

1 **Microbial population dynamics and the role of sulfur reducing bacteria genes in stabilizing
2 Pb, Zn and Cd in the terrestrial subsurface**

3
4 Ranju R. Karna,[†] Ganga M. Hettiarachchi^{†#}, Joy D. Van Nostrand,[‡] Tong Yuan,[‡]
5 Charles W. Rice,[§] Y. M. Assefa,[†] and Jizhong Zhou[‡]

6
7 [†]Soil and Environmental Chemistry, Department of Agronomy, Kansas State University,
8 Manhattan, Kansas 66506, United States.

9
10 [§]Soil and Environmental Microbiology, Department of Agronomy, Kansas State University,
11 Manhattan, Kansas 66506, United States.

12
13 [‡] Institute of Environmental Genomics and Department of Microbiology and Plant Biology,
14 University of Oklahoma, Norman, OK- 73019, United States.
15 Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United
16 States.

17 School of Environment, Tsinghua University, Beijing 100084, China.

18
19
20 #Corresponding Author (ganga@ksu.edu)

21
22 Contribution no. 15-212-J from the Kansas Agric. Exp. Stn

23
24
25

26 Abstract

27
28 Milling and mining metal ores are major sources of heavy metal contamination. The
29 Spring River and its tributaries in southeast Kansas are contaminated with Pb, Zn, and Cd as a
30 result of 120 years of mining activities. Trace metal transformations and cycling in mine waste
31 materials greatly influence their mobility and toxicity and affect plant productivity and human
32 health. It has been hypothesized that under reduced conditions in sulfate-rich environments, these
33 metals can be transformed into their sulfide forms, thus limiting mobility and toxicity. We
34 studied biogeochemical transformations of Pb, Zn and Cd in flooded subsurface mine waste
35 materials, natural or treated with organic carbon (OC) and/or sulfur (S), by combining advanced
36 microbiological and X-ray spectroscopic techniques to determine the effects of treatments on the
37 microbial community structure and identify the dominant functional genes involved in the
38 biogeochemical transformations, especially metal sulfide formation over time. Samples collected
39 from medium-, and long-term submerged columns were used for microarray analysis via
40 functional gene array (GeoChip 4.2). The total number of detected gene abundance decreased
41 under long-term submergence, but major functional genes abundance was enhanced with OC
42 plus S treatment. The microbial community exhibited a substantial change in structure in
43 response to OC and S addition. Sulfur-reducing bacteria genes *dsrA/B* were identified as key
44 players in metal sulfide formation via dissimilatory sulfate reduction. Uniqueness of this study is
45 that microbial analyses presented here in details are in agreements with molecular-scale
46 synchrotron-based X-ray data supporting that OC-plus-S treatment would be a promising
47 strategy for reducing metal toxicity in mine waste materials.

48 Keywords

49 Mine waste, lead, Zinc, Cadmium, Microbial role, Sulfur-Reducing Bacteria

50 1 Introduction

51 Generation of large amounts of mine waste containing several heavy metals is the main
52 environmental concern associated with milling and mining activities (Baker et al., 2003,
53 Bhattacharya et al., 2008). Heavy metals are dispersed via different pathways such as wind,
54 surface water runoff, and metal-laden sediments are transported to neighboring water bodies
55 (Almendras et al., 2009 and Johnson et al., 2005). The Tri-State mining district in parts of
56 southeast Kansas, southwest Missouri, and northeast Oklahoma was one of the largest Pb and Zn
57 ore-mining districts in the world for 120 years (until 1970). The movement of soluble
58 metals and metal-laden sediments from the landscape into surface waters via surface runoff are
59 the primary ecological concerns for both aquatic and terrestrial organisms (Pierzynski et al.,
60 2006). The US Environmental Protection Agency (US EPA) has suggested wetland construction
61 as a remediation strategy for soils highly contaminated by abandoned mine waste materials with
62 the hypothesis that these metals could be transformed into their sulfide forms under reduced
63 conditions in sulfate-rich environments, thus limiting their mobility and toxicity.

64 Several challenges are associated with this strategy. Mine waste material with low
65 dissolved OC content could have significant effects on redox processes (Hayes et al., 2006, Stein
66 et al., 2007 and Zhang et al., 2005) because OC is the main driver of biogeochemical cycling of
67 major and trace elements (Borch et al., 2009 and Evans et al., 2006). Limited S in mine waste
68 could limit sulfide formation and promote carbonate precipitation, depending on pH and
69 carbonate concentration (Toevs et al., 2006). Therefore, the addition of OC and S could facilitate
70 these metals to be transformed back into their sulfide forms under reduced conditions, thereby
71 limiting their mobility and toxicity. A generalized sulfate reduction reaction using organic matter
72 (OM) as an electron donor is:

73 $\text{SO}_4^{2-} + 2\text{CH}_2\text{O} + 2\text{H}^+ \rightarrow \text{H}_2\text{S} + 2\text{H}_2\text{O} + 2\text{CO}_2$ (pH<7.0): Stein (10)

74 At high metal concentrations, metals tend to precipitate as metal sulfides around circumneutral
75 pH because the rate of H_2S formation increases at a pH of 7.0 to a maximum of 8.0 (Burton et
76 al., 2008 and Chen et al., 1997):

77 $\text{H}_2\text{S} + \text{M}^{2+} \rightarrow \text{MS} + 2\text{H}^+$

78 The above-mentioned reaction is the result of dissimilatory sulfate metabolism that has
79 been tested and successfully removed contaminants via biostimulation. Of all the metal sulfide
80 minerals, iron sulfide mineralization is most often attributed to microbial activity (McLean et al.,
81 2007), especially to the activity of dissimilatory sulfur-reducing bacteria (SRB). Environmentally
82 important activities displayed by SRBs are the result of metabolic production of high levels of
83 sulfides that are reactive and participate in subsequent mineral formation (Bazylinski et al., 2003
84 and Lovely et al., 1995).

85 Using a culture-dependent technique would not be feasible to study the complex
86 microbial community because 99% of microorganisms have not been cultured (Whiteman et al.,
87 2004), therefore, culture-independent techniques such as functional gene arrays (FGA) are
88 required (He et al., 2007 and Van Nostrand et al., 2011). GeoChip 4.2 is a functional gene array
89 that contains 83,992 oligonucleotides (50-mer) probes targeting 152, 414 genes in 410 gene
90 categories from more than 5200 microbial strains including bacteria, archaea, fungi, and viruses.
91 These genes are involved in the biogeochemical processes and functional activities of microbial
92 communities important to human health, ecosystem management, agriculture, energy, global
93 climate change, and environmental cleanup and restoration, including N, C, S and P cycling;
94 metal reduction and resistance; and organic contaminant degradation (Tu et al., 2014). This
95 technique enables detection, characterization, and quantification of microorganisms in mine

96 waste and links microbial diversity to ecosystem processes and functions (He et al., 2007 and
97 Loick et al., 2014). The approach has been used successfully to track the dynamics of metal-
98 reducing bacteria and associated communities for an *in situ* bioremediation study (Lu et al.,
99 2012, Wu et al., 2001, Van Nostrand et al., 2009 and Zhou et al., 2008).

100 Phospholipid fatty acid analysis (PLFA) is another rapid, inexpensive, and an efficient
101 way to determine the structure, and the effect of treatments on microbial community (Frostegård
102 et al., 2011). Certain PLFAs markers can serve as unique signatures for a particular group.
103 However, such biomarkers cannot detect individual microbial species due to overlapping PLFA
104 patterns; nevertheless, whole PLFA pattern is used to elucidate the shift in community
105 composition, and their relation to specific metabolic and environmental conditions (Olsson et al.,
106 1999).

107 Few studies have combined microbial analysis with solution chemistry and microscopic
108 and X-ray spectroscopic techniques to develop a complete molecular-scale understanding of
109 complex biogeochemical processes affecting soil and water (Brantley et al., 2007 and Brown et
110 al., 1999). This study attempted to explore the interplay between geochemical and biological
111 processes in the transformation of Pb, Zn and Cd in natural subsurface environments
112 biostimulated by the addition of OC and S. Stimulating the systems with OC and S would favor
113 SRB growth and activities. We expect that OC-plus-S treatment would result in a higher
114 abundance of SRB genes compared with natural, OC alone, or S alone treatments. Study
115 objectives were to: a) characterize the microbial community playing a role in the biogeochemical
116 transformation of Pb, Zn and Cd under reduced conditions; b) measure the change in microbial
117 community structure with OC and/or S treatment over medium- and long-term incubation; and c)

118 identify the most dominant genes and associated mechanisms involved in effective
119 immobilization of Pb, Zn and Cd.

120 **2 Materials and Methods**

121 **2.1 Sample collection and characterization**

122 Contaminated mine waste materials were collected from a secured repository area in Baxter
123 Springs, KS, a part of the Tri-State mining district that has a 120-year history of Pb- and Zn-ore
124 mining related activities. The material was sieved to 2-mm size, and 0.5-g sample was digested
125 in triplicate following the aqua-regia reflux tube soil-digestion method to determine the
126 concentrations of selected elements (Zarcinas et al., 1996). Total N, and C content was measured
127 using LECO TruSpec CN Carbon/Nitrogen combustion analyzer (LECO Corporation, St. Joseph,
128 MI). The pH of a water extract (water: mine waste ratio of 2:1) was determined using Orion
129 Ag/AgCl pH electrode. Particle-size distribution was determined using a modification of the
130 pipet method of Kilmer et al. (Kilmer et al., 1949), and method 3A1 from the Soil Survey
131 Laboratory Method Manual (1996).

132 **2.2 Treatment application and experimental setup**

133 For S-treatment application, sodium sulfate (Na_2SO_4) solution was added to the mine waste
134 material to provide S at a ratio of 1:2 mM of sum of metals present in material: mM of S. The
135 metal concentrations used for the summation were Pb, Zn, Cd, Fe, and Mn. The treated materials
136 were equilibrated for 10 days at room temperature on a reciprocating shaker (6010, Eberbach
137 Corporation, Ann Arbor, MI) at 192 reciprocates/min for 3 days, and at 92 reciprocates/min for
138 the remaining 7 days. After equilibration, S-treated mine waste was leached with deionized (DI)
139 water to reduce salinity until a target electrical conductivity of $<2 \text{ mS cm}^{-1}$ was achieved, then
140 the material was air-dried. Both S-treated and untreated mine waste materials were inoculated

141 with 0.5 g 100g⁻¹ of soil slurry (Ivan, Kennebec, and Kahola silt loams) collected from the North
142 Agronomy Farm at Kansas State University, Manhattan, KS. The serial dilution of soil slurry
143 was cultured on a Petri dish using Postgate's medium and incubated overnight at 34 °C in an
144 anaerobic jar (AG0025A used with oxygen absorber; OXAN0025A, Fisher Scientific,
145 Pittsburgh, PA). The black patches observed on the plate indirectly confirmed the presence of
146 SRB in the soil slurry. The method used for SRB culturing was adapted from Luptakova et al.
147 (Luptakova et al., 2005). The mine waste materials (non-treated or treated with S) were well
148 mixed with soil slurry and used to pack Plexiglas columns (20 cm length, 3.2 cm ID with 3
149 windows milled at 2.8 cm, 9.84 cm, and 16.94 cm) to achieve a bulk density of about 1.7 g cm⁻³.
150 The packed columns were saturated slowly with DI water using a Mariotte's bottle that delivered
151 a constant flow rate before the eluent solution was supplied. The eluent consisted of a base of
152 simulated groundwater (1 mM NaCl, 1mM MgCl₂, 1 mM KCl, 1 mM CaCl₂ adjusted to pH 7.2)
153 with or without 10.7 mM Na-lactate (32 mM OC). This eluent provided four treatments for the
154 columns designated as C0S0, C1S0, C0S1, and C1S1, where C0 and C1 designated simulated
155 groundwater without OC and with OC, respectively; S0 designated simulated groundwater
156 applied to columns without added S; and S1 designated simulated groundwater applied to
157 columns with added S. Each treatment combination had two replicates due to limited space
158 available in the glovebox. The eluent solution was supplied using a syringe pump (KD Scientific
159 Inc., Holliston, MA) at the rate of 13 mm day⁻¹ to simulate a slow groundwater discharge rate
160 (Wan et al., 2005). Three series of column experiments, short (32-day), medium (119-day), and
161 long-term (252-day), were conducted at room temperature ~25 °C at different times due to the
162 lack of space in the anaerobic chamber to conduct them all simultaneously. All three series of
163 experiments were conducted based on a completely randomized design with a two-way factorial

164 experiment (factor 1: OC with two levels, 0 and 10.7 mM L⁻¹; factor 2: S with two levels; 0 and
165 252.7 mg kg⁻¹). Effluent samples were collected weekly for medium-term and biweekly for long-
166 term submergence, and analyzed for pH, redox potential, total dissolved elements measurements
167 for Pb, Cd, Zn, Fe, S, Mn, K, Ca, Mg, Na, anions including sulfate, nitrate, nitrite, chloride,
168 phosphate, and dissolved organic carbon (DOC) measurements. At the end of each column
169 experiment, samples (about 20 g) were collected from three windows located on the columns and
170 frozen at -80 °C for DNA extraction, and x-ray absorption spectroscopy (XAS). More details on
171 solution chemistry data collection, and approaches used in synchrotron-based X-ray analysis, and
172 their outcomes can be found in Karna et al. (2016).

173 2.3 Phospholipid fatty acid (PLFA) analysis

174 The PLFA analysis was performed as an initial measurement to determine the microbial
175 community changes with OC and S treatment prior to microarray analysis was performed. For
176 this, PLFA extraction was done on the original mine waste materials, and submerged C0S0, and
177 C1S1 treatments from medium term study only based on single phase extraction of lipids, which
178 was then methylated to give fatty acids methyl esters (FAME) and analyzed by gas
179 chromatograph. The PLFA extraction was performed by following the method of Bligh and Dyer
180 (1959) as modified by White and Ringlberg (1998). The resulting FAMES were analyzed using a
181 Thermo Scientific Trace GC-ISQ mass spectrometer (Thermo Scientific, Germany) with helium
182 as a carrier gas. Analysis was conducted in the electron impact (70 eV) mode. Peaks were
183 identified based on retention times of commercially available bacterial acid methyl esters
184 (BAME; Matreya 1114) standard mix. The methyl ester peaks that were not present in the
185 BAME mix were tentatively assigned through mass spectral interpretation by comparison with
186 spectra from a library (Wiley 138K mass spectral database). Sample peaks were quantified based

187 on comparison of the abundance with an internal standard - nonadecanoic acid methyl ester
188 (19:0). The abundance was expressed as nmoles/gram. Fatty acids (FA) are designated a:b,
189 where 'a' represents total number of carbons and b the number of double bonds. An 'ω' indicates
190 the position of a double bond from the aliphatic end of the FA. The prefixes 'a' and 'i' refer to
191 anteiso and iso branching, while the suffixes 'c' and 't' refers to cis and trans 33 isomers
192 (conformations). Presence of methyl groups are indicated by aMe, where 'a' indicates the
193 position of the methyl group. Fatty acids were grouped based on criteria by McKinley et al.
194 (2005) whereby Gram positive bacteria were branched monounsaturated cyclopropane (i-15:0, a-
195 15:0, i-16:0, i-17:0 and a-17:0). Gram negative biomarkers are cyclopropane PLFAs (2-OH 12:0,
196 3-OH 12:0, 2-OH 14:0, 3-OH 14:0, 2-OH 16:0, C16_1_9_cis, C16_0_2-OH, 16:1ω7c, 18:1ω7c,
197 cy17:0, cy19:0), while actinomycetes is 10Me18:0. Fungi biomarkers are polyunsaturated
198 PLFAs (18:1ω5c, 18:2ω9, 12C, 18:2ω6,9,12), while arbuscular mycorrhizae fungi (AMF) is
199 16:1ω5c, and *Desulfovibrio* biomarker is i_17_1 (McKinley et al., 2005).

200 2.4 GeoChip analysis

201 Microarray analysis was performed on all the treatment combinations; C0S0, C0S1, C1S0, C1S1
202 from medium term study, whereas only C0S0 and C1S1 treatment combinations were used from
203 long-term study. The samples selection for long-term study was done based on the geochemical
204 and spectroscopic results obtained from medium-term study. Due to lack of space issue in the
205 glovebox chamber, we used two replicates for each treatment combination. Rather than running
206 microbial analysis for those two replicates, we did generate an additional replicate by mixing
207 equal portions materials of 1 and 2 column replicates and ran that as an independent
208 confirmation sample/third replicate.

209 2.5 DNA extraction, labeling, hybridization, scanning, and data processing
210 About 5 g of soil was used for genomic DNA extraction using the PowerMax soil DNA isolation
211 kit (Mo Bio, Carlsbad, CA). Raw DNA extracts were purified using Wizard Plus SV Minipreps
212 purification system (Promega Biosciences, San Luis Obispo, CA). Purified DNA was quantified
213 using the Quant-iT PicoGreen dsDNA assay kit (Promega Biosciences, San Luis Obispo, CA).
214 DNA was labeled then hybridized at 42 °C on GeoChip 4.2 as described in Lu et al. (2012). The
215 hybridized arrays were scanned with a NimbleGen MS 200 Microarray Scanner, and scanned
216 images were extracted and quantified using Nimble Scan software (Roche NimbleGen, Madison,
217 WI), followed by data preprocessing (Lu et al., 2012). Positive and negative controls, including
218 (i) 8 degenerate probes targeting 16S rRNA sequences for positive controls, (ii) 563 strain-
219 specific probes targeting 7 hyper-thermophile genomes for negative controls, and (iii) a common
220 oligonucleotide reference standard for data normalization and comparison was included for grid
221 alignment and data normalization and comparison (Liang et al., 2011). Statistical analyses were
222 performed using SAS for Windows version 9.2 (SAS Institute Inc., 2009). The data were
223 analyzed using PROC ANOVA. Tukey's Honestly Significant Difference (HSD) test was used
224 for means separation ($\alpha = 0.05$). Dissimilarity test was also conducted by using the software
225 available at Institute of Environmental genomics (IEG) website, OU, OK (Table S3). All
226 hybridization data are available at <http://www.agronomy.k-state.edu/research/soil-and-environment/soil-environment-chem/Research%20Data.html>.
227

228 3 Results

229 3.1 General characterization of mine waste materials

230 The mine waste material consisted of 85% sand (2000 to 50 μm), 11.3% silt (50 to 2 μm), and
231 3.4% clay (<2 μm). Total N and C were 0.03 g kg^{-1} and 1.56 g kg^{-1} , respectively. The pH of the

232 water extract (DI water: geomaterial mass ratio, 2:1) was 7.2, and the electrical conductivity was
233 2.31 mS cm⁻¹. Selected total elemental concentrations of Pb, Zn, and Cd in the material were
234 5048, 23,468, and 67 mg kg⁻¹, respectively (Table S2). The standard reference material 2711a
235 (National Institute of Standards and Technology, Gaithersburg, MD) was digested along with the
236 geomaterial to ensure a recovery percentage of each element that ranged from 79 to 109%.

237 **3.2. Preliminary microbial community characterization**

238 The PLFA analysis results on starting original mine tailings, inoculum, non-amended control,
239 and amended soils submerged for 119-day indicated the presence of biomarkers for various
240 microbial groups (Gram-, Gram+, AMF, fungi, and Actinomycetes). Total PLFA in starting mine
241 waste materials was 2.42 nmole/g, whereas it was 6.18 nmole/g in the submerged sediment that
242 was used as inoculum (Table S1). Once the materials were inoculated and submerged, no
243 significant increase in summed abundance of PLFA biomarkers was observed in non-amended
244 control (C0S0), whereas it was significantly increased in the samples treated with both OC plus S
245 (C1S1). Specifically, Gram-, and Gram+ biomarkers abundance was significantly increased in
246 amended soil, with respect to starting mine waste materials, whereas there was no noticeable
247 difference in non-amended soil. Fungi biomarker abundance was decreased with varied amount
248 in both untreated and treated soils under submergence. AMF and Actinomycetes PLFA
249 biomarkers were also decreased, however remains same in both non-amended and amended
250 samples. More interestingly, total PLFA for *Desulfovibrio* biomarkers was significantly
251 increased in OC plus S treated soil only (Table S1).

252 **3.3. X-ray absorption spectroscopy**

253 Multiple synchrotron-based techniques have been used to enhance quantitative mineral species
254 identification (Heald et al., 2007 and Manceau et al., 2002). Micro-, and bulk-XAS as well as μ -

255 XRD techniques were used to identify the minerals in the original mine waste materials in this
256 study. The results in agreement between μ -XRD and bulk XAFS techniques indicated presence
257 of carbonates, sulfates, silicates, and oxides minerals, which are supported by other studies
258 conducted on smelter-impacted soils (Manceau et al., 2000a, Nachtegaal et al., 2005 and
259 Scheinost et al., 2002). Bulk-XAFS speciation conducted for Pb, Zn and Cd in starting mine
260 waste materials that was used in this study indicated none sulfide minerals, whereas it was
261 dominant with silicates, carbonates, sulfates, phosphates, nitrates and hydroxides minerals (Fig.
262 1a, 1b and 1c). Speciation changed after the mine waste material was treated with OC and/or S,
263 and submerged for different time period. Bulk XAS data indicated about 62% galena (PbS), 31%
264 sphalerite (ZnS) and 39% Cd-sulfide formation in C1S1 compared to none in C0S0 (Fig. 1a, 1b
265 and 1c), respectively under long-term incubation. Instead, more carbonates were formed in non-
266 amended (C0S0) flooded materials (Karna et al., 2016). Functional gene diversity
267 Functional gene richness, indicated by the total number of genes detected, was significantly
268 increased in C1S1 compared to C0S0 under medium-term submergence (Fig. 2). In contrast,
269 under long-term submergence, the total number of detected genes significantly decreased in both
270 C0S0, and C1S1 treatment (Fig. 2).

271 3.4. Relationships among microbial communities

272 Detrended correspondence analysis (DCA) was used to examine the overall functional structure
273 changes in microbial communities with the OC-plus-S treatment under medium- and long-term
274 submergence. In the DCA ordination plot, similar samples cluster closely (Ramette et al., 2007).
275 The overall DCA ordination plot obtained from all detected genes resulted in clear clustering of
276 samples from medium- and long-term submergence (Fig. 3).

277

278 When samples from medium- and long-term submergence were plotted individually,
279 separate clusters for each treatment were formed (Fig. S1), indicating an overall effect of OC
280 and/or S treatments and time on the community structure in relation to geochemistry dynamics
281 and enhanced reduction (Fig. 3). DCA analysis with metal resistance genes showed a separate
282 cluster for C1S1 but there was some overlap among the rest of the treatments under medium-
283 term submergence (Fig. S2), however clearer clusters were formed for both C0S0 and C1S1
284 under long-term submergence. Interestingly, the DCA ordination plot of C-cycling genes
285 indicated clear cluster for C1S0 when only OC was added (Fig. S3). Similarly, the DCA plots of
286 S-cycling category, and S-genes such as dsrA and dsrB segregated much clearly for C0S1 and
287 C1S1 when S was added, whereas no overlapping was observed with rest of the other treatments
288 (Fig. S4, S5, S6). Under longer submergence, both treatments, C0S0 and C1S1 samples made
289 separate clusters under each category. Overall, DCA results for metal resistance and S-cycling
290 genes showed clear clusters for the treatments submerged for both medium and long term, but
291 the DCA ordination plot for C-cycling genes showed slight overlapping. The DCA of individual
292 S-cycling genes: dsrA, dsrB (Fig. S5, S6) revealed clearer clusters with dsrB compared with
293 dsrA genes.

294 3.5. Total abundance of functional gene categories

295 The shifts that were observed in the DCA ordination plots were likely the result of changes in
296 total abundance of functional genes. Results from individual gene categories revealed that S- and
297 C-cycling functional gene abundance was enhanced by 35% and 27% respectively, in C1S1
298 compared with C0S0 over time (Fig. 4a). On the other hand, metal resistance and organic

299 remediation functional genes decreased by 26% (Fig. 4a) and 21% (Fig. 4b), respectively, in
300 C1S1 compared with C0S0.

301 Thus, significant enrichment of S- ($p = 0.01$) and C-cycling genes ($p = 0.01$) and a large
302 decrease in metal resistance ($p = 0.001$) and organic remediation genes by 50 to 60% ($p = 0.001$)
303 within both treated and untreated samples over time could have resulted in community structure
304 changes. Functional genes involved in S- and C-cycling were significantly enhanced in C1S1
305 despite the fact that the total number of detected genes decreased under long-term submergence,
306 indicating direct involvement of S- and C-cycling genes in biogeochemical transformation
307 processes.

308 3.6 Changes in S-, C-cycling, and metal resistance genes

309 To better understand the differences observed in the categories above, changes in individual
310 genes were examined. Sulfate-reducing bacteria mediate the direct and indirect reduction of
311 heavy metals and metalloids (Chen et al., 1997 and White et al., 2000), and have been considered
312 key players in anaerobic bioremediation for contaminated soils, waters, and subsurface (Janssen
313 et al., 2004 and Kirk et al., 2002). In SRB, the *dsr* gene encodes the dissimilatory sulfite
314 reductase enzyme with subunits, and A/B is a key enzyme in reducing sulfite to sulfide and is
315 required by all sulfate reducers (Klein et al., 2004). Thus, *dsr* genes provide insight into SRB
316 activities and their functional role in sulfate reduction. Under S-cycling, *dsrA*, *dsrB*, and *csyJ*
317 were more abundant by 31% ($p = 0.01$), 35% ($p = 0.01$), and 40% ($p = 0.002$), respectively, in
318 C1S1 compared with C0S0 under long-term submergence (Fig. 5a), indicating their major role in
319 dissimilatory sulfate reduction. Similarly, among C-cycling functional genes, phenol oxidase and
320 endochitinase were the most dominant genes and were 35% ($p = 0.002$) and 30% ($p = 0.017$)
321 more abundant, respectively, in C1S1 than in C0S0 (Fig. 5b). Metal resistance genes for Cd, Zn,

322 and Pb were examined, and cadA (Cd resistance gene), czcA (Cd, Zn, and Co resistance gene),
323 and pbrA (Pb resistant gene) decreased by 29% ($p < 0.001$), 24% ($p = 0.002$), and 15% ($p =$
324 0.002), respectively, in C1S1 compared with C0S0 over time (Fig. 5c).

325 Canonical correspondence analysis (CCA) was performed to examine the relationship
326 between microbial community structure and geochemistry (Fig. 6) to correlate environmental
327 variables with the functional community structure and determine the most significant variable
328 causing the change in community structure. Environmental variables such as dissolved organic
329 carbon (DOC), SO_4^{2-} , total S, and NO_3^- were used to perform CCA.

330 In CCA, environmental variables are represented as arrows starting at the origin and
331 pointing outward. Our CCA results show that DOC and S are closer, with a small angle
332 indicating these variables have a stronger correlation and have similar influence on microbial
333 communities. Dissolved organic carbon and NO_3^- had longer arrows with larger angles,
334 indicating these variables have a stronger influence on the microbial community but in a
335 different manner. The SO_4^{2-} and total S vectors are in opposite directions, indicating that these
336 factors are negatively correlated. This could be explained as the total difference between total
337 sulfur and sulfate is sulfide indicating that under high S concentrations, sulfide formation has
338 been favored.

339 **4.0. Discussions**

340 **4.1. Preliminary microbial community characterization**

341 The contaminants effects on *in situ* microbiota are generally continuous, and may trigger the loss
342 or emergence of a particular genera or species of microorganism (Smith et al., 1986). The higher
343 abundance of gram+, and fungi biomarkers were present in the starting materials as these
344 communities are more successful in resource limited situations like mine impacted soils with

345 very less nutrients. On addition of inoculum followed by OC and S treatment, changes in PLFA
346 composition and biomass was detected compared to non-amended soil in medium-term
347 submergence. This suggests that the OC and S additions in this study favored microbial growth
348 pattern and composition resulting in change of microbial community structure. Specifically,
349 branched monounsaturated cyclopropane PLFAs, characteristic of Gram+ bacteria, and
350 cyclopropane PLFAs, characteristic of Gram- bacteria abundance, and branched fatty acid, i17:1,
351 characteristics of *Desulfovibrio* were increased on OC and S amendment indicating that these
352 PLFA biomarkers could be the main contributors in microbial community structure change in
353 amended soil. The increased abundance of those microbial communities could be due to added
354 OC and S, their prior presence, and their capability to survive in adverse situation, and difference
355 in substrate utilization (Bossio et al., 1998 and Ibekwe et al., 1998). Another reason could be due
356 to increased metal resistance genes. Several gram+, and gram- soil bacteria isolated from a Pb-
357 contaminated sites have exhibited resistance to a range of metal ions such as Pb, Zn, Cu, Cd, Co,
358 and Hg (Trajanovska et al., 1997). The significant increase in *Desulfovibrio* biomarker could be
359 result of dissimilatory sulfate reduction happening in the system due to OC and S addition.

360 4.2. Relationships among microbial communities

361 Detrended correspondence analysis conducted based on time effect indicated that there was not
362 very clear clustering of microbial community based on OC and/or S treatments under medium-
363 term submergence. Relatively more overlapping among the samples from C1S0, C0S1, and
364 C0S0 systems were observed compared to C1S1 (Fig. S2), and that suggests some closer
365 associated microorganisms from these treatments. The closely associated microbes could be due
366 to common, and flexible substrate utilization preference. Comparatively, lesser or no overlap was
367 observed among the samples from C1S1 and C0S0 under longer submergence. The segregation

368 among the clusters from these two treatments under different category increased with time
369 depending on their involvement in microbial community structure changes. This supports the
370 fact that time was another dominant factor in determining the microbial community structure.
371 The positive effect of OC, S, and N via increase in corresponding functional genes abundance
372 and the impact on change in microbial community structure has been observed by several studies
373 (Fuhrman et al., 2009, Kleikemper et al., 2002 and Tokunaga et al., 2003). Overall, DCA results
374 indicated that the decreases in metal resistance and organic remediation functional genes and
375 enrichment in S- and C-cycling functional genes were mainly involved in the observed
376 community shift.

377 **4.3. Functional gene diversity**

378 The significant increase in microbial community abundance in C1S1 followed by a significant
379 decline may indicate rapid oxidation of added OC coupled with a reduction in available terminal
380 electron acceptors (TEAs) and a subsequent decline as suitable TEAs were exhausted. This result
381 could be explained by the trend that was observed with DOC concentration in the current study.
382 Initial concentration of DOC in the eluent was 32 mM but was reduced to 30 mM in effluent at
383 7-day submergence and further decreased to < detection limit (DL) under long-term submergence
384 in OC-added treatments. On the other hand, non-OC-treated columns showed <3 mM DOC, with
385 no significant change during long-term submergence (Table 1). A similar result was reported by
386 Brodie et al. (2006), in which initial enrichment in total functional genes was observed with OC
387 addition and subsequently declined, but no such enhancement in functional gene richness was
388 observed without OC addition. Therefore, we speculate that this results could be owing to
389 decreased availability of OC (<3 mM) (Table 1).

390 Table 1. Chemical data for the effluent samples collected after medium- (119-day) and long-
391 (252-day) term submergence. The soil samples collected at these time points were used for
392 microarray analysis.

393 Previous studies revealed that the addition of OC stimulated biomass and microbial
394 activity in these typically nutrient-poor environments and had a significant effect on microbial
395 biomass, microbial community structure, and functional genes (Holmes et al., 2002, Martin et al.,
396 2002 and Yergeau et al., 2007). Sufficient labile OC must be available for sulfate reduction and
397 is a key rate-limiting factor in metal sulfide formation (Ku et al., 2008 and Morse et al., 1999).
398 This process can be accelerated by the action of indigenous microorganisms fueled through the
399 addition of exogenous carbon (Khan et al., 2010). The change in microbial community structure
400 was observed because of direct and indirect involvement of certain functional genes that was also
401 reported in the study, bioremediation of U using the microarray conducted by Van Nostrand et
402 al. (2011). Several other studies conducted using other techniques, such as phospholipid fatty
403 acid analysis (PLFA) and polymerase chain reactions-denaturing gradient gel electrophoresis
404 (PCR-DGGE), reported changes in microbial community structure with the addition of OC as a
405 substrate (Calbrix et al., 2007, Griffiths et al., 1998 and Eiler et al., 2003).

406 As previously mentioned, some of these genes represent background populations,
407 whereas others may be directly involved in bio-reduction (Van Nostrand et al., 2011). For
408 example, if organic remediation genes are considered to represent background functional genes,
409 their significant decrease (Fig. 4b) is probably owing to an increase in genes directly involved in
410 bio-reduction (i.e., dsrA/B) rather than a true reduction in organic remediation genes, because
411 they are likely not involved in bio-reduction; the similar result was also reported by Van
412 Nostrand et al. (2011).

413 **4.4. Total abundance of functional gene categories**

414 The abundance of stress-related functional genes and metal resistance genes decreased during
415 long-term submergence, with both C1S1 and C0S0 indicating that in addition to OC and S,
416 submergence time played a role in decreasing toxicity in these systems. Heavy metals are
417 predicted to represent a major stress on the microbial community, and adaptation to metal stress
418 may be of particular importance in shaping microbial community structure (Hemme et al., 2010).
419 Several studies have indicated the impact of heavy metals on microbial activities and their
420 community structure (Khan et al., 2010 and Hemme et al., 2010). A study conducted on the
421 effects of Pb and Cd on soil microbial activities and their community structure via denaturing
422 gradient gel electrophoresis (DGGE) indicated that Pb and Cd together decreased the number of
423 bacteria when no nutrients were supplied and revealed a significant impact on community
424 structure dynamics, particularly at high Pb and Cd concentrations (Khan et al., 2010). Increased
425 activity of S-cycling functional genes could be owing to readily available sulfate as TEA under
426 more reduced conditions, thereby favoring dissimilatory sulfate reduction as reported before by
427 Brodie et al. (2006) and Muyzer et al. (2008). In the current study, the relationship observed
428 between enhanced dissimilatory sulfate reduction and increased S-cycling functional genes can
429 be further supported by the decreased sulfate-S concentration in effluent samples (Table 1) and
430 the increased metal sulfide formation (Fig. 1a, 1b and 1c). Direct involvement of C-cycling and
431 S-cycling genes in dissimilatory S reduction via rapid consumption of OC followed by sulfate
432 reduction were also reported before by Huerta-Diaz et al. (1998). The changes in microbial
433 communities' result in changes in functional gene abundances.
434 Metal precipitation is one of the most significant processes involved in the long-term retention of
435 metals in artificial and natural wetlands. Such processes may be accompanied by other indirect

436 reductive metal precipitation (such as redox transformation), including dissimilatory sulfate
437 reduction and the subsequent precipitation of metal sulfides (Huerta-Diaz et al., 1998). As
438 reported in Karna et al. (2016), our results also suggest that appropriate microbial communities
439 were stimulated by OC- and/or S- treatments and resulted in rapid immobilization of Pb, Zn, and
440 Cd in both C1S0 and C1S1 under medium- and long-term submergence. The reduction of metals
441 concentration in solution were most likely due to biogeochemical transformations of Pb, Zn and
442 Cd under reduced conditions. This was supported by bulk XAS, indicating increasing galena
443 (PbS), sphalerite (ZnS), and cadmium sulfide formations in C1S1 over time (Karna et al., 2016).
444 Similar amount of galena formation was also observed in C1S0. Limited S concentration and
445 enhanced pH in C1S0 treatment, however, could lead metal carbonates to be more stable in long
446 run, which are not as stable as sulfide minerals, and controlling metal solubility. Therefore,
447 treatment with both OC and S will be more promising as metal sulfides are more resistant to
448 oxidation, and less sulfide formation is needed to maintain permissibly low metal concentrations
449 in water for a longer period of time.

450 A handful of studies have examined non-redox-sensitive element removal via constructed
451 wetland treatment systems (Almendras et al., 2009 and White et al., 2000). Earlier studies by
452 Almendras et al. (6) tested Pb, Cu, and Zn stability via sulfide formations and showed that
453 biostimulation plays a vital role in stabilizing Pb, Zn and Cd in the subsurface environment. The
454 results from our study also suggest that wetland construction can be a better alternative for
455 stabilizing non-redox-sensitive elements such as Pb, Zn and Cd in mine waste materials or
456 similar geomaterial. Uniqueness of this study is that microbial analyses presented here in details
457 are in agreements with molecular-scale synchrotron-based X-ray data (Karna et al., 2016).
458 Combining advanced microbiological techniques with synchrotron based speciation enhances

459 our understanding of the biogeochemical processes involved in Pb and Zn removal via
460 dissimilatory sulfate reductions under reduced conditions. The results obtained from the current
461 study indicate that OC and S addition stimulated microbial growth and activities, causing
462 changes in the functional microbial community structure via enhancement or reduction of
463 functional genes in saturated mine waste materials enriched with Pb and Zn. The decrease in
464 metal resistance genes indicated reduced toxicity over time. Correspondingly, enrichment in S-
465 and C-cycling genes in OC- and/or -S-treated samples corroborated that these members made
466 significant contributions to the metal stability in the highly contaminated mine waste in a
467 subsurface environment. Sulfur-reducing bacteria gene *dsrA/B* appeared to be a key player in
468 forming metal sulfides and was significantly enhanced in C1S1 during long-term submergence.
469 On the other hand, no significant difference was detected in functional gene richness in any
470 C0S0 treatment category over time. The information obtained from this study help us conclude
471 that biostimulation would be beneficial for inducing metal sulfide formations in mine waste
472 materials and that SRBs can be used as key players in *in situ* bioremediation of Pb and Zn in
473 subsurface treatment wetlands.

474 **Supplementary Materials**

475 There are six supplementary figures and three supplementary **tables** provided in this document.

476 **Acknowledgements**

477 We acknowledge the funding support of this study by the Kansas Agricultural
478 Experimental Station, and the USDA National Institute of Food and Agriculture, Hatch Project
479 NC-1187. We thank Drs. Gary M. Pierzynski, Gerard Kluitenberg, and Saugata Datta, for their
480 helpful suggestions and insightful discussions. We also acknowledge Ye Deng for his help with
481 microarray data collection and inputs for analysis. We thank Dr. Ari Jumponnen and his students

482 for providing lab space to conduct initial procedure in DNA extraction and purification
483 procedures. We are also thankful to Dorothy Menefee for her help during experimental set up,
484 and Pavithra P. Arachchige for help during data collection.

485 **Author's contributions**

486 R.R.K. conceived, designed, and performed the experiments with the support of G.M.H., and
487 wrote the paper with input from G.M.H. T.Y. assisted in collecting the microarray data at the
488 institute of Environmental Genomics. J.D.V., C.W.R., and J.Z. assisted in data analysis and data
489 interpretation. Y.M.A. assisted in statistical analysis.

490 **Conflicts of Interest**

491 The authors declare no conflicts of interest.

492 **References**

493 Almendras M., Wiertz, J., & Chamy R. (2009). Heavy metals immobilization in contaminated
494 smelter soils using microbial sulfate reduction. *Advanced Materials Research*, **71**, 577-580.

495 Bazylinski, D. A., & Frankel, R. B. (2003). Biologically controlled mineralization in
496 prokaryotes. *Reviews in Mineralogy and Geochemistry*, **54**, 217-247.

497 Bhattacharya, J., Ji, S. W., Lee, H. S., Cheong, Y. W., Yim, G. J., & Min, J. S. (2008). Treatment
498 of acidic coal mine drainage: Design and operational challenges of successive alkalinity
499 producing systems. *Mine Water and the Environment*, **27**, 12-19.

500 Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification.
501 *Canadian Journal of Biochemistry and Physiology*, **37**, 911-917.

502 Borch, T., Kretzschmar, R., Kappler, A., Cappellen, P. V., Ginder-Vogel, M., & Voegelin, A.
503 (2009). Biogeochemical redox processes and their impact on contaminant dynamics.
504 *Environmental Science and Technology*, **44**, 15-23.

505 Bossio, D. A., & Scow, K. M. (1998). Impacts of carbon and flooding on soil microbial
506 communities: phospholipid fatty acid profiles and substrate utilization patterns. *Microbial
507 Ecology*, **35**, 265-278.

508 Brantley, S. L., Goldhaber, M. B., & Ragnarsdottir, K. V. (2007). Crossing disciplines and scales
509 to understand the critical zone. *Elements*, **3**, 307-314.

510 Brodie, E. L., Desantis, T. Z., Joyner, D. C., Baek, S. M., Larsen, J. T., & Andersen, G. L.
511 (2006). Application of a high-density oligonucleotide microarray approach to study bacterial
512 population dynamics during uranium reduction and reoxidation. *Applied Environmental and
513 Microbiology*, **72**, 6288-6298.

514 Brown, G. E., Foster, A. L., & Ostergen, J. D. (1999). Mineral surfaces and bioavailability of
515 heavy metals: A molecular perspective. *Current Issue*, **96**, 3388-3395.

516 Burton, E. D., Bush, R. T., Sullivan, L. A., & Mitchell, D. R. (2008). Schwermannite
517 transformation to goethite via the Fe (II) pathway: Reaction rates and implications for iron-
518 sulfide formation. *Geochimica et Cosmochimica Acta*, **72**, 4551-4564.

519 Calbrix, R., Baray, S., Chabrerie, O., Fourrie, L., & Laval, K. (2007). Impact of organic
520 amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated
521 land. *Applied Soil Ecology*, **35**, 511-522.

522 Chen, X., Wright, J. V, Conca, J. L., & Peurrung, L. M. (1997). Effects of pH on heavy metal
523 sorption on mineral apatite. *Environmental Science and Technology*, **31**, 624-631.

524 Eiler, A., Langenheder, S., Bertilsson, S., & Tranvik, L. J. (2003). Heterotrophic bacterial growth
525 efficiency and community structure at different natural organic carbon concentrations. *Applied
526 and Environmental Microbiology*, **69**, 3701-3709.

527 Evans, M., Warburton, J., & Yang, J. (2006). Eroding blanket peat catchments: Global and local
528 implications of upland organic sediment budgets. *Geomorphology*, **79**, 45-57.

529 Frostegård, Å., Tunlid, A., & Bååth, E. (2011). Use and misuse of PLFA measurements in
530 soils. *Soil Biology and Biochemistry*, **43**, 1621-1625.

531 Fuhrman, J. A. (2009). Microbial community structure and its functional implications. *Nature*,
532 **459**, 193-199.

533 Griffiths B, Ritz K, Eblewhite N, & Dobson G. (1998). Soil microbial community structure:
534 Effects of substrate loading rates. *Soil Biology and Biochemistry*, **31**, 145-153.

535 Hayes, J. M., & Waldbauer, J. R. (2006). The carbon cycle and associated redox processes
536 through time. *Philosophical Transactions of the Royal Society B*, **361**, 931-950.

537 He, Z., Gentry, T. J., Schadt, C. W., Wu, L., Liebich, J., & Chong, S. C. (2007). GeoChip: A
538 comprehensive microarray for investigating biogeochemical, ecological and environmental
539 processes. International Society of Microbial Ecology Journal, **1**, 67-77.

540 Heald, S. M., J. O. Cross, D. L. Brewe, & R. A. Gordon. (2007). Nuclear instruments and
541 methods in physics research section a: accelerators, spectrometers, detectors and associated
542 equipment. Proceedings of the National Conference of Synchrotron Radiation Research, **582**,
543 215-217.

544 Hemme, C. L., Deng, Y., Gentry, T. J., Fields, M. W., Wu, L., & Barua, S. (2010). Metagenomic
545 insights into evolution of a heavy metal-contaminated groundwater microbial community.
546 International Society of Microbial Ecology Journal, **4**, 660-672.

547 Holmes, D. E., Finneran, K. T., O'Neil, R. A., & Lovley, D. R. (2002). Enrichment of members
548 of the family *Geobacteraceae* associated with stimulation of dissimilatory metal reduction in
549 uranium-contaminated aquifer sediments. Applied and Environmental Microbiology, **68**, 2300-
550 2306.

551 Huerta-Diaz, M. A., Tessier, A., & Carignan, R. (1998). Geochemistry of trace metals associated
552 with reduced sulfur in freshwater sediments. Applied Geochemistry, **13**, 213-233.

553 Ibekwe, A. M., & Kennedy, A. C. (1998). Phospholipid fatty acid profiles and carbon utilization
554 patterns for analysis of microbial community structure under field conditions. FEMS Microbiol
555 Ecology, **26**, 151-163.

556 Janssen, G. M., & Temminghoff, E. J. (2004). In situ metal precipitation in a zinc- contaminated,
557 aerobic sandy aquifer by means of biological sulfate. Environmental Science and Technology,
558 pp. 4002-4011.

559 Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: A review.

560 *Science of the Total Environment*, **338**, 3-14.

561 Karna, R. R., Hettiarachchi, G. M., Newville, M., Sun, C. J. & Ma, Q. (2016). Synchrotron-

562 Based X-Ray Spectroscopy Studies for Redox-Based Remediation of Lead, Zinc, and Cadmium

563 in Mine Waste Materials. *Journal of Environmental Quality*, **45**, 1883-1893.

564 Khan, S., Hesham, A. E., Qiao, M., Rehman, S., & He, J. (2010). Effects of Cd and Pb on soil

565 microbial community structure and activities. *Environmental Science and Pollution Research*,

566 **17**, 288-296.

567 Kilmer, V. J., & Alexander, L. T. (1949). Methods of making mechanical analyses of soils. *Soil*

568 *Science Society of America Journal*, **68**, 15-24.

569 Kirk, M. F., Holm, T. R., Park, J., Jin, Q. S., Sanford, R. A., Fouke, B. W., & Bethke, C. M.

570 (2002). Bacterial sulfate reduction limits natural arsenic contamination in groundwater. *Geology*.

571 **32**, 953–956.

572 Kleikemper, J., Schroth, M. H., Sigler, W. V., Schmucki, M., Bernasconi, S. M., & Zeyer, J.

573 (2002). Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-

574 contaminated aquifer. *Applied and Environmental Microbiology*, **68**, 1516-1523.

575 Klein, M., Friedrich, M., Roger, A. J., Hugenholtz, P., Fishbain, S., Abicht, H., Blackall, L. L.,

576 Stahl, D. A., & Wagner, M. (2004). Multiple lateral transfers of dissimilatory sulfite reductase

577 genes between major lineages of sulfate-reducing prokaryotes. *Journal of Bacteriology*, **183**,

578 6028-6035.

579 Ku, T. C. W., Kay, J., Browne, E., Martini, A. M., Peters, S. C., & Chen, M. D. (2008).

580 Pyritization of iron in tropical coastal sediments: Implications for the development of iron,

581 sulfur, and carbon diagenetic properties, Saint Lucia, Lesser Antilles. *Mar. Geology*, **249**, 184-
582 205.

583 Liang, Y. T., Van Nostrand, J. D., Deng, Y., He, Z. H., Wu, L. Y., Zhang, X., Li, G. H., & Zhou,
584 J. Z. (2011). Functional gene diversity of soil microbial communities from five oil-contaminated
585 fields in China. *International Society of Microbial Ecology Journal*, **5**, 403-413.

586 Loick, N., & Weisener, C. (2014). Novel molecular tools to assess microbial activity in
587 contaminated environments. *Geomicrobiology and Biogeochemistry*, pp. 17-35.

588 Lovley, D. R. (1995). Bioremediation of organic and metal contaminants with dissimilatory
589 metal reduction. *Journal of Industrial Microbiology and Biotechnology*, **14**, 85-93.

590 Lu, Z., Deng, Y., Van Nostrand, J. D., He, Z., Voordeckers, J., & Zhou, A. (2012). Microbial
591 gene functions enriched in the deep water horizon deep-sea oil plume. *International Society of
592 Microbial Ecology Journal*, **6**, 451-460.

593 Luptakova, A., & Kusnierova, M. (2005). Bioremediation of acid mine drainage contaminated by
594 SRB. *Hydrometallurgy*, **77**, 97-102.

595 Manceau, A., Marcus, M. A., & Tamura, N. (2002). Quantitative speciation of heavy metals in
596 soils and sediments by synchrotron x-ray techniques. In: P.A. Fenter et al., editors, *Applications*
597 of synchrotron radiation in low-temperature geochemistry and environmental sciences. *Reviews*
598 in *Mineralogy and Geochemistry*, **49**, 341-428.

599 Manceau, A. B., Lanson, B., Schlegel, M. L., Harge, J. C., Musso, M., Eybert-Berard, L.,
600 Hazemann, J. L., Chateigner, D., & Lamble, G. M. (2000a). Quantitative Zn speciation in
601 smelter-contaminated soils by EXAFS spectroscopy. *American Journal of Science*, **300**, 289-
602 343.

603 Martin, T., Oswald, O., & Graham, I. A. (2002). Arabidopsis seedling growth, storage lipid
604 mobilization, and photosynthetic gene expression are regulated by carbon: Nitrogen availability.
605 Plant Physiology, **128**, 472-481.

606 McKinley, V. L., Peacock, A. D., & White, D. C. (2005). Microbial community PLFA and PHB
607 responses to ecosystem restoration in tallgrass prairie soils. Soil Biology and Biochemistry, **37**,
608 1946-195.

609 McLean, L., Pray, T., Onstott, T., Brodie, E., Hazen, T., & Southam, G. (2007). Mineralogical,
610 chemical and biological characterization of an anaerobic biofilm collected from a borehole in a
611 deep gold mine in South Africa. Geomicrobiology Journal, **24**, 491-504.

612 Morse, J., & Luther, I. G. (1999). Chemical influences on trace metal-sulfide interactions in
613 anoxic sediments. Geochimica et Cosmochimica Acta, **63**, 3373-3378.

614 Muyzer, G., & Stams, A. J. (2008). The ecology and biotechnology of sulfate-reducing bacteria.
615 Natural Reviews Microbiology, **6**, 441-454.

616 Nachtegaal, M., Marcus, M. A., Sonke, J. E., Vangronsveld, J., & Van Der Lelie, D. (2005).
617 Effects of *in situ* remediation on the speciation and bioavailability of zinc in a smelter-
618 contaminated soil. Geochimica et Cosmochimica Acta, **69**, 4649-4664.

619 Olsson, P. A. (1999). Signature fatty acids provide tools for determination of the distribution and
620 interactions of mycorrhizal fungi in soils. FEMS Microbiol Ecology, **29**, 303-310.

621 Pierzynski, G. M., & Vaillant, G. C. (2006). Remediation to reduce ecological risk from trace
622 element contamination: A decision case study. Journal of Natural Resources and Life Sciences
623 Education, **35**, 85-94.

624 Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiol Ecology, **62**,
625 142-160.

626 Scheinost, A. C., Kretzschmar, R., Pfister, S., & Roberts, D. R. (2002). Combining selective
627 sequential extractions, x-ray absorption spectroscopy, and principal component analysis for
628 quantitative zinc speciation in soil. *Environmental Science and Technology*, **36**, 5021-5028.

629 Smith, G. A., Nickels, J. S., Kerger, B. D., Davis, J. D., & Collins, S. P. (1986). Quantitative
630 characterization of microbial biomass and community structure in subsurface material: a
631 prokaryotic consortium responsive to organic contamination. *Canadian Journal of Microbiology*,
632 **32**, 104-111.

633 Soil Survey Laboratory Staff, 1996. Soil survey laboratory manual. *Soil Survey Investigation*
634 Report no. 42. USDA-NRCS. U.S. Gov. Printing Office, Washington, D.C.

635 Stein, O. R., Borden-Stewart, D. J., Hook, P. B., & Jones, W. L. (2007). Seasonal influence on
636 sulfate reduction and zinc sequestration in subsurface treatment wetlands. *Water Research*, **41**,
637 3440-3448.

638 Toebs, G. R., Morra, M. J., Polizzotto, M. L., Strawn, D. G., Bostick, B. C., & Fendorf, S.
639 (2006). Metal (loid) diagenesis in mine-impacted sediments of Lake Coeur d'Alene, Idaho.
640 *Environmental Science and Technology*, **40**, 2537-2543.

641 Tokunaga, T. K., Wan, J., Firestone, M. K., Hazen, T. C., Olson, K. R., & Herman, D. J. (2003).
642 In situ reduction of chromium (VI) in heavily contaminated soils through organic carbon
643 amendment. *Journal of Environmental Quality*, **32**, 1641-1649.

644 Trajanovska, M. L., & Britz, M. B. (1997). Detection of heavy metals ion resistance in Gram-
645 positive and Gram-negative bacteria isolated from lead contaminated sites. *Biodegradation*, **8**,
646 113-124.

647 Tu, Q., Yu, H., He, Z., Deng, Y., Wu, L., & Nostrand, J. D. (2014). GeoChip 4: A functional
648 gene-array-based high-throughput environmental technology for microbial community analysis.
649 *Molecular Ecology Resources*, **14**, 914-928.

650 Van Nostrand, J. D., Wu, L., Wu, W. M., Huang, Z., Gentry, T. J., & Deng, Y. (2011). Dynamics
651 of microbial community composition and function during in situ bioremediation of a uranium-
652 contaminated aquifer. *Applied and Environmental Microbiology*, **77**, 3860-3869.

653 Van Nostrand, J. D., Wu, W., Wu, L., Deng, Y., Carley, J., & Carroll, S. (2009). GeoChip-based
654 analysis of functional microbial communities during the reoxidation of a bioreduced uranium-
655 contaminated aquifer. *Environmental Microbiology*, **11**, 2611-2626.

656 Wan, J., Tokunaga, T. K., Brodie, E., Wang, Z., Zheng, Z., & Herman, D. (2005). Reoxidation of
657 bioreduced uranium under reducing conditions. *Environmental Science and Technology*, **39**,
658 6162-6169.

659 White, C., & Gadd, G. (2000). Copper accumulation by sulfate-reducing bacterial biofilms.
660 *FEMS Microbiology Letters*, **183**, 313-318.

661 White, D. C., & Ringlberg, D. B. (1998). Signature lipid biomarker analysis. pp. 255-272, IN: R.
662 S. Bulage et al. (Eds.), *Techniques in microbial ecology*, Oxford University Press, New York.

663 Whiteman, M., Armstrong, J. S., Chu, S. H., Jia-Ling, S., Wong, B., & Cheung, N. S. (2004).
664 The novel neuromodulator hydrogen sulfide: An endogenous peroxynitrite 'scavenger'? *Journal*
665 *of Neurochemistry*, **90**, 765-768.

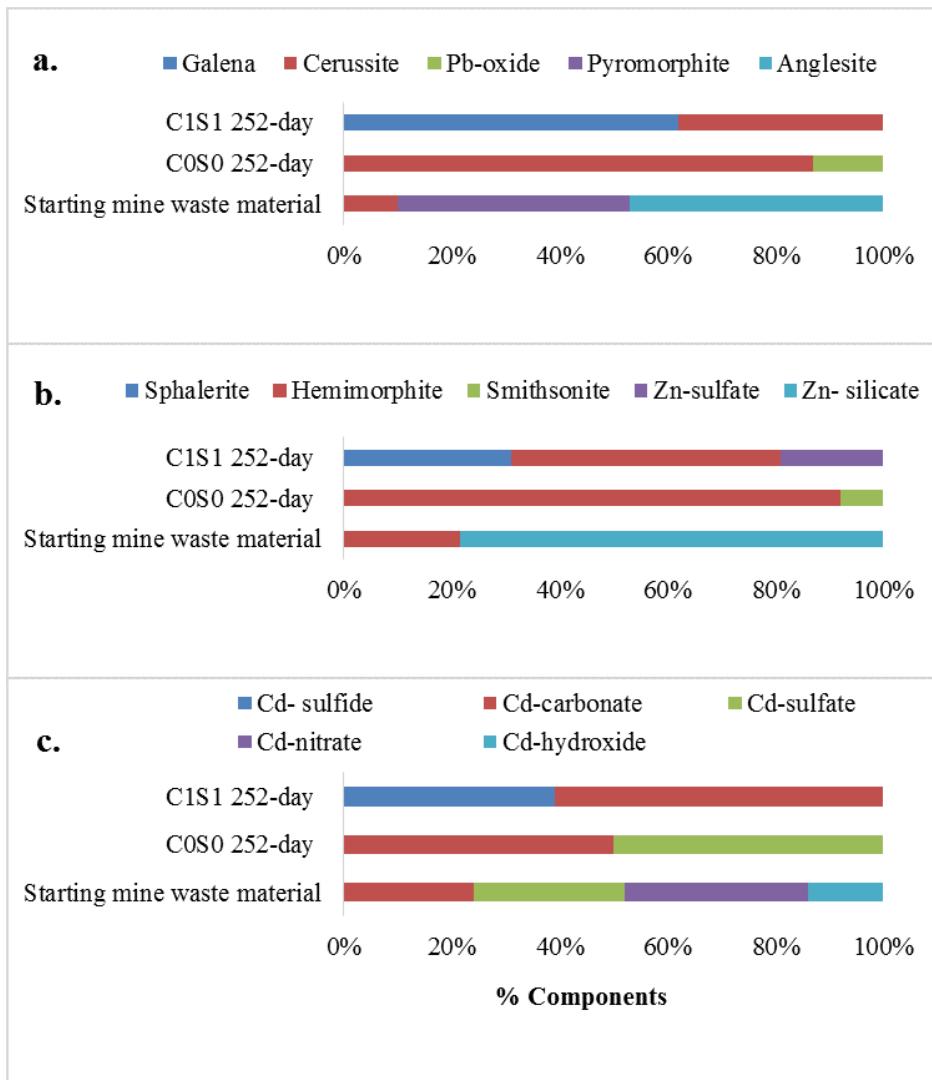
666 Wu, L. (2001). Development and evaluation of functional gene arrays for detection of selected
667 genes in the environment. *Applied and Environmental Microbiology*, **67**, 5780-5790.

668 Yergeau, E., Kang, S., He, Z., Zhou, J., & Kowalchuk, G.A. (2007). Functional microarray
669 analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect.
670 International Society of Microbial Ecology Journal, **1**, 163-179.
671 Zarcinas, B. A., McLaughlin, M. J., & Smart, M. K. (1996). The effect of acid digestion
672 technique on the performance of nebulization systems used in inductively coupled plasma
673 spectrometry. Communications in Soil Science and Plant Analysis, **27**, 1331-1354.
674 Zhang, S., Xue, X., Liu, R., & Jin, Z. (2005). Current situation and prospect of the
675 comprehensive utilization of mining tailings. Journal of Mining and Metallurgy, **3**, 44-48.
676 Zhou, J., Kang, S., Schadt, C., & Garten, Jr. C. (2008). Spatial scaling of functional Gene
677 diversity across various microbial taxa. Proceedings of the National Academy of Sciences of the
678 United States of America, **105**, 7768-7773.

679 **List of Tables**

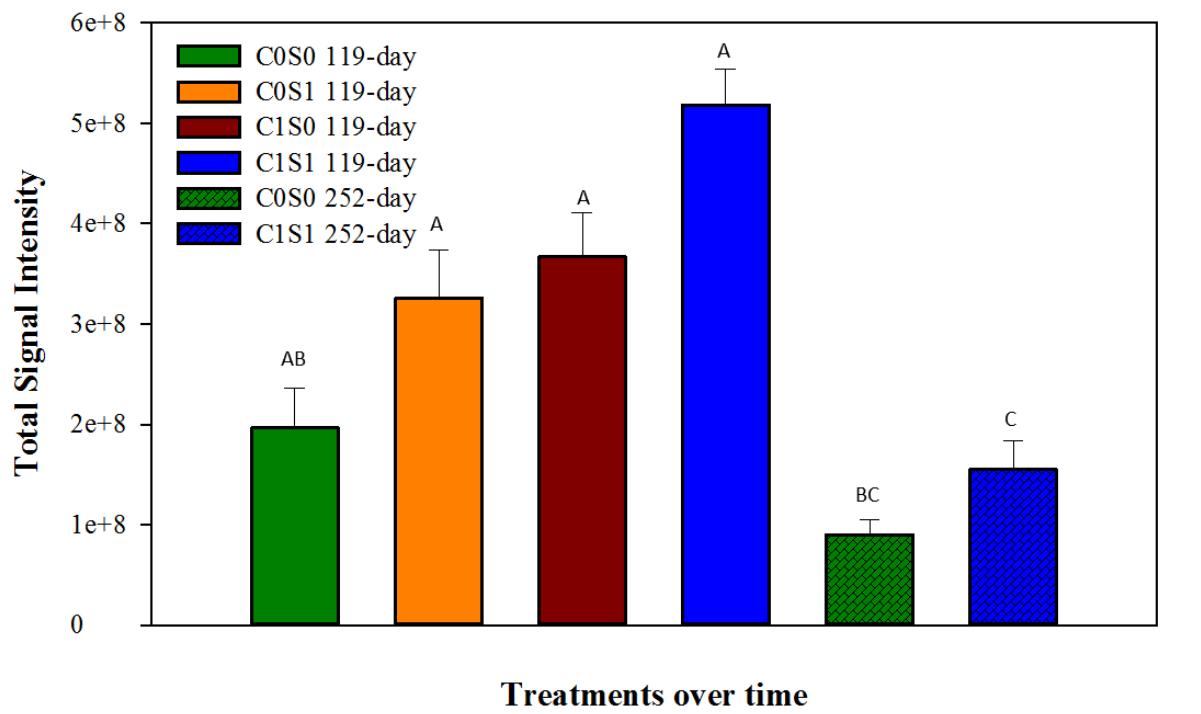
680 Table 1. Chemical data for the effluent samples collected after medium- (119-day) and long-
681 (252-day) term submergence. The soil samples collected at these time points were used for
682 microarray analysis.

683


684

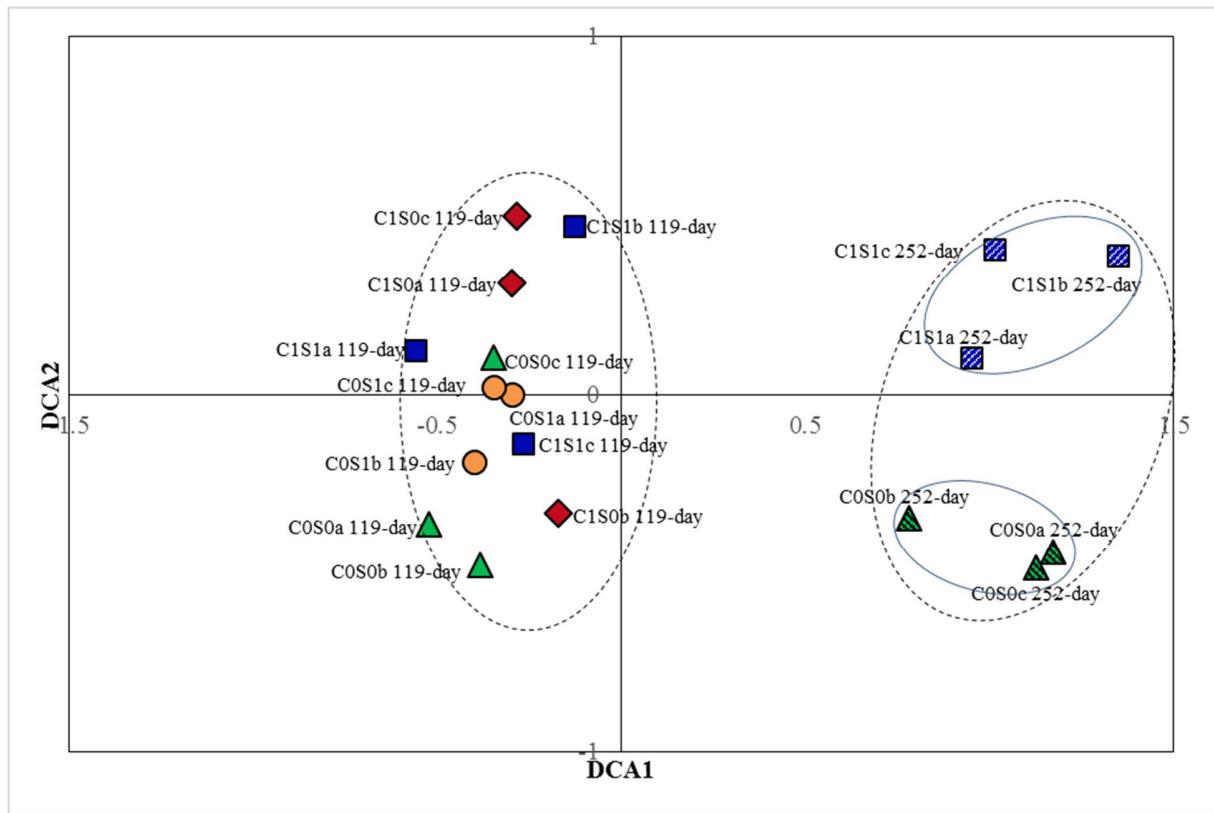
Sample	(µg/L)			(mg/L)			
	Zn	Cd	Pb	pH	DOC	Sulfate-S	Nitrate-N
C0S0 119-day	723±40.9	432±10.9	<DL	7.57±0.02	5±0.03	474±10.25	2.0±0.1
C0S0 252-day	517±30.9	28±0.9	<DL	8.41±0.03	62±2.6	571±5.64	2.0±0.2
C0S1 119-day	30±1.7	2±0.01	<DL	8.00±0.02	4±0.1	468±6.78	1.8±0.5
C0S1 252-day	<DL	1±0.006	36±1.6	6.39±0.005	65±0.8	¶	2.2±0.02
C1S0 119-day	<DL	1±0.001	<DL	8.18±0.012	5±0.02	503±7.34	1.9±0.01
C1S0 252-day	<DL	<DL	<DL	7.58±0.015	<DL	474±3.95	2.0±0.05
C1S1 119-day	<DL	1±0.004	<DL	7.40±0.01	4±0.1	437±10.02	1.8±0.04
C1S1 252-day	<DL	<DL	<DL	7.02±0.01	<DL	288±8.64	1.9±0.14

*DL corresponds to detection limit. Detection limit of 0.6 for Cd, and 0.7 µgL⁻¹ for Pb was determined.

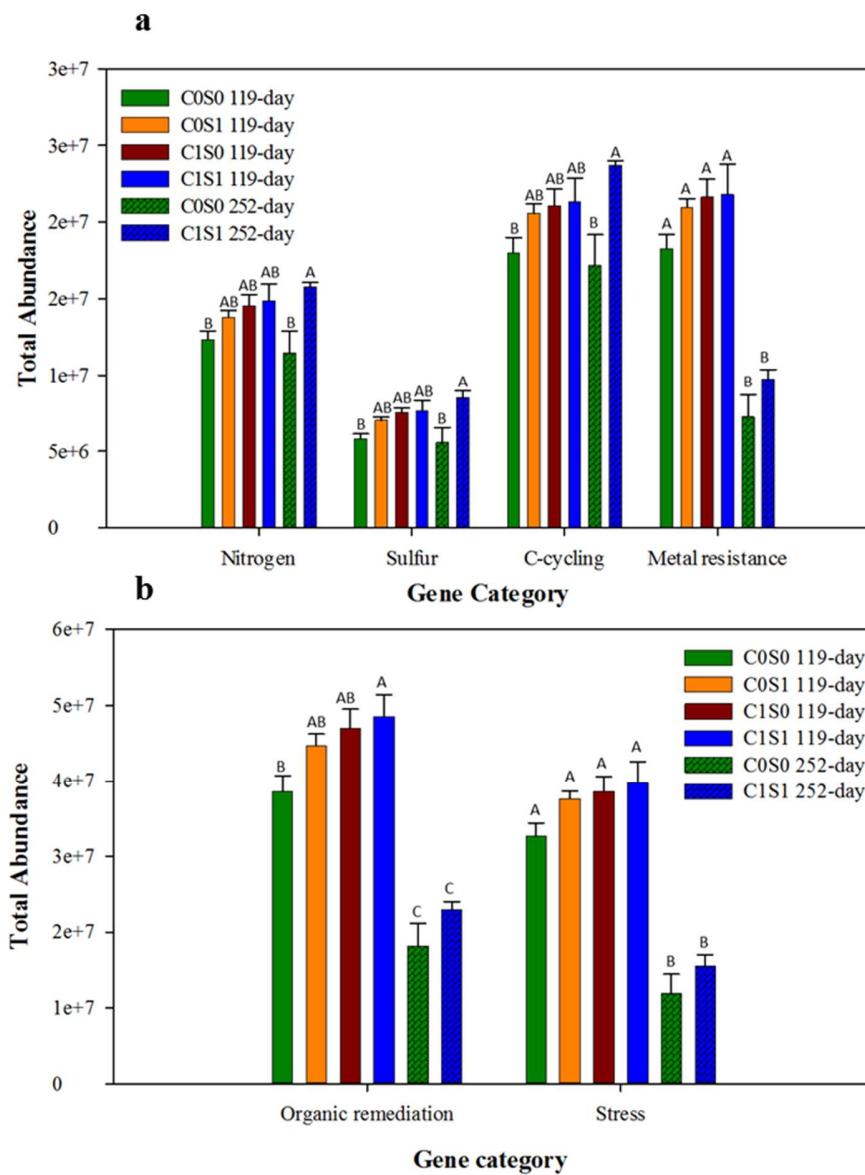

¶ indicates data not collected

685

686 **List of Figures:**

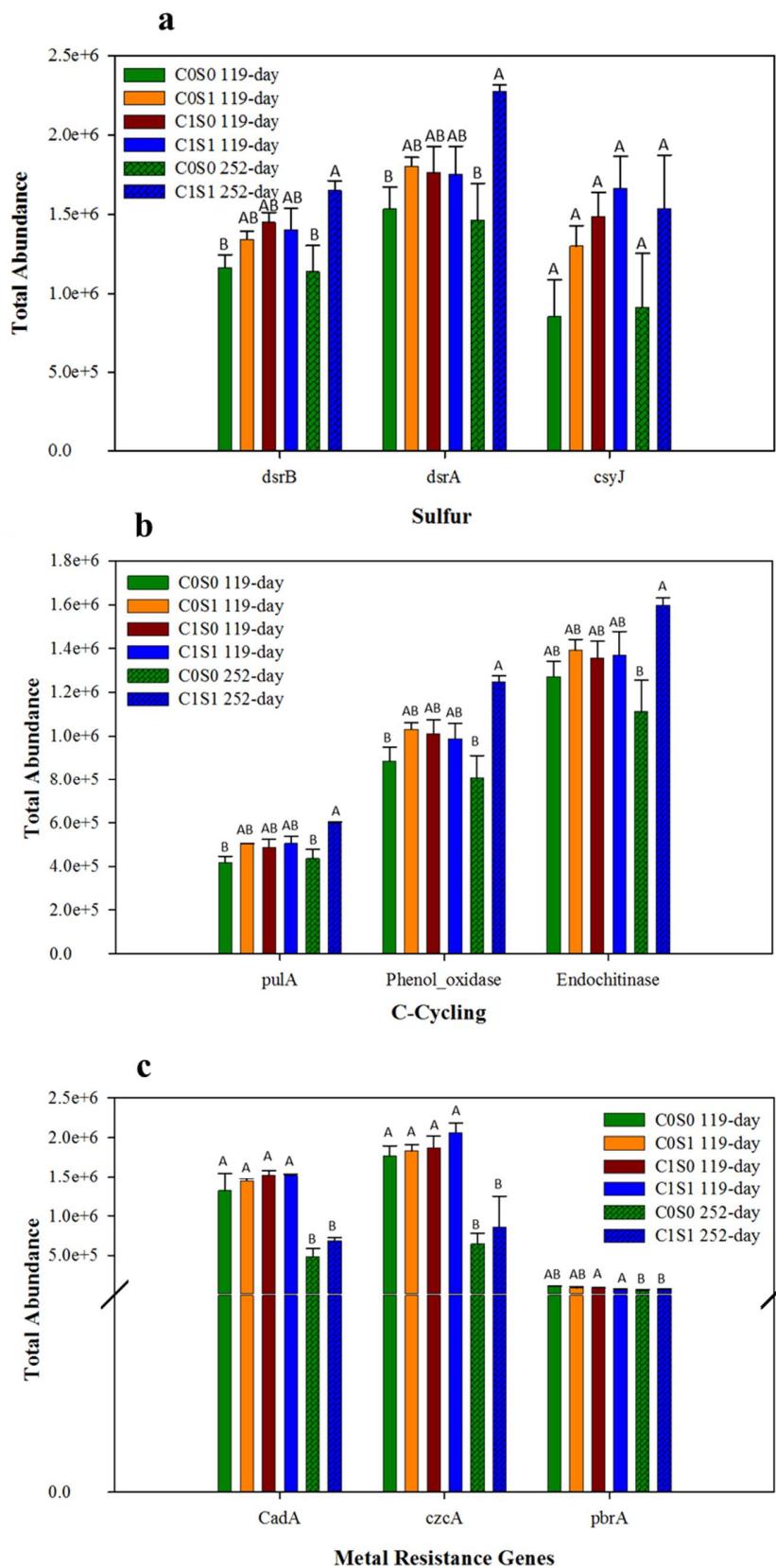

687

688 **Figure 1:** X-ray absorption fine structure spectroscopy results showing % components for a)
 689 Lead, b) zinc and c) cadmium in starting mine waste material, control (COSO) and OC-plus-S-
 690 treated sample (C1S1) under long-term (252-day) submergence. The phase identified as less than
 691 10% may not be significant due to error associated with smaller estimations.

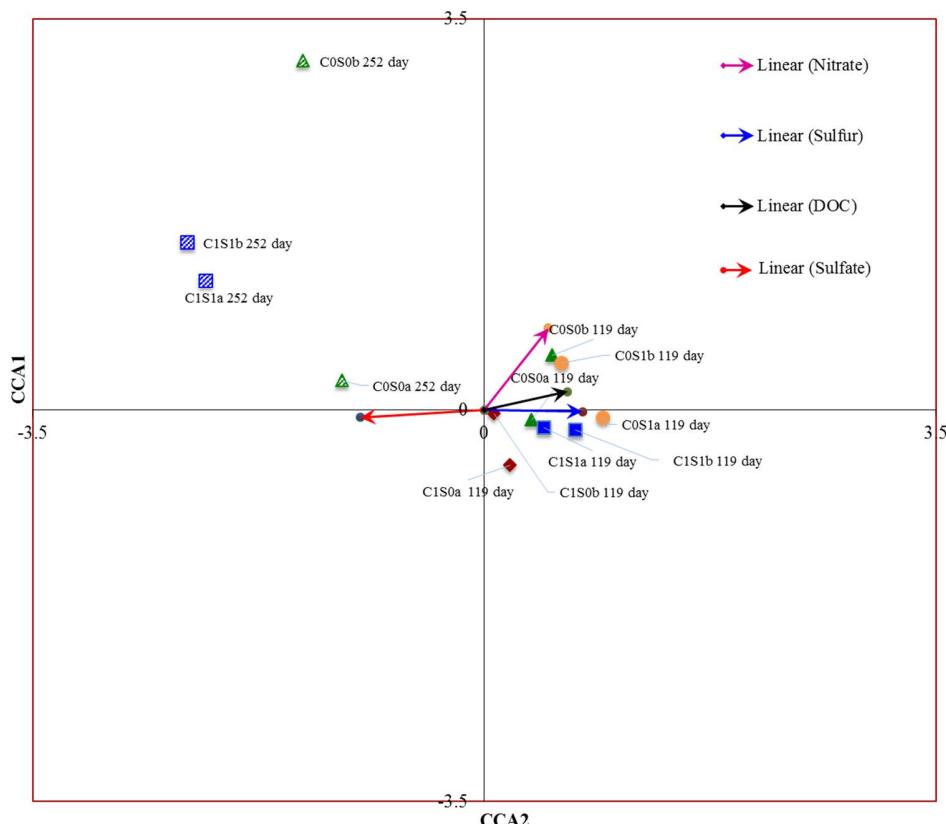


692

693 **Figure 2:** Functional Gene richness under medium- (119-day), and long-term (252-day)
694 submergence. All the treatments; C0S0, C0S1, C1S0, and C1S1 (solid filled bars) from medium-
695 term submergence, and only C0S0, and C1S1 (pattern filled bars) from long-term submergence
696 are plotted. Vertical bars represent the mean of three replicates; 2 replicates from individual
697 column, and 1 replicate from the mixture of two columns. Bars with the same letters are not
698 significantly different. Different letters within a category indicate significance difference
699 ($\alpha=0.05$).



700
 701 **Figure 3:** Detrended correspondence analysis (DCA) for the total number of detected genes
 702 under medium- (119-day) and long-term (252-day) submergence, indicating community structure
 703 changes. All the treatments; C0S0, C0S1, C1S0, and C1S1 (solid filled markers) from medium-
 704 term submergence, and only C0S0, and C1S1 (pattern filled markers) from long-term
 705 submergence are plotted.



706

707 **Figure 4:** Total abundance of function genes in selected categories for the samples submerged
 708 for both medium- (119-day) and long-term (252-day) submergence. All the treatments; C0S0,
 709 C0S1, C1S0, and C1S1 (solid filled bars) from medium-term submergence, and only C0S0, and
 710 C1S1 (pattern filled bars) from long-term submergence are plotted. Vertical bars represent the
 711 mean of three replicates; 2 replicates from individual column, and 1 replicate from the mixture of
 712 two columns. Bars with the same letter are not significantly different. Different letters within a
 713 category indicate significance difference ($\alpha=0.05$).

715 **Figure 5:** Total abundance of a) *dsrA/dsrB*, and *csyJ* in the sulfur category, b) *pulA*,
 716 Phenol_oxidase, Endochitinase under the C-cycling category, and c) Cd resistance gene (*CadA*),
 717 Zn resistance gene (*czcA*), and Pb resistance gene (*pbrA*). Vertical bars represent the mean of
 718 three replicates. All the treatments; C0S0, C0S1, C1S0, and C1S1 (solid filled bars) from
 719 medium-term submergence, and only C0S0, and C1S1 (pattern filled bars) from long-term
 720 submergence are plotted. Vertical bars represent the mean of three replicates; 2 replicates from
 721 individual column, and 1 replicate from the mixture of two columns. Bars with the same letter
 722 are not significantly different. Different letters within a category indicate significance difference
 723 ($\alpha=0.05$).

724
 725 **Figure 6:** Canonical correspondence analysis (CCA) indicating the relationship between
 726 microbial communities with environmental factors.