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Abstract: (1) Background: Evidence-based policymaking requires data about the local population’s
socioeconomic status (SES) at detailed geographical level, however, such information is often
not available, or is too expensive to acquire. Researchers have proposed solutions to estimate
SES indicators by analyzing Google Street View images, however, these methods are also
resource-intensive, since they require large volumes of manually labeled training data. (2) Methods:
We propose a methodology for automatically computing surrogate variables of SES indicators using
street images of parked cars and deep multiple instance learning. Our approach does not require
any manually created labels, apart from data already available by statistical authorities, while the
entire pipeline for image acquisition, parked car detection, car classification, and surrogate variable
computation is fully automated. The proposed surrogate variables are then used in linear regression
models to estimate the target SES indicators. (3) Results: We implement and evaluate a model based
on the proposed surrogate variable at 30 municipalities of varying SES in Greece. Our model has
R2 = 0.76 and a correlation coefficient of 0.874 with the true unemployment rate, while it achieves
a mean absolute percentage error of 0.089 and mean absolute error of 1.87 on a held-out test set.
Similar results are also obtained for other socioeconomic indicators, related to education level and
occupational prestige. (4) Conclusions: The proposed methodology can be used to estimate SES
indicators at the local level automatically, using images of parked cars detected via Google Street
View, without the need for any manual labeling effort.

Keywords: deep learning; multiple instance learning; weakly supervised learning; demography;
socioeconomic analysis; Google Street View

1. Introduction

For the past 30 years, there has been a growing need for Evidence-Based Policymaking (EBP),
led by the desire to transition from decisions based on expertise and authority, to decisions supported
and evaluated by data and scientific findings [1]. EBP has been actively promoted by the UK
Government since 1997, starting with the famous “Modernising Government” white paper [2], while
the USA is also seeking to better integrate data and other forms of evidence to federal EBP processes,
as can be seen by the establishment and findings of the Commission on Evidence-Based Policymaking
[3].

Acquiring evidence to support EBP, however, is far from straightforward. Research and data
analysis requires money and time, and sufficient evidence may not be available for policy formulation
when decisions are being made [4]. Furthermore, even when research evidence exists, it may not apply
locally, which calls for even further investigation at the local context to support targeted policies [5],
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introducing additional costs, possibly beyond cost-effectiveness thresholds. Sub-optimal, “blanket”
policies at the macroscopic level are applied instead [6].

Local measurements and demographics are therefore key to EBP, with the main sources of such
information currently being census data, which will probably be combined with additional data from
government agencies in the future [3]. Census data collection is expensive, however, with the 2010
USA decennial census costing over $13 billion [7], while the collected information is limited and may
quickly become outdated, given that a general census is performed every 10 years.

Although these problems pose significant challenges to EBP, recent technical achievements are now
offering innovative means of obtaining objective measurements of the social and urban environment.
Services such as Google Street View (GSV) [8,9], Bing Maps Streetside [10], and OpenStreetCam [11]
are now offering geo-located urban images and allow researchers to virtually explore the environment
and measure its characteristics. For instance, researchers of the SPOTLIGHT project [12] developed
a GSV-based “virtual audit” tool [13] to help reduce the effort required to quantify the typology of
different neighborhoods in European cities. They then used the images of each local neighborhood to
objectively measure urban features associated with obesity [14].

Moving beyond virtual audits, Gebru et al. [15] used GSV images and deep learning to
automatically detect the distribution of different car models in each neighborhood (including car
make, model, and year). Analysis of 50 million images from 200 US cities showed that such data
can be used to automatically infer local demographic information related to income, education,
race, and voter preferences. Most notably, this information was estimated at the US precinct level
(each including approximately 1000 people). Development of the car classifiers used in that work was,
however, a challenging task in itself. It involved 2657 car categories and almost 400,000 images which
were manually annotated to indicate the category of all visible cars in each image. Annotators through
Amazon Mechanical Turk as well as car experts were recruited to carry out this laborious task.

In our work in the BigO project [16], we aim to identify local factors of the urban and
socioeconomic environment that are linked to obesogenic behaviors of children, such as low physical
activity and unhealthy eating habits. This information can then be used to design targeted interventions
and policies that take into account the local context. Motivated by our need for SES indicators of the
local urban population, we explore whether the approach of Gebru et al. [15] can be used to infer such
information from cars, but without the associated manual annotation effort.

To achieve this, we approach the car categorization problem using models trained with multiple
instance learning at municipality level. Specifically, instead of annotating cars, we annotate
municipalities based on their socio-economic status. We then train a deep learning model to categorize
car images based on the type of municipality that they were observed in. Finally, we produce
an aggregate score based on the model output for approximately 500 cars sampled from each
municipality via GSV. Results from 30 municipalities of varying SES in Greece indicate that this
method can accurately predict indicators of socio-economic status, such as the local unemployment
rate. Specifically, a linear regression model trained on 25 municipalities (8 low, 9 average, and 8 high
SES) achieves a coefficient of determination of R2 = 0.76 while evaluation on a held-out test set of
5 additional municipalities (also of varying SES) reaches a mean absolute percentage error of 0.089 and
mean absolute error of 1.87. Other SES indicators, related to education level and occupational prestige
are evaluated as well, leading to linear regression models with similar effectiveness.

These results show that we can leverage deep learning object recognition models and multiple
instance learning to produce surrogates of local socio-economic indicators at a minimal cost.
An illustration summarizing the main steps of the proposed method is shown in Figure 1. These are
discussed in detail in the following Sections.

The rest of the paper is organized as follows. Section 2 summarizes relevant work in the field of using
visual analysis to measure environment characteristics and to estimate demographics, SES indicators,
or perceptions of the local population about their environment. Section 3 presents our method for
image-based neighborhood characterization using deep multiple instance learning, while Section 4
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presents the results of experimental evaluation in Greek municipalities. Finally, Section 5 summarizes
our findings and concludes this work.

CNN

Upper left

Lower right

Google Street View

(a) Acquisition (c) Multiple instance learning(b) Car detection (d) Surrogate variable
& estimation of 
local unemployment rate

Top-20% 
surrogate

Faster RCNN

Inception V3

Parked car images

Figure 1. Illustration summarizing the proposed method. Step (a): The regions of interest are defined
via Geographical Information System (GIS) data and sampling in a regular grid is used to retrieve
side-view images from the streets inside the region. Step (b): Faster R-CNN [17] is used to detect
parked cars. Step (c): During training, images of detected cars are used to train an Inception V3 model
[18] using multiple instance learning where each car is classified as “high” or “low” SES based on the
region it was observed in (same label for all cars of a single municipality). During testing, the model is
used for car classification. Step (d): The model output is used to compute aggregate metrics which
enable us to accurately estimate indicators of socioeconomic status, such as local unemployment rate,
with simple linear models. The proposed method can be used to estimate SES at arbitrary geographical
resolution, including at the local neighborhood level. Car images, maps and logo c© Google.

2. Related Work

Google Street View has been extensively used to measure characteristics of the built environment
and to infer demographics. Originally, researchers suggested to use Street View to perform virtual
auditing in order to avoid the cost and time required for field audits. In Reference [19], a comparison
between a 2007 field audit and 2008 virtual audit for 143 variables in a part of New York showed
high agreement (over 80%) for more than half of the variables. Agreement was lower for items that
typically exhibit temporal variability (e.g., variables related to the presence of people, animals, or
garbage and litter). Similar results were reported in Reference [20], concluding that GSV provides
a resource-efficient and reliable alternative to fields audits for attributes associated to walking and
cycling.

Similar tools have also been developed to discover associations between characteristics of the
built environment and obesity. Researchers that developed the SPOTLIGHT virtual audit tool to
assess obesogenic characteristics of the built environment [12–14] used both field and virtual audits.
They reported very high intra-observer (96.4%) and inter-observer (91.5%) agreement for multiple
environmental characteristics in four Dutch neighborhoods. Recently, Bader et al. [21] concluded that
GSV for virtual auditing is reliable, but researchers need to carefully consider issues related to selection
of variables (as also originally discussed in Reference [19]), as well as rater fatigue, which can be a
significant source of error.

To mitigate the errors, effort, and cost of manual measurements, several researchers have resorted
to computer vision and machine learning algorithms to automate measurement tasks. Perhaps the
most well-known example is by Google itself, where Goodfellow et al. [22] used GSV images to
automatically record street numbers of houses for use in the Google Maps service [23]. A deep
Convolutional Neural Network (CNN) was used for simultaneously performing number localization,
segmentation, and recognition. The large number of available training images (tens of millions of
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images) allowed the system to reach very high effectiveness (over 96% overall), despite the large
number of model parameters.

There have also been several subsequent efforts towards automatic measurement of features of
the environment or points of interest through GSV images. In Reference [24] the authors present an
urban object cataloging system, which can accurately localize and classify trees detected in urban
neighborhoods through GSV. In Reference [25–27] different methods are presented for storefront
detection and classification from street-level images.

All these works aim at measuring environment variables which are directly visible through GSV
images. Another body of work aims at using GSV images to capture measurements which can be
inferred through characteristics of the environment. For example, in Reference [28] the authors use
the Place Pulse dataset [29] to build a deep learning model of safety perception from GSV images
and correlate this with the liveliness of neighborhoods, as measured from mobile phone data. In
Reference [30] the authors use GSV images to determine the number of pedestrians present in street
segments in order to estimate pedestrian volume, while in Reference [31] the authors automatically
extract three measures of visual enclosure which are shown to be correlated with walkability. Moving
even further, Reference [32] uses features of the built environment, extracted through CNN and builds
regression models that associate these features with adult obesity prevalence.

In this paper we start from the approach of Gebru and others [15,33] (see Section 1) and explore
whether it is possible to develop classification models to infer socioeconomic indicators without the
need for any manual annotations. To achieve this, we propose to build car classification models
based on the differences in car visual appearance between low and high SES areas using multiple
instance learning. We introduce a score that acts as a surrogate of the local SES and use it with simple
linear regression to build models that predict the local unemployment rate and other SES indicators,
with highly encouraging results.

3. Multiple Instance Learning for Neighborhood Characterization Using Images

3.1. Data Acquisition

The first step of our method involves the collection of GSV side-view images of parked cars in
the region of interest. In this work, we use rectangular regions, defined by two sets of coordinates
indicating the upper left and lower right points of the rectangle (see Figure 1, Step (a)). To ensure
that only data from the administrative regions of interest are selected during sampling, we ignore any
points of the grid that fall outside the administrative region boundaries, as defined by GIS data.

The region is first traversed to acquire the candidate images. Specifically, we select points on a
dense, regular rectangular grid inside the region of interest, with a fixed distance step in each direction.
To obtain the point coordinates we need to consider the earth’s curvature. For the area sizes we are
interested in, we can assume that earth is a perfect sphere and we can rely on the haversine formula
that provides the distance between two points,

d(p1, p2) = 2ρ arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos (φ1) cos (φ2) sin2

(
λ2 − λ1

2

))
(1)

where ρ = 6371× 103 is the earth’s radius in meters and φi, λi, are the point pi, coordinates (latitude
and longitude, respectively) in radians, with i = 1, 2. This formula allows us to convert the desired
sampling step in meters to a step in radians along the latitude and longitude directions. If dA and
dB are the lengths of the sides of the rectangle in the latitude and longitude direction, respectively
(determined through Equation (1)), and sA, sB are the corresponding steps in meters, then nA = dA/sA
and nB = dB/sB are the number of grid points in each direction. The steps, in radians, are then
rA = dA/nA and rB = dB/nB. Note that if a grid point falls out of the boundaries of the administrative
region of interest, it is rejected.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 October 2018                   doi:10.20944/preprints201808.0154.v2

Peer-reviewed version available at J. Imaging 2018, 4, 125; doi:10.3390/jimaging4110125Peer-reviewed version available at J. Imaging 2018, 4, 125; doi:10.3390/jimaging4110125

http://dx.doi.org/10.20944/preprints201808.0154.v2
http://dx.doi.org/10.3390/jimaging4110125
http://dx.doi.org/10.3390/jimaging4110125


5 of 17

We query the GSV Application Programming Interface (API) [9], provided by Google, for metadata
regarding each point in the rectangular grid. The API does not provide data about the query point;
instead, it provides metadata for the closest location with a street image available (without returning
the image itself). This allows us to determine a set of unique locations with available images that are
close to the selected rectangular grid points. If the sampling step becomes small enough, we obtain the
list of all available locations with GSV street images.

In this work, we focus on parked cars, to minimize the effect of cars passing through a
neighborhood on the extracted measurements. This also reduces the variability of the visual appearance
of cars, which may have an impact on the classification model used in later stages. It is worth
mentioning, however, that we performed our experiments in Greece, where cars are commonly parked
on the street in urban regions. In other parts of the world, where garages or parking lots are more
common, it is worth including moving cars also, to avoid introducing bias in the sampling procedure.

Acquisition of parked cars requires that for each location with street images, we need to obtain
two pictures that are vertical (left and right) to the street direction at the selected point and detect
parked cars. The street heading at that point is determined through Google’s geocoding API [34] by
querying a neighboring point on the same street. More specifically, for each location, we obtain the
location of either the previous or the next street number using the geocoding API. The bearing formula
is used to determine the street heading

θ = atan2 (sin (∆λ) cos(φ2), cos(φ1) sin(φ2)− sin(φ1) cos(φ2) cos (∆λ)) (2)

where ∆λ is the difference in longitude between the two points and φ1, φ2 the point latitudes. We can
then obtain street side views by querying GSV for headings±90◦ from the street heading at the selected
point. This process is repeated for all selected locations in the region. We then process the images to
detect cars.

3.2. Car Detection with Faster R-CNN

To detect cars in the retrieved side-view images (Step (b) in Figure 1), we use a Faster R-CNN [17]
model pre-trained on Pascal VOC 2007 [35]. Faster R-CNN is a popular object detection deep neural
network architecture, which extends Fast R-CNN [36] with the addition of a trainable Region Proposal
Network for producing candidate object regions in the input image. The model that we used in
our experiments initially processes the data using the first 13 convolutional layers of VGG-16 [37],
pre-trained on ImageNet. The output of the convolutional layers, C, is processed by a Region Proposal
Network (RPN) which includes a regression layer, providing candidate object region boundaries, and a
classification layer which identifies image regions as “object” or “non-object”. The same output, C,
is passed on to the Fast R-CNN RoI pooling layer for the candidate object regions detected by the
RPN. The RoI pooling layer performs max pooling to convert the object region proposal to a fixed-size
representation. A final classification step determines the detected object class. For additional details on
Faster R-CNN the reader is referred to Reference [17].

In this work, we applied Faster R-CNN for the “Car” object class only. By applying Faster R-CNN
to the images collected from GSV (Section 3.1) with a 0.8 detection threshold, we obtained a collection of
parked car images from the target region with almost no false positives. As described in the following
sections, the missed detections do not affect the proposed methodology, since it uses only a sample of
the cars in each region and therefore high recall is not necessary.

3.3. Automatic Labeling of Cars Using Multiple Instance Learning

Motivated by the results of Reference [15], we develop our models based on the premise that
the types of cars observed in an urban region are indicators of the socio-economic status of the local
population. Instead of attempting to detect the exact category (i.e., make, model, and year) of each
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car, however, we simplify the learning task as much as possible and try to build a binary classification
model using multiple instance learning [38], without any manual car labels.

More specifically, we label regions as “low” and “high” SES based on published SES indicators.
In the experiments of this paper we applied our method to Greek municipalities and relied on the local
unemployment rate to assign a label at municipality level. Every car detected in a selected municipality
(following the process described in Section 3.2) is also labeled as “low” and “high” depending on the
municipality’s label. In other words, the characterization of each detected car image depends on the
region it was observed in, rather than the car category. This has several implications:

1. All cars observed in a single urban region (e.g., same postal code or municipality) inherit the
same label during training.

2. It is possible that different instances of the same car category are annotated as both “low” and
“high” during model training.

3. The model is built based on the overall car appearance and a classifier may learn distinguishing
characteristics besides the car category, such as the car’s age, and overall exterior state.

The use of multiple instance learning eliminates the labeling effort for training our classifier
models, and may also help our models identify distinguishing characteristics of the visual appearance
of cars between low and high SES regions. On the other hand, it significantly increases the level of
training noise. To minimize the impact of noise, while maintaining the benefits of multiple instance
learning, we propose to train the classifier model using regions at the low and high SES extremes,
based on available statistical authority data. This has the potential to help the training procedure,
by amplifying the differences in car types and car appearances between the high and low SES regions.
Furthermore, as we will discuss in the next section, we rely only on the car instances classified with
high confidence (probability close to 1 or 0) by our model to minimize the effect of noise in estimating
the region’s SES indicators.

The binary classifier used in this work was built based on an Inception V3 model [18], pre-trained
on ImageNet, as provided by the Tensorflow deep learning framework [39]. Only the last fully
connected layer of the Inception model was re-trained to classify cars as originating from low or high
SES regions. During training, each detected car image was cropped and resized to 224× 224 pixels and
was transformed using standard random input distortions to improve model generalization. The result
of training is a model that receives a cropped car image (the resized output of the Faster R-CNN model)
and computes the probability that the input car image originates from a high SES region.

3.4. Image-Based Surrogates of Socioeconomic Status

Using the images of parked cars from GSV and the output of the deep multiple instance learning
model of Section 3.3, we can compute quantities which can act as surrogates of SES indicators of
the local population. In this paper, we focus on local unemployment rate as the representative SES
indicator and attempt to predict it using simple linear regression over the surrogate variable, i.e.,
ŷ = w1x + w0, where ŷ is the estimate of the local unemployment rate, y, and x is the surrogate
variable.

We propose to set x equal to the fraction of cars classified as originating from a high SES
region, for those images with the highest classification confidence (either positive or negative).
Specifically, given the output p(high|I) of the model for each car image I detected at the local
neighborhood or municipality, we compute the fraction only for the cars classified with the top
20% confidence

c(I) =

{
p(high|I) if p(high|I) > 0.5

1− p(high|I) if p(high|I) ≤ 0.5
(3)

Then

x =
|{I|p(high|I) > 0.5, c(I) ∈ top-20%}|

|{I|c(I) ∈ top-20%}| (4)
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where “top-20%” indicates the top 20% classification confidence scores, c (or, equivalently, the c values
above the 80th percentile) and the symbol |.| denotes set cardinality.

This choice mitigates, to a degree, the problem of noise introduced by multiple instance learning.
A probability p(high|I) close to 0 or 1 indicates high confidence about the label of I. On the other hand,
a probability close to 0.5 indicates complete uncertainty over the car’s class, i.e., a car that could be
observed in high or low SES regions with equal probability. By considering cars with the top-20%
classification confidence, we ensure that we select cars that are most discriminative between low and
high SES regions. This approach also highlights the differences between high and low SES regions,
which would otherwise be less apparent with a large number of average-scoring cars.

4. Experiments

We performed experiments using GSV images retrieved from 30 municipalities in Greece.
The experiments aim at demonstrating the effectiveness of the car classification models, as well
as of the SES indicator prediction models, despite the noise introduced by multiple instance learning.
Furthermore, we show how the proposed approach can be used to estimate local SES indicators at
high geographical resolution.

Since average income information is not available for Greece at detailed geographical level,
we used unemployment rate as the local SES indicator, as provided by the Hellenic Statistical
Authority [40]. Use of additional indicators related to education level and occupational prestige
is also explored. We followed the approach described in Section 3.1 for image acquisition and we
chose the appropriate grid step (and number of images) to detect approximately 500 cars within each
municipality, using Faster R-CNN. We consider this to be a representative sample of the cars in each
municipality.

4.1. Assessing the Accuracy of the Multiple Instance Learning Models

We initially performed a small-scale evaluation of the pre-trained, state of the art car detection
model (Section 3.2), on a set of 1000 urban GSV images, randomly selected using our data acquisition
method (Section 3.1). Out of a total of 350 parked cars contained in these images, Faster R-CNN with
0.8 threshold detected 238 cars, 1 false detection, as well as 12 moving cars, that were mistakenly
considered as parked cars. This indicates approximately 70% parked car detection accuracy, and 5%
misclassification error due to moving cars wrongly assumed to be parked cars. Our approach therefore
detects parked cars with very high accuracy. As for the missed car detections, these do not affect our
method since it is based on a sampling of the region’s cars.

Given the list of all municipalities in Greece, we first selected the five with the highest
and the five with the lowest unemployment rate to assess the accuracy of the car classification
model. The differences between municipalities are significant, with the highest SES municipality
(Psychiko, in the Athens region) having 8.8% unemployment rate and the lowest SES municipality
(Ampelokipoi/Menemeni, in the Thessaloniki region) 30.4%. Each car detected with Faster R-CNN
in the top 5 municipalities (Section 3.2) is assigned the “high” SES label, while cars in the bottom 5
municipalities are assigned the “low” SES label. We then used multiple instance learning to train and
evaluate the car classification model based on Inception V3, as described in Section 3.3.

Evaluation of the car classifiers was initially performed on these 10 municipalities only, using a
Leave-One-Group-Out (LOGO) approach. LOGO is a variant of the Leave-One-Out (LOO) test error
estimation, where a group of samples is left out for each evaluation iteration. In our case, each group
corresponds to the cars of a single municipality. Specifically, ten evaluation iterations are performed.
During each iteration, car images from one municipality are left out and the last fully connected layer
of the Inception V3 model is re-trained on the images of the remaining municipalities. The resulting
model is then used to classify each car of the left-out municipality. For each car, we wish to predict
the label of the originating municipality. This is not always possible, since the same type of car may
be present in both low and high SES municipalities. Still, we can use this evaluation approach to
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examine if any differences are detected by our model between the regions of varying SES. The resulting
confusion matrix is shown in Table 1a. In addition, Figure 2a shows the model’s Receiver Operating
Characteristic (ROC) curve. Our model achieves an accuracy of 0.699 and area under the curve (AUC)
of 0.762.

Table 1. Confusion matrices of the car classification models

(a) Results for all cars of each municipality

Predicted (All)

High Low

A
ct

ua
l high 1660 714

low 739 1713

Accuracy: 0.699

(b) Results for the cars with highest confidence

Predicted (Top 20%)

High Low

A
ct

ua
l high 412 88

low 71 429

Accuracy: 0.841
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(a) (b)

Figure 2. Receiver Operating Characteristic (ROC) curves for the car classification model for (a) all cars
sampled from the 10 municipalities (AUC: 0.762) and (b) for the top 20% of the cars (AUC: 0.928). AUC:
area under the curve.

These results are significantly better than random selection, indicating that the models identify
differences between low and high SES regions. As discussed in Section 3.4, however, we can further
amplify the differences between low and high SES municipalities by evaluating only the cars with top
20% classification confidence (3). In our case, this corresponds to the 100 most confident predictions
(since we sample 500 cars per municipality). Results are shown in Table 1b and Figure 2b, where we
can see that for the top-20% cars of each region the prediction of the originating municipality SES is
much more accurate. In this case, our model achieves 0.841 accuracy and 0.928 AUC. One could also
select images using absolute confidence thresholds, although we chose to use the top-20% method
to ensure that the same, sufficient number of samples was used to compute the surrogate score for
all municipalities.

To further support the argument for using the top-20% predictions, Figure 3 illustrates
the distribution of all scores provided by our model for the cars in a high SES municipality
(Kifisia, in Athens) and a low SES municipality (Ampelokipoi/Menemeni, in Thessaloniki). We observe
that for the high SES region, the mean of the classifier scores is 0.35, while for the low SES region it is
0.65. Furthermore, the high SES region has a significantly higher percentage of cars with score close to
1, while the low SES region has more cars with scores close to 0.

These observations hint to the definition of the surrogate indicator defined in Equation (4),
i.e., the percentage of cars classified as high SES in the top-20% confidence cars. The surrogate indicator
will be evaluated next.
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Figure 3. Classifier score distribution for cars in municipalities of Kifisia in Athens (unemployment
rate: 10.8%) and Ampelokipoi/Menemeni in Thessaloniki (unemployment rate: 30.4%).

4.2. Estimating the Unemployment Rate of Greek Cities

The models that we evaluated in Section 4.1 were built using the five highest and five lowest
unemployment rate Greek municipalities. In this Section, we use the car classification model trained
on these municipalities to compute the image-based surrogate and the local unemployment rate for
other municipalities in Greece.

First, we select an additional 15 Greek municipalities, including 3 low unemployment rate, 3 high
unemployment rate, and 9 close to the median unemployment rate (which, for Greece, is approximately
20%). The list of 25 municipalities selected so far, as well as their unemployment rate, is shown in
Table 2 (the other columns of the table will be discussed in the following). For each municipality,
we apply the car classification model and compute the image-based surrogate of Equation (4).

We build a linear model, ŷ = w1x + w0, to predict the unemployment rate y using the surrogate x.
The resulting model is

ŷ = −18.6062x + 25.7505 (5)

where x is the surrogate variable and ŷ is the unemployment rate estimate. A visual representation of
the model’s prediction vs. the actual unemployment rate is shown in Figure 4.

The statistical analysis of the model is shown in Table 3. As seen by these results, the proposed
surrogate variable has a correlation coefficient of 0.874 with the unemployment rate. It also has a
statistically significant effect on the estimation of unemployment rate (p-value of t-test is close to zero),
while the F-test also indicates a statistically significant model (p-value is also close to zero, so the
model with the surrogate variable is significantly better than the intercept-only model). As for the
model’s fitness, it achieves a residual standard error of 3.05 with 23 degrees of freedom and R2 = 0.76.
Our model therefore explains most of the variance of the unemployment rate y. Finally, we also
performed statistical tests for heteroscedasticity (Breusch–Pagan, White and Goldfeld–Quandt tests)
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which were negative, and therefore the homoscedasticity assumption for our linear model holds
(i.e., the variance of the residuals is approximately constant).
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Figure 4. Linear model used to predict the local unemployment rate from the surrogate variable. Dots
correspond to the actual unemployment rates of 25 Greek municipalities. SES: Socio-Economic Status

These results are very encouraging, however, we observe in Figure 4 that there are four
municipalities with a very high unemployment rate which seem to have higher error. To further
examine this, we measured the statistical significance of the effect of score x (based on the t-test)
in piecewise linear models, i.e., models that were constructed using subset of the unemployment
rate ranges (note that for these results the number of samples in each range is small). The results
are shown in Table 4 and show that our car-based model cannot be used to discriminate between
municipalities with unemployment rates above 24%. This indicates that for very high unemployment
rates, additional information (e.g., objects other than cars) may be needed to discriminate between
different unemployment rate levels.

In addition to the statistical analysis shown in Table 3, we evaluated our model in five additional,
held-out, Greek municipalities which were selected at random. Results are shown in Table 5.
These predictions have a mean absolute error (MAE) of 1.87 percentage points and a mean absolute
percentage error (MAPE) of 0.089. These results are consistent with the results of the statistical analysis
presented previously.
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Table 2. The 25 municipalities used to create our linear model, as well as their unemployment rate
(y), surrogate score (x), model prediction (ŷ), and absolute error. Municipalities are grouped into
high-medium-low unemployment rate, based on statistical authority data. The average cars per Google
Street View (GSV) image is also shown (which, in this case, is not highly correlated with unemployment
rate).

Municipality y (%) x ŷ (%) |y− ŷ| (%) Avg. Cars/Image

Amp./Menemeni 30.4 0.08 24.26 6.14 1.306
Aspropyrgos 29.2 0.21 21.84 7.36 0.401

P. Mela 27.5 0.14 23.15 4.35 0.884
Perama 25.9 0.18 22.40 3.5 0.655

Evosmos 24.5 0.1 23.89 0.61 1.258
Fylis 24.2 0.09 24.06 0.14 0.227

Agrinio 23.5 0.03 25.19 1.69 0.804
Salamina 23.4 0.03 25.19 1.79 0.409

Patra 21.6 0.26 20.91 0.69 0.586
Kavala 21.4 0.25 21.10 0.3 0.489

Volos 20.0 0.29 20.35 0.35 0.62
Serres 20.0 0.21 21.84 1.84 1.039
Lamia 19.6 0.25 21.10 1.5 0.65

Heraklion 19.0 0.31 19.98 0.98 0.898
Komotini 18.7 0.18 22.40 3.7 0.675

Larissa 18.5 0.25 21.10 2.6 0.492
Edessa 18.2 0.14 23.15 4.95 0.679

Pylaia-Chortiatis 14.9 0.49 16.63 1.73 0.665
Glyfada 14.2 0.54 15.70 1.5 0.924
Marousi 12.3 0.63 14.03 1.73 0.785

Voula 12.2 0.59 14.77 2.57 0.371
Dionysos 11.1 0.95 8.075 3.02 0.198

Kifisia 10.8 0.93 8.45 2.35 0.605
Vrilissia 10.5 0.74 11.98 1.48 0.447

Psychiko 8.8 0.91 8.82 0.02 0.462

Table 3. Analysis of the linear regression model of the proposed surrogate variable

Residuals:
Min 1Q Median 3Q Max
−4.9456 −1.7335 −0.9826 0.6871 7.3568

Coefficients:
Estimate Std. Error t value Pr(> |t|)

w0 25.7505 0.9728 26.471 <2× 10−16

w1 −18.6062 2.1594 −8.616 1.17× 10−8

Residual standard error: 3.046 on 23 degrees of freedom
R-squared: 0.7635

Adjusted R-squared: 0.7532
Correlation coefficient: 0.874

F-statistic: 74.24 on 1 and 23 DF p-value: 1.173× 10−8
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Table 4. Results of t-test in specific unemployment rate ranges. Results are significant for
unemployment rate in the range 1%–24%.

Unemployment Rate (%) p-Value

1–18 9.75× 10−7 � 0.05
19–24 0.014 < 0.05
1–24 3.48× 10−10 � 0.05

25–31 0.998 > 0.05

Table 5. Results in a held-out set of municipalities that were not used for the construction of our model.

Municipality y (%) x ŷ (%) |y− ŷ| (%)

Ioannina 17.3 0.3 20.17 2.86
Katerini 21 0.15 22.96 1.96
Kozani 22.8 0.19 22.22 0.58

Neapoli–Sykies 24.3 0.19 22.22 2.08
Xanthi 25.4 0.12 23.52 1.88

Mean Absolute Error: 1.87
Correlation coefficient: 0.824

4.3. Extending to Detailed Neighborhood Regions

One of the benefits of using the proposed image-based surrogate is that it becomes possible to
use the model to estimate SES indicators at high geographical resolution. Thus, although the Greek
statistical authority publishes unemployment rates at municipality level (including populations of
tens or even hundreds of thousands), we can attempt to estimate its value at neighborhood level,
inside each municipality. This section demonstrates an example result of this type of estimation.

We selected two regions inside the municipality of Pylaia-Chortiatis (unempl. rate: 14.9%).
One region is in the Pylaia area and the other is in the Panorama area. Although these two regions are
in close proximity, Panorama has a fair amount of medium to high income residents, and is considered
one of the highest SES areas of Thessaloniki. It includes a large number of detached houses and is not
densely built. Pylaia, on the other hand, is considered to be lower SES than Panorama. A part of the
Pylaia area includes apartment blocks and is more densely built. We wanted to observe whether the
results of our model would agree with these qualitative observations, so we measured the surrogate
variable and applied our model to blocks in these two areas. The results are visually illustrated in
Figure 5.
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(a) Pylaia (b) Panorama

Figure 5. Unemployment rate in blocks of two areas, inside the same municipality ((a) Pylaia and
(b) Panorama). Orange and red values indicate high, while blue and green values indicate low
unemployment rates.

Visual inspection indicates that (i) Panorama has a lower estimated unemployment rate (i.e., higher
SES) than Pylaia and (ii) levels of unemployment rate are “grouped” into area connected components.
Although we don’t have the means to directly validate the unemployment rate estimates, the results
are consistent with our perception about these two areas and therefore provide an indication that
estimating SES indicators at neighborhood level using image-based surrogates is possible.

4.4. Extension to Other SES Indicators

So far, our analysis has been limited to unemployment rate, which we consider to be a
representative local SES indicator (average income would also be very informative, but this information
is not publicly available at municipality level in Greece). To examine whether the proposed
methodology can be extended to additional indicators, we used the proposed surrogate variable to
build linear models that predict (a) the percentage of the employed population with higher executive
positions (i.e., directors, administrators, and other high-level executives) and (b) the percentage of
the employed population with university education at graduate or postgraduate level. A summary
of the results (including unemployment rate, for comparison) is shown in Table 6. Values have been
computed using the same methodology as described previously.

Table 6. Model effectiveness for three different Socio-Economic Status (SES) indicators.

Id Indicator R2 MAE (Test) MAPE (Test)

1 Unemployment rate 0.7635 1.87 0.089
2 % of employed population with executive positions 0.8653 0.88 0.1492
3 % of employed population with university education 0.8075 3.99 0.1094

According to these results, indicators 2 and 3 produce a more effective model (better R2) but
perform slightly worse in the held-out test municipalities. Note that although MAPE in the test set for
the 2nd indicator is significantly worse (0.1492) the MAE is low (0.88). Overall, similar conclusions
regarding the effectiveness of the proposed approach can be drawn for all three indicators, showing
that the image-based surrogate methodology is not limited to unemployment rate only.

5. Conclusions

We have presented a fully automated methodology for estimating local SES indicators such
as unemployment rate based on images acquired via Google Street View, without the need for any
training labels. To achieve this, we built models that classify detected cars using multiple instance
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learning, where each detected car inherits the label of the municipality it was observed in (“high” or
“low” SES). These models are used to produce variables that act as surrogates of SES indicators.

We applied our model and methodology in 30 municipalities in Greece and have shown that the
results are satisfactory for several applications, achieving R2 = 0.76 and a correlation coefficient of 0.874
for the 25 municipalities used for building our linear regression model and MAPE = 0.089, MAE =

1.87 for a held-out test set of five municipalities. We also qualitatively evaluated the effectiveness
of our model in estimating unemployment rate at neighborhood level in two areas inside the same
municipality in the Thessaloniki region, where the results are consistent with our perception about the
SES of these areas. Finally, we evaluated whether the proposed approach can be extended to other SES
indicators related to occupational prestige and education level with encouraging results.

In terms of computational complexity, the proposed method requires heading computation by
querying the Google geocoding API and image acquisition through Google GSV (the whole procedure
took approximately 0.5 sec per image on average in our experiments). Detection and classification
of cars with Faster R-CNN largely depends on the available hardware (typical GPU implementation
values are approximately 0.5 sec per image). After that, the time for computing the surrogate variable
is negligible. Our method therefore scales well and can be applied to large geographical regions with
limited computational resources.

In our experiments, our model was shown to be most effective up to an unemployment rate
of 24%. After that point, the surrogate (that relies on detected cars) was not able to discriminate
between different unemployment rates. This hints that an improved model could perhaps be produced
if additional objects, besides cars, or even image features (similarly to Reference [32]) are used for
surrogate computation. This is one of our directions for future work in this area.

One additional question that we have not answered yet is the effectiveness of our methodology
for different countries around the world. Given the differences in the publicly available statistics, in car
models, as well as weather and lighting conditions across different countries, we expect that different
models will need to be built for each country (which is straightforward, assuming an initial set of
SES indicators at municipality level is available). Additionally, for some countries where cars are not
commonly parked on the streets, moving cars will need to be taken into account. Exploring all these
questions is the subject of future research.

Despite these remaining questions, the results that are presented in this work sufficiently
demonstrate that the proposed image-based methodology can be used to provide good estimates of
SES indicators at high geographical resolution, to support cost-effective, evidence-based decisions that
take into account the local socioeconomic context of the population.

Author Contributions: Conceptualization, C.D. and A.D.; Methodology, C.D. and P.L.; Software: P.L.;
Investigation, P.L. and C.D.; Writing—Original Draft Preparation, C.D.; Writing—Review & Editing, A.D. and P.L.;
Supervision, A.D.; Funding Acquisition, A.D. and C.D.

Funding: The work leading to these results has received funding from the European Community’s Health,
demographic change and well-being Programme under Grant Agreement No. 727688, 01/12/2016 - 30/11/2020
(http://bigoprogram.eu).

Acknowledgments: The authors would like to thank Fu-Hsiang Chan for implementing and sharing the Faster
R-CNN model that was used in this work (https://github.com/smallcorgi/Faster-RCNN_TF).

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design
of the study; in the collection, analyses, or interpretations of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 October 2018                   doi:10.20944/preprints201808.0154.v2

Peer-reviewed version available at J. Imaging 2018, 4, 125; doi:10.3390/jimaging4110125Peer-reviewed version available at J. Imaging 2018, 4, 125; doi:10.3390/jimaging4110125

http://bigoprogram.eu
https://github.com/smallcorgi/Faster-RCNN_TF
http://dx.doi.org/10.20944/preprints201808.0154.v2
http://dx.doi.org/10.3390/jimaging4110125
http://dx.doi.org/10.3390/jimaging4110125


15 of 17

API Application Programming Interface
AUC Area Under the Curve
CNN Convolutional Neural Network
DF Degrees of Freedom
EBP Evidence-Based Policymaking
GIS Geographic Information System
GSV Google Street View
LOGO Leave-One-Group-Out
LOO Leave-One-Out
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
ROC Receiver Operating Characteristic
RPN Region Proposal Network
SES Socio-Economic Status
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