noises, was approached using an information filter.
 93 With this approach, the discrete numbers of ADC reading can be linearized and the noises can also be
 94 reduced so that it can be observed more effectively.

Figure 4. Typical Signal Filtering.

95 Fig. 4 illustrates typical output signal of the information filter. In this figure, raw data from
 96 ADC system were displayed as a solid line and the filter output were distributed in a dotted line in
 97 every time step of about 50 ms. As shown in the figure, the PPG sensor took about 140 time step
 98 (7 seconds) before it started measuring the heartbeat signal. During this time, the ADC output was
 99 raised to a maximum value and then significantly dropped non-linearly to zero. On the other hand,
 100 the information filter output can follow linearly the ADC data on every time step with delay of about
 101 3 time step or about 150 ms. Based on the figure, initial heartbeat detection will be calculated on
 102 time step 180 which has a delay of about 30 time step or about 1.5 seconds from the first detected
 103 heartbeat signal from PPG sensor. This means that the algorithm has about 1.5 seconds of delay or
 104 initial detection time for heartbeat measurement.

105 Once filtered, the frequencies of the heartbeat signal were analyzed using an FFT. In the embedded
 106 device, the analysis on the FFT was conducted on a major peak only and directly measured on the
 107 frequency domain. Because the FFT output can actually describe the changes in the input signal,
 108 changes of intensity in heartbeat signal due to intrathoracic pressure can also be measured by
 109 monitoring the major peak's variation. Then with a moving average filter and peak-to-peak detection,
 110 the respiration rate can be calculated based on these variations that show the changes on the filtered
 111 heartbeat signal [15,16,22,26]. In here, the FFT analysis was configured with 64 data points and
 112 frequency resolution of 40 Hz. Additionally, the moving average filter was calculated based on 20
 113 samples of FFT output with sampling time of 50 ms.

Figure 5. FFT and Moving Average Signal.

114 Figure 5 shows FFT analysis and moving average filter output. The solid line illustrates the major
 115 peak's distribution in each time step. On the other hand, moving average output that were calculated
 116 based on the major peak values, were distributed as a dotted line. As shown in the figure, when the
 117 major peak intensity is changed, the moving average value will follow it linearly in a form of a signal
 118 peak. Therefore, in this figure, there are about four significant changes in about 300 time step which
 119 can be calculated as a respiration rate of about 0.27 Hz.

120 During implementation in the embedded device, the filter optimization was also tested with
 121 induced-stress measurement of a test subject sitting on a chair after exercising. The exercise was
 122 performed by running on a treadmill with inclination level of 2% and speed level of 5 for about 5
 123 minutes. While the subject was still in recovery phase or post-exercise, measurement of heartbeat and
 124 respiration rate was immediately conducted for about 120 seconds.

125 4. Experiment and Results

126 In the case of heartbeat frequency calculation, a pulse oximeter was used to measure the heartbeat
 127 frequency of the test subject, as shown in Figure 6. In here, measurement outputs from the oximeter
 128 and embedded device were logged simultaneously during the test.

Figure 6. Test Setup with Subject's Hand.

129 On the other hand, a spirometer (i.e., Vernier Spirometer with order code SPR-BTA) was utilized
130 to validate the respiration rate algorithm results, as shown in Figure 7. Here, the test subject held
131 the spirometer in one hand and breath through it while the other hand was put on the embedded
132 device and pulse oximeter, as shown in Figure 8. The spirometer was connected to Vernier SensorDAQ
133 that can send the spirometer signal data to a computer or PC. During the test, the embedded device
134 was also connected to main PC via serial communication for data logging only. All computation and
135 algorithm process was conducted in embedded device. Data from the embedded device, spirometer,
136 and pulse oximeter then logged to a file using LabView interface.

Figure 7. Vernier Spirometer.

Figure 8. Experiment Setup

137 This experiment has ten test subjects who have an average age of 30 years and are in a healthy
 138 condition. For each subject, about 10 measurements was performed with one measurement time
 139 of about 5-10 minutes for normal relaxed breathing and about 120 seconds for the post-exercise
 140 measurement. Between measurements, there was a 60-second time interval for resetting and stabilizing
 141 the measurement values of the oximeter and the embedded device. During this time interval, the
 142 oximeter and the embedded device were detached and reattached to the test subject's finger. Then
 143 the differences between the algorithm results with the pulse oximeter and spirometer output were
 144 calculated to validate the heartbeat and the respiration rate measurement.

145 The measurement results of the embedded algorithm was evaluated on two breathing conditions
 146 (i.e., normal relaxed and post-exercise) using pulse oximeter and spirometer. Based on these,
 147 performance of the embedded algorithm, especially that for respiration measurement, was calculated
 148 for the two conditions.

Table 1. Comparison of Heartbeat (bpm) Measurement between Pulse Oximeter and Embedded Algorithm.

Method / Tool	Min	Average	Max
Pulse Oximeter	58	77	84
Embedded Algorithm	57	79	89

Table 2. Comparison of Respiration Rate (Hz) Measurement between Spirometer and Embedded Algorithm.

Method / Tool	Min	Average	Max
Spirometer	0.22	0.29	0.36
Embedded Algorithm	0.24	0.26	0.30

149 On the other hand, the heartbeat measured by the algorithm in the embedded device was averaged
 150 at 79 bpm as shown in Table 1. Based on the table, the heartbeat measurement value was similar to
 151 that of a pulse oximeter with a maximum difference of 5 bpm. In Table 2, the respiration rate was
 152 measured from 0.24 Hz to 0.30 Hz based on the embedded algorithm with a difference of 0.03 Hz on
 153 the average value.

Table 3. Differences of The Algorithm in Embedded Device.

Parameter	Min	Average	Max
Heartbeat Rate Diff. (%)	0.03	4.31	8.07
Respiration Rate Diff. (%)	0.43	8.12	18.8

154 Table 3 shows measurement differences of the embedded device on the test subject during normal
 155 relaxed breathing and post-exercise. Here, the heartbeat rate difference is about 4.31% compared
 156 with that of a pulse oximeter output. On the other hand, the respiration rate difference is averaged
 157 at 8.12% compared with spirometer results. This result shows that the simplification procedures and
 158 filtering process of the raw heartbeat signal are successfully implemented in the embedded device
 159 with reasonable average accuracies of about 90%.

Figure 9. Bland-Altman Plot of Heartbeat Rate Differences (bpm)

160 Figure 9 illustrate these differences of heartbeat rate measurement result of the embedded device
 161 compared with that of pulse oximeter output. Table 4 shows the plot parameter of heartbeat rate
 162 differences. The figure and table describe a bias of -2.03 bpm, with lower limits of agreement of -8.06
 163 bpm and upper limits of agreement of 4 bpm. With that, the average of the difference is about 4.31%
 164 with standard deviation of about 3.17.

Table 4. Parameter Values of Heartbeat Rate Differences (bpm)

Parameter	Value
Bias	-2.03
Standard Deviation	3.17
Upper Bound	4.00
Lower Bound	-8.06

165 Likewise, Figure 10 display differences of respiration rate measurement result of embedded
 166 algorithm compared with spirometer on the two breathing conditions. As shown in

¹⁶⁷ Table reftable:barespparam, the bias is about 0.01 Hz with lower and upper limits of agreement
¹⁶⁸ of -0.03 Hz and 0.06 Hz respectively. Additionally, the average differences is about 8% with standard
¹⁶⁹ deviation of about 0.02.

Figure 10. Bland-Altman Plot of Respiration Rate Differences (Hz)

Table 5. Parameter Values of Heartbeat Rate Differences (bpm)

Parameter	Value
Bias	0.01
Standard Deviation	0.02
Upper Bound	0.06
Lower Bound	-0.03

¹⁷⁰ In addition to a validation test, the initial detection and settling time of the algorithm in
¹⁷¹ the embedded device was also calculated. Here, the distribution was calculated to observe the
¹⁷² computational time of the algorithm implementation in the embedded device. The initial detection
¹⁷³ time was calculated between the first PPG signal detection and the first heartbeat and respiration rate
¹⁷⁴ calculation output.

Figure 11. Heartbeat and Respiration Initial Time Distribution.

175 Figs. 11 shows the average distribution of heartbeat and respiration measurement initial time of
 176 the embedded algorithm. On this figure, the initial heartbeat detection time is averaged on about 4
 177 seconds with the fastest time is about 0.33 seconds from the first heartbeat signal which is detected by
 178 the PPG sensor. On the other hand, the initial respiration detection time is about 53 seconds due to FFT
 179 sampling time. With that, respiration rate output values of the algorithm in the embedded device are
 180 converged in less than 90 seconds with fastest detection time is about 21 seconds, as shown in Table 6.

181 Table 6 shows initial detection time and measurement differences of the embedded device. In
 182 here, the heartbeat rate difference is about 4.15% compared with that of pulse oximeter output. On
 183 the other hand, respiration rate difference is averaged at 8.12% compared with spirometer on normal
 184 relaxed and post-exercise breathing conditions.

Table 6. Evaluation Result of The Algorithm in Embedded Device.

Parameter	Min	Average	Max
Initial Heartbeat Detection Time (s)	0.33	3.81	7.43
Initial Respiration Detection Time (s)	21.14	53.32	86.14
Heartbeat Rate Diff. (%)	0.13	4.15	8.87
Respiration Rate Diff. (%)	0.43	8.12	18.8

185 5. Conclusion

186 Simplified algorithm to measure respiration rate was successfully implemented to the embedded
 187 device. The device utilized a PPG sensor to capture heartbeat signal which then was filtered using
 188 information filter. Then FFT analysis was conducted to calculate the respiration rate based on RIIV
 189 observation from the filtered data. In here, the algorithm can measure heartbeat and respiration rate
 190 with bias of -2.03 bpm and 0.01 Hz respectively. In addition, based on test results of ten subjects with
 191 two breathing conditions (i.e. normal and post-exercise breathing), the algorithm computation has
 192 standard deviation of 3.17 for the heartbeat measurement and 0.02 for the respiration.

193 Based on the results, it can be concluded that the algorithm in the embedded device can measure
 194 the heartbeat rate with a maximum of about 10% difference or about 90% accuracy. On the other hand,
 195 the delay of the computational process is about 4 seconds from the first detected heartbeat signal by
 196 PPG sensor, with additional 7 seconds for the sensor initialization. Then, on normal and post-exercise
 197 condition, the embedded device can measure the respiration rate with an average difference of about 8%
 198 or about 90% accuracy. Additionally, the maximum difference is about 19% (or accuracy of about 80%)
 199 compared with the spirometer, which proves the effectiveness of information filter on the embedded
 200 device.

201 6. Future Work

202 In this current development, the heartbeat and respiration rate measurement was conducted on a
 203 conscious person in a stable environment. The algorithm for the embedded device was successfully
 204 implemented with a reasonable measurement value compared with other medical devices. For general
 205 use and future development, the embedded device will be attached to a manipulator and tested
 206 in a different environment. In addition, the measurement and test of the embedded device will be
 207 conducted on a varying test condition, such as age and body posture, of an unconscious or sleeping
 208 subject. Also, spontaneous and controlled breathing will be observed as it tends to affect the PPG
 209 sensor reading, especially that for the RIIV measurements [22].

210 **Acknowledgments:** This research was supported by Korea Electronics Technology Institute (KETI) as part of the
 211 "development of dependable soft manipulator and multi-function gadgets for relief operation" (ND 170004).

212 References

213 1. Khan, M. The Development of a Mobile Medical Robot Using ER1 Technology 2013. 32, 34–37.

214 2. Lee, J.; Kim, E.; Kim, S.; Jeon, S.; Choi, H. A flexible microrobots with magnetic actuation for medical tool
215 2016. pp. 184–185.

216 3. Ishiyama, K.; Sendoh, M.; Arai, K. Magnetic micromachines for medical applications 2002. 242, 41–46.

217 4. Qiu, F.; Nelson, B.J. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications.
218 *Engineering* 2015, 1, 021 – 026. doi:<https://doi.org/10.15302/J-ENG-2015005>.

219 5. Bell, D.J.; Leutenegger, S.; Hammar, K.M.; Dong, L.X.; Nelson, B.J. Flagella-like Propulsion for Microrobots
220 Using a Nanocoil and a Rotating Electromagnetic Field. *Proceedings 2007 IEEE International Conference*
221 *on Robotics and Automation*, 2007, pp. 1128–1133. doi:10.1109/ROBOT.2007.363136.

222 6. Phee, S.; C Low, S.; Sun, Z.; Y Ho, K.; M Huang, W.; M Thant, Z. Robotic system for no-scar gastrointestinal
223 surgery 2008. 4, 15–22.

224 7. Barkana, D.E. Design and implementation of a control architecture for robot-assisted orthopaedic surgery.
225 *The International Journal of Medical Robotics and Computer Assisted Surgery* 2010, 6, 42–56. doi:10.1002/rcs.287.

226 8. Tavakoli, M.; Patel, R.V.; Moallem, M. Haptic interaction in robot-assisted endoscopic surgery: a sensorized
227 end-effector. *The International Journal of Medical Robotics and Computer Assisted Surgery* 2005, 1, 53–63.
228 doi:10.1002/rcs.16.

229 9. Wolf, A.; Jaramaz, B.; Lisien, B.; DiGioia, A.M. MBARS: mini bone-attached robotic system for joint
230 arthroplasty. *The International Journal of Medical Robotics and Computer Assisted Surgery* 2005, 1, 101–121.
231 doi:10.1002/rcs.20.

232 10. Kobayashi, Y.; Tomono, Y.; Sekiguchi, Y.; Watanabe, H.; Toyoda, K.; Konishi, K.; Tomikawa, M.; Ieiri,
233 S.; Tanoue, K.; Hashizume, M.; Fujie, M.G. A surgical robot with vision field control for single port
234 endoscopic surgery. *The International Journal of Medical Robotics and Computer Assisted Surgery* 2010,
235 6, 454–464. doi:10.1002/rcs.355.

236 11. Zamorano, L.; Li, Q.; Jain, S.; Kaur, G. Robotics in neurosurgery: state of the art and future technological
237 challenges. *The International Journal of Medical Robotics and Computer Assisted Surgery* 2004, 1, 7–22.
238 doi:10.1002/rcs.2.

239 12. Kuebler, B.; Seibold, U.; Hirzinger, G. Development of actuated and sensor integrated forceps for minimally
240 invasive robotic surger. *The International Journal of Medical Robotics and Computer Assisted Surgery* 2005,
241 1, 96–107. doi:10.1002/rcs.33.

242 13. Cepolina, F.; Michelini, R.C. Review of robotic fixtures for minimally invasive surgery. *The International*
243 *Journal of Medical Robotics and Computer Assisted Surgery* 2004, 1, 43–63. doi:10.1002/rcs.5.

244 14. Nakajima, K.; Tamura, T.; Miike, H. Monitoring of heart and respiratory rates by photoplethysmography
245 using a digital filtering technique. *Medical Engineering & Physics* 1996, 18, 365 – 372.
246 doi:[https://doi.org/10.1016/1350-4533\(95\)00066-6](https://doi.org/10.1016/1350-4533(95)00066-6).

247 15. Karlen, W.; Raman, S.; Ansermino, J.M.; Dumont, G.A. Multiparameter Respiratory Rate Estimation
248 From the Photoplethysmogram. *IEEE Transactions on Biomedical Engineering* 2013, 60, 1946–1953.
249 doi:10.1109/TBME.2013.2246160.

250 16. Lovett, P.; M Buchwald, J.; Stürmann, K.; Bijur, P. The Vexatious Vital: neither clinical measurements
251 by nurses nor an electronic monitor provides accurate measurements of respiratory rate in triage 2005.
252 45, 68–76.

253 17. Yousefi, R.; Nourani, M. Separating Arterial and Venous-Related Components of Photoplethysmographic
254 Signals for Accurate Extraction of Oxygen Saturation and Respiratory Rate. *IEEE Journal of Biomedical and*
255 *Health Informatics* 2015, 19, 848–857. doi:10.1109/JBHI.2014.2334697.

256 18. Allen, J. Photoplethysmography and its application in clinical physiological measurement. *Physiological*
257 *Measurement* 2007, 28, R1.

258 19. Sun, B.; Zhang, Z. Photoplethysmography-Based Heart Rate Monitoring Using Asymmetric Least
259 Squares Spectrum Subtraction and Bayesian Decision Theory. *IEEE Sensors Journal* 2015, 15, 7161–7168.
260 doi:10.1109/JSEN.2015.2473697.

261 20. Dyell, D.; Rogowski, C.; Kahler, S.; Milan, J. Real-time monitoring systems and methods in a healthcare
262 environment, 2016. US Patent App. 14/835,709.

263 21. Zhang, Z. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint
264 Sparse Spectrum Reconstruction. *IEEE Transactions on Biomedical Engineering* 2015, 62, 1902–1910.
265 doi:10.1109/TBME.2015.2406332.

266 22. Li, J.; Jin, J.; Chen, X.; Sun, W.; Guo, P. Comparison of respiratory-induced variations in
267 photoplethysmographic signals. *Physiological Measurement* **2010**, *31*, 415.

268 23. Challa, S.; Morelande, M.; Mušicki, D.; Evans, R. *Fundamentals of Object Tracking*; Cambridge books online,
269 Cambridge University Press, 2011.

270 24. LaViola, J.J. A comparison of unscented and extended Kalman filtering for estimating quaternion
271 motion. *Proceedings of the 2003 American Control Conference*, 2003., 2003, Vol. 3, pp. 2435–2440
272 vol.3. doi:10.1109/ACC.2003.1243440.

273 25. Simmons, L.P.; Welsh, J.S. Unscented Kalman Filter based finger tracking utilising magnetoresistive sensors.
274 2015 American Control Conference (ACC), 2015, pp. 5128–5133. doi:10.1109/ACC.2015.7172139.

275 26. Nakajima, K.; Tamura, T.; Ohta, T.; Miike, H.; Oberg, P.A. Photoplethysmographic measurement of heart
276 and respiratory rates using digital filters. *Proceedings of the 15th Annual International Conference of the*
277 *IEEE Engineering in Medicine and Biology Society*, 1993, pp. 1006–1007. doi:10.1109/IEMBS.1993.978978.