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Abstract: Preliminaries Convolutional Neural Network (CNN) applications have recently emerged 

in Structural Health Monitoring (SHM) systems focusing mostly on vibration analysis. However, 

the SHM literature shows clearly that there is a lack of application regarding the combination of 

PZT (Lead Zirconate Titanate) based method and CNN. Likewise, applications using CNN along 

with the Electromechanical Impedance (EMI) technique applied to SHM systems are rare. To 

encourage this combination, an innovative SHM solution through the combination of the EMI-PZT 

and CNN is presented here. To accomplish this, the EMI signature is split into several parts 

followed by computing the Euclidean distances among them to form a RGB (red, green and blue) 

frame. As a result, we introduce a dataset formed from the EMI-PZT signals of 720 frames, 

encompassing a total of 4 types of structural conditions for each PZT. In a case study, the 

CNN-based method was experimentally evaluated using three PZTs glued onto an aluminum 

plate. The results reveal an effective pattern classification; yielding a 100% hit rate which 

outperforms other SHM approaches. Furthermore, the method needs only a small dataset for 

training the CNN, providing several advantages for industrial applications. 

Keywords: SHM, Electromechanical Impedance, Piezoelectricity, Intelligent Fault Diagnosis, 

Machine Learning, CNN, Deep Learning. 

 

1. Introduction 

One of the most important and promising applications for Structural Health Monitoring (SHM) 

systems is the aeronautics industry. Global aviation is growing rapidly promising even increased 

prospects for growth in the future. As discussed in [1] the world commercial aircraft fleet increased 

on average by 1.8% during 2010 reaching more than 25,000 new aircraft in operation. In addition, 

there are many old aircrafts that are still operating in the global air space [2-3]. It is important to 

mention that aged aircraft structures are predominantly made of aluminum and consequently 

monitoring the integrity of those metallic structures constitutes an increased demand for the 

aeronautics industry. Accordingly, new SHM methods may reduce considerably the maintenance 

cost and enable much more structural safety. Driven by new services in the area of structural 

analysis, SHM is developing in order to adapt academic work to practical SHM systems. Hence, 

NDE (Non-Destructive Evaluation) methods have extensively been proposed in recent years, as 

these methods allow the application of various types of structures and consequently the 

identification of various types of damage. 

In SHM, physical or mathematical models are very useful for dynamic structural analysis, 

however, most of the real applications present some type of nonlinearity originated from geometric 

features, type of material or boundary conditions, which leads to complex and expensive models. 
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Owing to that, many authors have avoided working on structural modeling making use of 

techniques which allow the damage identification directly from the structural responses obtained 

from sensors signals. On this subject, the Electromechanical Impedance (EMI) technique plays an 

important role within the NDE methods. The EMI technique uses low-cost, small, and lightweight 

piezoelectric (PZT-Lead Zirconate Titanate) transducer glued onto the structure [4]. This technique 

is well-known in the literature [5-11]. In the past, different SHM methods, based on Neural 

Networks (NN), had been widely investigated in order to evaluate structural conditions. Many SHM 

applications were proposed focusing on the Multi-Layer Perceptron and Backpropagation 

algorithms [12-14]. Subsequently, new classes of NN such as Probabilistic Neural Network (PNN) 

and Fuzzy ARTMAP Network (FAN) took place. These methods have been shown successfully on 

various structures. For example, methods based on PPN, applied to damage identification in SHM, 

were addressed in [15-17]. In the same way, FAN methods were investigated in [10], [18-25].  

More recently the Convolutional Neural Network (CNN) has exploded in popularity and 

real-world applications. The CNN simply provides a new class of NN which uses the concept of 

deep learning. CNN is one of the most recent major breakthroughs in the area of computer vision, 

speech recognition, biomedical systems and natural language processing [26-27]. Unlike an ordinary 

NN, the layers of CNN can arrange neurons in three dimensions: width, height, and depth. 

Accordingly, some CNN applications have successfully emerged in the SHM field focusing mostly 

on vibration analysis as summarized next. Many CNN applications in SHM systems have focused 

on vibration analysis for monitoring faults on rotating machinery. For example, [28] proposed a fast 

and accurate motor condition monitoring and early fault detection system using 1D-CNN. Similar 

approaches were also addressed in [29-30]. Likewise, [31] proposed a method to address fault 

diagnosis based on CNN directly on raw vibration signals. The authors mentioned that the model 

works well in noisy environments and performs well when the working load changes. Similarly, a 

1D-CNN vibration-based method was applied to damage detection and localization in real-time 

from the raw acceleration signals [32]. The method was applied to large-scale test structures. In [33], 

the authors proposed to incorporate sensor fusion by taking advantages of the CNN structure to 

achieve higher and more robust diagnosis accuracy. They analyzed both temporal and spatial 

information of the raw data from multiple sensors for the training process of the CNN. They pointed 

out that their method, compared with traditional approaches which use manual feature extraction, 

results in superior diagnosis performance. In [34], the authors proposed a CNN based approach 

(LiftingNet) to learn features adaptively from raw mechanical data without prior knowledge. The 

authors highlighted that the advantages in applications are the ability to classify mechanical data 

sampled under different rotating speeds and achieving high classification accuracy with 

considerable noise present. Although all those above approaches obtained good results, none of 

them focused on using PZT-EMI based method to identify structural damage. In [35], proposed a 

wireless sensor networks based method which takes advantage of an individual training 1D CNN 

for each wireless sensor in the network in a format where each CNN is assigned to process the 

locally-available data only, eliminating the need for data transmission and synchronization. That 

method operates directly on the raw ambient vibration condition signals without any filtering or 

preprocessing. In the same way, in reference [36], the authors proposed an enhanced CNN-based 

approach that requires only two measurement sets regardless of the size of the structure in order to 

overcome the limitation of training CNNs which predominantly requires a significant amount of 
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measurements especially if applied to large-scale systems. They pointed out that their method was 

able to successfully estimate the actual amount of damage for the nine damage scenarios of the 

benchmark study. 

Recently a single CNN application emerged in the SHM field focusing on video processing [37]. 

Therein, the authors proposed to analyze individual video frames for inspection of crack in a nuclear 

power plant via CNN and Naive Bayes Data Fusion. They pointed out that their framework achieves 

98.3 of hit rate. Despite the good results, they mentioned that one disadvantage is that CNN needs 

substantial training data (e.g., more than 100,000 samples) to make the training converge and 

prevent overfitting. Another disadvantage is that the computations of CNN rely heavily on GPU 

(Graphics Processing Unit). Conclusively, the SHM literature shows clearly that there are no details 

for the combination of PZT-EMI based method and CNN when applied to monitor structures, 

underscoring the novelty of the approach presented here. 

Unlike existing studies, the major contribution of this work consists of a novel strategy for 

damage detection via the combination of the EMI-PZT based technique and the CNN algorithm. The 

proposed methodology was experimentally tested based on the EMI technique. The validation of the 

proposed methodology was carried out in an aluminum plate which contains three attached PZT 

patches. The damage scenarios were simulated by gluing a small metallic nut at three different 

positions. The results, therefore, showed that it can identify various structural conditions with 

accuracy, reliability, and efficiency. In summary, the main contributions of this paper are: 

 We proposed a novel method suitable for mechanical data analysis. A method which takes 

advantage of the combination of the EMI-PZT based method along with CNN.  

 A way of converting PZT response, based on the EMI technique, to RGB frame constitutes a 

novel approach; 

 Frames were computed through a wide range of frequency instead of choosing only the best 

range in which the EMI presents higher sensitivity. This issue provides an important 

advantage because that task is very difficult;  

 An unpublished frame dataset encompassing a total of 4 types of structural conditions for 

each PZT is introduced; 

 An enhanced method which requires only a small dataset for training the CNN without 

using GPU. Furthermore, only three epochs are needed to yield 100% of hit rate.  

The remainder of the paper is organized as follows. Firstly, the main theoretical fundamentals 

are addressed. Secondly, the proposed method, highlighting the combination of the EMI-PZT along 

and the CNN algorithm, is presented. Next, the results followed by a comparison with other SHM 

approaches are presented. Finally, the paper concludes by highlighting remarks on the proposed 

approach. 

2. Theoretical Fundamentals  

2.1. Structural health monitoring systems  

Structural Health Monitoring (SHM) systems have become a crucial element in maintenance 

and inspection activities in the industry, with special emphasis on aeronautical engineering, 

aerospace, civil, maritime and other related fields. Owing to the high level of safety required, the 

aeronautical industry has demanded high investments in order to guarantee an adequate operating 

condition in aircrafts.  According to [38], SHM systems could significantly reduce maintenance 

costs, as the damage could be detected in early stage, accounting for 27% of the cost of its life cycle. 
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In SHM, the damage is characterized by changes in the dynamic response of the structure due to 

variations in stiffness, mass, energy dissipation, mechanical impedance and/or geometric properties 

of the structure [39]. Hence, the concentration of various damages in a structure can lead to failures 

compromising the operation of the entire system. In general, the term “integrity” is the condition of 

the structure that allows its proper operation with satisfactory performance. In this context, 

structural integrity is the borderline condition between safety and failure of structural components 

[40]. 

SHM systems are characterized by their ability to detect, locate, quantify and estimate the life of 

the structure according to the occurred damage [41]. However, according to [7] when incorporating 

smart materials (PZT, magnetostrictive strain, shape memory alloys, etc.) into the detection system, 

three more levels should be considered: self-diagnosis of structural damage, structural self-repair, 

and a simultaneous system of control and monitoring. In SHM, NDE (Non-Destructive Evaluation) 

methods have extensively been proposed in recent years, as these methods allow the application of 

various types of structures and consequently the identification of various types of damage. NDE 

methods have been applied based on different techniques such as: acoustic emission, Eddy current, 

radiography, thermography, shearography, Lamb waves, and electromechanical impedance [40]. 

Wherein, the Electro-Mechanical Impedance (EMI) technique plays an important role due to this 

technique makes use of a low-cost Piezoelectric Transducer (PZT) attached to the monitored 

structure [4]. In this technique, several structural responses are collected to evaluate the structure 

considering its dynamic condition through a forced excitation via PZT patches. It is remarkable that 

the same PZT is also used as a sensor to collect structural responses for further processing. 

Considering the use of the EMI technique, piezoelectric materials play important roles due to 

these materials can be used as passive and/or active elements. These materials cover a large range of 

frequency (from a few Hz up to GHz). Low-frequency applications are covered mainly by the 

polycrystalline materials (ceramics, polymers or composites). In turn, crystals and thin films are the 

most used in high-frequency applications [42]. PZT ceramics have the following advantages: good 

electromechanical coupling, good stability, high stiffness, linear response to low-cost electric field 

[43]. Among the various types of piezoelectric materials, PZTs have shown very efficiently, being 

able to convert about 80% of the mechanical energy into electric energy [43]. 

From a practical point of view of applying the EMI technique in SHM systems, the PZT 

transducers are glued into the monitored structure by high stiffness adhesive glue based on 

cyanoacrylate or an epoxy resin. From that, a coupling is established between the structure and the 

transducer PZT enabling to monitor variations of the mechanical impedance of the structure by 

measuring the electrical impedance of the PZT [4]. Hence, exciting the PZT using a sinusoidal source 

VX (with amplitude VP and angular frequency (ω)) will produce a current I with amplitude IP and 

phase Ψ. The electrical impedance of the PZT (ZE(ω)) is given as follows *4+: 
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where Za(ω) and Z(ω) represent the mechanical impedances for the transducer and monitored 

structure, respectively. In Eq. (1),  ̅  
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 , and j represent dielectric constant, Young's modulus, 

electric field constant, geometric constant and imaginary unit respectively. Note from Eq. (1) that 

any variation in terms of the structural impedance will cause changes in the electrical impedance of 

the PZT patch and this, in turn, causes changes in the EMI signatures. Extra details of how PZT 

impedance is related to the structural condition via the EMI technique can be explored in the 

following references [4], [7], [44-47]. 

 

2.2. The Convolutional Neural Network 

The Convolutional Neural Network (CNN) is a deep linear network inspired by the functioning 

of the visual cortex of mammals. Its first version was proposed by [48] and was conceived inspired 
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by the work of [49]. Posteriorly, [50] proposed an enhanced CNN architecture by incorporating 

processes of supervised learning through the backpropagation method. Yet [51] proposed the LeNet 

network, which can be considered the first architecture to present all features of the current CNN. 

Following Google's involvement in the competition promoted by ImageNet, the largest database of 

image classification, CNN has become the state-of-the-art for image classification [52]. This made 

CNN popularity increase and, consequently, the amount of published work grew up proportionally. 

The main trend in the modeling of CNN is towards the use of ever deeper networks [52]. 

The fundamental difference between an "ordinary" neural network and a CNN consists of the 

fact that CNN uses the convolution operation instead of the multiplication of the array of neurons in 

at least one of its layers [53]. In the image processing, where the image is a two-dimensional matrix, 

the convolution operation is very useful for edge detection, image smoothing, attribute extraction, 

among other applications. As a consequence, the convolution operation reduces the size of the 

original image due to the difference in the filter size. However, this reduction can be overcome by 

using the well-known zero padding technique. 

There are three important distinctive features on CNN compared to other RNs: shared weights, 

spatial/temporal subsampling, and local receptor fields [51]. The shared weight enables the network 

to learn only a smaller set of filters that can be applied to all the regions of the image, instead of 

learning specific weights for each region of the image, increasing the power of generalization of the 

network [54]. The subsampling procedure in the CNN is usually conceived in the pooling layer 

(down-sampling). This concept was first introduced by [50].  For that, in the pooling layer is 

computed the Maxpooling for an image region followed by creating an array of these maximums. 

Thus, it eliminates non-maximum values, reducing both the size of the data representation and the 

computation required for the next layers [53]. 

The third distinctive feature is the existence of local receptor fields. In the classical Neural 

Network (NN) each input value of each layer is completely connected to the input values of the 

previous layer (fully connected). Hence, the NN needs to perform several multiplications to find the 

connected neuron activation, requiring a great computational power mainly for images that have 

many connected neurons. On contrary, as in natural images, the adjacent pixels tend to be more 

strongly correlated than the distant pixels, the CNN is architected for that each filter learns on only 

one sub-region of the data received from the previous layer [54]. This allows increasingly complex 

patterns to be modeled from combinations of simple local operations [53]. In addition to these 

important properties, other computational resources are used to avoid overfitting and training time 

of CNN. For example, the dropout consists of randomly removing half of the neurons from the 

hidden layers at each iteration of the training procedure. This technique also gives the network the 

ability to learn more robust parameters, since a neuron cannot depend on the specific presence of 

other neurons. 

In summary, CNN networks are composed of convolution layers, which involve the 

convolution process and the pooling process, in addition to using the concept of local receiver fields 

to optimize the image processing; layer normalization, which involves the dropout process and 

other processes used to improve network performance; and the fully connected layer responsible for 

sorting. Figure 1 shows a general architecture for the CNN. The first part of the network consists of 

the convolution (C1, C2, etc.) and subsampling (S1, S2, etc.) layers. Basically, these layers are 

responsible for extracting the network features. The second part of the network consists of the 

normalization and fully connected layers. This block is used as images classifier after the image has 

passed through the feature extraction block. The data entries of each hidden layer form a set of 

feature maps obtained by processing the data in the previous layer. The feature maps do not require 

the preprocessing of the image, which is a process that usually requires higher computational 

power, playing a fundamental role in the advantage of the use of this type of network in image 

processing. Extra details about CNN and deep learning are shown in previous studies learning [48], 

[55-56]. 
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Figure 1.  A general architecture for the CNN highlighting the layers. 

3. Proposed Method 

The Figure 2 shows the proposed framework for the methodology based on the EMI-CNN 

applied to identify structural damage. The methodology consists of three phases as described in the 

following subsections. In phase 1, impedance signals are obtained based on the EMI principle. For 

this, three PZTs (called PZT#1, PZT#2 and PZT#3) considering four different structural conditions 

(Healthy (H), Damage 1 (D1), Damage 2 (D2) and Damage 3 (D3) were considered. Further details 

about the experimental set up are presented in the next subsection. In phase 2, Euclidean Distances 

(ED) were computed from the structural response signals in order to form frames. Those frames 

were used to form a dataset for both the training and test phases. In phase 3, the dataset was used as 

inputs for the CNN. Each CNN is responsible for recognizing four different structural conditions: H, 

D1, D2, and D3.  

 

 

Figure 2. Proposed framework for structural damage detection, based on the CNN algorithm, 

including all three phases. 

3.1. Phase 1: Acquisition of the EMI signals 

In order to obtain the structural response signals, we developed a method based on the EMI 

technique. EMI requires that the structure is excited through a PZT at low amplitude considering 

over a wide frequency range to produce a forced excitation of the structure [4]. Each PZT acts as 

actuator and sensor at the same time. In our example, an aluminum plate of size 400 mm x 250 mm x 

5 mm was suspended in both tips using fishing lines in order to simulate free-free boundary 

conditions. Three PZT disks (called PZT#1, PZT#2, PZT#3) were bonded onto the structure at three 

different positions as illustrated in Figure 3.  
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Figure 3. Representation of the general diagram for the acquisition system (dimensions in 

millimeters) [25]. 

Subsequently, a chirp signal sweeping from 20 kHz up to 110 kHz with an amplitude of 3V was 

used to excite the PZT/structure. The acquisition system (DAQ) was developed in LABVIEW 

software and used here to excite and obtain the structure responses [8]. This system is pictured in 

Figure 4. The resistor R was set to 1kΩ, in order to limit the electric current through the PZT patch. 

Using that system, a set of measurements for the pristine structural condition was determined. These 

measures were stored to form the baseline set (B). Each PZT response signal was sampled at a rate of 

1 MS/s. 

Later, a new set of measurements, considering the same structural condition, was carried out to 

form a new data set for the undamaged structure. Next, three separate damage cases were separately 

simulated by gluing a metallic nut of about 10g at three different positions in the structure (Figs. 2 

and 3). From the structural measurements, three sets of data were obtained for each PZT patch 

(called D1, D2, and D3). In total there were 720 EMI signatures (60 for each structural condition). The 

time interval between two consecutive samples was 30s. The environmental temperature of the 

room was kept constant to 22ºC throughout the experiment. The EMI signals were used to form RGB 

frames. 

 

 

Figure 4. Experimental set up including: aluminum plate containing three PZT patches, DAQ and 

computer running the acquisition software [25]. 

3.2. Phase 2: Formation of the frames 

As stated earlier, the SHM literature shows clearly that there is not a combination of PZT 

based-methods and CNN due to the difficulty in obtaining images/videos from the PZT responses. 

As a consequence, there is a lack of using CNN along with the EMI technique applied to monitor 

structures. To overcome that, this paper introduces an innovative way of forming frames from 
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PZT-EMI signatures as explored in detail next. We first divided the real part of the EMI into several 

parts as illustrated in Figure 5. For example, Figure 5 shows two EMI signatures for the baseline 

(top) and unknown (bottom) conditions. Each signal was equally divided in three parts forming six 

parts in a total. Those parts were named as S1, S2 and S3 for the baseline signature and U1, U2 and 

U3 for the unknown condition.   

 

 

Figure 5. Division of the EMI signals for the baseline (top) and unknown (bottom) structural 

conditions before computing ED. 

Using MATLAB®, Euclidean Distances (EDs) were computed among all EMI parts using the 

Minkowski algorithm as follows: 

  (     )  √∑ (       )
  

    . (2) 

  (     )  √∑ (       ) 
 
    . (3) 

  

where, B1 and U1 are the baseline and unknown structural conditions, respectively. This procedure 

was repeated among all parts in order to form an ED-matrix. Considering the example case, Figure 6 

sums up all possible combinations of the ED into an ED-matrix. 

 

 

 

Figure 6. ED-matrix formed after computing ED from the EMI signatures. 

It is important to highlight that the principal diagonal of the ED-matrix is zero because the 

method computes EDs for the same part of the signals there. This matrix is formed for each PZT-EMI 

signature and this will be used to form a frame. In this paper, the baseline signature is always used 

in the first part of the ED-matrices. Each element of ED-matrix was transformed into a RGB (red, 

green, and blue) scale in order to form a RGB frame with three dimensions (width, height, and 

depth). This procedure was easily run in the developed MATLAB software. Figure 7 shows its 

correspondent RGB frame for the previous example (Figure 7). Each obtained frame has a width, 

height, and depth of 895, 656 and 3, respectively. 
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Figure 7. Obtained frame from two random PZT-EMI signatures. 

 

As observed in Figure 7, the obtained frame presents regular symmetry over and under the 

principal diagonal. Once the structural condition varies, the frame colors will turn accordingly. As a 

consequence, each frame will be subtlety different for each structural condition and such differences 

will be perceived by the CNN algorithm. It is important to mention that we form a corresponding 

frame for each PZT-EMI signature. Furthermore, the proposed methodology assembles frames 

through a wide frequency range instead of choosing only the best range in which the EMI technique 

presents higher sensitivity, as is the case in standard EMI approaches. This is an advantage because 

it eliminates the difficult task of searching for the most sensitive frequencies [57]. From the 

assembled frames a frame dataset with 720 frames formed from the EMI-PZT signals, encompassing 

a total of 4 types of structural conditions for each PZT is formed.  Table 1 shows how the dataset is 

distributed for PZTs #1 and #2. The distribution for PZT#3 is similar. This dataset is used as input to 

feed the CNN algorithm. 

Table 1. Distribution of number of frames, formed from the PZT-EMI signals for PZTs #1 and #2, into 

the dataset.  

Structural 

Conditions 

PZT #1 PZT #2 

Training Test Training Test 

Healthy (H) 36 24 36 24 

Damage 1(D1) 36 24 36 24 

Damage 2(D2) 36 24 36 24 

Damage 3(D3) 36 24 36 24 

Total 144 96 144 96 
 

3.3. Phase 3: CNN-based Damage Detection Method  

As aforementioned, the CNN forms a new class of Neural Networks (NN) which uses the 

concept of deep learning [48], [55-56]. The CCN takes advantage of the fact that the input consists of 

images/videos and they constrain the architecture in a more sensible way. Unlike an ordinary NN, 

the layers of a CNN have neurons arranged in three dimensions: width, height, and depth. 

According to [55], the CNN architecture was designed to ensure some degree of shift, scale and 

distortion invariance. Further, each unit in a layer is organized in planes which all units share the 

same set of weights. The set of outputs of the unit in a given plane is called a feature map. Hence, a 

full convolutional layer is composed of several feature maps with different weight vectors. As a 
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consequence, several features can be extracted at each location in the image [55]. A sequential 

implementation of the feature maps consists in scanning the image with a single unit that has a local 

receptive field and stores the states of this unit at the corresponding position on the feature map. The 

kernel (filter) of the convolution process is used to connect weights used by the units into the feature 

maps [55]. It is fair to say that the recent success of the CNN architecture can be largely attributed to 

the strong emphasis on modeling multiple levels of abstractions.  

In order to evaluate structural conditions, this approach proposes a framework for the CNN as 

shown in Figure 8. The method uses one CNN architecture like that for each PZT sensor. The CNN is 

fed with the obtained frames computed from the impedance signatures under various structural 

conditions (last subsection). The pre-processing block is the first step to be considered. This block 

consists of three steps of image processing. The first step is to read and convert the RGB image to a 

grayscale. Hence, the three-dimensional image is converted to a two-dimensional in order to reduce 

the processing time for the CNN. Additionally, the image is resized from 875 x 656 x 3 pixels to 128 x 

128 x 1 pixels. The second step, a grayscale image is converted to a feature vector that contains all 

representatives’ characteristics of the given image. This vector can be n-dimensional, however, we 

choose one-dimension to reduce the processing time. The final step normalizes the dataset, where 

zero corresponds to the mean value, into the characteristics space and adapts them to the demanded 

standards for the used processing library. 

A brief explanation of the most significant characteristics of the architecture shown in Figure 8 

CNN is stated next. Firstly, the grayscale image [128 x 128 x 1] was applied to the first Conv module. 

This module is composed of 32 filters (kernel size of 3x3), resulting in a volume such as [126 x 126 x 

1]. It is important to mention that this Conv block applies the zero-padding algorithm aiming to 

avoid losses. Other Conv modules can be understood similarly except they do not take advantage of 

the zero-padding algorithm. Next, the Maxpooling size was set to 2 x 2 whilst the Drop Out was set 

to 0.5 in order to reduce the possibility of over-fitting and improve the generalization of the CNN.  

In order to optimize the weights of the training algorithm, this approach used the popular RMS 

(Root Mean Square) backpropagation algorithm wherein the weights were changed according to the 

gradient descent direction of an error. The Soft Max block outputted four structural conditions: H, 

D1, D2, and D3. 

 

 

Figure 8. Architecture of the proposed CNN to identify structural damage. 

4. Experimental Results  

In order to evaluate the proposed methodology, this section presents the results obtained 

considering the experimental set up described above. First structural response signals were obtained 

from the various structural conditions and positions of damage on the structure, through PZTs using 

the above-mentioned acquisition system. Sample signals are presented in Figure 9. For brevity, only 

the real part of the impedance for PZT#1 is shown. 
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Figure 9. Real part of the EMI, for PZT#2, considering various structural conditions (H, D1, D2 

and D3). 

 

Signatures are shown for four different structural conditions: healthy (H), damage 1 (D1), 

damage 2 (D2) and damage 3 (D3). As observed, the damage insertion will cause changes in the 

electrical impedance of the PZT and this, in turn, causes changes in the EMI signatures. Those 

changes happen in both magnitude and frequency. For the majority of the cases, the structural 

change causes only subtle variations in the EMI signatures needing methods more precise that are 

able to identify such variations automatically. Secondly, the obtained structural response signals 

were divided as shown in Figure 5. Next, Euclidean distances (ED) were computed from the 

response signals, as in Eqs. (2) and (3) and as following those values are put onto the ED-matrix 

(Figure 6). From the formed ED-matrix, each ED value is transformed to the RGB frame. Figure 10 

illustrates a set of frames formed from the EMI signatures for PZT#2.  

 

 

 

Figure 10. Set of frames formed from the EMI signatures for PZT#2: (a) baseline with Healthy 

(H); (b) baseline with D1; (c) baseline with D2; (d) baseline with D3. 
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The frame showed in Figure 10(a) is formed by computing EDs for signatures for the baseline 

with healthy (H) structural conditions. Similarly, Figures 10(b), (c) and (d) present the formed 

frames considering the baseline with D1, baseline with D2 and baseline with D3, respectively. As 

observed in Figure 10, a substantial difference among the frames for healthy and damaged 

conditions is perceptible, mainly from the second diagonal. This diagonal is only presented for the 

healthy condition. There are also subtle differences, almost imperceptible by human eyes if we 

analyze the frames brightness. In contrast, taking into account the frames for the damaged structural 

conditions, such differences are visually misperceived demanding a very precise algorithm to 

overcome that. In this sense, this approach applies the CNN algorithm to bring up those subtle 

differences in order to provide precise and reliable damage detection, as shown next. It is important 

to highlight that the obtained frames are used to form a dataset for training and testing procedures, 

which are used as input to the CNN algorithm (Table I). 

Thirdly, the CNN block is fed to the aforementioned dataset (Table I). Both training and testing 

phases were carried out on a Laptop running Windows 8. The Laptop has an Intel Core i5-3320M 

with 8GB of RAM. It is important to point out that this approach did not take advantage of any 

dedicated GPU. Keras along with Theano backend libraries were used to run the training and test. 

Those libraries were specially developed in Python for deep learning applications. The batch size 

was set to 8 and, after running 3 epochs the training procedure successfully converged. Three CNN 

blocks were designed, corresponding one for each PZT sensor.  

Figure 11 shows the feature maps for the 1st CNN layer after applying 32 kernels onto a 

correspondent frame for PZT#2, considering D1 and H structural conditions. Analyzing Figure 11, 

we can realize that there are substantial differences among the feature maps for D1 and H1. Such 

differences are primordial to guarantee the suitability of the proposed methodology. In order to 

extract the most relevant features of the frame, each frame is passed by several blocks: Conv, 

Maxpooling, ReLu, Drop Out and so on (Figure 8). 

 

 

 

Figure 11. Feature maps for the 1st CNN layer after applying 32 kernels into a PZT#2 frames for 

the structural conditions: (a) D1; (b) H. 

 

Figure 12 depicts the output (feature maps) for the third Conv block (7th CNN layer) in the 

proposed framework (Figure 8), after applying 64 kernels onto PZT#2 frames considering H, D1, D2 

and D3 structural conditions. Investigating the results presented in Figure 12 it is possible to see how 

PZT#2 perceives each structural condition. Further, it is clear that each frame presents outstanding 

distinctive features for each structural condition compared with the results presented in Figure 10, 

therefore, making this methodology very promising in SHM. 
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Figure 12. Feature maps for the 7th CNN layer after applying 64 kernels into PZT#2 frames for 

the structural conditions: (a) Healthy (H); (b) D1; (c) D2; (d) D3. 

 

Considering that one CNN is designed for each PZT sensor and the training and testing phases 

have been carried out, the CCN successfully converged after running three epochs. Table II shows 

separately the results for each PZT. The results show that the method was effectively able to identify 

various structural conditions with 100% accuracy. It is important to highlight that this result was 

obtained using only a small dataset for training the CNN (Table I) without using any type of GPU. 

This may provide an excellent and reliable solution for industrial applications where the availability 

of structural response signals to form the training set is generally scarce. 

Table 2. Results for the CNN method: training and testing phases. 

Sensors 
Training 

Accuracy 

Testing 

Accuracy 

PZT #1 98% 100% 

PZT #2 100% 100% 

PZT #3 100% 100% 
 

As stated earlier, the proposed method successfully converged after running 3 epochs. This 

issue is further investigated in Figure 13. For that, the method was evaluated varying the number of 

epochs from 1 to 60 and, the accuracy and loss rates (for PZT#2), for both training and validation 

phases, were computed and presented in Figures 13(a) and (b), respectively. From the results, we 

can see that during the validation phase the accuracy rate was always constant and equal to 100%. 

On the other hand, during the training procedure, this rate shows significant variations. However, 

there is a small plateau for the third epoch. A similar analysis can be done for the loss rate showed in 

Figure 13 (b). The method results in a loss rate of zero for three epochs. Based on these results, we 

henceforth set the number of epochs to three. It is fair to mention that the number of epoch has a 
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straight relation to the training times as shown in Figure 13 (c). Using three epochs the training time 

is about 120s. 

 

 

 

Figure 13. Performance analysis of the CNN for PZT#2: (a) training and validation accuracy 

curve of the model as a function of epoch; (b) training and validation loss curve of the model as a 

function of epoch; (c) Consumption time versus number of epoch for the training phase. 

5. Comparison with other state-of-the-art solutions 

In order to evaluate the performance of the proposed method, Table III shows the success rates 

for testing phase as a comparison of different methods, running in the same conditions. Methods 

based on Probabilistic Neural Network (PNN) [22], Simplified ARTMAP Fuzzy Network (SFAN) 

[20], [22], Savitzky-Golay (SG), Savitzky-Golay with First Derivative (SGFD) and Savitzky-Golay 

with Second Derivative (SGSD) were considered [25]. The SFAN, SG, SGFD and SGSD methods 

used setup parameters as follows: ρ = 0.78, α = 0.25 and β=1 [22], [25]. For the PNN, the spread 

constant (σ) was set to 0.1 [22], [25]. Analyzing Table III, we can realize that the method enhanced 

the success rates for all PZTs sensor. For example, PZT#1 yielded an improvement of 17% and 6% 

compared with the SFAN-SGSD and SFAN-SGFD methods, respectively. Therefore, the 

enhancement of this approach over existing approaches is undoubted. 

 Table 3. Comparison of the proposed CNN-Based method with other NN approaches: Success rates 

obtained for the Testing Phase. 

Methods PZT#1 PZT#2 PZT #3 

CNN 100.00% 100.00% 100.00% 

SFAN-SGSD [25] 83.33% 100.00% 98.95% 
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SFAN-SGFD [25] 94.79% 85.41% 88.54% 

SFAN-SG [25] 83.33% 100.00% 98.95% 

SFAN-ED [20],[22] 61.41% 98.95% 77.08% 

PNN-SGSD [25] 75.00% 100.00% 98.95% 

PNN-SGFD [25] 50.00% 75.00% 85.41% 

PNN-SG [22] 75.00% 100.00% 98.95% 

 

Training and testing times are stated next. As aforementioned, the training time is directly 

related to the number of epochs. Hence, Table IV shows a time consumption comparison for three 

different methods, considering the results for PZT#1. All methods were run, under the same 

conditions, on a laptop (stated earlier). 

 Table 4. Comparison among consumption times for: CNN, PNN, and SFAN. 

Methods Training Time (s) Testing Time (s) 

CNN 121.10 7.9300 

SFAN [20] , [22], [25] 0.1265 0.0079 

PNN [22] 1.6724 0.6742 
 

As observed in Table IV, the SFAN based method showed the best performance in terms of both 

training and testing times. PNN method obtained the second place with a subtle difference in 

relation to SFAN. The CNN based method results in a longer time for both training and test. This is 

because the processing images consist of a time-consuming task as recurrently shown in the 

literature. Further analysis about time consumption will be stated in the next subsection. 

5.1 Advantages and Drawbacks 

The feasibility of the proposed approach is validated based on EMI-measurement datasets. The 

method results in an accuracy rate of 100% for all tested scenarios. Therefore, the main advantages of 

the proposed method can be summarized into four points.  

Firstly, a new way of converting PZT response to RGB frames along with the CNN based 

method represents a new approach to structural health monitoring. Based on the results, the method 

has direct implications in terms of diminishing the percentage of false alarms whilst the damage 

detection is being performed.  

Secondly, the major achievement in applying the method is the ability to classify structural 

damage with higher accuracy compared with the state-of-the-art approaches [20], [22], [25]. This is 

possible because the CNN applies several banks of filters in order to extract the best features that 

represent different structural conditions, in each frame. It potentially has direct application in the 

composite materials industry especially when applied to identify small damage and its progression 

as discussed in [10].  

Thirdly, it is important to quote that this method, proves to be more reliable to detect both 

internal and non-visual damage compared with a method based on only video/image processing 

[37]. Furthermore, the method presents another important advantage compared with [37] because it 

does not require a GPU and can be run in an ordinary laptop, a direct consequence of the small 

dataset used to train the CNN.   

Fourthly, the proposed method forms frames through a wide range of frequency instead of 

choosing only the best range in which the EMI presents higher sensitivity. This issue comprises an 

important advantage because that task is very difficult as pointed out in [57].  
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Despite the advantages, improvements of the proposed method still need to be investigated. 

The major problem with the current approach is the time consumption issue. As presented in Table 

IV, the CNN based method used substantially more time compared with the methods addressed in 

[25]. On the other hand, it is important to mention that if we essentially consider that the majority of 

the industrial applications run the training phase off-line and, that the demanded test time is 7.93s 

for processing 96 frames, thus it would take a meaningfully time of 83ms for processing one single 

frame. This time seems to be impeding for real-time applications; however, in practice, the 

procedure of acquisition of the EMI signatures can be carried out in an even longer time frame (e.g. 

over minutes). Therefore, the method can be perfectly considered for many SHM applications 

running on real-time using an ordinary laptop.  

It is also important to mention that temperature variation is a classical issue in SHM systems 

when using PZT sensors, which was negligible in this present analysis. Further details about the 

temperature influence on the EMI signatures can be further explored in references [47], [59-60]. Also, 

noise effects on EMI signatures were here negligible. For that, the following references are indicated 

[34], [61]. 

To date, we can only guarantee the capabilities of the method for damage detection and size/ 

type estimation in terms of a rather large size as defined here. Smaller damage sizes will form future 

investigations. However, the simulated damage represents an only negligible increment of 

structural mass when compared to the total mass of the structure, which is compatible with real 

damage.  

6. Conclusion and future work 

This paper has introduced an exploration of the suitability of a CNN based method applied to 

monitor structural damage in aluminum structures. Accordingly, we proposed a method which 

takes advantage of the combination of the EMI-PZT based method and CNN. This methodology 

presents a new approach for SHM. Additionally to the fact of that CNN based method was proposed 

here for the first time, this approach consists of a reliable and innovative way of converting PZT 

response based on the EMI technique to RGB frame. 

Based on the results, the CNN based method shows significant enhancement in terms of the 

overall success rate whilst the structural damage detection is carried out. As a result, a hit rate of 

100% was obtained running only three epochs, which outperforms current approaches. 

Furthermore, the method runs only a small dataset for training the CNN without using any type of 

dedicated GPU. To conclude, the method identified the damage scenarios with higher accuracy, 

therefore, rendering this approach in a promising and useful contribution in the SHM area.  

Future work will focus on the evaluation of the sensitivity of the proposed methodology to 

identify the progression of the structural damage in structures made of composite materials. Those 

materials present a higher damping coefficient compared with aluminum, demanding a more 

accurate method such as shown throughout the paper. Future goals, motivated by the outcomes 

presented in this paper, will focus on features other than the success rate for measuring the classifier 

efficiency such as the Kappa coefficient. Further research will be undertaken in evaluation the CNN 

configuration such as: image size, training dataset size, and the number of kernels to optimize the 

required time consumption. 
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