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Abstract: Robotic decision-support systems must facilitate a robots interactions with their
environment, this demands adaptability. Adaptability relates to awareness of the environment
and ‘self-awareness’, human behaviour exemplifies the concept of awareness to arrive at an optimal
choice of action or decision based on reasoning and inference with learned preferences. A similar
conceptual approach is required to implement awareness in autonomous robotic systems which must
adapt to the current dynamic environment (the context of use). By incorporating ‘self-awareness” with
knowledge of a Robot’s preferences (in decision making) the decision maker interface should adapt
to the current context of use. This paper proposes a novel approach to enable an autonomous robotics
which implements path planning combining adaptation with knowledge reasoning techniques and
hedge algebra to enable an autonomous robot to realise optimal coverage path planning under
dynamic uncertainty. The results for a cleaning robot show that using our proposed approach
demonstrated the capability to avoid both static and dynamic obstacles while achieving optimal path
planning with increased efficiency. The proposed approach achieves the multiple decision-making
objectives (path planning) with a high-coverage and low repetition rates. Compared to other current
approaches, the proposed approach has demonstrated improved performance over the conventional
robot control algorithms.

Keywords: robotics; coverage path-planning; knowledge reasoning and inference; hedge algebras;
decision-support systems

1. Introduction

Robotics have become essential in industry where improved efficiency and quality control in the
manufacturing process is essential to a manufacturers commercial success. However, when employed
in the manufacturing process robots are generally pre-programmed with limited decision-making
capability. Robotic decision-support systems designed for use in multiple domains must facilitate
a robot’s interactions with their environment and facilitate the required actions and behaviour, this
demands adaptability. Adaptability relates to awareness of the environment and ‘self-awareness’,
human behaviour exemplifies the concept of awareness to arrive at an optimal choice of action or
decision based on reasoning and inference with learned preferences. A similar conceptual approach is
required to implement awareness in autonomous robotic systems which must adapt to the current
dynamic environment (the context of use). By incorporating ‘self-awareness’” with knowledge of a
Robot’s preferences (in decision making) the robots decision maker interface cab adapt to the current
context of use.

Mobile robots must be ‘self-aware’. For example, a mobile robot will generally be battery powered
and its awareness will include both knowledge of the defined operating environment and its current
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‘state’ which will include the battery condition. The robot’s knowledge of these parameters and the
operating environment will enable the robot to return automatically to its charging point as required.

While robotic systems are now ubiquitous in the industrial context, such systems are gaining
traction in multiple domains where autonomous operation is desired, a central requirement for mobile
robotic systems is the identification of coverage path-planning (CPP). In environmental dynamics,
mobile robots are increasingly being employed to performing complex tasks in dynamic environments.
However, uncertainty is present in robots awareness due to environmental dynamics, imprecision in
control, imperfect sensing and localisation, and unpredictability. The primary of objective of robotics is
to provide an ‘experience set’ to accommodate environmental dynamics under uncertainty, this relates
to all knowledge, skills and attitudes for the control, application, and operation of robots. Robotics
may be considered as an ‘innovation technology’, research into such technologies provides information
and instructions for engineers capable of formalising problems and developing algorithmic solutions
that will generalise in a wide class of computing problems to facilitate production automation [in
robotics] [1]. The approach proposed in this paper can be simply applied to both static and dynamic
environments.

Turning to ‘real-world’ practical problems, the cleaning task represents a significant path planning
problem, in this paper we address path planning implemented in a cleaning robot. Cleaning
may be undertaken in a domestic environment but there are also many use-cases where cleaning
may be required in restricted spaces; such spaces may have limited access and/or have toxic
contamination/pollution and are therefore not accessible by a human cleaner. An autonomous
robot provides a solution for multiple cleaning tasks in a range of domains and environments. A
mobile robot has the potential to address the multiplicity of cleaning tasks and if the CPP problem is
effectively addressed then efficient cleaning may be achieved.

To enable autonomous robot operation with the capability to implement optimal decision-making
in a dynamic environment we have investigated the CPP problem and we have addressed two
fundamental scientific questions related to the provision of decision-support for a mobile robot: (a)
how a mobile robot can form a high-level probabilistic representation of an operating space (the
defined environment), and (b) how a mobile robot can understand and reason about the operating
environment and implement the multiple decisions (i.e., tasks) while in motion.

The first question directly addresses the issue relating to feature extraction (the static and dynamic
obstacles), the second question may be viewed in terms of special recognition (modelling the operating
environment). When considered in unison, these questions address the hierarchical representation
we aim to realise. However, such a representation must consider and treat uncertainty (in terms of
information) in an appropriate way. Additionally, to fully understand the operating environment, a
robot must be capable of conceptualising the operating environment to enable the classification of the
environment and wherever possible develop a conceptual model of the dynamic environment.

This paper presents a novel approach to enable the autonomous operation of a cleaning robot
which implements CPP. The proposed approach combines robot adaptation with knowledge reasoning
and inference techniques and hedge algebra to provide a basis upon which CPP may be achieved
under dynamic uncertainty with the capability for a cleaning robot to avoid collision with obstacles
in the operating environment. The proposed algorithm is designed to achieve improvements to the
STC algorithm combined with reasoning techniques and HA to find the optimal CPP for the defined
environment. The robot can apply its available knowledge using rules in the knowledge base to find
optimal path, avoid obstacles, and maximize coverage. The experimental results show that using our
proposed approach the robot demonstrated the capability to avoid both static and dynamic (moving)
obstacles while achieving optimal path planning thus reducing both computational cost and time. As
compared to other current approaches, the proposed approach achieves the multiple decision-making
objectives (path planning) with a high coverage rate and low repetition rate in covering a defined area.
The proposed approach has demonstrated improved performance over the conventional robot control
algorithms.


http://dx.doi.org/10.20944/preprints201808.0125.v1
http://dx.doi.org/10.3390/machines6040046

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 August 2018 d0i:10.20944/preprints201808.0125.v1

30f19

The remainder of this paper is structured as follows: in Section 2 we consider related research as
it relates to CPP. The problem formulation using hedge algebras is addressed in Section 3 along with
consideration of intelligent support for CPP and quantitative semantic mapping. The proposed CPP
model is presented in Section 4 with the path planning processing algorithm. Evaluation is addressed
in Section 5 with a case study using hedge algebras with multiple decision-making objectives; the
experimental results are considered in Section 6 with an evaluation and a comparative analysis. Section
7 presents a discussion which considers machine cognition as it relates to entities (which include
both humans and intelligent robotic systems); potential future directions for research is considered in
Section 7.3. The paper closes with concluding observations in Section 8.

2. Related Research

In this section we consider related research as it relates to CPP. There are two general algorithmic
approaches to the CPP problem: (a) classical algorithms, and (b) heuristic algorithms, Figure 1 presents
an overview of these approaches [2] [1] [3] [4] [5]. We can see from Figure 1 that classical algorithms
may be classified under several headings: cell decomposition, potential field, sampling-based methods, and
sub-goal networks. From Figure 1 we can also see that heuristic algorithms may be classified under
several headings: artificial neural networks (ANN), fuzzy systems, nature inspired algorithms, and hybrid
algorithms. In our research the focus is on a survey of heuristic-based algorithms for CPP.

Path planning Algorithms
S Akor“hms

Cell Potential Sampling- Sub goal ANN Fuzzy Hybrid
Decomposition Field based Network Algorithms
methods

Figure 1. The classification of robot path planning algorithms (source: [4])

Research has considered CPP from several perspectives. As CPP relates to complex surfaces, a
robotic needle-punching path planning method is applied to adjust different “preforms” with different
shapes, dimensions and needling distributions as discussed in [3]. An investigation into mobile robotics
[6] [7] has shown that CPP can be solved with narrow spaces and a complex map for environments with
multiple obstacles. In related studies [8] investigations have contributed a manipulator control and the
theoretical ideas on using ANN with reinforcement learning for multiple robotic tasks [8] [9]. In the
identification of multiple objects, a new optimal hierarchical global path planning approach for mobile
robots is applied in a cluttered environment using particle swarm optimization [10]. Other related
Robot studies have utilised ANN [11], decentralized reinforcement learning (DRL) [12], matrix-binary
Codes based on genetic algorithms have been applied to enable path planning for mobile robots
including manipulator control and the theoretical ideas to solve the CPP problem. Munoz et al [13]
have proposed a unified framework for path-planning and task-planning for autonomous robots while
Patle et al [14] have utilised an approach based on matrix-binary codes with a genetic algorithm to
implement path planning of mobile robots.

In ‘real-world” environments (defined operating spaces), robots will be highly dependent on the
ability to understand, interpret, and generate representations of the environment in which they are
operating, ideally in both a human and machine-readable formalism [11] [12]. Representation of an
entities ‘world” [15] through perception and action is a long standing feature of artificial intelligence
research and the “notions of central and peripheral systems evaporate—everything is both central and
peripheral” [16]; such concepts apply to robotic interactions with their environment (or ‘world’. An
important element in this process lies in decision making with obstacle avoidance to obtain multiple
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objectives in dynamic environments and identify optimal coverage paths [10] [17]. Robots are now
capable of reliably manipulating objects in our daily lives when combined with artificial intelligence
(AI) techniques for planning and decision-making, this allows a machine to determine how a task can
be completed successfully [9].

CPP algorithms have been implemented in many ‘real-world” applications in dynamic
environments; examples include: cleaning and monitoring robots, automatic lawn mowers, inspection
robots, painting robots, and industrial robots [2] [1] [3] [4] [6] [7] [18] [19] [20] [21] [19] [22] [23]. The
CPP problem has multiple goals: full coverage (i.e., every point in the domain is covered and no point
is visited multiple times), no overlapping or repetition (no point is visited multiple times), and/or a
variety of objectives on the simplicity or the shortest of the paths.

The potential directions for path planning research have been addressed in an interesting study
which investigated controlling manipulators using ANN [11] [12]. A study of the value-iteration-based
algorithm is effectively applied to multiple robotic tasks [12]. An interactive robot system using
psychological phenomena during communication has shown that this approach may provide a basis
for suitable decision-support in mobile robotics [24]; this opens a new way for robot adaptation in
making decisions in environmental dynamics.

This brief overview of the related research has identified both the potential efficacy of CPP but
also that the current approaches fall short in achieving optimal CPP while minimising repeatedly
traversing areas within the defined environment. In this paper we present our novel approach to the
CPP problem which attempts to address the perceived issues in the related research considered.

3. Problem Formulation using Hedge Algebras

In this section we introduce hedge algebras with intelligent support for robot CPP and
quantitative semantic mapping. Hedge Algebras (HA) was proposed by Ho and Wechler in 1990
[25]. Subsequent research has produced many interesting developments of the concept along with
successful applications.

3.1. Hedge Algebras with intelligent decision support in Robot CPP Coverage Path Planning

We have developed our approach to enable the simulation of awareness (i.e., using inference and
reasoning) with decision-making (by the robot) to provide a basis upon which the robot can monitor
the environment and reach optimal CPP decisions. In this section we present for each concept our
fuzzy approach, additionally we introduce the structure calculations on the process to simulate human
reasoning.

Consider the domain (T (X)) of the linguistic variable (X). According to [7] [26] axioms (T (X))
may be represented as algebraic structures and symbols {AH = (T (X),G, H, <)} where (G) is a
collection of birth elements of linguistic variable, (H) is a set of hedges, and (<) is semantic relation
on (T (X)). If G containing elements (0, 1, X) is the smallest element, the largest element and neutral
element is (X). An algebraic structure {AH = (T (X), G, H, <)} where (H = (H" + UH"—)) is called
a (HA) if the formula satisfies with the following axioms [18] [12]:

1. Each element is either positive or negative for any part in the (HA), including itself;

2. The two elements (u) and (v) are independent, that is (u # H (v)) AND (v # H (u)) are
comparable with (Vx € H (u)) AND (x € H (v)). IF (u) AND (v) are not comparable, THEN
(Vx € H(u)) AND (Vy € H (v)) are NOT comparable;

3. IF (x # hy) THEN (x € H(hy)) AND IF (h # k) AND (hy <ky) THEN (W'hy < k'ky) with
(VW K ,h,k,€ H);

4. IF(ue€ H(v)) AND (u <v) OR (u > v) THEN (u < hy) OR (u > hy,) where (Vh € H);

Set (H) includes positive hedges (H"+) and negative hedges (H" —). The positive hedges increase
the semantic representation of a word and therefore its impact while negative hedges reduce the
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semantic representation of a word and therefore its impact. Without loss of generality, we always
assume that (H~ = {hy > hy--- > hp}) AND (H" = {hp41 < hpip <--- <hpiq}).

3.1.1. For Example

Considering the linguistic domain for a Robot of truth variable TRUTH, (dom(TRUTH) = true,
false, very true, very false, more true, more false, little true, little false ...). The (dom(TRUTH)) may be
expressed as an algebraic structure (AT = ((T (X)), G, H, <)) where:

T (X)): is the set linguistic values (dlom(TRUTH);
G): is a set of primitive word — birth elements (true ,false);
is a set of hedges (very, more, little;

= W N =
~
T

):
<): is the semantic relation(s) on ‘words’ (a fuzzy concept). The semantic relations
are the ordered relations derived from the natural language meaning, i.e., (false < true),
(moretrue < verytrue), (veryfalse < moretrue), (possibletrue < true), (false < possiblefalse),

The set of linguistic values (T (X)) is the result derived from (G) by the hedges in (H). Thus,
each element (x € T (X)) will be represented. (x = hy, hy,_1,...h1g,G € G). (H (x)) is set of elements
is resulting from (x). Considering (V € H* (V —very)), (L € H™ (L — little)), (g € G) is positive IF
(g £ Vg)andisnegative IF (§ > Vg) (or (g € G) is positive IF (§ > Lg) and is negative IF (g < Lg)if.
IF (G) has exactly two fuzzy primitive elements (g7) and (g~), then (¢7) is called a positive birth
element and (¢~ ) is called a negative birth element and (¢~ < ¢™). In the example above, truth is
positive and false is negative

3.2. Quantitative semantic mapping

Where (HA AT = (T (X),G,H, <)) is mapped (f : T (X) — [0,1]) as a quantitative semantic
function on (AT) IF (Vh,k € HYORVh, k € H- ANDVx,y € T (X)), we have:

{f(hx) —f(X)} _ [f (hy) —f(y)} 1)
S (kx) = f (x) fky) = f ()

With hedge algebras and quantitative semantic functions we can define a concept so abstract and
difficult to define satisfactorily in conventional conventional fuzzy set theory where the ‘fuzziness’ of
a fuzzy concept or fuzzy set fails to form an effective representation. Consider the following values:
true, false, more true, and more false etc; the issue lies in how to define the ‘fuzziness’ of the linguistic
value (we may consider the linguistic values in terms of a spectrum around truth and/or falsity). Based
on the use of hedge algebras, we have a defining visual fuzziness based on the size of (H (x)). Given a
quantitative semantic function (f) of (T (X)), consider that for (x € X) where the ‘fuzziness’ of (x)
is measured by the diameter of the episode (f (H (x)) C [0,1]). Figure 2 describes the fuzziness of
linguistic values.

4. The proposed Coverage Path Planning model

The proposed algorithm is designed to achieve improvements to the STC algorithm combined
with reasoning techniques and HA to find the optimal CPP for the defined environment. The robot can
apply its available knowledge using rules in the knowledge base to find optimal path, avoid obstacles,
and maximize coverage. The proposed model for the on-line robot is shown in Figure 3.

In the proposed CPP model, before releasing the robot in the operating space rules from the
knowledge base are programmed into the robot. The rules are created and updated by experts to
find the optimal CPP and the approach to cleaning the defined environment. The rules are applied as
follows:

1.  The robot traverses the operating space visiting all the nodes;
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Figure 3. The proposed coverage path planning model for the on-line robot control

2. The robot must visit all the nodes in the operating space (i.e., identify if the nodes(cells) and
evaluate if nodes are clear, are occupied by an obstacle(s), or are bounded by walls. The aim is
to visit all nodes without repeating or overlapping paths (i.e., to enable the identification of the
optimal coverage path);

3. The robot must avoid all static and dynamic (moving) obstacles;

4. The robot will find the ‘optimal path” including the uncertainties (a dynamic operating space)
with its simple motion trajectories (e.g., straight lines or circles).

4.1. Problem and formulation

1.  The Hedge_DSS_Robot: the objective optimization function reaches decisions to maximise the
operational efficiency of the robot in CPP and enable multiple robot decision making objectives;

2. The weight (wj): representative of (Si) and (w;), the weight is a value of the linguistic variable
that can recognised in the value in range: important, very important, more important, little important,
very little important, possibly important, ...;

3. Based on quantitative semantic mapping of (HA), linguistic values for (w;) fall in the range
[0,1]. Means joining in multiple decision-making objectives for the Robot tasks (Si) and where
((SinSj)=(6,Yi,j e {1,2,---r}));

4. (Qj(X)): is the objective function of multiple decision-making objective. (Q; (X)) recognises the
linguistic value of the linguistic variable used in the quantitative semantics mapping of (HA)
and transfers the linguistic value in the range [0.1];
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5. The decision variables (X,'j) is binary and defines the tasks for the multiple decision-making
objectives;
6.  Calculate the objective function value for (Q; (X))

Step 1: Identify the objectives for a moving robot

The CPP model for the Hedge_DSS_Robot (HDR) is proposed when identifying multiple objectives
as follows:

HDR = @ Y w,.Q; (X) )

The constraints include:

1. Y Xp=1VieN

Zieesjusi xp =1

___ gL, If option i is assigned Robot to mission (k)
3. Xik = { 0, other

Step 2. Applied STC algorithm for Robot travel in a graph

Create Recursive STC (w, x): while (x) is a mega-cell containing a start point, (w) is a cell for the
previous point.

Initialization: Call STC2 (Null,S) where (S) is the starting cell.

Procedure STC2 (w, x):

(1) Mark the current cell (x) as an old cell;

(2) While x has a new free or partially occupied neighbouring cell (Y) where (x # 6):

(a) Scan for the first new neighbour of x in counter-clockwise order, starting with the parent cell w: call
this neighbour (y; € Y);

(b) Calculate the time from current sub-cell of (x) to sub-cell of destination (y;) based on Hedge
algebra in the time series ((Tj) = (¥, ts)) and construct a spanning-tree edge from (x) to (y);

(c) Calculate time to estimate obstacles with the nearest y moving to sub-cell destination in the time
series (Pj = (n xt));

(d) Consider IF mega-cell (y) satisfies (MAX (P; —Tj));

(e) Move to a sub-cell of (i) along the spanning tree edges using a path determined by the type of
edge from (x) to (y) as described in the following steps ;

End of while loop.

(f) Execute STC2 (x, y).

(3) IF (x # S), move back from (x) to a sub-cell of (y) along a path determined by the type of edge
from (x) to (w);

(4) Return. End of STC2 (w, x).

Step 3: Apply reasoning techniques using rules in the Robot knowledge
Consider the rules in reasoning techniques in robot reasoning. The rule form is as shown in Eq. (3):

Rule i : ((x1 =a)" (x = ap)" (x3 = as)A (x4 = ag)" - (x = ”z‘)) — (¢, p) ®)

where (x; = a;) with operations (<; >, <, >), (p) is the weight (w;) of Rule i with certain factor
weighting (c). In typical rules we can consider reasoning techniques combined with events and as
shown in Eq. (4):

IF ((cl,pl)A (cqs pz)/\ (c3,p3)" - (ci, pi)) THEN — (r,c) 4)

where (cj, p;) represents an event, weight (w;), and certain weight (c) of the considered Rule i.

Step 4: Process rules with reasoning forward chaining
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Apply reasoning techniques of the robot in forward chaining together with results of previous rules
and events resulting from these rules.

step 5: Find the appropriate rules applied in Knowledge Base (KB)
IF an existent rule is placed in K) THEN apply the automated robot rule, ELSE a new rule from an
expert will be added to the KB

All of steps can be repeated when a robot completes its action(s) in the multiple decision-making
objectives.

5. Evaluation

In this section we set out an evaluation of the proposed approach, the results are considered in
Section 6.

5.1. Robot case study using hedge algebras with multiple decision-making objectives

As identified in various decision problems related to mobile robotics, the operating robot identifies
targets to identify tasks engaged in the multiple decision-making objectives. (Q; (X)) is the objective
function indicated for multiple objectives updated in the robot knowledge-base. For example, the
objective function aims to maximise objectives to the (5) following objectives:

1. (Q(1)): the robot traverses the operating space visiting all the nodes;
(Q(2)): the robot must complete its traverse of all the nodes in the operating space (i.e., identify
if the nodes(cells) are: (a) clear, (b) are occupied by an obstacle(s), or (c) are bounded by walls);

3. (Q(3)): the robot must complete its traverse over the operating space without repeating or
overlapping paths (i.e. , to enable the identification of the optimal coverage path);

4. (Q(4)): the robot must avoid all static and dynamic (moving) moving obstacles;

5. (Q(5)): the robot will find the ‘optimal path’ including the uncertainties in a dynamic operating
space with its simple motion trajectories (e.g., straight lines or circles).

A decision maker can instruct an on-line robot about automatic selection of the strategy in
multiple decision-making objectives as follows: S; (Cleaning function), S, (Cleaning and picking
up garbage), S3 (Cleaning while avoiding objects), S4 (intelligent multiple making decision), and S5
(heavy clearing). For example, the value (Q; (X)) is determined using the linguistic variables: high,
low, very hight, very low, little high, little low , possible high, ... and the quantitative semantic value could
be: (y (high) = 0.65. u (low) = 0.35. p (very low) = 0.12. u (very high) = 0.85. ). The values for the
opinions of experts related to the value of the objective function is shown in Table 1.

Table 1. Testimonials of experts on the objective function

Q1 Qo Qs Q4
Sy | very high very low little very low low
Sy low very low high little low
S3 | verylow | little very low little high low
Sy | little high | little little high little low little low
S5 high very high little very high | very high

The relative degree of importance of the objective function corresponding to the means of rescue
is shown in Table 2.

Considering hedge algebras we may observe the following semantic properties:

AHMMCDODapung = (T (X)/ G/ H/ S)
G = {low, high}, fm (low) = 0.5, fm (high) = 0.75
Ht = {very} = {h},q =1
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Table 2. Testimonials of experts on the importance of the media to participate in rescue

Wy W, W3 Wy
S1 imp imp unimp very very imp
Sy unimp unimp imp unimp
S3 unimp unimp unimp unimp
Sy | littleimp | littleimp | very unimp little imp
Ss | littleimp | littleimp | veryimp | very very imp

H~ = (little) = {m}, p =
0 = 05anda = 05

o o =Y u(m)u(ittle) = 05
o B=Y ) ul) = puh) = pery) = (1-a)=(1-05) =05
o a=p8— (w(hx)) = 31+ Sign(hjx) Sign (h,hjx) (B — «)] = 0.5, (Vh; € H)
o fm(low) = 6 = 05
fm (very low) = (p(very) * fm(low)) = (0.5x0.5) = 0.25

fm (littlelow) = (u (little) * fm (low) = (0.5x0.5) = 0.25)
fm (high) = (1 — fm(high)) = (1 — 0.5) = 0.5

fm (veryhigh) = (u(very) * fm (high)) = (0.5x0.5) = 0.5

fm (veryhigh) = (u (little) * fm (high)) = (0.5x0.5) =
v(W) = v(f) = 05

(
v(low) = (6 — afm (low)) = (0.5 — (0.5x0.5)) = 0.25
v (

high) = (60 + afm (high)) = (0.5 + (0.5x0.5)) = 0.75

o v (very low) = v (low) + Sign (very low) * [fm (very low) — 0.5fm (very low)] =
0.25 + (—1) * (0.25 — (0.5*0.25)) = 0.125

o v (little low) = v (low) + Sign (little low) * [fm (little low) — 0.5fm (little low)] =
0.25 + (+1) * (025 — (0.5*0.25)) = 0.375

o v (very high) = v (high) + Sign (very high) * [fm (very high) — 0.5fm (very high)] =
0.75 + (+1) * (05*0.5*0.5) = 0.875

o v (little high) = v (high) + Sign (little high) * [fm (little high) — 0.5fm (little high)] =
0.75 + (—1) * (05*0.5*0.5) = 0.625

o v (very very low) =
v (very low) + Sign (little very low) * [fm (little very low) — 0.5fm (little very low)] =
0.125 4 (+1) * (05*0.5*0.5%0.5) = 0.0625

o v (little very low) =
v (very low) + Sign (very very low) * [fm (very very low) — 0.5fm (very very low)] =
0.125 + (+1) * (0.5*0.5*0.5%0.5) = 0.1875

o v (very little low) =
v (little low) + Sign (very very little low) * [fm (very little low) — 0.5fm (very little low)] =
0.375 + (=1) * (05*0.5*0.5*0.5) = 0.3125

o v (very little low) =
v (little low) + Sign (little little low) * [fm (little little low) — 0.5fm (little little low)] =
0375 + (+1) * (0.5*0.5*0.5%0.5) = 0.4375

o v (little little high) =
v (little high) + Sign (little little high) * [fm (little little high) + 0.5fm (little little high)] =
0.625 + (—1) * (05*0.50.5*0.5) = 0.5625
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v (little high) + Sign (very little high) * [fm (very little high) — 0.5fm (very little high)] =
0.625 + (+1) * (0.5*0.5*0.5*0.5) = 0.6875

o v (little very high) =

v (very high) + Sign (little very high) * [fm (little very high) — 0.5fm (little very high)] =

0.875 + (—1) * (0.5*0.5*0.5%0.5) =
o v (very very high) =

0.8125

v (very high) + Sign (very very high) * [fm (very very high) — 0.5fm (very very high)] =

0.875 + (+1) * (0.5*0.5*0.5%0.5) =

Testimonials of specialist functions targeted are shown in Table 3.

0.9375

Table 3. Testimonials of experts on the objective function

Q1 Q2 Qs Q4
Sy 1 0875 | 0.125 | 0.1875 | 0.25
Sy 0.25 0.125 0.75 0.375
Sz | 0.125 | 0.1875 0.625 0.25
S4 | 0.625 | 0.6875 | 0.375 | 0.375
S5 0.75 | 0.1375 | 0.1125 | 0.875

Moreover we may observe the following relationships relating to hedge algebras:

AHSuQuanTrong = (T(X)/ G, H, S)

2. G = {unlmp, imp} fm(unlmp) = 0.4, fm(imp) = 0.6
3. Ht = {very} = {h}, q = 1, u(very) = 0.65

H* = {little} = {}, q = 1, u(little) = 0.35

4. 0 =W = 04anda = 0.35

Similarly, we obtain a quantitative semantic value for some value in the linguistic variable as

shown in Table 4.

Table 4. Table 4. Quantitative value of the variable semantic language

u (very very unimportant) = 0.10985

y (very unimportant) = 0.169

u (little very unimportant) = 0.20085

y (unimportant) = 0.26

u (little little unimportant) = 0.29185

u (little unimportant) = 0.309

u (very little unimportant) = 0.34085

u (very little important) = 0.488725

u (little important) = 0.5365

u (little little important) = 0.562225

u (important) = 0.61

u (little very important) = 0.698725

u (very important) = 0.7465

u (very very important) = 0.835225

The degree of importance of the objective function corresponding to the rescue means is shown in

Table 5.

Table 5. The weighting of the objective function with the important means of rescue

W W Wi Wi
S| 061 | 061 | 026 | 0.835225
S, | 026 | 026 | 061 0.26
Ss | 026 | 026 | 026 0.26
Sy | 05365 | 0.5365 | 0.169 | 0.5365
Ss | 0.5365 | 0.5365 | 0.7465 | 0.15225

Using the algorithms the HedgepSS calculates which option is selected and the order of priority

schemes:
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e HedgepSS = @ijj.Qj (X)

e Y;wjxQr = ((0,875x0.61) + (0,125x0.61) + (0.1875x0.26) + (0.25x0.835225)) =
0.86756

e Y,wixQy = ((025x0.26) + (0,125,x,0.26) + (0.75x0.61) + (0,375x0.26)) = 0.6525

e Y,wjxQs = ((0,125x0.26) + (0.1875x0.26) + (0,625x0.26) + (0.25x0.26)) = 0.30875

o Y wixQs = ((0,625205365) + (0.6875x0.5365) + (0,37520,169) + (0,375x0.5365)) =

0.96872

° Zj wj x Q4 = ((0.75x0.5365) + (0.1375x0.5365) + (0.1125x0.7465) + (0,875x0.15225)) =
0.6876
Apply the STC algorithm:

. % Yjw;.Q; (X) = Mim[0.86756, 0.6525, 0.3087, 0.9687, 0.6876] = 0.3087

After applying the proposed model as Robot — Hedgepssoperator, decisions will find their way
to each vehicle based on priority. According to the calculation results for the above examples the order
of cars will be as follows: S4 > S; > S5, > S, > Ss.

i)

S’

\
- g RODO

Figure 4. The Cleaning on-line robot

Figure 5. The Cleaning robot using basic cleaning function
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Figure 6. The Cleaning robot in operation using multiple decision making

6. Experimental results and evaluation

In this section we present the experimental results for our proposed approach with a comparative
analysis which compares the performance (the repetition rate in covering the defined operating area)
of our approach with alternative algorithms. The robot is shown in Figure 4 with the interface (the
dynamic environment) of the algorithms as shown in Figures 5, 6, and 7 which show the results for the
robot in traversing the dynamic environment based on multiple decision-making objectives.

6.1. The Experimental results

To evaluate our proposed CPP approach (the proposed CPP is the development of the original
SCT algorithm) we have conducted a comparative analysis which compares the performance of the
SSTC approach with alternative path planning algorithms. The alternative algorithms evaluated are:
BFS and Internal Spiral Search (ISS), and U-turn A* Path Planning (UAPP) [27]. In further testing,
we have implemented the ISS algorithm as an inner spiral algorithm where a robot traverses this
environment area in a certain direction [27]. The U-turn A* Path Planning (UAPP) algorithm is a
complete path planning coverage approach which uses the A* algorithm as a heuristic in the U-turn
search algorithm. Our proposed model is predicated on the same conditions and mapping with respect
to the range of cell numbering (80-250 cells).

The interface for the algorithms has been tested as shown in Figures 5, 6, and 7. Figure 5 shows
the experimental interface, Figure 6 shows the path for the proposed model where there are no moving
obstacles, and Figure 7 shows the path for the proposed model in a dynamic operating space where
there are moving obstacles.

6.2. A Comparison of the Repetition rate for the algorithms evaluated

To evaluate the proposed CPP model we have evaluated the repetition rate in terms of the ability
to avoid repetition in covering the defined operating area. Table 6 summarises the complete CPP
performance in terms of the repetition rate in a comparative analysis in various environments including:
regular obstacles, irregular obstacles, multiple obstacles and multiple irregular obstacles.
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Figure 7. The Cleaning robot operating in heavy cleaning mode

Table 6. The repetition rate in a simulation evaluating alternative algorithms considered in a
comparative analysis under differing environments

Multiple
Decision
Methods Obstacles Making
Objectives
Regular | Irregular hl;Iultlple Multiple Average
%) %) egular | Irregular (%)
(%) (%)
BFS 4.00 3.10 36.50 32.50 50
ISS 7.00 20.50 19.50 26.10 53
UAPP 5.00 5.40 8.85 14.40 67
CPP 0.00 2.20 2.00 7.30 96

As shown in Table 6, the simulation results for the proposed CPP model show that it achieves
a higher coverage rate with low repetition rate as compared to the alternative algorithms evaluated.
The proposed approach has achieved complete coverage of the operating space with a low repetitive
coverage rate.

In case studies of robots in various environments (regular, irregular, multiple regular, and
multiple irregular obstacles), the repetition rate for the proposed CPP model demonstrates a significant
performance improvement over the BFS, ISS and UAPP methods with respect to simple regular and
irregular obstacle environments. In complex regular and irregular obstacle environments, the repetition
rate of the CPP model is lower than achieved for the BFS, ISS and UAPP algorithms.

6.2.1. Comparison of Repetition rate and duration in robot coverage path planning with moving
obstacles

In the experimental testing we have conducted a comparative analysis of the proposed CPP model
with the other traditional methods considered, these methods were: BFS, ISS, and UAPP methods.
The evaluation compared: (a) the duration, awareness, and ability [of the robot] to cover both static
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and dynamic environments, and (b) the repetition rate where a robot faces obstacles in uncertain and
dynamic operating environments. The testing evaluated the operating environment with regular,
irregular, multiple regular, and multiple irregular obstacles. The experimental testing is based on an
operating environment with robot cell numbers in the range (80-250), the results derived from the
experimental testing are summarised in Figures 5, 6, and 7 and Tables 6, 7, and 8.

Table 7. A comparative analysis of the duration time to traverse the operational environment

Methods Duration (seconds) / Obstacles
Regular | Irregular I\I/{[:;E{)al : ?;?;gig;i Average
BFS 134 154 150 144 140
1SS 115 135 130 125 120
UAPP 95 115 95 110 100
CPP 66 78 79 74 82

Repetition
Rate
Repetition Rate (%) (%) /
Methods i \Obstacles Multiple
Decision
Making
Regular | Irregular Multiple | Multiple Average
(%) %) Regular | Irregular %)
(%) (%)
BFS 14 29 38.5 38 40
ISS 16 25 29.5 32 35
UAPP 8 12 15 25 29
CPP 3 4 3 11.3 13.2

Table 8. A comparative analysis of the repetition rate in traversing the operational environment

From Tables 6, 7, and 8 it may be seen that the repetition rate (for a robot to traverse an operating
space — effectively the search space) for our CPP model under all operating environments massively
outperforms the alternative methods considered. The improvement in the performance is evidenced
by the ability of the CPP method to achieve complete coverage of the operational environment
with a very low repetitive coverage rate in the range 3% to 11.3% with an average repetition rate
in multiple decision-making operation of 13.2%. In the general case, our proposed CPP method
provides the shortest duration with the lowest repetition rate. The experimental results demonstrate
the effectiveness of the proposed SSTC model in terms of the repetition and time travelled in uncertain
environments where the robot will encounter both static and moving obstacles. The results for the
CPP model are clearly superior to the results for the BFS, ISS, and UAPP methods

7. Discussion

I the developing field of robotics the development of robotic systems modelled on human cognitive
functions is gaining significant traction. Such research is exemplified by the ground breaking research
led by Prof Sheila Nirenberg at the Nirenberg lab in the Department of Physiology and Biophysics
at the Weill Medical College of Cornell University, USA. The research carried out at the Nirenberg
Lab combines medical and computer science research and applies this work to both human medical
treatments and robotics as exemplified in the research documented in [28] [29].

In this paper we have considered CPP and introduced our novel robot control approach designed
to enable effective and efficient path planning implemented using a linguistic approach based
on semantics and hedge algebras [30]. The proposed method has been evaluated and we have
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demonstrated using a case study that the proposed method provides and effective basis upon which
CPP in a dynamic search space may be realised.

7.1. The Concept of Self

In discussing the philosophy of the mind and cognitive science, Gallagher introduces the concept
of self which includes self-awareness. A detailed discussion on this topic is beyond the scope of
this paper, a detailed exposition, for a discussion on the topic see [31]. In summary, there are two
concepts of self: the minimal self (“a self devoid of temporal extension”) and the narrative self (which
“involves personal identity and continuity across time”). The twin concepts of self illustrate how
the philosophical approach can inform cognitive science and suggests that a two-way collaboration
[between neuroscience and computer science] may lead to a more fully-developed account of self and
awareness in entities (e.g., humanoid robotic systems as discussed in Section 7.2) and computer systems
with potential applications in machine cognition, machine consciousness and machine self-awareness.
The concept of self may be viewed as an entities internalized view of the world developed over time
based on the interactive experience of their externalized world [32].

Going further, we must consider the stimuli that prompt a reactive response. There are two
types of stimuli: (i) external stimuli (reactive situations that confront an entiy in their interaction with
their environment) and (ii) internal stimuli (internally-generated actions that the entity initiates). In
practice, entities (which include both humans and intelligent robotic systems) interact with their
‘world” and learned experience gained from their external environment ‘feeds’ into the internalized
self, which in turn influences the way entities interact with their world. This process can be viewed
as a continuous cognitive information processing feedback loop [32]. The aim of machine cognition
research is to implement (at least on a very primitive level) in computerised systems a representation
of a human dynamic cognitive model. For humans, internal cognitive models form a significant
component in response to stimuli [33] [15]. Such a component equally applies to intelligent robotic
systems implementing internal cognitive models.

The aim of intelligent systems (including intelligent robotic systems) is to achieve set goals, this
aim may be reflected in meeting defined goals for entities in dynamic environments as introduced
in this paper. Intelligent must be context-aware and must be adaptive to dynamic environments [34]
and, hence, must adopt different forms when the environments are correspondingly different [35].
Such adaptive systems may be described as “artificial” [35] for, as environments change, systems must
change to match the dynamic states and thus mirror the new situation [34,36]. Machine cognition is
designed to incorporate cognitive functions and processes (on a primitive level as compared to human
cognition) in highly autonomous machines (such as robotic systems) and intelligent entities.

7.2. Machine Cognition

Human cognition creates a psychophysiological process triggered spontaneously by the conscious
and subconscious sense of an object [37] [38]. Given the traction in intelligent systems (including
robotic systems) there exists the potential to model cognitive response in intelligent machines and
computer systems. Due to the complexity in human cognitive processing when viewed from the
perspective of physiology and psychophysiology machine cognition represents a significant challenge
and realising machine cognition remains an open research question.

Prakash Mondal considers machine cognition and poses the question: “Does computation reveal
machine cognition?” [39]. He argues that the nature of machine cognition has been shrouded in
“incomprehensibility” and that “human cognition is still faintly understood”. Moreover, he goes further
in arguing that machine cognition is far less understood than human cognition despite the current
knowledge relating to computer architectures and systems. Human interpretation [of computation]
is required, where it becomes a type of “semiotic causation” (SC), which “gives meaning to computation”
[39]. The research documented in this paper has a correlation with semiotics and SC in that humans
recognise and communicate using linguistics which are important in semiotics [40] [41]. Intelligent
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systems (such as robotic systems) may leverage semantics and semiotics to realise machine cognition
that replicates (at least on a primitive level) human cognitive processes.

Computational entities will include intelligent agents and humanoid robotic systems (which
include both physical and computational entities). Intelligent robotic systems (physical and
computational) may be viewed as entities which will embody: (i) the concept of self, (ii) self-awareness,
(iii) awareness of their ‘world’. However, such systems and agents must adapt dynamically to the
changing environment based of learning as modelled in the ‘feedback-loop’ [32].

7.3. Future Directions for Research

In considering the research documented in this paper, while many issues relating to semantics
and the use of linguistic methods [as they relate to CPP] have been explored and resolved there
remain open research questions relating to the operational capabilities of intelligent entities in dynamic
operating environments.

The posited approach presented in this paper has been shown provide an effective basis for
autonomous robot control based on context-awareness [34] and self-awareness [32]. However, there may
be use-cases where it may be desirable for a robot to move directly from a specified point to another
specified point [within a defined operational environment] where an object is located (for any number
of reasons). In such a use case, the proposed approach may be extended to identify the most direct
route while retaining the capability to avoid dynamic (independently mobile) obstacles.

We propose a number of interesting directions for research. Extending the proposed rule-based
linguistic approach using semantics with kansei engineering with and hedge algebras forms an
interesting approach. A further potentially profitable (in computing terms) lies in the use of semiotics
[40] (to recognise the type and nature of obstacles) and in use-case is where multiple robots may
operate collaboratively using for example 'forward chaining’ (an awareness of their environment and
other robots operating in the same dynamic environment). For example, in a large search area multiple
robots may be deployed to investigate a defined area; in such a use-case efficient search requires both
CPP for each robot while avoiding duplication in the search activity.

Integrating kansie engineering with semiotics into the proposed approach presented in this paper
forms the basis for future research.

8. Concluding Observations

In this paper, we have considered the CPP problem and we have presented our novel CPP robot
control approach designed to enable effective and efficient CPP. To evaluate out proposed approach
we have presented an implementation based on a cleaning robot traversing a dynamic operating
space characterised by both static (non-moving) and dynamic (independently moving) obstacles. In
operation, the robot has shown the capability to map the operating space (thereby remembering static
objects and also capturing the location of dynamic objects. Our novel approach has demonstrated the
capability to traverse an operating space efficiently without repetition or overlapping of coverage paths.
The posited approach provides and interesting direction for research into intelligent autonomous
robotic control.
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