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1 Abstract: Itis increasingly common for experiments in biology and medicine to involve large numbers
> of hypothesis tests. A natural graphical method for visualizing these tests is to construct a histogram
s from the p-values of these tests. In this article, we examine the shapes, both normal and abnormal,
o that these histograms can take on, as well as present simple inferential procedures that help to
s interpret the shapes in terms of diagnosing potential problems with the experiment. We examine
s potential causes of these problems in detail, and discuss potential remedies. Throughout, examples
»  of abnormal-looking p-value histograms are provided and based on case studies involving real
s  biological experiments.

o Keywords: p-value, histograms, inference, diagnostics

10 1. Introduction

1 Since the advent of high-throughput technology,
1z it has become common for experiments in biology 1000 —
1z and medicine to involve large numbers of hypothesis
. . .. 800 —
1« tests. A natural graphical method for visualizing
. >
15 the body of these tests is to take the p-values from 2 gog
e these tests and construct a histogram. If the null qé_
1w hypothesis is true for all features!, these p-values £ 400
e follow a uniform distribution, which corresponds 200
1 to a flat-looking histogram. Figure 1 illustrates an
20 idealized version of this histogram in which 10,000 0 -
xn p-values have been drawn from a uniform random ! ! ! ! ! !
» number generator. 00 02 04 06 08 10

23 Of course, one typically hopes that some of these
22 null hypotheses are incorrect, and that there is an
2 overabundance of low p-values. For example, Figure 2 Figure 1. Simulated p-values from an idealized
26 illustrates the p-values of an experiment by Rogier et al. ~setting in which all null hypotheses are true.

2z [1] where approximately 20,000 genes were compared

2s  using two sample t-tests. In the histogram, the p-values appear to be relatively uniform except for the
2 clear overabundance of very low p-values.

30 There has been a tremendous amount of work in the past two decades, in particular involving
a1 false discovery rates [2], extending multiple comparison procedures to large-scale simultaneous
sz inference questions such as these. Naturally, the vast majority of this work has focused on questions
s involving individual hypotheses. Our focus here, however, concerns what the p-value histogram says
sa  about the experiment as a whole. Some examples will help to illustrate what we mean by this.

p

1 Throughout, we use the generic term “feature” to refer to the quantity being measured in a high-throughput experiment;

in our examples the features are gene expression levels, but all of the ideas in the article are equally applicable to any
high-throughput measurement such as metabolite or protein concentrations.
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35 Figure 3 displays another set of p-values from 80 —
s Rogier et al. [1] where two other groups were

sz compared using two sample t-tests. In the experiment, 60 —
;s not a single hypothesis could be rejected at the 10%
s false discovery rate level. And yet, as we can see
s from the figure, the p-values clearly do not seem
a1 to be uniformly distributed. There is an apparent 20
2 overabundance of low p-values, suggesting the
43 existence of genes in mice that genuinely responded to
4 dextran sulfate sodium (DSS) in a three-way ANOVA. I I I I I |
« However, the experiment is not sufficiently powered 00 02 04 06 08 10
s to detect them after making corrections for multiple

Frequency
N
o
|

a7 testing. p
48 Lastly, Figure 4 presents the p-values of an
4 experiment by Fischl et al. [3] where paired t-tests

Figure 2. p-values from Rogier et al. [1]

so were used to compare dependent samples. From the

s histogram, it appears as though something has gone wrong: there is an abundance not of low p-values
s= but of p-values near 0.3. In summary, we have encountered four examples: no interesting features to
ss detect (Figure 1), interesting features easily detected (Figure 2), interesting features present but unable
s to be detected (Figure 3), and finally, a problematic experiment (Figure 4). We discuss these cases in
ss greater detail below and provide diagnostics for distinguishing between them.

s« 2. Methods

sz 2.1. Higher criticism

58 For the data presented in Figure 3, not a single
ss null hypothesis could be rejected at a false discovery 30
e rate of 5%. And yet, it seems clear from looking at o5 |

e the histogram that something is going on and that

s= more low p-values are present than one would expect 2 20 7]
c
es by chance alone. This claim can be tested using @ 15 —
e« quantiles of the binomial distribution. Let b denote g
L 10

es the bin width of the histogram, m denote the number
es of hypotheses being tested, X denote the number of 5 —
e p-values in the bin closest to zero, and F, (m, p) denote

es the a-level quantile of the cumulative distribution 0~ I I I I I I
eo function (CDF) of the binomial distribution with 00 02 04 06 08 1.0
70 size m and probability p. Then, under the global

7 null hypothesis Hy; : p; ~ Unif(0,1) for all j, the P

2 probability that X exceeds Fos(m, b) is only 5%. NOTE:
73 Arguably, the .975 quantile could be used instead, as
ze it would be consistent with the standard of always
7 applying two-sided tests, although it would seem a one-sided test makes more sense here.
76 Returning to our example from Rogier et al. [1] in Figure 3, b = 0.05 and m = 201, so Fo5(m, b) =
7z 15. Figure 5 superimposes this threshold upon our earlier histogram. As the figure illustrates, the fact
7e  that 27 p-values fall below 0.05 provides significant evidence to reject the global null hypothesis, even
7 though we cannot specifically reject any individual null hypothesis.
This is not a new idea in statistics, and dates
back at least to John Tukey, who referred to this 2000 —
question as the “higher criticism” [4]. Tukey

Figure 3. p-values from Rogier et al. [1]
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proposed the following test statistic, based on a normal
approximation to the binomial:

HCogs = v/m {£ —0.05} —0.05,

so Where x is the number of p-values that fall below 0.05.
s One may then reject the global null at a 5% significance
e2 level if HC > 1.645. This leads to a very similar
es threshold as the above method for large numbers of
se tests (for example, with m = 1,000 tests, the binomial
es threshold is 62 and the Tukey threshold is 63). We
ss prefer the more accurate binomial threshold for our
ez purposes here, but note that Tukey’s closed-form
s approach has advantages for theoretical study and
s has received renewed attention in the past decade in the field of high-dimensional data analysis [5-7].

%0 So, what to make of situations like that in
o1 Figure 5? Obviously, the main point of these sorts 30
22 of experiments is to assess the veracity of individual o5 —

o3 hypotheses, and in that sense an experiment giving

os rise to Figure 5 must be viewed as unsuccessful. 2 20 7
. e o =
s However, the higher criticism here implies that there ¢ 15
se is something to find — this experiment failed to g 0
L 10 —

oz find it, but another experiment, perhaps carried out
o with an improved experimental design or additional 5
9o observations, might be successful. This is in contrast

10 to the conclusion one would reach after looking 0- | I I I I I
101 at the histogram in Figure 1, which suggests that 00 02 04 06 08 10
102 there is little hope in conducting another experiment

103 investigating the same biological question, as there is P

ws  simply nothing to find. Figure 5. Rogier ef al. [1]: Higher criticism

s 2.2. Quality control

106 The same basic idea can be used to test for
17 departures from uniformity anywhere between 0 and 1, not necessarily only among low p-values. It
108 is straightforward to extend the approach from Section 2.1 to this case using a Bonferroni correction.
10 With a binwidth of 0.05, this amounts to checking 20 bins, and therefore using a corrected significance
10 threshold of 0.05/20=0.0025, or equivalently, a frequency threshold of Fggy5(m, b). For the data from
11 the study by Fischl et al. [3] in Figure 4, m = 23,332 and b = 0.05, so the frequency threshold is 1261.
12 In Figure 6, this threshold is superimposed on the original histogram.
113 As another example of an experiment whose p-value histogram displays a strange departure from
ue uniformity, Figure 7 presents the p-values of an unpublished NanoString gene expression experiment
us conducted in 2012 by Dr. Luke Bradley at the University of Kentucky. These p-values were extracted
us from a two-way interaction effect in a three-way ANOVA model for each gene.
117 This procedure and the bound we have described are useful as a test of quality control. Here, it
us establishes that the excess of p-values around 0.3 in Figure 6 and the excess of p-values around 1 in
us Figure 7 are not due merely to random chance, but that some systematic deviation from the theoretical
120 null distributions of the test statistics has occurred.
121 In contrast, Figure 8 presents results from an
122 experiment by Matthews and Bridges [8], in which 2000 —
123 steers were assigned randomly to graze either in a
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124 pasture that contained high levels of ergot alkaloids
125 (n = 10) or one that did not (n = 9). The
126 p-values come from a two-sample t-test of gene
127 expression levels in the liver of the two groups of
128 steers, as measured by NanoString. Although there is
120 something of an abundance of p-values near 0.6, this
130 excess is well within the bounds of random variation.

11 2.3. Causes of anomalous p-value histograms

132 In this section, we explore some of the potential

133 causes of the anomalous p-value histograms we have

132 shown above. A related discussion is given by Brad

135 Efron in Section 5 of Efron [9] and Chapter 6.4 of Efron

136 [10]; we hope to add to Efron’s remarks by providing

137 specific instances of these violations to illustrate the connection between the cause and the resulting
13s  shape of the p-value histogram. In Sections 2.3.1 and 2.3.2, we simulate m = 10,000 features belonging
130 to two groups and use a two-sample {-test to test the null hypothesis that the means of the two groups
140 are the same.

1 2.3.1. Low power

142 Here, we simulate n = 4 observations in each of two groups from the standard normal distribution.
a3 For 80% of the features, there is no difference in the means. For the remaining 20%, the difference in
14s  means was drawn from a Uniform(-2,2) distribution. The p-value histogram and accompanying higher
s criticism threshold are shown in the left panel of Figure 9.
146 With n = 4, there is insufficient evidence to reject
17 any of the individual null hypotheses, even at a liberal

1es FDR cutoff of 30%. Nevertheless, the higher criticism 00

1o threshold clearly indicates that some of the features _ 50

10 are non-null. The middle panel of Figure 9 shows a % 40 —

11 decomposition of the p-value histogram, revealing the 3z 3¢

12 contributions from the null and non-null features. As f’—: 20

153 one might imagine from the shape of the histogram,

1ss  the rise on the left side results from the fact that most 10

15 of the non-null features have low p-values. 0 - | : : : : |
156 However, this is not true for all of the non-null

1z features. With insufficient power, many of the 00 02 04 06 08 10
1ss  non-null features turn out to have moderate, or even p

10 large p-values and can be found throughout all bins
w0 Of the histogram. Obtaining these results is likely to Figure 7. p-values from Bradley NanoString
1 be disappointing, since no significant features could ~experiment

162 be detected, but the p-value histogram and higher

163 criticism indicate reasons for optimism. Although the initial experiment was unable to distinguish
16s null and non-null features, there are indeed interesting features to be discovered, and a second, more
165 adequately powered experiment may be successful at finding them.

166 To illustrate this, we simulated data under the

1z same settings as above, but with a sample size of n = 20
1es 10 in each group. In marked contrast to the previous
10 Tresults, we can now safely reject 504 null hypotheses
1o at the 5% FDR level. These results are displayed on
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i1 the right panel of Figure 9, and show much clearer
12 separation between null and non-null features.

173 2.3.2. Incorrect distributional assumptions

174 In Figure 10, we simulate n = 3 observations in

175 each of two groups from the exponential distribution

176 with rate 1, then apply a two-sample f-test for

17z each feature. Thus, in this example, all 10,000

1ze  features satisfy the null hypothesis. The derivation of

170 p-values from the t-test assumes normally distributed

1.0 data; here, that assumption is highly inaccurate, the

;1 exponential distribution being both highly skewed

1.2 and having considerably thicker tails than the normal distribution.

183 Problems with distributional assumptions can be alleviated by choosing more robust,
12 nonparametric methods. For example, replacing the ¢-test in the above example with a Wilcoxon rank
15 sum test produces an appropriate, uniform-looking histogram. In addition, distributional problems
1es  are alleviated as # increases due to the central limit theorem. Increasing # to 30 in each group for this
1z setting also yields a flat, uniform-looking histogram essentially indistinguishable from Figure 1.

e 2.3.3. Correlation among features

189 Perhaps the most common cause of an abnormal-looking histogram, however, is correlation
10 among features. With respect to p-value histograms, correlation among the features being tested
101 does not necessarily alter the shape of the histogram: marginally, each p-value still follows a uniform
102 distribution under the null. However, it does mean that there is a greater chance of seeing an irregular
103 deviation from uniformity in the p-value histogram. For example, imagine a bundle of highly correlated
s features. Due to the correlation, these features will have similar p-values. Where the bundle lies is
15 uniformly distributed, but wherever it lands, a “bump” will appear in the histogram.

Null = Non-null
800 — 800 7 1500
600 7 . 1000
> > I > —
%) [5) I ] [5)
c c c
S 400 - S 400 I II LT M 5
o o o
o o 2
[T w w 500
200 — 200
0 - 0 -
T T T T T ] 0~ | : : : : : T T T T T ]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0 0.2 0.4 0.6 0.8 1
p p p

Figure 9. Left: Simulated data with low power. Middle: Same data as in left panel, showing
contributions from null and non-null genes. Right: Data simulated under same conditions as left panel,
but with adequate power.

196 The higher criticism and quality control bounds in Sections 2.1 and 2.2 are based on the
17 assumption that the features being tested are mutually independent of each other. The primary
108 practical consequence of correlation among features is that that the QC bound given in Section 2.2 is
100 too low, leading one to conclude that an error has occurred when the irregular shape may simply be
200 explained by correlation among the features.
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201 Fortunately, given an adequate sample size, it is 700
202 possible to assess the impact of correlation among 600 —
203 features using permutation approaches. The idea 500
20« underlying the permutation approach is simple. Let &
20 X denote the n x m matrix of feature values (here, § 400 —
200 gene expression data), with each row of X denoting g 300 —
207 an experimental unit consisting of m features. By “ 200 —
20 permuting the rows of X, we accomplish two things. 100 —
200 First, we eliminate any association between X and o
20 any other variables or group memberships that we | I I I I I
2 are testing for. Second, by permuting entire rows 00 02 04 06 08 1.0
22 of X intact, we preserve any correlation among the
=3 rows that is present in the data. Thus, by carrying P

za  out the original test on random permutations of X, we

Figure 10. A t-test was applied, even though the
215 Obtain p-values from the null distribution but without

data come from a highly non-normal (exponential)
zue  assuming independence among features. distribution.

217 We repeated the test for the two-way interaction

22 in the Bradley data seen in Figure 7 for 1,000 random permutations of the expression data. For each
219 permutation, we made a p-value histogram and recorded the count in the most highly populated bin.
220 Figure 11 plots the histogram of the original p-values with two lines superimposed. One is the original
2z quality control metric from Section 2.2 which assumes independence among the hypothesis tests, the
222 other is the 95th percentile of the maximum counts from the permutation histograms.

223 The difference between the lines is striking. In
22¢  this experiment, the correlation between genes is quite 250 71 permutation
22 high (root-mean-square correlation among the 536
. . 200 —

226 genes selected for the NanoString experiment was

. >
227 0.75). As a result, the spike of p-values near 0.9 % 150 —
222 Observed in the data could easily have arisen simply =
20 from the correlation among genes. In fact, given £ 100 —

230 the correlation among features, the abnormal-looking

50 —| Independence
21 histogram of Figure 7 is not particularly abnormal at

232 all, a point clearly communicated by the large gap o -

233 between the p-value histogram and the “Permutation” ! ! ! ! ! !
23 line in Figure 11. 00 02 04 06 08 10
235 Correlation among features also affects the higher

236 criticism threshold of Section 2.1, although not P

27 as much as for quality control thresholds. The Figure 11. Bradley experiment: Permutation vs
23 same permutation approach can be applied to independence approaches.

230 Obtain correlation-adjusted higher criticism thresholds,

a0 although in this case we would examine the 95th percentile of the counts for the first bin rather than
21 the maximum count. For the Rogier ef al. [1] data of Figure 5, the higher criticism bound assuming
22 independence was 15, while the higher criticism bound obtained from the permutation approach was
a3 19.4. This is far less dramatic than the difference in Figure 11 because while correlation leads to bumps
2as  in the p-value histogram, those bumps are not systematically located in the lowest bin.

245 Unfortunately, there are limitations to the permutation approach. One is that it can be
206 computer-intensive if p is large or if the tests themselves are time-consuming to perform. The other
247 issue is that permutation approaches cannot be applied to very small samples. For example, we cannot
2es  USe a permutation approach to investigate the Fischl et al. [3] data from Figure 6, which involves a
20  One-sample t-test with only 3 pairs of subjects. Although the idea can be extended to paired data (by
20 randomly assigning signs to the differences rather than permuting rows), in this case there are only
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=1 four distinct random assignments that can be made, and hence four different null histograms to serve
22 as a reference for comparison, which is not sufficient for estimating a 95th percentile.

283 This is a fundamental limitation with applying permutation approaches to small samples,
ze  although the number of available permutations rapidly increases with sample size. For example,
25 in a two-sample study with n = 3 in each group, only 10 distinct permutations are available; however,
26 with n = 10 in each group, the number of permutations increases to 92,378.

257 For both of these reasons (small sample sizes and computational burden), it is desirable to develop
s an analytic method for estimating higher criticism and quality control thresholds that account for
20 correlation among features. Such a development is beyond the scope of this manuscript, but we
260 Tre-examine this issue in the discussion.

201 2.4. Remedies

262 When faced with an abnormal-looking p-value histogram, what action should a researcher take?
263 In this section, we describe possible remedies.
264 One potential remedy is to increase the sample size by collecting more data. This is most clearly

2es indicated in situations like Figure 3, where there is a clear indication that non-null features are present,
2es but unable to be reliably distinguished from noise. The higher criticism threshold is potentially a very
26z useful tool to guide this decision in terms of whether the additional cost of collecting more data is
2es  likely to bear fruit or not.

2690 Alternatively, abnormal-looking p-value histograms may serve as an indication that the
270 assumptions being made in the statistical analysis are not being met (see Section 2.3.2) and that
ann  one should consider an alternative approach — for example, a Wilcoxon rank sum test instead of a
22 two-sample ¢t —test. It is worth noting that higher sample sizes are beneficial here as well. Not only
23 do larger sample sizes increase the robustness of many statistical tests, they also allow one to fit less
z7a  restrictive statistical models.

275 Lastly, we note that abnormal p-value histograms may also indicate that the experimental design
2z should be revised. Although to some extent correlation among features is an unavoidable biological
277 fact, it is also the case that careful experimental designs (randomization, blocking, balance, etc.) reduce
2rs  this correlation and the potential for confounding factors to induce correlation in an experiment.

279 An element of design particularly relevant to expression and other sorts of “-omic” data is the
200 issue of normalization. Proper normalization procedures substantially reduce correlations in this
21 sort of data [11]. However, while normalization procedures are well-developed for long-standing
2e2 technologies such a microarray data [12], this is often not the case for more recent technologies such
2e3  as NanoString and RNA-Seq.

28a 3. Discussion

205 In this article, we have taken a closer look at p-value histograms with respect to two questions of
2e6  Vvital practical importance:

207 e Higher criticism: Is there a significant excess of low p-values? In other words, is there any
208 evidence of a systematic biological response in the experiment?
280 e Quality control: Has something gone wrong in this experiment?
200 We present straightforward analytic diagnostics to address these questions, as well as a

201 permutation-based approach capable of accounting for correlation among features. As Figure 11
202 demonstrates, correlation among features is an important issue as it has the potential to dramatically
203 affect p-value histograms.

208 Our derivation of higher criticism bounds in Section 2.1 and quality control bounds in Section 2.2
205 assumes that the p-values are “proper” in the sense that Pr(p < a) = « (i.e., the p-values are uniformly
206 distributed) under the null hypothesis . Many common tests, especially those involving discrete
207 outcomes, are valid in that Pr(p < a) < a under the null, but not proper. For these conservative tests,
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20 the higher criticism derivation still holds, although like the tests themselves, the threshold will be
200 conservative. However, for the quality control bound, this issue causes a problem, as a bump in the
so0  histogram could be the result of the conservative nature of the test and not an actual problem with the
s1  experiment. The quality control bounds derived in Section 2.2 are not likely to be useful for such tests,
sz although the permutation approach may still be used.

303 An additional factor that can distort p-value histograms, but which is not discussed in Section 2.3,
s0s is the effect of correlation among sampling units, possibly brought on by unmeasured confounding
s0s variables. The effect of correlation among samples (as opposed to correlation among features) is to
s0s broaden the null distribution. If this correlation is not accounted for, it will lead to an inflation of test
07 statistics and a failure to preserve the proper size of the test, rejecting the null hypothesis too often.
s This is obviously an important issue, although p-value histograms are of little help in diagnosing this
;00 issue, since when this issue is present, the histogram appears similar to “ideal” results, with a clear
a0 excess of small p-values.

a1 Finally, as noted in Section 2.3.3, it is desirable to develop an analytic method capable of computing
a2 higher criticism and quality control thresholds without the need for a permutation approach. Such a
sz method, however, would need to both estimate and account for all pairwise correlations among the
as  features. This is potentially a very large number, especially for genome-wide expression studies. These
a5 statistical challenges are not necessarily insurmountable, but they do fall beyond the intended scope of
aie  this article; it is a problem we are currently working on.

a17 Despite these limitations, it is our hope that the tools and examples presented in this article
s will be useful to researchers engaged in testing of high-throughput biological data, particularly since
a1s  the notion of “troubleshooting” such experiments is largely absent from the scientific literature as
;20 problematic and underpowered studies often go unpublished.

s21 Funding: This research received no external funding
322 Conflicts of Interest: The authors declare no conflict of interest.
s Appendix

324 The histograms can easily be reproduced in R (www.r-project.org) with the following code, which
;25 assumes that a vector p of p-values has already been calculated:

26 b <— 0.05
a2z hist(p, breaks=seq(0, 1, b), col="gray", border="white")

s20 # Higher criticism:
30 abline (h=gbinom (.95, length(p), b), col="red")

2 # Quality control:
;3 abline (h=gbinom(1—b*.05, length(p), b), col="blue")
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