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Abstract: It is increasingly common for experiments in biology and medicine to involve large numbers 
of hypothesis tests. A natural graphical method for visualizing these tests is to construct a histogram 
from the p-values of these tests. In this article, we examine the shapes, both normal and abnormal, 
that these histograms can take on, as well as present simple inferential procedures that help to 
interpret the shapes in terms of diagnosing potential problems with the experiment. We examine 
potential causes of these problems in detail, and discuss potential remedies. Throughout, examples 
of abnormal-looking p-value histograms are provided and based on case studies involving real 
biological experiments.
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1. Introduction10
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Figure 1. Simulated p-values from an idealized
setting in which all null hypotheses are true.

Since the advent of high-throughput technology,11

it has become common for experiments in biology12

and medicine to involve large numbers of hypothesis13

tests. A natural graphical method for visualizing14

the body of these tests is to take the p-values from15

these tests and construct a histogram. If the null16

hypothesis is true for all features1, these p-values17

follow a uniform distribution, which corresponds18

to a flat-looking histogram. Figure 1 illustrates an19

idealized version of this histogram in which 10,00020

p-values have been drawn from a uniform random21

number generator.22

Of course, one typically hopes that some of these23

null hypotheses are incorrect, and that there is an24

overabundance of low p-values. For example, Figure 225

illustrates the p-values of an experiment by Rogier et al.26

[1] where approximately 20,000 genes were compared27

using two sample t-tests. In the histogram, the p-values appear to be relatively uniform except for the28

clear overabundance of very low p-values.29

There has been a tremendous amount of work in the past two decades, in particular involving30

false discovery rates [2], extending multiple comparison procedures to large-scale simultaneous31

inference questions such as these. Naturally, the vast majority of this work has focused on questions32

involving individual hypotheses. Our focus here, however, concerns what the p-value histogram says33

about the experiment as a whole. Some examples will help to illustrate what we mean by this.34

1 Throughout, we use the generic term “feature” to refer to the quantity being measured in a high-throughput experiment;
in our examples the features are gene expression levels, but all of the ideas in the article are equally applicable to any
high-throughput measurement such as metabolite or protein concentrations.
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Figure 2. p-values from Rogier et al. [1]

Figure 3 displays another set of p-values from35

Rogier et al. [1] where two other groups were36

compared using two sample t-tests. In the experiment,37

not a single hypothesis could be rejected at the 10%38

false discovery rate level. And yet, as we can see39

from the figure, the p-values clearly do not seem40

to be uniformly distributed. There is an apparent41

overabundance of low p-values, suggesting the42

existence of genes in mice that genuinely responded to43

dextran sulfate sodium (DSS) in a three-way ANOVA.44

However, the experiment is not sufficiently powered45

to detect them after making corrections for multiple46

testing.47

Lastly, Figure 4 presents the p-values of an48

experiment by Fischl et al. [3] where paired t-tests49

were used to compare dependent samples. From the50

histogram, it appears as though something has gone wrong: there is an abundance not of low p-values51

but of p-values near 0.3. In summary, we have encountered four examples: no interesting features to52

detect (Figure 1), interesting features easily detected (Figure 2), interesting features present but unable53

to be detected (Figure 3), and finally, a problematic experiment (Figure 4). We discuss these cases in54

greater detail below and provide diagnostics for distinguishing between them.55

2. Methods56

2.1. Higher criticism57
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Figure 3. p-values from Rogier et al. [1]

For the data presented in Figure 3, not a single58

null hypothesis could be rejected at a false discovery59

rate of 5%. And yet, it seems clear from looking at60

the histogram that something is going on and that61

more low p-values are present than one would expect62

by chance alone. This claim can be tested using63

quantiles of the binomial distribution. Let b denote64

the bin width of the histogram, m denote the number65

of hypotheses being tested, X denote the number of66

p-values in the bin closest to zero, and Fα(m, p) denote67

the α-level quantile of the cumulative distribution68

function (CDF) of the binomial distribution with69

size m and probability p. Then, under the global70

null hypothesis H0j : pj ∼ Unif(0, 1) for all j, the71

probability that X exceeds F.95(m, b) is only 5%. NOTE:72

Arguably, the .975 quantile could be used instead, as73

it would be consistent with the standard of always74

applying two-sided tests, although it would seem a one-sided test makes more sense here.75

Returning to our example from Rogier et al. [1] in Figure 3, b = 0.05 and m = 201, so F.95(m, b) =76

15. Figure 5 superimposes this threshold upon our earlier histogram. As the figure illustrates, the fact77

that 27 p-values fall below 0.05 provides significant evidence to reject the global null hypothesis, even78

though we cannot specifically reject any individual null hypothesis.79
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Figure 4. Fischl et al. [3]: Some sort of error seems
to have occurred.

This is not a new idea in statistics, and dates
back at least to John Tukey, who referred to this
question as the “higher criticism” [4]. Tukey
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proposed the following test statistic, based on a normal
approximation to the binomial:

HC0.05 =
√

m
{ x

m − 0.05
}
− 0.05,

where x is the number of p-values that fall below 0.05.80

One may then reject the global null at a 5% significance81

level if HC > 1.645. This leads to a very similar82

threshold as the above method for large numbers of83

tests (for example, with m = 1, 000 tests, the binomial84

threshold is 62 and the Tukey threshold is 63). We85

prefer the more accurate binomial threshold for our86

purposes here, but note that Tukey’s closed-form87

approach has advantages for theoretical study and88

has received renewed attention in the past decade in the field of high-dimensional data analysis [5–7].89
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Figure 5. Rogier et al. [1]: Higher criticism

So, what to make of situations like that in90

Figure 5? Obviously, the main point of these sorts91

of experiments is to assess the veracity of individual92

hypotheses, and in that sense an experiment giving93

rise to Figure 5 must be viewed as unsuccessful.94

However, the higher criticism here implies that there95

is something to find — this experiment failed to96

find it, but another experiment, perhaps carried out97

with an improved experimental design or additional98

observations, might be successful. This is in contrast99

to the conclusion one would reach after looking100

at the histogram in Figure 1, which suggests that101

there is little hope in conducting another experiment102

investigating the same biological question, as there is103

simply nothing to find.104

2.2. Quality control105

The same basic idea can be used to test for106

departures from uniformity anywhere between 0 and 1, not necessarily only among low p-values. It107

is straightforward to extend the approach from Section 2.1 to this case using a Bonferroni correction.108

With a binwidth of 0.05, this amounts to checking 20 bins, and therefore using a corrected significance109

threshold of 0.05/20=0.0025, or equivalently, a frequency threshold of F.9975(m, b). For the data from110

the study by Fischl et al. [3] in Figure 4, m = 23, 332 and b = 0.05, so the frequency threshold is 1261.111

In Figure 6, this threshold is superimposed on the original histogram.112

As another example of an experiment whose p-value histogram displays a strange departure from113

uniformity, Figure 7 presents the p-values of an unpublished NanoString gene expression experiment114

conducted in 2012 by Dr. Luke Bradley at the University of Kentucky. These p-values were extracted115

from a two-way interaction effect in a three-way ANOVA model for each gene.116

This procedure and the bound we have described are useful as a test of quality control. Here, it117

establishes that the excess of p-values around 0.3 in Figure 6 and the excess of p-values around 1 in118

Figure 7 are not due merely to random chance, but that some systematic deviation from the theoretical119

null distributions of the test statistics has occurred.120

p

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

1500

2000

Figure 6. Fischl et al. [3]: Quality control.

In contrast, Figure 8 presents results from an121

experiment by Matthews and Bridges [8], in which122

steers were assigned randomly to graze either in a123
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pasture that contained high levels of ergot alkaloids124

(n = 10) or one that did not (n = 9). The125

p-values come from a two-sample t-test of gene126

expression levels in the liver of the two groups of127

steers, as measured by NanoString. Although there is128

something of an abundance of p-values near 0.6, this129

excess is well within the bounds of random variation.130

2.3. Causes of anomalous p-value histograms131

In this section, we explore some of the potential132

causes of the anomalous p-value histograms we have133

shown above. A related discussion is given by Brad134

Efron in Section 5 of Efron [9] and Chapter 6.4 of Efron135

[10]; we hope to add to Efron’s remarks by providing136

specific instances of these violations to illustrate the connection between the cause and the resulting137

shape of the p-value histogram. In Sections 2.3.1 and 2.3.2, we simulate m = 10, 000 features belonging138

to two groups and use a two-sample t-test to test the null hypothesis that the means of the two groups139

are the same.140

2.3.1. Low power141

Here, we simulate n = 4 observations in each of two groups from the standard normal distribution.142

For 80% of the features, there is no difference in the means. For the remaining 20%, the difference in143

means was drawn from a Uniform(-2,2) distribution. The p-value histogram and accompanying higher144

criticism threshold are shown in the left panel of Figure 9.145
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Figure 7. p-values from Bradley NanoString
experiment

With n = 4, there is insufficient evidence to reject146

any of the individual null hypotheses, even at a liberal147

FDR cutoff of 30%. Nevertheless, the higher criticism148

threshold clearly indicates that some of the features149

are non-null. The middle panel of Figure 9 shows a150

decomposition of the p-value histogram, revealing the151

contributions from the null and non-null features. As152

one might imagine from the shape of the histogram,153

the rise on the left side results from the fact that most154

of the non-null features have low p-values.155

However, this is not true for all of the non-null156

features. With insufficient power, many of the157

non-null features turn out to have moderate, or even158

large p-values and can be found throughout all bins159

of the histogram. Obtaining these results is likely to160

be disappointing, since no significant features could161

be detected, but the p-value histogram and higher162

criticism indicate reasons for optimism. Although the initial experiment was unable to distinguish163

null and non-null features, there are indeed interesting features to be discovered, and a second, more164

adequately powered experiment may be successful at finding them.165
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Figure 8. Data from Matthews and Bridges [8]

To illustrate this, we simulated data under the166

same settings as above, but with a sample size of n =167

10 in each group. In marked contrast to the previous168

results, we can now safely reject 504 null hypotheses169

at the 5% FDR level. These results are displayed on170
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the right panel of Figure 9, and show much clearer171

separation between null and non-null features.172

2.3.2. Incorrect distributional assumptions173

In Figure 10, we simulate n = 3 observations in174

each of two groups from the exponential distribution175

with rate 1, then apply a two-sample t-test for176

each feature. Thus, in this example, all 10,000177

features satisfy the null hypothesis. The derivation of178

p-values from the t-test assumes normally distributed179

data; here, that assumption is highly inaccurate, the180

exponential distribution being both highly skewed181

and having considerably thicker tails than the normal distribution.182

Problems with distributional assumptions can be alleviated by choosing more robust,183

nonparametric methods. For example, replacing the t-test in the above example with a Wilcoxon rank184

sum test produces an appropriate, uniform-looking histogram. In addition, distributional problems185

are alleviated as n increases due to the central limit theorem. Increasing n to 30 in each group for this186

setting also yields a flat, uniform-looking histogram essentially indistinguishable from Figure 1.187

2.3.3. Correlation among features188

Perhaps the most common cause of an abnormal-looking histogram, however, is correlation189

among features. With respect to p-value histograms, correlation among the features being tested190

does not necessarily alter the shape of the histogram: marginally, each p-value still follows a uniform191

distribution under the null. However, it does mean that there is a greater chance of seeing an irregular192

deviation from uniformity in the p-value histogram. For example, imagine a bundle of highly correlated193

features. Due to the correlation, these features will have similar p-values. Where the bundle lies is194

uniformly distributed, but wherever it lands, a “bump” will appear in the histogram.195
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Figure 9. Left: Simulated data with low power. Middle: Same data as in left panel, showing
contributions from null and non-null genes. Right: Data simulated under same conditions as left panel,
but with adequate power.

The higher criticism and quality control bounds in Sections 2.1 and 2.2 are based on the196

assumption that the features being tested are mutually independent of each other. The primary197

practical consequence of correlation among features is that that the QC bound given in Section 2.2 is198

too low, leading one to conclude that an error has occurred when the irregular shape may simply be199

explained by correlation among the features.200
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Figure 10. A t-test was applied, even though the
data come from a highly non-normal (exponential)
distribution.

Fortunately, given an adequate sample size, it is201

possible to assess the impact of correlation among202

features using permutation approaches. The idea203

underlying the permutation approach is simple. Let204

X denote the n × m matrix of feature values (here,205

gene expression data), with each row of X denoting206

an experimental unit consisting of m features. By207

permuting the rows of X, we accomplish two things.208

First, we eliminate any association between X and209

any other variables or group memberships that we210

are testing for. Second, by permuting entire rows211

of X intact, we preserve any correlation among the212

rows that is present in the data. Thus, by carrying213

out the original test on random permutations of X, we214

obtain p-values from the null distribution but without215

assuming independence among features.216

We repeated the test for the two-way interaction217

in the Bradley data seen in Figure 7 for 1,000 random permutations of the expression data. For each218

permutation, we made a p-value histogram and recorded the count in the most highly populated bin.219

Figure 11 plots the histogram of the original p-values with two lines superimposed. One is the original220

quality control metric from Section 2.2 which assumes independence among the hypothesis tests, the221

other is the 95th percentile of the maximum counts from the permutation histograms.222

p

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

Independence

Permutation

Figure 11. Bradley experiment: Permutation vs
independence approaches.

The difference between the lines is striking. In223

this experiment, the correlation between genes is quite224

high (root-mean-square correlation among the 536225

genes selected for the NanoString experiment was226

0.75). As a result, the spike of p-values near 0.9227

observed in the data could easily have arisen simply228

from the correlation among genes. In fact, given229

the correlation among features, the abnormal-looking230

histogram of Figure 7 is not particularly abnormal at231

all, a point clearly communicated by the large gap232

between the p-value histogram and the “Permutation”233

line in Figure 11.234

Correlation among features also affects the higher235

criticism threshold of Section 2.1, although not236

as much as for quality control thresholds. The237

same permutation approach can be applied to238

obtain correlation-adjusted higher criticism thresholds,239

although in this case we would examine the 95th percentile of the counts for the first bin rather than240

the maximum count. For the Rogier et al. [1] data of Figure 5, the higher criticism bound assuming241

independence was 15, while the higher criticism bound obtained from the permutation approach was242

19.4. This is far less dramatic than the difference in Figure 11 because while correlation leads to bumps243

in the p-value histogram, those bumps are not systematically located in the lowest bin.244

Unfortunately, there are limitations to the permutation approach. One is that it can be245

computer-intensive if p is large or if the tests themselves are time-consuming to perform. The other246

issue is that permutation approaches cannot be applied to very small samples. For example, we cannot247

use a permutation approach to investigate the Fischl et al. [3] data from Figure 6, which involves a248

one-sample t-test with only 3 pairs of subjects. Although the idea can be extended to paired data (by249

randomly assigning signs to the differences rather than permuting rows), in this case there are only250
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four distinct random assignments that can be made, and hence four different null histograms to serve251

as a reference for comparison, which is not sufficient for estimating a 95th percentile.252

This is a fundamental limitation with applying permutation approaches to small samples,253

although the number of available permutations rapidly increases with sample size. For example,254

in a two-sample study with n = 3 in each group, only 10 distinct permutations are available; however,255

with n = 10 in each group, the number of permutations increases to 92,378.256

For both of these reasons (small sample sizes and computational burden), it is desirable to develop257

an analytic method for estimating higher criticism and quality control thresholds that account for258

correlation among features. Such a development is beyond the scope of this manuscript, but we259

re-examine this issue in the discussion.260

2.4. Remedies261

When faced with an abnormal-looking p-value histogram, what action should a researcher take?262

In this section, we describe possible remedies.263

One potential remedy is to increase the sample size by collecting more data. This is most clearly264

indicated in situations like Figure 3, where there is a clear indication that non-null features are present,265

but unable to be reliably distinguished from noise. The higher criticism threshold is potentially a very266

useful tool to guide this decision in terms of whether the additional cost of collecting more data is267

likely to bear fruit or not.268

Alternatively, abnormal-looking p-value histograms may serve as an indication that the269

assumptions being made in the statistical analysis are not being met (see Section 2.3.2) and that270

one should consider an alternative approach – for example, a Wilcoxon rank sum test instead of a271

two-sample t−test. It is worth noting that higher sample sizes are beneficial here as well. Not only272

do larger sample sizes increase the robustness of many statistical tests, they also allow one to fit less273

restrictive statistical models.274

Lastly, we note that abnormal p-value histograms may also indicate that the experimental design275

should be revised. Although to some extent correlation among features is an unavoidable biological276

fact, it is also the case that careful experimental designs (randomization, blocking, balance, etc.) reduce277

this correlation and the potential for confounding factors to induce correlation in an experiment.278

An element of design particularly relevant to expression and other sorts of “-omic” data is the279

issue of normalization. Proper normalization procedures substantially reduce correlations in this280

sort of data [11]. However, while normalization procedures are well-developed for long-standing281

technologies such a microarray data [12], this is often not the case for more recent technologies such282

as NanoString and RNA-Seq.283

3. Discussion284

In this article, we have taken a closer look at p-value histograms with respect to two questions of285

vital practical importance:286

• Higher criticism: Is there a significant excess of low p-values? In other words, is there any287

evidence of a systematic biological response in the experiment?288

• Quality control: Has something gone wrong in this experiment?289

We present straightforward analytic diagnostics to address these questions, as well as a290

permutation-based approach capable of accounting for correlation among features. As Figure 11291

demonstrates, correlation among features is an important issue as it has the potential to dramatically292

affect p-value histograms.293

Our derivation of higher criticism bounds in Section 2.1 and quality control bounds in Section 2.2294

assumes that the p-values are “proper” in the sense that Pr(p < α) = α (i.e., the p-values are uniformly295

distributed) under the null hypothesis . Many common tests, especially those involving discrete296

outcomes, are valid in that Pr(p < α) ≤ α under the null, but not proper. For these conservative tests,297
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the higher criticism derivation still holds, although like the tests themselves, the threshold will be298

conservative. However, for the quality control bound, this issue causes a problem, as a bump in the299

histogram could be the result of the conservative nature of the test and not an actual problem with the300

experiment. The quality control bounds derived in Section 2.2 are not likely to be useful for such tests,301

although the permutation approach may still be used.302

An additional factor that can distort p-value histograms, but which is not discussed in Section 2.3,303

is the effect of correlation among sampling units, possibly brought on by unmeasured confounding304

variables. The effect of correlation among samples (as opposed to correlation among features) is to305

broaden the null distribution. If this correlation is not accounted for, it will lead to an inflation of test306

statistics and a failure to preserve the proper size of the test, rejecting the null hypothesis too often.307

This is obviously an important issue, although p-value histograms are of little help in diagnosing this308

issue, since when this issue is present, the histogram appears similar to “ideal” results, with a clear309

excess of small p-values.310

Finally, as noted in Section 2.3.3, it is desirable to develop an analytic method capable of computing311

higher criticism and quality control thresholds without the need for a permutation approach. Such a312

method, however, would need to both estimate and account for all pairwise correlations among the313

features. This is potentially a very large number, especially for genome-wide expression studies. These314

statistical challenges are not necessarily insurmountable, but they do fall beyond the intended scope of315

this article; it is a problem we are currently working on.316

Despite these limitations, it is our hope that the tools and examples presented in this article317

will be useful to researchers engaged in testing of high-throughput biological data, particularly since318

the notion of “troubleshooting” such experiments is largely absent from the scientific literature as319

problematic and underpowered studies often go unpublished.320

Funding: This research received no external funding321

Conflicts of Interest: The authors declare no conflict of interest.322

Appendix323

The histograms can easily be reproduced in R (www.r-project.org) with the following code, which324

assumes that a vector p of p-values has already been calculated:325

b <− 0 . 0 5326

h i s t ( p , breaks=seq ( 0 , 1 , b ) , col=" gray " , border=" white " )327

328

# Higher c r i t i c i s m :329

abline ( h=qbinom ( . 9 5 , length ( p ) , b ) , col=" red " )330

331

# Q u a l i t y c o n t r o l :332

abline ( h=qbinom(1−b∗ . 0 5 , length ( p ) , b ) , col=" blue " )333
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