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Abstract: This study generalized the best copula to characterize the joint probability distribution 
between rainfall severity and duration in Peninsular Malaysia using two dimensional copulas. 
Specifically, to construct copulas, Inference Function for Margins (IFM) and Canonical Maximum 
Likelihood (CML) methods were specially exploited. For the purpose of achieving copula fitting, 
the derived rainfall variables by making use of the Standardized Precipitation Index (SPI) were 
fitted into several distributions. Five copulas, namely Gaussian, Clayton, Frank, Joe and Gumbel 
were put to the tests to establish the best data fitted copula. The tests produced acknowledged and 
satisfactory results of copula fitting for rainfall severity and duration. Surveying the Akaike 
Information Criterion (AIC) and the Bayesian Information Criterion (BIC), only three copulas 
produced a better fit for parametric and semi parametric approaches. Finally, two consistency tests 
were conducted and the results had shown that Frank Copula produced consistent results. 
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1. Introduction 

Flood; as an overflow of a huge amount of water beyond its normal limits has never failed to 
challenge water resource management researchers. Natural disaster that is quite difficult to 
understand its features has flushed away a lot of money and is regarded as one of the most 
catastrophic natural disasters. These frequent climatic phenomena since past civilization still haunt 
current civilization nowadays because it very much impacts on the economic, environmental and 
social sectors. In Malaysia, it is the main meteorological disaster, while other disasters occur less 
frequently. In monetary terms, a typical flood costs RM1.2 billion in 2012 [1], more than damages 
incurred due to other disasters. As a measure of hydrological flood mitigation, it is undoubtedly 
very crucial to at a first place determine the probabilistic characteristics of rainfalls. Therefore, there 
are many ongoing investigations for hydrological floods quantitative estimation by considering 
future climate changes. 

Severity, intensity, depth, and duration are major characteristics of rainfalls in hydrologic 
design and floodplain management. They are normally employed when designing certain water 
supply systems. As rainfall characteristics are haphazard in nature, the suitable technique to 
discover rainfalls usually use probabilistic theories. Researchers among others, Renard and Lang [2]; 
Zhang and Singh [3]; Abdul Rauf and Zeephongsekul [4];  Daneshkhah et al. [5]; and 
Ozga-Zielinski et al. [6] evaluated the analyses of those characteristics. Probabilistic analysis 
approach of rainfalls is either univariate or multivariate. Univariate rainfall characteristic analysis 
has been widely used by most researchers since its inception due to the results of the study of 
encouraging. 

Hydrologic events whether flood or drought, are considered multivariate events after taking 
into accounts some of the variables associated with them. Only a handful of researchers deliberately 
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choose multivariate analysis of hydrologic events over low and inadequate data factors, complex 
mathematical treatments, and the very limited number of available models. On the other hand, a 
bivariate distribution is considered as a more common and easier method to explain the correlated 
hydrologic variables. However, there are some disadvantages for these bivariate distributions; one 
of them is that the same family is required for each marginal distribution. 

To curb such situations, multivariate distribution construction, making use of copulas, may 
come in handy. Speaking of copulas, they are functions which merge univariate distribution 
functions, generating multivariate distribution functions. Due to the fact that they are fit for the 
purposes, may researchers in insurance and finance have extensively employed them to model the 
dependence structure and joint probability distributions since their initiation by Sklar [7]. The 
popularity and application of copulas in hydrology has rapidly dispersed as copulas are efficient for 
illustrating and describing the dependencies among multiple hydrologic variables [2,3,5,8-12]. 

Firstly, rainfalls are multivariate and they ought to be characterized by dependent random 
variables. As a result, univariate analyses are not fitting the purposes as expressively stated by Shiau 
[13]; Genest et al. [14]; and Genest et al. [15]. Secondly, in fact, traditional bivariate distributions 
required marginal distributions to be of the same family and this has complicated their solutions. 
The consequence, the number of available models has becoming limited. Thirdly, copulas act as 
functions that link other multivariate distribution functions to univariate distributions. They are also 
able to model the dependence structure among random variables autonomously of the marginal 
distributions. Lastly, copulas for continuous random variables are excellent in fabricating a 
multivariate distribution with any given different univariate distribution family and eventually 
could correspond to a suitable dependence structure among component random variables. The 
relationship between dependent random variables for given univariate marginal distributions had 
been reduced as a result of the sophisticated joint distribution modelling. 

Copulas are majorly exploited to model the dependence structure between two or more 
variables, for example, precipitation and soil moisture [16], or flood peak and volume [17]. There are 
varieties of copula families, established and available to be exercised to model all kinds of different 
dependence structures [18-20]. Kelly and Krzysztofowicz [21] made use of Meta-Gaussian 
Distribution in hydrology field in which it was among the pioneers, taking into account different 
marginal distributions that came with different covariance structures in bivariate frequency analysis. 
Shiau [13] in the study constructed a joint drought duration and severity distribution, made the most 
of the bivariate Ali-Mikhail-Haq, Clayton, Farlie-Gumbel-Morgenstern, Frank, Galambos, 
Gumbel-Hougaard and Plackett Copulas. The copula-based joint probabilities and return periods for 
drought duration and severity were seemed to meet empirical values prerequisites. Shiau et al. [22] 
applied the Clayton copula using the exponential distribution for drought duration and the gamma 
distribution for drought severity. Another researcher; Wong [23], applied trivariate Gaussian and 
Gumbel Copulas to fit rainfall that came out with results that the data were characterized way far 
better by Gumbel Copula utilizing three parameter marginal Weibull distributions. To test on peak 
flows from a watershed in the framework of combined risk in Quebec, Canada, Favre et al. [24] had 
also developed a methodology for representing extreme values using copulas in which they have 
tested four copulas types. In their respective study, to harvest reliable results, they also modelled 
peak flows and volumes using three copulas. 

Thus, the current author through this study believed that it was important to derive bivariate 
rainfall distribution using the copula method. As a result, four Archimedean Copulas and one 
Elliptical Copula were scrutinized and evaluated for comparisons. The authors also has opted a semi 
parametric method to estimate the joint distribution of rainfall characteristics due to its robustness. 
The main reason of implementing this approach is the marginal distributions that are frequently 
used belong to specific parametric families and their adoption could lead to spurious inferences if 
the underlying assumptions were violated. 

Prior to copula fitting, the Standardized Precipitation Index (SPI), developed by Mckee et al. 
[25], is employed to defined floods. Each flood event is characterized by firstly fitted rainfall 
duration and severity, separately using probability distributions. Later on univariate marginal 
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distributions were linked by certain copulas to create the joint distribution of rainfall duration and 
severity. The monthly rainfall series of 48 stations in Peninsular Malaysia were used as an example 
to exemplify the proposed methodology. 

2. Materials and Methods 

2.1. Study Area and Data 

The field of research was solely focused on the Peninsular Malaysia located in the Northern 
latitude zone between 1 and 6o N and the Eastern longitude from 100 to 103o E. Regarding the 
weather in Peninsular Malaysia, it is generally hot and humid throughout the year. The level of 
temperatures and rainfall is strongly influenced by winds which blow from the Indian Ocean, also 
known as Southwest Monsoon Wind, blowing from May to September, and from the South China 
Sea which is the Northeast Monsoon Wind that blows from November to March. The transitional 
period between the two monsoon events that occur in March until April, and September until 
October is known as the intermonsoon period which brings constant rainfalls to almost all areas of 
the peninsula. The annual rainfall is eventually tabulated to be 80% per year, ranging from 2000mm 
to 2500mm. 

As to make a statistical modelling, the author has taken into account and reviewed 51 years 
records of data during the years 1965-2015. These data involved 48 rainfall stations and they have 
been obtained with collaboration with the Department of Irrigation and Drainage Malaysia (DID). 
The study over a long period time of data was in line with the intention of the author who wanted 
the most accurate results of the rainfall patterns in Malaysia [26]. Furthermore, the longer the data 
period, the more useful the study was, especially as the credibility of the frequency estimator is 
closely related to the size of the sample during the analysis process happened later on [27]. All 48 
intentionally selected rainfall stations were flood prone areas in Peninsular Malaysia (refer to Figure 
1) [28]. 

 
Figure 1. Peninsular Malaysia flood affected area map 

Source: Department of Irrigation and Drainage Malaysia 

2.2. Standard Precipitation Index 

The Standardized Precipitation Index (SPI) was introduced by Mckee et al. [25] for the purpose 
of determining and monitoring the drought occurring in places or areas. The SPI calculation method 
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is based on the long-term rainfall series for a specific period such as 1, 3, 6 and 12 months. The first 
procedure to calculate the SPI is fitting the long-term rainfall record to a probability distribution. 
Once the probability distribution is successfully determined, the cumulative probability of observed 
rainfall is calculated and then inverse transformed by a standard normal distribution with zero 
mean and variance equal to one. The resulting quantile is the SPI that is intended to be determined. 
Guttman [29] has detailed the way it calculates the process. SPI can be also be used to measure 
rainfall deficits in terms of probability, for multiple time scales. If the SPI is positive then the 
observed rainfall is greater than the median, whereas if the SPI is negative, then it is below the 
median. The wet and dry conditions were classified according to SPI scales and they were listed in 
Table 1. Mckee et al. [25] defined the flood as a period in which the SPI kept becoming positive and 
achieved a value of 1.0 or more. 

In this study, the data at first went through a transformation into indices in the manner as 
described above and were subsequently exercised to compute the rainfall severity as represented by 
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d
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where i  is the month and d  is the duration of rainfall. 
 

Table 1. Standard Precipitation Index (SPI) Classification 
SPI Classification 
2  Extremely wet 

1.5  to 1.99  Very wet 
1.0  to 1.49  Moderately wet 
0.99  to 0.99  Near normal 
1.0  to 1.49  Moderately dry 
1.5  to 1.99  Severely dry 

2   Extremely dry 

2.3. Marginal Distribution 

Determining the appropriate marginal distribution for each rainfall characteristic is one of the 
most important procedures in fitting copulas. The author in this research had considered two 
rainfall characteristics namely rainfall severity and duration. The distribution functions tested in this 
study are the Gamma, Log normal, Exponential, Weibull and Log Logistic distributions. As studied 
and acknowledged by Boulanger et al. [30], there was zero consistency in distribution that had made 
it suitable for all areas, seasons and climates. Below are the equations of the probability density 
functions of the five distributions and also their domains: 

1. Gamma distribution 
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where   is the scale parameter and   the shape parameter. 
 

2. Log Normal distribution 
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where   and   are the mean and standard deviation of  ln X  respectively. 
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3. Weibull distribution 
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where   is the shape parameter and   the scale parameter. 
 

4. Exponential distribution 
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where   is the rate parameter. 
 

5. Log Logistic distribution  
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where   is the shape parameter and   the scale parameter. 
The Maximum Likelihood Estimation (MLE) method is the standard method used to estimate 

the parameters of these marginal distributions. The best fitted distribution can be determined based 
on the smallest AIC value.  

2.4. Copula Theory 

A copula is a powerful multivariate function describing dependence of variables transformed 
by their margins, which can simplify inference procedures of multivariate distributions and studies 
on hydrological dependence. Considering continuous random vector as  ,X Y  with marginal 

distributions  XF x  and  YF y , the joint distribution function can be articulated with its 

marginal distributions and copula function C  [19] as stated below: 
 

        , , ; , ;X YP X x Y y C F x F y C u v      (7) 

 
where   is the copula’s parameter; u and v  are realizations of the random variables 

 XU F x  and  YV F y . The density function of C  is specified as: 
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(8) 

 
The two-dimensional copula C  maps the two marginal distributions into the joint distribution as 

   2
0,1 0,1 . The value of   can be estimated either by IFM or CML. 

2.5. Types of Copula 

2.5.1. Elliptical Copula 

Copulas associated to elliptical distributions are very useful in real world applications since 
they have some properties of the multivariate normal distribution. The most commonly used and 
familiar Elliptical Copulas are the multivariate Gaussian Copula and the multivariate Student 
Copula. 
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2.5.2. Archimedean Copula 

The Archimedean Copula is one of the most opted copula functions by researchers as the 
measures computation of dependence has been simplified for use. Archimedean Copulas can be 
defined by the generator  . , a continuous strictly decreasing function from  0,1  to  0,  

such that  1 0  . If  1 .   represents the inverse function of  . , the Archimedean copula is 

defined by the equation below: 
 

      1,C u v u v     (9) 

 
Archimedean Copulas works with many different generators and they can be observed in Table 4.1 
of Nelsen [19]. In general,   is dependent on a parameter   and it therefore be symbolized by 

 .  
In this study, four types of Archimedean copula; the Clayton, Frank, Joe and Gumbel together 

with one elliptical copula, namely Gaussian were employed to model dependence patterns of 
different hydrological variables. Table 2 depicts that different choices of generator yield several 
important bivariate families of copulas. 

 
Table 2. Families of bivariate copulas 

Family of 
Copulas 

Copulas  ,C u v  Parameter Space 

Elliptical Gaussian     1 1,u v 
    1 1    

Archimedean Clayton   1
1u v

      0     

 Frank   1
1 1

log 1
1

u ve e

e

 


 




  
  
  

 
     

 Joe        
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      1exp log logu v

       
 

1     

  is the cumulative distribution function of the standard normal variable. 

2.6. Estimating Copula Parameters 

Once the copula has been selected, the parameter of copulas has to be estimated. As part of the 
study, the parameters estimation of some of the most common copulas was thoroughly described. 
There are primarily two methods of doing this; a fully parametric method and a semi parametric 
method. The first method was the inference functions for margins (IFM) method by Joe [18], which 
relied on parametric univariate marginal distributions assumption. First the parameters of the 
margins are estimated and then each parametric margin is plugged into the copula likelihood. This 
full likelihood is maximized with respect to the copula parameters. However, to make this method a 
huge success, finding appropriate parametric models for the margins is a must. It might not be easy 
and straightforward particularly if they demonstrate an evidence of heavy tails or skewness. On the 
other hand, interestingly, even without parametric assumptions for the margins, the author can plug 
the univariate empirical cumulative distribution functions into the likelihood to yield a semi 
parametric method. This method signifies the pseudo-likelihood [31] or canonical maximum 
likelihood (CML) method and in which it has been described in Genest et al. [32]. 
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2.7. Goodness of Fit Test 

The appropriate probability distribution can be determined by Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC). The lowest AIC and BIC values indicate that the 
tested model were approaching the actual model. AIC and BIC are expressed as: 

Given the observe value ,i ju , 1, ,i N  , 1,2j  , AIC and BIC for bivariate copula C  

with parameter   can be expressed as: 

 ,1 ,2
1

2 ln , 2
N

i i
i

AIC c u u 


      
(10) 

and 
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2 ln , ln
N

i i
i

BIC c u u N
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3. Results 

The monthly SPI for Kuala Brang station starting from year 1965 until 2015 can be seen in Figure 
2. This station is the wettest area in Peninsular Malaysia with the highest annual mean rainfall of 
3737.11 mm. Referring to the graph, it is apparent that Kuala Brang regularly faces very wet event 
once every five to 10 years with the SPI index exceeding 2.0 in about 13 extremely wet events during 
these years. 

 
Figure 2. The monthly SPI of Kuala Brang station (1965-2015) 

 
All parameters for the five marginal distributions used are estimated from the data sets using 

the method of MLE. For each station, the best fitted distribution for severity and duration is 
subsequently selected using the AIC. The one with the lowest AIC value indicated the best fitted 
marginal distribution. Based on the obtained results from the study of all stations, Log Logistic 
distribution was best to be used for examining rainfall severity, while rainfall duration was best 
fitted by a Weibull distribution. Table 3 thoroughly illustrated the best fitted distribution for severity 
and duration of each station. 
 

Table 3. The best fitted distribution for severity and duration 
Station Severity Duration Station Severity Duration 
Meranti Llogis Weibull Kota Tinggi Lnorm Weibull 
Kuala Jambu Llogis Weibull Sembrong Llogis Weibull 
Stesen Keretapi Tumpat Lnorm Weibull Ladang Lambak Llogis Llogis 
Kampung Ibok Llogis Llogis Yong Peng Weibull Weibull 
Dungun Weibull Weibull Ladang Ulu Paloh Llogis Weibull 
Kuala Brang Lnorm Gamma Jementah Lnorm Gamma 
Kuala Telemong Weibull Weibull Segamat Weibull Weibull 
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Marang Weibull Weibull Empangan Labong Llogis Weibull 
Kuala Terengganu Llogis Weibull Pusat Pertanian Endau Llogis Weibull 
Kampung Rahmat Weibull Weibull Stor Jps Endau Lnorm Weibull 
Banggol Exp Weibull Parit Nibong Llogis Weibull 
Setiu Lnorm Weibull Rantau Panjang Lnorm Llogis 
Pelangi Kampung Jawi 2 Llogis Weibull Jeniang Weibull Weibull 
Bentong Llogis Llogis Telok Rimba Llogis Weibull 
Paya Membang Weibull Weibull Jasin Lnorm Gamma 
Kampung Serambi Gamma Weibull Jalan Empat Llogis Llogis 
Kerdau Weibull Weibull Ladang Bukit Bertam Gamma Weibull 
Sanggang Weibull Weibull Batu Kurau Llogis Weibull 
Pekan Llogis Weibull Ladang Sepang Lnorm Weibull 
Penor Llogis Weibull Sungai Mangg Llogis Weibull 
Kuala Krau Weibull Weibull Ladang Bukit Kerayong Llogis Weibull 
Paya Kangsar Weibull Weibull Ladang Tuan Mee Weibull Weibull 
Ladang Kuala Reman Llogis Weibull Tanjung Karang Lnorm Weibull 
Kuala Lipis Llogis Weibull Sungai Bernam Lnorm Weibull 

 
Prior to fitting the copulas, examining the dependence structure between two rainfall 

characteristics was an important aspect by computing the Kendall’s tau measure of concordance. 
The values of these measures were between 0.75 and 0.88 which were statistically significant positive 
correlation. For each of the five copulas selected, estimation of the parameter   using the IFM and 
CML methods together with their goodness of fit tests results are displayed in Table A1 and Table 
A2 respectively (refer to appendix). The best model selected for each case was the one with the 
lowest AIC and BIC values. In Table A1, Gaussian Copula is the commonly selected and the best 
copula to characterize the association between rainfall severity and duration. While in Table A2, 
Frank copula have shown a dominant result. The locations of the copulas for chosen stations in 
Peninsular Malaysia for IFM and CML methods respectively were shown in Figure 3 (a) and Figure 
3 (b). 

 

 
(a)                                                    (b) 

Figure 3. (a) Location of copulas for each station by using IFM; (b) Location of copulas for each station by using 
CML 

The results as stated in Table A1 and Table A2 indicated that only three copulas were suitable to 
be representing the association between rainfall severity and duration in Peninsular Malaysia. They 
were Gaussian, Clayton and Frank for a parametric method; and Frank, Joe and Gumbel for a semi 
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parametric method. To arrive at the final stage, two consistency tests were later on conducted, 
namely Interquartile Range (IQR) and standard deviation (SD). The authors found that Frank 
Copula was perfect and appropriate to be used as a generalized method for analysing flood in 
Peninsular Malaysia as it produced the smallest IQR and SD values which is the desired values. 
Significant information and data statistics were specified in Table 4 and Table 5 to be referred. 

 
Table 4. Consistency tests results for parametric copula 

Copula IQR SD 
 AIC BIC AIC BIC 
Gaussian 23.48 23.45 17.98 17.95 
Clayton 29.65 29.46 21.69 21.64 
Frank 20.68 20.49 17.20 17.14 

 
Table 5. Consistency tests results for semi parametric copula 

Copula IQR SD 
 AIC BIC AIC BIC 
Frank 11.88 11.94 10.18 10.14 
Joe 22.85 23.04 15.48 15.50 
Gumbel 16.69 16.76 11.01 11.02 

4. Discussion and Conclusions 

When it comes to understanding the global water cycle and climatic phenomena, researchers 
cannot take investigating the interdependence of hydrologic and climatic variables for granted. 
Hence, researchers have extensively exploited copulas as it can be witnessed in many statistical 
literatures for constructing joint distributions in an effort to model the suitable dependence structure 
of these variables. There are a few multivariate copulas that are perfectly model the rainfall data 
including the Archimedean and Elliptical Copulas. These two copulas have been presented and 
evaluated above. 
 The Archimedean Copula family comes with a large variety of copulas, but they can be 
constructed easily. Either the correlation amongst hydrologic variables is positive or negative; many 
copulas of this kind can be applied without hassles. Due to this reasons it has become a choice when 
performing hydrologic analyses. The implementation of these properties has been stated by Genest 
& Mackay [33] and Favre et al. [24] in their studies. Using four Archimedean Copulas to rainfall 
bivariate analysis, only the Frank Copula had been proven to be more proper for the analysis of both 
IFM and CML approaches. This was a result of Frank Copula’s ability to maintain the consistency of 
the results, compared to other copulas. Also, Frank Copula can be exercised as a generalized 
method. 

Instead, the elliptical copulas offer substantial practical interests as they can simply be applied 
in dimensions, even if they were more than two; and they were comprised of a generalized classical 
multivariate normal distribution. Daneshkhah et al. [5] cited in their study that Elliptical Copula 
modelled the dependencies of the flood variables for parametric approach more accurately, even 
though it was not for the semi parametric. Hence, Gaussian Copula performed very well for IFM 
method, but not for CML. 

Particularly in hydrologic studies that deal with a variety of cases in which the modelling of 
multivariate hydrologic variables is of particular interest. For that reason, this study presented the 
models that implied important implications and would be beneficial for many areas of water 
resources and hydrologic systems. 
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Appendix A 

Table A1. Goodness of Fit tests for IFM 
Station Copula Estimate   Maximum 

Likelihood 
AIC BIC 

Meranti Gaussian 0.95 56.38 -110.77 -108.86 
 Clayton 6.47 55.48 -108.96 -107.05 
 Frank* 20.07 56.41 -110.81 -108.90 
 Joe 4.44 39.12 -76.23 -74.32 
 Gumbel 4.26 50.01 -98.02 -96.11 
Kuala Jambu Gaussian* 0.96 48.90 -95.79 -94.08 
 Clayton 5.16 39.80 -77.59 -75.88 
 Frank 18.80 44.41 -86.82 -85.11 
 Joe 5.83 40.28 -78.55 -76.84 
 Gumbel 4.87 46.81 -91.62 -89.91 
Stesen Keretapi Tumpat Gaussian 0.95 52.05 -102.10 -100.25 
 Clayton 4.68 41.29 -80.58 -78.73 
 Frank* 19.51 53.30 -104.59 -102.74 
 Joe 4.47 36.53 -71.06 -69.21 
 Gumbel 4.03 45.52 -89.03 -87.18 
Kampung Ibok Gaussian* 0.97 64.23 -126.46 -124.63 
 Clayton 8.32 58.47 -114.94 -113.11 
 Frank 25.24 61.57 -121.14 -119.31 
 Joe 6.27 49.41 -96.82 -94.99 
 Gumbel 5.59 59.97 -117.94 -116.11 
Dungun Gaussian* 0.97 64.81 -127.63 -125.74 
 Clayton 7.60 55.90 -109.80 -107.90 
 Frank 24.08 60.31 -118.61 -116.72 
 Joe 6.40 49.59 -97.19 -95.30 
 Gumbel 5.55 59.89 -117.77 -115.88 
Kuala Brang Gaussian 0.93 43.21 -84.43 -82.69 
 Clayton 5.27 41.43 -80.86 -79.13 
 Frank* 18.06 44.05 -86.09 -84.35 
 Joe 4.00 27.55 -53.10 -51.36 
 Gumbel 3.72 36.61 -71.21 -69.48 
Kuala Telemong Gaussian 0.95 57.64 -113.28 -111.31 
 Clayton* 8.66 71.17 -140.34 -138.37 
 Frank 24.38 67.49 -132.99 -131.02 
 Joe 3.47 31.15 -60.30 -58.33 
 Gumbel 3.70 44.01 -86.03 -84.06 
Marang Gaussian 0.95 62.85 -123.70 -121.71 
 Clayton* 6.93 64.66 -127.32 -125.33 
 Frank 19.44 59.75 -117.49 -115.51 
 Joe 4.20 41.32 -80.65 -78.66 
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 Gumbel 4.07 52.91 -103.81 -101.82 
Kuala Terengganu Gaussian 0.95 58.11 -114.21 -112.30 
 Clayton 6.97 60.15 -118.30 -116.38 
 Frank* 24.01 62.98 -123.96 -122.04 
 Joe 4.26 38.08 -74.16 -72.25 
 Gumbel 4.27 49.60 -97.19 -95.28 
Kampung Rahmat Gaussian 0.96 62.55 -123.10 -121.19 
 Clayton* 10.29 71.10 -140.19 -138.28 
 Frank 22.72 60.00 -118.00 -116.09 
 Joe 4.71 40.51 -79.02 -77.11 
 Gumbel 4.65 53.00 -104.00 -102.09 
Banggol Gaussian 0.98 63.45 -124.91 -123.10 
 Clayton* 10.86 64.71 -127.43 -125.62 
 Frank 28.09 62.93 -123.85 -122.05 
 Joe 6.09 42.07 -82.15 -80.34 
 Gumbel 5.73 54.45 -106.90 -105.09 
Setiu Gaussian 0.89 40.08 -78.16 -76.19 
 Clayton 3.33 34.83 -67.67 -65.70 
 Frank* 13.06 42.45 -82.90 -80.93 
 Joe 2.90 24.40 -46.80 -44.83 
 Gumbel 2.76 32.22 -62.43 -60.46 
Pelangi Kampung Jawi 2 Gaussian* 0.97 55.59 -109.18 -107.46 
 Clayton 7.38 49.06 -96.13 -94.41 
 Frank 23.13 52.41 -102.82 -101.10 
 Joe 5.35 36.95 -71.90 -70.19 
 Gumbel 4.93 46.66 -91.33 -89.61 
Bentong Gaussian* 0.99 60.65 -119.31 -117.78 
 Clayton 9.88 48.57 -95.14 -93.61 
 Frank 36.27 57.43 -112.86 -111.34 
 Joe 11.06 51.63 -101.25 -99.73 
 Gumbel 8.58 59.05 -116.10 -114.57 
Paya Membang Gaussian 0.96 56.65 -111.31 -109.44 
 Clayton* 8.09 62.25 -122.49 -120.62 
 Frank 21.22 56.49 -110.98 -109.10 
 Joe 4.07 34.91 -67.81 -65.94 
 Gumbel 4.07 46.04 -90.08 -88.21 
Kampung Serambi Gaussian 0.95 59.80 -117.59 -115.66 
 Clayton 7.81 63.60 -125.20 -123.27 
 Frank* 26.30 69.33 -136.67 -134.74 
 Joe 4.31 34.69 -67.38 -65.45 
 Gumbel 4.27 48.28 -94.55 -92.62 
Kerdau Gaussian 0.98 65.66 -129.31 -127.58 
 Clayton* 11.46 66.47 -130.95 -129.21 
 Frank 29.19 61.48 -120.96 -119.22 
 Joe 6.83 46.26 -90.52 -88.78 
 Gumbel 6.36 58.18 -114.37 -112.63 
Sanggang Gaussian* 0.97 62.51 -123.02 -121.17 
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 Clayton 7.84 58.38 -114.76 -112.91 
 Frank 23.26 58.85 -115.70 -113.85 
 Joe 5.55 43.41 -84.82 -82.97 
 Gumbel 5.08 54.59 -107.18 -105.33 
Pekan Gaussian* 0.95 55.32 -108.64 -106.77 
 Clayton 4.93 45.29 -88.58 -86.71 
 Frank 18.18 50.25 -98.50 -96.63 
 Joe 5.44 45.59 -89.17 -87.30 
 Gumbel 4.62 52.86 -103.72 -101.85 
Penor Gaussian 0.95 50.33 -98.66 -96.81 
 Clayton 7.20 55.30 -108.60 -106.75 
 Frank* 22.11 56.50 -111.00 -109.15 
 Joe 3.58 28.77 -55.53 -53.68 
 Gumbel 3.72 39.51 -77.03 -75.18 
Kuala Krau Gaussian 0.97 67.23 -132.47 -130.54 
 Clayton 8.33 66.98 -131.97 -130.04 
 Frank* 26.54 70.41 -138.81 -136.88 
 Joe 4.51 39.27 -76.54 -74.61 
 Gumbel 4.58 52.94 -103.88 -101.95 
Paya Kangsar Gaussian* 0.99 73.79 -145.58 -143.82 
 Clayton 14.11 72.10 -142.20 -140.44 
 Frank 37.63 72.39 -142.78 -141.02 
 Joe 7.98 50.42 -98.84 -97.08 
 Gumbel 7.28 63.99 -125.98 -124.22 
Ladang Kuala Reman Gaussian* 0.95 43.45 -84.90 -83.21 
 Clayton 5.68 38.91 -75.82 -74.13 
 Frank 18.12 41.91 -81.83 -80.14 
 Joe 4.10 28.60 -55.21 -53.52 
 Gumbel 3.91 36.51 -71.01 -69.32 
Kuala Lipis Gaussian* 0.97 53.03 -104.05 -102.39 
 Clayton 7.74 49.36 -96.72 -95.05 
 Frank 25.62 51.88 -101.76 -100.10 
 Joe 5.57 36.72 -71.43 -69.77 
 Gumbel 5.22 46.32 -90.64 -88.98 
Kota Tinggi Gaussian 0.95 50.27 -98.55 -96.76 
 Clayton 4.53 39.76 -77.52 -75.73 
 Frank* 20.30 50.42 -98.84 -97.05 
 Joe 4.79 37.22 -72.44 -70.66 
 Gumbel 4.26 45.16 -88.33 -86.54 
Sembrong Gaussian 0.96 53.70 -105.40 -103.61 
 Clayton* 7.70 56.74 -111.48 -109.69 
 Frank 22.73 54.51 -107.01 -105.23 
 Joe 4.37 33.72 -65.45 -63.66 
 Gumbel 4.30 44.43 -86.86 -85.07 
Ladang Lambak Gaussian* 0.94 52.08 -102.16 -100.29 
 Clayton 4.84 41.70 -81.39 -79.52 
 Frank 15.85 45.64 -89.28 -87.41 
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 Joe 4.32 41.08 -80.17 -78.29 
 Gumbel 3.90 48.31 -94.62 -92.75 
Yong Peng Gaussian 0.95 54.37 -106.74 -104.91 
 Clayton* 10.20 70.18 -138.37 -136.54 
 Frank 25.34 60.70 -119.40 -117.57 
 Joe 3.71 30.06 -58.13 -56.30 
 Gumbel 3.95 41.95 -81.91 -80.08 
Ladang Ulu Paloh Gaussian* 0.96 62.41 -122.82 -120.89 
 Clayton 6.43 56.69 -111.38 -109.45 
 Frank 20.61 59.97 -117.94 -116.01 
 Joe 4.54 42.37 -82.74 -80.81 
 Gumbel 4.36 53.50 -104.99 -103.06 
Jementah Gaussian 0.94 50.71 -99.43 -97.60 
 Clayton 5.32 45.44 -88.87 -87.04 
 Frank* 20.10 53.01 -104.03 -102.20 
 Joe 4.07 30.93 -59.86 -58.03 
 Gumbel 3.85 41.27 -80.54 -78.71 
Segamat Gaussian 0.93 41.69 -81.38 -79.62 
 Clayton* 7.92 54.84 -107.67 -105.91 
 Frank 21.43 50.12 -98.25 -96.49 
 Joe 3.27 22.46 -42.93 -41.17 
 Gumbel 3.40 32.67 -63.34 -61.58 
Empangan Labong Gaussian 0.95 52.14 -102.28 -100.47 
 Clayton 6.80 51.23 -100.46 -98.66 
 Frank* 22.48 54.53 -107.05 -105.25 
 Joe 4.12 31.86 -61.72 -59.92 
 Gumbel 4.10 42.27 -82.54 -80.73 
Pusat Pertanian Endau Gaussian 0.91 43.50 -85.01 -83.06 
 Clayton* 6.77 56.30 -110.59 -108.64 
 Frank 19.00 54.88 -107.77 -105.82 
 Joe 2.58 22.35 -42.69 -40.74 
 Gumbel 2.86 31.81 -61.62 -59.67 
Stor Jps Endau Gaussian* 0.96 49.49 -96.98 -95.26 
 Clayton 5.51 41.29 -80.59 -78.87 
 Frank 21.19 48.02 -94.04 -92.33 
 Joe 4.74 33.52 -65.04 -63.33 
 Gumbel 4.34 42.21 -82.43 -80.71 
Parit Nibong Gaussian 0.93 43.36 -84.73 -82.92 
 Clayton 5.30 42.32 -82.64 -80.83 
 Frank* 16.72 44.13 -86.25 -84.45 
 Joe 3.30 26.68 -51.36 -49.55 
 Gumbel 3.34 34.83 -67.66 -65.85 
Rantau Panjang Gaussian* 0.97 53.45 -104.90 -103.23 
 Clayton 6.24 44.28 -86.55 -84.89 
 Frank 21.32 46.95 -91.90 -90.24 
 Joe 6.00 41.44 -80.87 -79.21 
 Gumbel 5.21 49.02 -96.03 -94.37 
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Jeniang Gaussian 0.95 60.33 -118.66 -116.69 
 Clayton* 10.68 79.67 -157.35 -155.37 
 Frank 28.22 73.50 -145.01 -143.04 
 Joe 4.05 35.68 -69.36 -67.39 
 Gumbel 4.23 50.01 -98.02 -96.05 
Telok Rimba Gaussian* 0.96 57.49 -112.98 -111.17 
 Clayton 6.77 51.61 -101.23 -99.42 
 Frank 21.53 54.61 -107.21 -105.41 
 Joe 4.63 37.93 -73.86 -72.06 
 Gumbel 4.45 48.27 -94.55 -92.74 
Jasin Gaussian* 0.97 61.71 -121.41 -119.65 
 Clayton 7.37 52.22 -102.44 -100.68 
 Frank 27.02 59.31 -116.61 -114.85 
 Joe 5.28 38.67 -75.34 -73.58 
 Gumbel 5.01 49.95 -97.91 -96.14 
Jalan Empat Gaussian* 0.98 59.01 -116.03 -114.44 
 Clayton 11.32 53.61 -105.22 -103.63 
 Frank 35.11 56.64 -111.27 -109.69 
 Joe 9.29 49.86 -97.71 -96.13 
 Gumbel 7.84 58.06 -114.12 -112.54 
Ladang Bukit Bertam Gaussian* 0.96 56.57 -111.14 -109.36 
 Clayton 6.74 49.59 -97.19 -95.40 
 Frank 22.09 53.78 -105.56 -103.77 
 Joe 5.01 37.57 -73.14 -71.36 
 Gumbel 4.58 47.79 -93.57 -91.79 
Batu Kurau Gaussian 0.95 47.38 -92.75 -90.97 
 Clayton 5.37 42.41 -82.83 -81.04 
 Frank* 19.25 48.53 -95.07 -93.28 
 Joe 3.93 29.77 -57.53 -55.75 
 Gumbel 3.80 38.81 -75.63 -73.84 
Ladang Sepang Gaussian* 0.96 62.15 -122.30 -120.37 
 Clayton 5.37 51.64 -101.28 -99.35 
 Frank 21.92 61.87 -121.75 -119.82 
 Joe 5.28 46.07 -90.14 -88.21 
 Gumbel 4.67 56.31 -110.63 -108.70 
Sungai Mangg Gaussian 0.96 45.96 -89.92 -88.25 
 Clayton 6.45 43.43 -84.86 -83.19 
 Frank* 21.46 46.96 -91.91 -90.25 
 Joe 4.80 30.29 -58.57 -56.91 
 Gumbel 4.43 39.39 -76.79 -75.12 
Ladang Bukit Kerayong Gaussian 0.95 42.93 -83.86 -82.25 
 Clayton* 9.51 51.51 -101.03 -99.42 
 Frank 26.03 48.58 -95.16 -93.55 
 Joe 4.32 26.69 -51.38 -49.77 
 Gumbel 4.43 36.35 -70.69 -69.08 
Ladang Tuan Mee Gaussian 0.86 23.34 -44.68 -43.10 
 Clayton* 5.17 32.04 -62.09 -60.50 
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 Frank 14.25 29.53 -57.05 -55.47 
 Joe 3.45 20.00 -37.99 -36.41 
 Gumbel 3.25 26.13 -50.26 -48.67 
Tanjung Karang Gaussian* 0.97 64.27 -126.55 -124.76 
 Clayton 6.07 47.89 -93.79 -92.00 
 Frank 24.79 58.48 -114.96 -113.17 
 Joe 7.59 53.08 -104.16 -102.37 
 Gumbel 6.06 61.11 -120.22 -118.44 
Sungai Bernam Gaussian 0.94 52.76 -103.52 -101.59 
 Clayton 5.09 48.75 -95.50 -93.56 
 Frank* 20.26 58.21 -114.43 -112.50 
 Joe 3.51 30.14 -58.28 -56.35 
 Gumbel 3.45 40.82 -79.65 -77.72 

 
Table A2. Goodness of Fit tests for CML 

Station Copula Estimate   Maximum 
Likelihood 

AIC BIC 

Meranti Gaussian 0.91 41.27 -80.55 -78.64 
 Clayton 2.47 21.52 -41.04 -39.13 
 Frank 15.72 46.71 -91.41 -89.50 
 Joe* 6.49 51.61 -101.23 -99.32 
 Gumbel 4.27 49.74 -97.48 -95.57 
Kuala Jambu Gaussian 0.90 30.80 -59.61 -57.90 
 Clayton 2.19 14.80 -27.60 -25.88 
 Frank 14.41 34.80 -67.60 -65.88 
 Joe* 6.94 43.76 -85.53 -83.81 
 Gumbel 4.20 39.37 -76.74 -75.03 
Stesen Keretapi Tumpat Gaussian 0.92 40.63 -79.26 -77.41 
 Clayton 2.77 23.23 -44.46 -42.61 
 Frank* 16.96 46.74 -91.49 -89.64 
 Joe 5.35 40.71 -79.42 -77.57 
 Gumbel 3.99 43.53 -85.06 -83.21 
Kampung Ibok Gaussian 0.89 32.02 -62.04 -60.21 
 Clayton 2.02 14.67 -27.33 -25.50 
 Frank 13.18 35.83 -69.67 -67.84 
 Joe* 6.84 48.26 -94.52 -92.69 
 Gumbel 4.03 42.08 -82.17 -80.34 
Dungun Gaussian 0.90 36.51 -71.02 -69.13 
 Clayton 2.45 21.09 -40.18 -38.29 
 Frank* 13.81 40.33 -78.67 -76.77 
 Joe 4.83 37.90 -73.79 -71.90 
 Gumbel 3.57 39.71 -77.42 -75.53 
Kuala Brang Gaussian 0.92 36.30 -70.59 -68.85 
 Clayton 3.12 24.04 -46.09 -44.35 
 Frank* 15.31 38.86 -75.73 -73.99 
 Joe 4.91 33.13 -64.26 -62.52 
 Gumbel 3.83 37.28 -72.55 -70.81 
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Kuala Telemong Gaussian 0.87 34.36 -66.71 -64.74 
 Clayton 2.18 19.34 -36.69 -34.72 
 Frank* 13.25 41.84 -81.67 -79.70 
 Joe 3.70 30.52 -59.05 -57.08 
 Gumbel 3.00 34.39 -66.77 -64.80 
Marang Gaussian 0.88 37.16 -72.31 -70.32 
 Clayton 2.35 22.06 -42.13 -40.14 
 Frank* 13.32 43.29 -84.58 -82.59 
 Joe 3.86 33.45 -64.90 -62.91 
 Gumbel 3.12 37.67 -73.34 -71.35 
Kuala Terengganu Gaussian 0.85 28.32 -54.64 -52.73 
 Clayton 2.17 18.17 -34.34 -32.42 
 Frank* 12.62 37.14 -72.28 -70.37 
 Joe 3.23 23.07 -44.15 -42.24 
 Gumbel 2.75 27.54 -53.08 -51.16 
Kampung Rahmat Gaussian 0.89 36.33 -70.66 -68.74 
 Clayton 2.42 21.10 -40.20 -38.29 
 Frank* 14.00 41.82 -81.63 -79.72 
 Joe 4.42 35.76 -69.52 -67.60 
 Gumbel 3.41 38.71 -75.42 -73.51 
Banggol Gaussian 0.90 34.30 -66.59 -64.78 
 Clayton 2.33 17.87 -33.75 -31.94 
 Frank 14.55 38.83 -75.67 -73.86 
 Joe* 6.10 42.92 -83.85 -82.04 
 Gumbel 4.01 41.26 -80.52 -78.72 
Setiu Gaussian 0.88 34.71 -67.42 -65.45 
 Clayton 2.27 20.78 -39.57 -37.59 
 Frank* 11.87 37.89 -73.78 -71.81 
 Joe 3.83 32.45 -62.90 -60.93 
 Gumbel 3.05 35.60 -69.19 -67.22 
Pelangi Kampung Jawi 2 Gaussian 0.92 36.44 -70.89 -69.17 
 Clayton 2.70 19.42 -36.84 -35.13 
 Frank 17.84 42.34 -82.68 -80.97 
 Joe* 7.04 44.94 -87.87 -86.16 
 Gumbel 4.63 43.70 -85.40 -83.69 
Bentong Gaussian 0.91 27.97 -53.94 -52.42 
 Clayton 2.39 13.92 -25.85 -24.32 
 Frank 16.25 32.14 -62.27 -60.74 
 Joe* 8.53 41.62 -81.23 -79.71 
 Gumbel 4.78 36.40 -70.80 -69.27 
Paya Membang Gaussian 0.89 34.45 -66.90 -65.03 
 Clayton 2.27 18.55 -35.09 -33.22 
 Frank* 13.60 39.05 -76.10 -74.22 
 Joe 4.47 35.13 -68.26 -66.39 
 Gumbel 3.38 37.06 -72.12 -70.25 
Kampung Serambi Gaussian 0.92 44.59 -87.18 -85.24 
 Clayton 2.90 26.35 -50.70 -48.76 
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 Frank* 17.78 52.91 -103.81 -101.88 
 Joe 5.29 42.59 -83.19 -81.25 
 Gumbel 4.01 46.75 -91.49 -89.56 
Kerdau Gaussian 0.92 35.36 -68.73 -66.99 
 Clayton 2.58 18.94 -35.88 -34.15 
 Frank* 16.83 41.33 -80.67 -78.93 
 Joe 6.08 40.44 -78.89 -77.15 
 Gumbel 4.21 40.65 -79.30 -77.56 
Sanggang Gaussian 0.92 39.93 -77.86 -76.01 
 Clayton 2.69 22.41 -42.83 -40.98 
 Frank* 16.67 46.32 -90.64 -88.79 
 Joe 5.53 41.95 -81.90 -80.05 
 Gumbel 4.02 44.01 -86.02 -84.17 
Pekan Gaussian 0.87 29.32 -56.63 -54.76 
 Clayton 1.82 13.04 -24.08 -22.21 
 Frank 11.45 32.30 -62.61 -60.73 
 Joe* 5.19 40.09 -78.17 -76.30 
 Gumbel 3.42 36.83 -71.65 -69.78 
Penor Gaussian 0.88 31.89 -61.77 -59.92 
 Clayton 2.18 17.02 -32.05 -30.20 
 Frank* 13.31 37.11 -72.22 -70.37 
 Joe 4.07 30.79 -59.59 -57.74 
 Gumbel 3.16 33.22 -64.43 -62.58 
Kuala Krau Gaussian 0.90 37.61 -73.21 -71.28 
 Clayton 2.23 19.08 -36.16 -34.22 
 Frank 14.27 42.99 -83.98 -82.05 
 Joe* 5.56 45.67 -89.34 -87.41 
 Gumbel 3.80 44.62 -87.24 -85.31 
Paya Kangsar Gaussian 0.90 32.93 -63.85 -62.09 
 Clayton 2.22 15.90 -29.81 -28.04 
 Frank 14.45 36.51 -71.03 -69.27 
 Joe* 7.22 47.35 -92.70 -90.94 
 Gumbel 4.29 42.07 -82.15 -80.39 
Ladang Kuala Reman Gaussian 0.90 30.13 -58.26 -56.57 
 Clayton 2.18 14.35 -26.69 -25.00 
 Frank 14.18 33.29 -64.57 -62.88 
 Joe* 7.38 44.65 -87.30 -85.61 
 Gumbel 4.29 39.01 -76.02 -74.33 
Kuala Lipis Gaussian 0.93 35.04 -68.08 -66.42 
 Clayton 2.62 17.87 -33.74 -32.08 
 Frank 19.24 42.01 -82.02 -80.35 
 Joe* 8.90 49.64 -97.29 -95.63 
 Gumbel 5.18 44.88 -87.76 -86.09 
Kota Tinggi Gaussian 0.89 31.74 -61.48 -59.70 
 Clayton 2.34 17.67 -33.34 -31.55 
 Frank* 14.57 37.62 -73.23 -71.45 
 Joe 4.67 32.46 -62.93 -61.15 
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 Gumbel 3.50 34.42 -66.84 -65.06 
Sembrong Gaussian 0.90 34.44 -66.89 -65.10 
 Clayton 2.75 21.65 -41.30 -39.52 
 Frank* 16.08 41.85 -81.69 -79.91 
 Joe 4.37 30.36 -58.72 -56.94 
 Gumbel 3.52 34.94 -67.87 -66.09 
Ladang Lambak Gaussian 0.87 29.07 -56.15 -54.28 
 Clayton 1.83 13.08 -24.17 -22.30 
 Frank 10.95 30.75 -59.51 -57.63 
 Joe* 4.90 37.16 -72.32 -70.45 
 Gumbel 3.27 34.73 -67.45 -65.58 
Yong Peng Gaussian 0.89 32.55 -63.10 -61.27 
 Clayton 2.54 20.70 -39.40 -37.58 
 Frank* 14.61 39.87 -77.74 -75.91 
 Joe 3.61 25.58 -49.15 -47.32 
 Gumbel 3.07 30.62 -59.24 -57.41 
Ladang Ulu Paloh Gaussian 0.87 32.83 -63.66 -61.73 
 Clayton 1.91 14.92 -27.84 -25.90 
 Frank 12.42 37.31 -72.61 -70.68 
 Joe* 5.09 42.02 -82.05 -80.12 
 Gumbel 3.45 39.95 -77.90 -75.97 
Jementah Gaussian 0.93 43.74 -85.48 -83.65 
 Clayton 3.02 25.17 -48.34 -46.51 
 Frank 18.02 48.64 -95.28 -93.45 
 Joe 6.42 47.16 -92.31 -90.48 
 Gumbel* 4.52 48.73 -95.45 -93.62 
Segamat Gaussian 0.89 31.66 -61.31 -59.55 
 Clayton 3.02 23.69 -45.38 -43.62 
 Frank* 15.15 38.66 -75.31 -73.55 
 Joe 3.46 22.33 -42.67 -40.91 
 Gumbel 3.08 28.61 -55.22 -53.46 
Empangan Labong Gaussian 0.91 35.55 -69.10 -67.29 
 Clayton 2.36 18.17 -34.35 -32.54 
 Frank 14.92 39.72 -77.45 -75.64 
 Joe* 6.81 47.31 -92.63 -90.82 
 Gumbel 4.26 44.00 -86.00 -84.19 
Pusat Pertanian Endau Gaussian 0.84 28.12 -54.23 -52.28 
 Clayton 1.77 13.44 -24.88 -22.92 
 Frank* 11.04 33.59 -65.17 -63.22 
 Joe 4.14 32.47 -62.94 -60.99 
 Gumbel 2.99 32.44 -62.89 -60.94 
Stor Jps Endau Gaussian 0.93 38.42 -74.83 -73.12 
 Clayton 2.94 21.70 -41.39 -39.68 
 Frank 17.77 42.87 -83.74 -82.03 
 Joe 6.85 43.83 -85.66 -83.95 
 Gumbel* 4.64 44.03 -86.05 -84.34 
Parit Nibong Gaussian 0.85 25.55 -49.10 -47.29 
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 Clayton 1.76 11.59 -21.19 -19.38 
 Frank 10.85 28.68 -55.35 -53.55 
 Joe* 4.15 29.65 -57.30 -55.50 
 Gumbel 3.00 29.31 -56.61 -54.81 
Rantau Panjang Gaussian 0.92 34.72 -67.44 -65.78 
 Clayton 2.71 18.84 -35.69 -34.02 
 Frank 16.94 38.94 -75.87 -74.21 
 Joe* 7.26 43.42 -84.84 -83.18 
 Gumbel 4.65 41.67 -81.34 -79.67 
Jeniang Gaussian 0.89 36.91 -71.82 -69.85 
 Clayton 2.46 22.79 -43.57 -41.60 
 Frank* 14.77 46.24 -90.48 -88.51 
 Joe 4.25 34.96 -67.91 -65.94 
 Gumbel 3.37 39.18 -76.36 -74.39 
Telok Rimba Gaussian 0.90 34.03 -66.07 -64.26 
 Clayton 2.17 16.07 -30.14 -28.33 
 Frank 14.68 38.73 -75.46 -73.65 
 Joe* 7.49 51.42 -100.84 -99.03 
 Gumbel 4.39 44.93 -87.87 -86.06 
Jasin Gaussian 0.91 34.54 -67.08 -65.32 
 Clayton 2.41 17.92 -33.83 -32.07 
 Frank 15.06 38.34 -74.69 -72.93 
 Joe* 6.37 42.93 -83.86 -82.10 
 Gumbel 4.16 41.01 -80.02 -78.26 
Jalan Empat Gaussian 0.94 34.95 -67.90 -66.31 
 Clayton 3.06 19.68 -37.35 -35.77 
 Frank* 19.96 40.57 -79.14 -77.55 
 Joe 6.78 37.97 -73.94 -72.36 
 Gumbel 4.69 38.99 -75.98 -74.39 
Ladang Bukit Bertam Gaussian 0.93 40.10 -78.21 -76.42 
 Clayton 3.04 24.23 -46.46 -44.67 
 Frank 16.18 42.69 -83.38 -81.59 
 Joe 5.88 41.62 -81.24 -79.45 
 Gumbel* 4.27 43.75 -85.51 -83.73 
Batu Kurau Gaussian 0.89 30.47 -58.93 -57.15 
 Clayton 2.17 15.84 -29.68 -27.89 
 Frank* 13.46 35.50 -69.01 -67.22 
 Joe 4.59 31.82 -61.65 -59.86 
 Gumbel 3.37 33.05 -64.10 -62.32 
Ladang Sepang Gaussian 0.90 38.59 -75.19 -73.26 
 Clayton 2.48 22.03 -42.05 -40.12 
 Frank* 14.89 45.62 -89.23 -87.30 
 Joe 4.46 35.94 -69.88 -67.95 
 Gumbel 3.45 39.67 -77.34 -75.41 
Sungai Mangg Gaussian 0.94 40.45 -78.90 -77.24 
 Clayton 3.32 23.55 -45.09 -43.43 
 Frank 18.99 43.33 -84.66 -82.99 
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 Joe 7.41 44.77 -87.53 -85.87 
 Gumbel* 5.02 45.43 -88.85 -87.19 
Ladang Bukit Kerayong Gaussian 0.91 30.37 -58.75 -57.14 
 Clayton 2.57 16.63 -31.27 -29.66 
 Frank* 16.66 35.68 -69.36 -67.75 
 Joe 6.02 35.28 -68.56 -66.95 
 Gumbel 4.18 35.52 -69.03 -67.42 
Ladang Tuan Mee Gaussian 0.87 23.04 -44.08 -42.50 
 Clayton 2.77 17.42 -32.84 -31.25 
 Frank 14.27 29.08 -56.17 -54.59 
 Joe 4.84 27.20 -52.41 -50.82 
 Gumbel* 3.74 29.65 -57.29 -55.71 
Tanjung Karang Gaussian 0.92 37.60 -73.20 -71.41 
 Clayton 2.47 18.79 -35.58 -33.79 
 Frank 16.95 43.17 -84.34 -82.56 
 Joe* 8.81 56.25 -110.50 -108.72 
 Gumbel 4.98 49.25 -96.50 -94.71 
Sungai Bernam Gaussian 0.90 37.68 -73.36 -71.43 
 Clayton 2.44 21.70 -41.39 -39.46 
 Frank* 14.68 44.64 -87.28 -85.35 
 Joe 4.02 32.65 -63.31 -61.38 
 Gumbel 3.24 37.04 -72.08 -70.15 
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