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Abstract: This study presents a pre-processing approach adopted for the radar reflectivity data 
assimilation and results of simulations with the Harmonie numerical weather prediction model. 
The method shows an improvement of precipitation prediction within the radar location area in 
both the rain rates and spatial pattern presentation. With the assimilation of radar data, the model 
simulates larger water content in the middle troposphere within the layer from 1 to 6 km, with 
major variations at 2.5–3 km; it also reproduces better the mesoscale belt and cell patterns of 
precipitation fields. 
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1. Introduction 

Precipitation plays an important role in both the water cycle and energy balance of the 
atmosphere. However, due to the high spatial and temporal variability of precipitation in the 
mesoscale, obtaining accurate quantitative precipitation estimates is still a “first-line frontier” task. 
Moreover, the Global Precipitation Measurement (GPM) mission has shown notable differences in 
estimations of precipitation obtained from various platforms, especially for low rain rates [1]. 
Current rain-gauge networks mainly suffer from sparse distribution and limited coverage [2]. 
Although satellite-based infrared and visible data have high spatial resolution, relations between 
the radiance from cloud and precipitation are indirect and non-unique [3]. Additionally, the 
evaluations of satellite quantitative precipitation estimates have some limitations in terms of the 
deficiency in the observations, the evaluation methodology, the selection of time windows for 
evaluation and the short periods for evaluation [4]. Passive microwave instruments provide 
acceptable estimates of precipitation; nevertheless, they exhibit low spatial and temporal resolution 
[5]. The ground-based radar network in Europe is heterogeneous in terms of hardware, signal 
processing, transmission and reception frequencies and scanning strategy.  

The Operational Program for Exchange of Weather Radar Information (OPERA) was launched 
for improving the harmonization of radars and their measurements [6]. The program provides three 
composite products, such as instantaneous surface rain rate, instantaneous maximum reflectivity 
and one-hour rainfall accumulation; gathered data includes three-dimensional volumes of 
reflectivity and radial wind. When assimilated in convection-permitting models, radar data could 
yield significant improvements in the representation of the spatial distribution of cloud and 
precipitation, as well as rain rates [7–9]. This is achieved due to the fact that ground-based radars 
have a high spatial and temporal resolution and cover large areas at different altitudes. It is worth 
noting that radar data are heterogeneously distributed, providing abundant information near radar 
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locations, while such information becomes sparser with increasing distance from the sensor. Further 
improvement of assimilation systems is seen in the optimization of pre-processing radar data in 
terms of homogenizing data coverage, along with increasing confidence in them by averaging 
stochastic errors.  

The objective of this study is to present a pre-processing approach adopted for the radar 
reflectivity data assimilation and the results of simulations with the Harmonie numerical weather 
prediction model. Through a case study, it will be shown that the method can improve the 
prediction of precipitation within the radar location area, both in terms of the rain rates and spatial 
pattern presentation.  

Methods of pre-processing are shortly presented in the following Section 2, in which the model 
and data used in this study are elaborated, also. Results of simulations with the proposed pre-
processing approach are presented in Section 3. Section 4 presents some concluding remarks. 

2. Materials and Methods  

2.1. Pre-processing of radar data.  

Although radars measure the reflectivity and radial wind, this study focuses at the former 
parameter only. Quality control and other extra technical procedures are also omitted, assuming 
that they have been performed at preliminary steps, namely, during initial processing of radar data. 
Further pre-processing is performed in different ways and may include various methods. Among 
these is the spatial screening of the raw data over some pixels in pursuit both, to reject abundant 
data and rid horizontal correlations in observation errors. The screening includes either filtering or 
smoothing procedures. The former is an easy way to routinely perform thinning of high-resolution 
radar data. Simple thinning of abundant radar observations throws a significant part of data out 
from the process, but also affects the spectral distribution of sub-scales finer than a thinning 
parameter. An alternative to the thinning is the averaging of observations within a given box to 
create a new value located at an averaged position. This also allows to average out random 
observation errors [10]. This method, called superobbing, is used for remote sensing observations, 
such as atmospheric motion vectors and Doppler radar radial wind measurements [11]. With this 
approach, the observation (O) minus background (B) differences (denoted as O – B) or innovations, 
are averaged. For each observation, its model simulated analogue is computed and an O – B 
innovation is calculated. These innovations are then averaged and added to the model observation 
closest to the center of the superobbing cell to provide the super-observation. Optimization of the 
superobbing processing from dense raw data is the compromise between the above two factors, 
namely, saving finer than averaging size scales, on one hand, and obtaining more stable estimates 
for remaining scales due to reducing stochastic errors, on the other hand [12]. Additionally, the 
problem of representativeness is necessary to be accounted for, while comparing and assimilating 
data from sources with different spatial resolutions. Experience with assimilating high-resolution 
data shows that such a data coverage may provide unsatisfactory results. In particular, tests with 
the Generalized Cross-Validation (GCV) method [13] using a simulated high-resolution data set at 
full resolution has led to a poorer analysis than a lower resolution data set that preceded it. The 
larger the nonconformity between the resolution of the observations network, on the one hand, and 
that of the model, on the other hand, the larger the numerical impact on the result or, equivalently, 
the larger the representativeness error. 

This study proposes a slightly modified approach for smoothing high-resolution radar data at 
the pre-processing step. It seems obvious to optimally feed the model with observations at the same 
resolution as the model grid. A similar procedure is performed for simulated reflectivity in a 1D+3D 
variational assimilation system, feeding vertical profiles of reflectivity on a regular grid [14]. 
Certainly, this imposes an additional computational cost, which however can be afforded before the 
model is run and tuned for a specific domain. The other drawback is that the approach still yields 
an inhomogeneous confidence over the radar coverage domain, due to the different number of 
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measurements involved at each mesh box1. In short, the proposed method firstly creates a 3D 
regular grid in which a horizontal size of meshes coincides with a horizontal model resolution. This 
should minimize the error associated with the discrepancy between resolutions of informational 
sources [15]. Structure functions for radar reflectivity from lower bins, which with certain 
assumption measure horizontal size and shape of precipitation patterns, are saturated at a few 
kilometer distance (Figure 1). Smoothing with 0.5 km yields very similar results, both in the value 
and behaviors of the gradient, as the original data. In particular, saturation of the structure 
functions occurs at the shortest lag of about 1 km, confirming the dominant role of mesoscales. 
Smoothing with the 2.5 and 5 km shows weaker gradients at smallest resolved scales, but also 
background (secondary) phenomena appear at the scales of about 20–30 km. This numerical 
(artificial) effect is one of the reasons leading to a systematic phase error in the modelling of 
precipitation [16]. All structure functions saturate above 60 km lag, where the large-scale circulation 
dominates.  

The other drawback even for complete radar data sets is that they fill-in only a part of the 
physical or model spaces. For instance, the six Finish radars used in this study cover from 5% to 
about 20% of a model grid, depending on the horizontal smoothing parameter and vertical factor at 
the pre-processing step (Figure 2). A vertical size for meshes can be chosen on the basis of several 
criteria. Among the most appropriate ones, are those which correspond either to a list of model 
levels or to homogeneous filling-in meshes by measurements. The former has too small step in 
lower layers, which does not allow filling-in most of the model meshes by radar measurements. So 
far, the latter approach seems ensuring better the homogeneous saturation of the model grid, and it 
was selected for further pre-processing. At least three direct impacts from pre-processing 
smoothing are obvious. Oversmoothing with the parameter larger than the model resolution leads 
to underestimating the total amount of water content; decreases small but intensive cells of 
precipitation; incorrectly presents spatial patterns of rain water in the atmosphere. To this end, 
these factors affect the initial conditions and disrupt the subsequent evolution of precipitation 
patterns. It is worth noting that, smoothing with 0.5 km yields reflectivity distributions similar to 
the original (Figure 2a). 

 

 

(a) (b) 

Figure 1. (a) Structure functions and (b) their gradients of radar reflectivity measurements for 
original data and after pre-processing with various smoothing parameters.  

                                                           
1 Averaging over a large number of measurements provides higher confidence for the value obtained, while 

averaging over a small number of measurements gives lower confidence. Generally speaking, confidence for 

the averaged values obtained decreases with distance from the radar. 
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(a) (b) 

  

(c) (d) 

Figure 2. Filling-in the model grid by radar measurements depending on pre-processing smoothing 
parameters: (a) 0.5 km; (b) 1 km; (c), 2.5 km; (d); 5 km. 

2.2. Configuration of radar data assimilation experiments 

Radar reflectivity data from the BaltEx experiment covering the Finnish domain were used in 
this study (www.baltex-research.eu). The project operates with high-quality data and has 
demonstrated to possess a significant value for forecasters and decision-makers. The Finnish 
domain was chosen due to several reasons. Firstly, a major part of the domain is covered by radar 
measurements, although their inhomogeneous distribution is a factual issue. Secondly, the smooth 
orography and relatively homogeneous surface significantly decrease a potential external impact 
from sharp gradients of the complex orography and surface contrasts. 

The experimental design has been implemented as follows. A heavy precipitation event over 
Finland during 14-15 August 2010 was considered. Numerical experiments were performed in the 
framework of the mesoscale operational Harmonie-40h1.1 model with 2.5 km domain resolution. 
Three runs have been carried out with the same model configuration except the data assimilation 
procedure. The control run (CNTR) included the assimilation of all the available SYNOP, TEMP and 
AIREP observations over the domain. Two radar reflectivity data assimilation runs used the 
following approaches. The first approach proposes “cube-smoothing” (FINE) described above with 
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the horizontal resolution equal to the model’s 2.5 km resolution. The second one (COARSE) 
explores the operationally implemented procedure based on double subsequent smoothing of the 
radar network with resolutions of 15 and 8 km, respectively [14]. 

3. Results of radar data assimilation 

The results of the numerical experiments have revealed a noticeable impact of radar reflectivity 
data assimilated in the model on the prediction of precipitation patterns and rates. Moreover, it has 
been shown that this impact varies depending on pre-processing procedures and their 
corresponding parameters. Figure 3 shows the spatial distribution of precipitable water and its 
differences in experiments over the Finnish domain for 18:00 UTC 14 August 2010. This variable 
was chosen as it better pronounces continuous distribution of water in the atmosphere compared to 
the discrete form of surface precipitation (Figure 4). Although both variables reflect major features 
of spatial coverage, certain discrepancies can be associated with the resolution in radar data 
assimilation (RDA) formulations. In particular, both methods of RDA lead to redistribution of 
precipitation toward fine-scale cells within large areas accompanied by an enlarging of the area of 
increased precipitation, in total. The COARSE run provides larger amounts of precipitation than the 
FINE run. However, special attention would be paid to the South Finland area, where six radars 
(Anjalankoski, Ikaalinen, Korpo, Kuopio, Vantaa and Vimpeli) account for the dense three-
dimensional coverage of the water content field in the atmosphere. Analysis shows a rather 
homogeneous field of precipitable water over this area (see Figure 3a). RDA allows to specify and 
redistribute precipitable water among several areas, as it is displayed in Figure 3. The first area is 
associated with the increased precipitation rate in both RDA runs (area I in Figures 3b and 3c), 
while the gain is sufficiently higher in the FINE run. This is reflected by the negative values in 
Figure 3d (COARSE-FINE runs). Over the second area (area II in Figures 3b and 3c), both RDA runs 
decrease the water content in the atmosphere, which is actually reallocated toward the first 
neighboring one. As in the previous site, changes are larger in the FINE run, which result in the 
area of positive values in Figure 3d. A belt of lower precipitable water amount in the FINE run 
corresponds to the third area (area III in Figures 3b and 3c), which however does not appear in the 
COARSE run.  

Bearing in mind the above, it can be stated that RDA affects the prognostic fields of 
precipitation rate and spatial distribution. In general, this leads to slightly increasing in total 
precipitation amount over the domain, while redistribution of water in the atmosphere occurs in a 
form of fine-scale cells of opposite signs within a common area of precipitation. As expected, the 
value and size of these changes depend on the smoothing parameter. The larger this parameter, the 
smoother the impact in spatial coverage is and the smaller the deviations from the analysis are [17]. 
Matching the radar resolution to that of the model, should minimize numerical effects, while 
focusing on physical features. In particular, the belt and cell features in precipitation fields [18,19] 
are better simulated with RDA. Higher vertical resolution used in “cube-smoothing” RDA allows 
also to correct the position of the condensation level, which reduces the phase error. However, the 
impact from RDA is numerically sensitive to the radar pre-processing approaches and their internal 
parameters. 
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(a) (b) 
  

(c) (d) 
  

Figure 3. Spatial distribution of precipitable water over the Finnish domain for 18:00 UTC 14 August 
2010. (a) in analysis; and differences between runs: (b) FINE-CNTR; (c) COARSE-CNTR; (d) 
COARSE- FINE. Areas I, II and III outline specific regions in redistributing of precipitable water. 

The RDA procedures change also the vertical distribution of rain water in the atmosphere. 
Figure 5 shows the vertical profiles for this variable in the area of largest differences between the 
FINE and COARSE runs. The former is similar, in its general features, to the control run, but 
slightly redistributes water from 2.5-3.5-km layer towards lower levels. This can produce rareripe 
condensation and decrease of downstream precipitation in favor of upstream, as it seen in Figure 
3b. The COARSE run shows a significant reduction of water content in the area, which is explained 
by the following two common reasonings. The first is that the deep smoothing spreads a compact 
substance (water cell) over larger neighboring areas and decreases its concentration. The second 
which is related to the above, is that the smoothing changes the water (vapor) concentration, which 
follows changes in a chain of microphysical processes. The detailed study of links in this chain is a 
subject of ongoing further research. 
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(a) (b) 
  

(c) (d) 

Figure 4. Same as Figure 3, but for surface precipitation. 

 

 
 

Figure 5. Vertical profiles of rain water in the atmosphere for different runs. 
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4. Concluding remarks 

The data assimilation system in the convection-permitting Harmonie model has been further 
developed by involving radar reflectivity measurements. The focus was on optimizing the inner 
parameters of the pre-processing procedures. In pursuing the compatibility between the model 
resolution and smoothed radar observation density, the “cube-smoothing” approach has been 
proposed. This shows better simulation of mesoscale cells and belts of precipitation. However, 
precise verification still remains an issue, due to several reasons, among them being the 
instrumental error and transient functions for radar measurements, as well as the dominating sizes 
of precipitation patterns in particular regions and under certain atmospheric flow regimes. The 
latter will be in the focus of further investigation. 
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