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I. INTRODUCTION

Turbulence is a difficulty subject, which pervades so

many aspects of peoples’ daily lives [1–16]. It is believe

that the turbulence flow are govern by the Navier-Stokes

momentum equation is ρu,t+∇ ·Π = 0, continuity equa-

tion of incompressible flow is ∇·u = 0, where the energy-

moementum tensor given by Π = pI+ρu⊗u−µ(∇u+

u∇), dynamic viscosity µ, gradient operator ∇ = ei∂i,

base vector in the i-coordinate ei, and tensor product ⊗.

To solve the problem, in 1895 Reynolds published a

seminal work on turbulence [29], in which he proposed

that flow velocity u and pressure p are decomposed in-

to its time-averaged quantities, ū, t, p̄, and fluctuating

quantities, u′, p′; thus, the Reynolds decompositions are:

u = ū(x, t) + u′(x, t) and p(x, t) = p̄(x, t) + p′(x, t),

where coordinates and times are (x, t).

Applying the Reynolds decomposition and averag-

ing operation, we have the Reynolds averaged Naviers-

Stiokes turbulence equations (RANS): ρū,t + ρ∇ · (ū ⊗
ū) + ∇p̄ = µ∇2ū − ρ∇ · (u′ ⊗ u′) and continuity e-

quation of the mean velocity: ∇ · ū = 0, in which the

Reynolds stress tensor is defined as τ = −ρu′ ⊗ u′ =

−ρ limT→∞
1
T

∫ t+T

t
(u′ ⊗ u′)dt, and T is the period of

time over which the averaging takes place and must be

sufficiently large to give meaningful averages.

For a general three-dimensional flow, there are four in-

dependent equations governing the mean velocity field;

namely three components of the Reynolds equations to-

gether with one mean continuity equation. However,

these four equations contain more than four unknowns.

In addition to ū and p̄ (four quantities), there are also the

Reynolds stresses. The Reynolds average Navier-Stokes
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(RANS) equations are unclosed. This is a manifestation

of the turbulence closure problem. This closure issue has

eluded scientists and mathematicians for ages.

All literature state the Reynolds stress tensor has six

unknowns, which make up to ten unknowns in total for

the Reynolds turbulence equations [1–8, 10–16]. Later

we will show that the Reynolds stress tensor has actually

only three unknowns.

In 1940 and 1945, P.-Y. Chou [30, 31] published a re-

markable result and pointed out that because the Navier-

Stokes equations are the basic dynamical equations of

fluid motion, it is insufficient to consider only the mean

turbulent motion. The turbulent fluctuations are as im-

portant as the mean motion and the equations for turbu-

lent fluctuations also need to be considered. Subtracting

the mean motions from the Navier-Stokes equation and

continuity equation, Chou [30, 31] obtained the Chou

Naviers-Stokes turbulence equations (CNS): ρū′
,t + ρ∇ ·

(ū⊗u′+u′⊗ū+u′⊗u′)+∇p′ = µ∇2u′+ρ∇ ·(u′ ⊗ u′)

and ∇ · u′ = 0.

Although Chou [31] mentioned that the rigorous way of

treating the turbulence problem is probably to solve the

Reynolds’ equations of mean motion and the equations of

turbulent fluctuation simultaneously. However, from the

presentation of [31] and all his subsequent publications

[32–36], we noticed that Chou together with all other re-

searchers [1–8, 10–16] did not realise that the fluctuation

equations together with the mean equations already can

form a closed equations system.

But researchers are making progress on understand-

ing the physics of the Reynolds stresses. In a Preprint

published on 28 June 2018 in Preprints.org, a new per-

spectives proposed by Sun [37–40] could help to solve the

long-standing puzzle over the turbulence closure issue.

He proven that the Reynolds stress tensor is not a gen-

eral second order tensor with six independent elements,

while its each element is the product of two fluctuation
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velocity components. There are 3 velocity components in

3D flow, therefore the number of independent parameters

is 3 rather than 6, namely the three components of the

fluctuation velocity. For three dimensional flow, we can

only have three components of fluctuation velocity u′ as

unknowns. It means that the Reynolds stress tensor has

only three unknowns, namely u′
1, u

′
2, u

′
3. For two dimen-

sional flow, of course, the 2D Reynolds stress tensor has

only two unknowns, namely u′
1, u

′
2.

With this new understanding, Sun [37–40] showed the

integral-differential equations of the Reynolds mean and

fluctuation equations have same number of unknowns

That is why Sun [37–40] claim that the Reynolds Navier-

Stokes turbulence equations of incompressible flow are

closed rather than unclosed.

Although the closed turbulence equations are obtained,

however they are not easy to be solved. For simplification

purpose, some kind of approximation should be intro-

duced. To simplify the closed turbulence equations, Sun

[39] proposed an explicit velocity fluctuation by using di-

mensional analysis, namely u′ = µ
ρU∇ × ū. However,

since the characteristic flow velocity U is not an intrinsic

quantity, the proposed model in [39] should be enhanced

further. In this article, we will utilize the fluctuation

equation to propose an intrinsic formulation of the ve-

locity fluctuation, and to construct the Reynolds stress

tensor and to establish the laminar-turbulence transition

condition as well.

Section II gives the closed turbulence equations; Sec-

tion III proposes the first order approximation of veloci-

ty fluctuation; Section IV obtains the Reynolds stress in

terms of mean vorticity; Section V lists the formulations

in the Cartesian coordinates; Section VI presents some

important consequences and laminar-turbulence transi-

tion condition is formulated; finally concluded in Section

VII.

II. THE CLOSED TURBULENCE EQUATIONS

A closed turbulence equations of incompressible flow

proposed by Sun [37–40] can be given as follows

ρū,t + ρ∇ · (ū⊗ ū) +∇p̄ (1)

= µ∇2ū− ρ lim
T→∞

1

T

∫ t+T

t

∇ · (u′ ⊗ u′)dt,

ρū′
,t + ρ∇ · (ū⊗ u′ + u′ ⊗ ū+ u′ ⊗ u′) +∇p′ (2)

= µ∇2u′ + ρ lim
T→∞

1

T

∫ t+T

t

∇ · (u′ ⊗ u′)dt,

∇ · ū = 0, (3)

∇ · u′ = 0. (4)

Denoting kinematic viscosity ν = µ/ρ, the above equa-

tions be equivalently rewritten in a conventional form

ū,t + ū ·∇ū+
1

ρ
∇p̄ (5)

= ν∇2ū− lim
T→∞

1

T

∫ t+T

t

(u′ ·∇u′)dt,

ū′
,t + ū ·∇u′ + u′ ·∇ū+ u′ ·∇u′ +

1

ρ
∇p′ (6)

= ν∇2u′ + lim
T→∞

1

T

∫ t+T

t

(u′ ·∇u′)dt,

∇ · ū = 0, (7)

∇ · u′ = 0. (8)

Applying the divergence operation ∇ on both sides of

the Eqs.(5,6), we can obtain equations for both mean

and fluctuation pressure as follows

∇2p̄ = −ρ∇ · (ū ·∇ū) (9)

− ρ lim
T→∞

1

T

∫ t+T

t

∇ · (u′ ·∇u′)dt,

∇2p′ = −ρ∇ · [ū ·∇u′ + u′ ·∇ū+ u′ ·∇u′] (10)

+ ρ lim
T→∞

1

T

∫ t+T

t

∇ · (u′ ·∇u′)dt.

According to [2], to keep compatible with time aver-

age definition, the ū,t = 0 in all above equations, which

implies the mean velocity ū = ū(x).

Although the Eqs.(1,2,3,4) are closed, if you add Eq.1

and Eq.2, the Reynolds stress tensor will be cancelled

out and all equations go back to the Navier-Stokes equa-

tion; similarly the total velocity continuity equation will

be restored if adding Eq.3 and Eq.4. In other words, al-

though the turbulence equations Eqs.(1,2,3,4) are closed,

it would not provide us a real boost in solving turbu-

lence problem. Nevertheless, the turbulence equations

Eqs.(1,2,3,4) still have an academic value, which can def-

initely give a better guideline in the modelling of turbu-

lence.

For later use, dot multiplying Eq.(6) with ū′, we can

obtain fluctuation kinetic equation as follows

u′ · [u′
,t + ū ·∇u′ + u′ ·∇ū+ u′ ·∇u′ +

1

ρ
∇p′] (11)

= νu′ ·∇2u′ + u′ · lim
T→∞

1

T

∫ t+T

t

(u′ ·∇u′)dt.

Note tensor identity (u′
i,k)

2 = ∇u′ : ∇u′. The above
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equation can be rearranged equivalently as follows

1

2
(u′)2,t + u

′ · (u′ ·∇ū) + ν∇u′ : ∇u′ (12)

− u′ · lim
T→∞

1

T

∫ t+T

t

(u′ ·∇u′)dt

= ∇ · [−1

2
(u′)2(ū+ u′)− 1

ρ
p′u′ +

1

2
ν(u′)2],

where (u′)2 = u′2
1 +u2

2+u2
3. The right terms on the right

gives zero on integration over the whole region Ω of the

flow, since ū = u′ = 0 on the boundary surfaces of the

region or at infinity. This gives as the required equation∫
Ω

[
1

2
(u′)2,t + u

′ · (u′ ·∇ū) + ν∇u′ : ∇u′ (13)

− u′ · lim
T→∞

1

T

∫ t+T

t

(u′ ·∇u′)dt]dV = 0.

This is an integrated invariant of turbulence incompress-

ible flow. Note that the term −1
2 (u

′)2(ū+u′)− 1
ρp

′u′ +
1
2ν(u

′)2 in Eq.(12) non-linear in velocity fluctuation u′

does not contribute to the relation Eq.(13).

III. THE FIRST ORDER APPROXIMATION OF

VELOCITY FLUCTUATION

Although the turbulence problem can be numerically

calculated by Eqs.(5,6,7,8), it would be useful to have

some theoretical consideration from the equations. S-

ince the key issue of turbulence analysis is to find the

mean field of velocity and pressure, therefore one ap-

proximation strategy is to find the estimation of the ve-

locity fluctuation field under the incompressibility con-

dition ∇ · u′ = 0 and time average conditions ū′ =

limT→∞
1
T

∫ t+T

t
u′dt = 0 as well.

The question is: how does one construct velocity fluc-

tuation u′? Since there are no definitive stances on what

turbulence is, or no scientific definition of turbulence, it is

hard to guess the weight of velocity fluctuation u′ within

the flow velocity u. But what is apparent is that the

mean field and fluctuation counterpart of velocity is in-

terconnected, for instance, the faster ū goes, the higher

the frequency u′, which implies that the velocity fluc-

tuation u′ is dependent on the mean velocity field ū.

With this understanding one can propose that the veloc-

ity fluctuation u′ is a function of mean velocity ū, namely

u′ = u′(ū, t). Therefore, the Reynolds velocity decom-

position can be rewritten as u = ū+ u′(ū, t). However,

the closure problem would still be there if u′(ū, t) cannot

be proposed.

Numerous observations [1–16] have shown that turbu-

lence is caused by excessive kinetic energy in parts of

a fluid flow, which overcomes the damping effect of the

fluid’s viscosity. Hence, turbulence is easier to create in

low viscosity fluids, but more difficult in highly viscous

fluids. The dynamic balance between kinetic energy and

viscous damping in a fluid flow can be perceived as flow

symmetries that are broken by mechanisms, which pro-

duce turbulence, and are restored by the chaotic char-

acter of the cascade to small scales [11]. This dynamic

balance process is the key source to generating velocity

fluctuation u′. In particular, it is found that the mean

velocity vorticity ω̄ = ∇ × ū plays an essential role in

producing turbulence. This means that velocity fluctua-

tion u′ should be a function of both mean velocity ū and

its vorticity ω̄.

To satisfy the incompressibility condition ∇ · u′ = 0,

the velocity fluctuation u′ must be divergence-free, hence

we can introduce a vector function ψ and let

u′ = ∇×ψ. (14)

Based on the above understanding and mathematical re-

quirements, we like propose the following conjecture for

the vector ψ:

ψ = f(ū)A(x, t), (15)

where A(x, t) is a scalar function and represents the na-

ture of fluctuation. How should one determine the func-

tion f(ū)? Considering the vector as a first order tensor,

if f(ū) is a homogenous function of ū, we should express

that the function f(ū) = b + αū, in which the constant

vector a can be omitted, since ∇ × b = 0. Physically,

there is no velocity fluctuation u′ if there is no mean

velocity ū, namely u′
ū=0 = 0.

If one substitutes ϕ = 0 and Eq. (15) into Eq. (16), it

will lead to the following velocity fluctuation:

u′ = α∇× [ūA(x, t)] = α (A∇× ū+∇A× ū) , (16)

where the α is a constant with the length dimension. The

time mean condition ū′ = 0, which requires Ā = 0 and

∇A = 0.

Analogues to the study of flow stability by Landau

[41], we can assume A(x, t) is space independent function

A(t), which represents the velocity fluctuation. Hence,

the velocity fluctuation can be expressed as:

u′ = A(t)∇× ū = A(t)ω̄. (17)

The beauty of the velocity fluctuation in Eq. (17) is that

both the incompressibility ∇ · u′ = 0 and time average

conditions ū′ = limT→∞
1
T

∫ t+T

t
u′dt = 0 can be satisfied

simultaneously under the time mean conditions Ā(t) = 0.

Since the velocity fluctuation is proportional to the

vorticity ω̄ = ∇ × ū, and Curl of the mean velocity,

∇ × ū is a three dimensional quantity; therefore, the
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turbulence is always rotational and three dimensional,

whilst characterized by high levels of fluctuation vortic-

ity. Hence, vorticity dynamics play an essential role in

the description of turbulent velocity fluctuations [2].

To determine the function A(t), substituting Eq.(17)

into Eq.(13),this gives as the required equation about

A(t)

A,t = aA− b lim
T→∞

1

T

∫ t+T

t

[A(ξ)]2dξ, (18)

where the coefficients, a = 1
a0
(a1 − νa2) and integra-

tion constants a0 =
∫
Ω
ω̄ · ω̄dV is always positive ;

a1 = −
∫
Ω
ū · (ū ·∇ū)dV represents the energy exchange

between the mean flow and fluctuation, and may have

either sign; a2 =
∫
Ω
(ω̄i,k)

2dV =
∫
Ω
∇ω̄ : ∇ω̄dV is the

fluctuation dissipative loss, and is also always positive;

b =
∫
Ω
ω̄ · (ω̄ ·∇ω̄)dV .

Eq.(18) is a nonlinear integral-differential equation,

which is very hard to solve due to the limits of T → ∞.

Here we are going to propose two ways and see which one

works.

(1) Option one

Eq.(18) can be expressed as its equivalent form

A,t = aA− b

T

∫ t+T

t

[A(ξ)]2dξ, for a large T. (19)

Its iterative scheme is

d

dt
(e−atAn+1) = − b

T
e−at

∫ t+T

t

(An)
2dξ. (20)

Using iterative method, for the given observation interval

T , the solution of Eq.(20) can be obtained, for instance,

the 3rd order solution is

A1(t, T ) = A(0)eat, (21)

A2(t, T ) = c+ c2e
at, (22)

where c = − bA2(0)
2Ta2 (e2aT − 1), c2 = A(0)− c; and the 3rd

order solution

A3(t, T ) = −bc2

a
− 2cc2

aT
(eaT − 1)teat

− bc22
2a2T

(e2aT − 1)e2at + c3e
at. (23)

From t = 0, A3 = A(0), we have c3 = bc2

a +
bc22

2Ta2 (e
2aT −

1). These iterative process can be carried on and more

accurate solutions can be obtained.

If we take the limits of T → ∞, the above solution tend

to infinite. We can not use those solution and alternative

way has to be find out.

(2) Option two

From turbulence physics, the mean velocity is a s-

low function while the velocity fluctuation is a fast

function, however, its square can be considered as s-

low function. So that we can make an approximation

limT→∞
1
T

∫ t+T

t
[A(ξ)]2dξ ≈ limT→∞

1
T [A(ξ)]

2(t + T −
t) = A2(t), hence the Eq.(18) can be approximated as

follows

A,t = aA− bA2. (24)

This is the Riccati equation, whose solution is

A(t) =
A(t0)e

at

[1− b
aA(t0)]e

at + b
aA(t0)e

at
. (25)

Ensure to have finite value of A(t), the exponent a must

be negative, i.e., a < 0. In this case, limT→∞ A(t) = a
b ,

thus ¯A(t) = 0 is secured, and Ā2 = (ab )
2.

In summary, we have velocity fluctuation as follows

u′ = A(t)∇× ū = A(t)ω̄ (26)

A(t) = −
∫
Ω
ū · (ū ·∇ū)dV + ν

∫
Ω
∇ω̄ : ∇ω̄dV

(
∫
Ω
ω̄ · ω̄dV )[

∫
Ω
ω̄ · (ω̄ ·∇ω̄)dV ]

(27)

Comparing with the formulation of velocity fluctuation

proposed by Sun [39], the velocity fluactuation in Eq.(26)

has no external adjustable parameter, and all quantities

can be calculated by the mean field of velocity.

IV. THE REYNOLDS STRESS TENSOR

The Reynolds stress tensor τ = −ρu′ ⊗ u′ can be ob-

tained as follows [48]:

τ = −[∇× (Aū)]⊗ [∇× (Aū)]

= −
(
A2ω̄ ⊗ ω̄ + (∇A× ū)⊗ (∇A× ū)

)
= −

[
A2ω̄ ⊗ ω̄ + (∇A⊗∇A)

×
×(ū⊗ ū)

]
. (28)

If the scalar function A is only a function of time, the

Reynolds stress tensor is given by

τ = −Ā2ω̄ ⊗ ω̄ (29)

Ā2 =

(∫
Ω
ū · (ū ·∇ū)dV + ν

∫
Ω
∇ω̄ : ∇ω̄dV

(
∫
Ω
ω̄ · ω̄dV )[

∫
Ω
ω̄ · (ω̄ ·∇ω̄)dV ]

)2

. (30)

In this special case, the Reynolds averaged stress tensor

is produced fully by the mean vorticity.

This expression of the averaged Reynolds stress ten-

sor reveals that the mean vorticity ω̄ is a key source in

producing turbulence, and it is worth commenting here

in this regard. The non-linearity between the averaged

Reynolds stress tensor and the mean vorticity and ve-

locity is the key feature of turbulence phenomena, and

is totally different from molecular diffusivity [2]. Thus,

non-linearity of the averaged Reynolds stress tensor is

the turbulence mechanism behind rapid mixing.
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V. CLOSED TURBULENCE EQUATIONS

With the explicit velocity fluctuation in Eq. (17), one

can formulate the Reynolds averaged Navier-Stokes equa-

tions as follows [49]:

ρū ·∇ū = −∇p̄+ µ∇2ū− Ā2ρω̄ ·∇ω̄, (31)

∇ · ū = 0. (32)

It is clear that Eq. (31,34,35) are a closed equation,

in which the mean velocity field ū is the only unknown

vector.

The above formulations show that although the spe-

cific expression of the function A(x, t) is not known, one

can still approximately calculate the Reynolds stress ten-

sor τ , the mean velocity ū, mean pressure p̄, as well as

the kinetic energy of the velocity fluctuation. Howev-

er, the pressure fluctuation and the vorticity fluctuation

cannot be determined without knowing A(x, t). This im-

perfection does not affect the turbulence study too much,

since one of the central issues is to find mean field quan-

tities such as the mean velocity and the pressure, which

can been formulated within the current theoretical frame-

work.

VI. FORMULATIONS IN THE CARTESIAN

COORDINATES

For a better understanding, the formulations in the

Cartesian coordinates are listed below:

The vorticity components are: ω̄x = ∂w̄
∂y − ∂v̄

∂z , ω̄y =
∂ū
∂z − ∂w̄

∂x , and ω̄z = ∂v̄
∂x − ∂ū

∂y .

The velocity fluctuation components are:

u′ = A(t)(
∂w̄

∂y
− ∂v̄

∂z
),

v′ = A(t)(
∂ū

∂z
− ∂w̄

∂x
), (33)

w′ = A(t)(
∂v̄

∂x
− ∂ū

∂y
).

The averaged Reynolds stress components are:

τxx = −Ā2(
∂w̄

∂y
− ∂v̄

∂z
)2,

τxy = Ā2(
∂w̄

∂y
− ∂v̄

∂z
)(
∂ū

∂z
− ∂w̄

∂x
),

τxz = Ā2(
∂w̄

∂y
− ∂v̄

∂z
)(
∂v̄

∂x
− ∂ū

∂y
),

τyx = τxy, (34)

τyy = −Ā2(
∂ū

∂z
− ∂w̄

∂x
)2,

τyz = Ā2(
∂ū

∂z
− ∂w̄

∂x
)(
∂v̄

∂x
− ∂ū

∂y
),

τzx = τxz,

τzy = τyz,

τzz = −Ā2(
∂v̄

∂x
− ∂ū

∂y
)2.

It is clear that the Reynolds stress is proportional to the

square mean velocity gradient, which has been proved by

experiments. Tennekes and Lumley [2] pointed out that

diagonal components of τ , their values ρu2
1, ρu

2
2, ρu

2
3, in

many flows, contribute little to the transport of mean

momentum. The off-diagonal components of τ are s-

hear stresses; they play a dominate role in the theory of

mean momentum transfer by turbulent motion. There-

fore the diagonal components of the Reynolds stresses,

ρu2
1, ρu

2
2, ρu

2
3, can be omitted if needed.

The closed Navier-Stokes turbulence equations are:

ū
∂ū

∂x
+ v̄

∂ū

∂y
+ w̄

∂ū

∂z
+

1

ρ

∂p̄

∂x
= ν∇2ū− (∇ · τ )x,

ū
∂v̄

∂x
+ v̄

∂v̄

∂y
+ w̄

∂v̄

∂z
+

1

ρ

∂p̄

∂x
= ν∇2ū− (∇ · τ )y,(35)

ū
∂w̄

∂x
+ v̄

∂w̄

∂y
+ w̄

∂w̄

∂z
+

1

ρ

∂p̄

∂x
= ν∇2ū− (∇ · τ )z,

where the kinematic viscosity is ν = µ/ρ, and the Laplace

operator ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , and (∇ · τ )x = ∂τxx

∂x +
∂τxy

∂y + ∂τxz

∂z , (∇ · τ )y =
∂τyx

∂x +
∂τyy

∂y +
∂τyz

∂z , (∇ · τ )z =
∂τzx
∂x +

∂τzy
∂y + ∂τzz

∂z .

VII. SOME IMPORTANT CONSEQUENCES

As a byproduct, we can get following important out-

comes from the above formulations.

A. Vorticity is essential, no vorticity no velocity

fluctuation and no turbulence

From both u′ = A∇ × ū = Aω̄ and τ = −Ā2ω̄ ⊗ ω̄,
it is obviously to see that the mean vorticity ω̄ = ∇× ū
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is an essential quantity. If there were no mean vorticity,

namely ω̄ = 0, then there would be no both the velocity

fluctuation u′ and the Reynolds stress tensor τ . There-

fore, we can even say that no vorticity no turbulence.

B. Turbulence is three-dimensional, there is no 1-D

and 2-D turbulence

From Eq.(34) we can see that the Reynolds stresses are

zero in the case of 1-D and 2-D flow. This stems from

the fact of three-dimensionality of vorticity ω̄ = ∇× ū.
Although this consequence is a consensus on turbulence

[2], however its formulation is obtained for the first time

in this article.

C. Laminar-turbulence transition condition

Another important issue is about laminar-turbulence

transition condition, luckily which is a consequence of

this study. It is natural to define the laminar-turbulence

transition condition as follows: no velocity fluctuation no

turbulence, that is no laminar-turbulence transition.

In the limits of t → ∞, the finite value of A(t) oc-

curs at a < 0, while A(t) tend to be zero at a > 0.

Therefore, turbulence onset condition and or laminar-

turbulence transition condition must be a = 0, namely

−
∫
Ω

ū · (ū ·∇ū)dV = ν

∫
Ω

∇ω̄ : ∇ω̄dV. (36)

Due to the arbitrary nature of the region Ω, the above

onset condition can be reduced to

ū · (ū ·∇ū) + ν∇ω̄ : ∇ω̄ = 0. (37)

equivalently in coordinates format

ūiūj ūi,j + ν[(ūi,j − ūj,i),k]
2 = 0, (i, j = 1, 2, 3). (38)

It is remarkable to mention that the turbulence onset

condition (37) has nothing to do with characteristic ve-

locity. Condition (37) is intrinsic since there is no ex-

ternal characteristic velocity be used as in the Reynolds

number definition, which means that the turbulence on-

set condition is fully controlled by local mean velocity

and corresponding voticity.

VIII. CONCLUSIONS

In conclusion, the main results are listed in the Table

below

This study has attempted to propose a simplification

of the velocity fluctuations that can simultaneously sat-

isfy both incompressibility and time-average conditions.

TABLE I: Turbulence modelling

Items Formulations

Closed turbulence equations Eqs.(5,6)

Velocity fluctuation Eqs.(26,27)

The Reynolds stress tensor Eqs.(29,30)

Closed RANS equation Eqs.(31,32)

Turbulence onset condition Eqs.(37)

The velocity fluctuation and the Reynolds stress tensor

has been constructed, the turbulence onset condition is

obtained. The simplified closed turbulence formulations

show that the mean vorticity has a strong influence on

the velocity fluctuation and the Reynolds stress tensor,

as well as on the mean pressure. This fact reveals that

three-dimensional vorticity fluctuation is a fundamental

mechanism of producing turbulence. We can even say

that no vorticity no velocity fluctuation and hence no

turbulence.
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Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2018                   doi:10.20944/preprints201808.0071.v1

http://dx.doi.org/10.20944/preprints201808.0071.v1

