

Article

Intelligent Land Vehicle Model Transfer Trajectory
Planning Method Based on Deep Reinforcement
Learning
Lingli Yu 1,2,3, Xuanya Shao 1,* Yadong Wei 1 and Kaijun Zhou 4

1 School of Information Science and Engineering, Central South University, Changsha, China;
llyu@csu.edu.cn

2 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Haerbin, China
3 State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China
4 School of Computer and Information Engineering, Hunan University of Commerce, Changsha, China;

alpha218@126.com
* Correspondence: 174611083@csu.edu.cn; Tel.: +86-130-5516-6724

Abstract: Aiming at the problem of model error and tracking dependence in the process of
intelligent vehicle motion planning, an intelligent vehicle model transfer trajectory planning
method based on deep reinforcement learning is proposed, which obtain an effective control action
sequence directly. Firstly, an abstract model of the real environment is extracted. On this basis, Deep
Deterministic Policy Gradient (DDPG) and vehicle dynamic model are adopted to jointly train a
reinforcement learning model, and to decide the optimal intelligent driving maneuver. Secondly,
the actual scene is transferred to equivalent virtual abstract scene by transfer model, furthermore,
the control action and trajectory sequences are calculated according to trained deep reinforcement
learning model. Thirdly, the optimal trajectory sequence is selected according to evaluation function
in the real environment. Finally, the results demonstrate that the proposed method can deal with
the problem of intelligent vehicle trajectory planning for continuous input and continuous output.
The model transfer method improves the model generalization performance. Compared with the
traditional trajectory planning, the proposed method output continuous rotation angle control
sequence, meanwhile, the lateral control error is also reduced.

Keywords: intelligent driving vehicle; trajectory planning; end-to-end; deep reinforcement learning;
model transfer

1. Introduction

Although intelligent driving technology is developing rapidly, some new problems are
emerging during the development. In 2016, the first major accident of Tesla was happened in the field
of automatic driving. Meanwhile, Uber occurred an accident of automation driving hitting
pedestrians on March 28, 2018. These problems greatly arouse worldwide attention on the safety of
intelligent driving. Therefore, it is still a long way for intelligent driving to improve its innovative
and stable safety. As the key of its technology, trajectory planning technology is attracting more and
more attention and exploration by researchers at home and abroad.

Trajectory planning is not only applied to intelligent vehicles, but also widely used in the field
of robotics and unmanned aerial vehicles[1,2]. There are various ways of trajectory generation in
trajectory planning, including Nelson polynomial, spiral curve equation, spline curve, Bezier curve
etc [3]. For example, 4th-order polynomial and dynamic bicycle model are utilized to describe vehicles
kinematics model [4], considering the overtaking and chasing behavior of different cost functions in
each case. However, it assumes that the vehicle velocity is a constant, which conflicts with most actual
situations. Ref.[5] puts forward a technique of trajectory smoothing and stitching based on Bezier
Curve. Ref.[6] proposes a trajectory planning based on Bezier Curve that takes the command of

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/s18092905

 2 of 19

kinematics constraint, initial state constraint, target state constraint, and curvature continuous
constraint into consideration.

With the rapid development of deep learning, vision-based control methods acquire great
achievements [7]. Hotz [8] adopts VAE and GAN to achieve image coding, road tracking and
intelligent driving vehicle potential space decoding. Ref.[9] low-level control strategy and advanced
prior action are learned through neural network, and multi-level strategies are taken as heuristic
search algorithms to realize complex motion planning tasks. In Ref.[10], deep learning models are
adopted to establish the mapping relationship between lidar distance, target position and control
instruction. To realize the motion planning of intelligent vehicle, Ref.[11,12] propose deep learning
to establish the mapping relationship between control sequence and corresponding trajectory.

In recent years, reinforcement learning has been applied to robot control tasks. In Ref.[13], Deep
Q Network (DQN) is proposed to deal with discrete action continuous state, which goals at
combining deep neural network with reinforcement learning. Subsequently, Ref.[14,15] offer an off-
line depth reinforcement learning algorithm based on deep Q network and extend it to continuous
high-dimensional state space. Ref.[16,17] make it possible to achieve multiple targets by extending
DQN. Ref.[18] proposes prior experience replay technology to improve the performance of DQN.
Ref.[19] exposit experience to improve sample collection efficiency. OU process [20] adds noise after
action strategy to improve network exploration ability. Ref.[21] introduces network parameter
hierarchy with noise to improve network performance. Ref.[22] shows the possibility of learning
complex manipulation strategies without demonstrations. Ref.[23] adopts deep reinforcement
learning model to establish traffic signal agent. While Ref.[24] solve the problem of complex traffic
intersection without traffic signal. Ref.[25] propose a motion planning method without map. The
sparse sensor ranging information and target position are utilized as input, and the continuous
steering command is taken as output, and verification is conducted in practical experiments. In
Ref.[26], data efficiency and task performance are improved by addressing the problem of
maximizing cumulative rewards for reinforcement learning(RL), and considering
supervised/unsupervised learning styles, so as to achieve navigational capabilities.

As we all known that Q-Learning solve the low-dimensional problem of discrete space. DQN
improves the processing ability of high-dimensional state space, but it is still difficult to cope with
high-dimensional continuous action space. The Actor-Critic method handle with continuous action
space, but randomness strategy makes it difficult for the network to converge. To this end, Deep
Deterministic Policy Gradient (DDPG) adopts the Actor-Critic framework to combine the advantages
of DQN to solve the problem of continuous state space and continuous action space. Meanwhile, it
adopts a deterministic policy to ensure the network more convergent. Since traditional motion cannot
eliminate the model error, an end-to-end model transfer trajectory planning based on depth
reinforcement learning is proposed. Furthermore, DDPG is a deep reinforcement learning method, it
is utilized to train the model in a simple virtual environment which is constructed independently,
meanwhile, their dependence is reduced on the sample data. Meanwhile, it can deal with the model
training of continuous input and continuous output, thus directly outputs the control action and
trajectory sequence. The complexity is lower than that of the optimal control calculation, and the
model transfer method is applied to improve the model generalization performance. Compared with
traditional planning and end-to-end planning, the proposed method has more continuous corner
control sequence and smaller lateral error while the vehicle is driving.

2. Reinforcement Learning and Description of Driving Environment

2.1. Reinforcement Learning Method

The basic principle of reinforcement learning is shown in Figure 1. When the agent is required
to achieve a task, it first interacts with environment (Env) via action(a), then the impact of action on
the environment brings agent into a new state(s). At the same time, agent receives reward feedback
(Reward) from the environment. Agent and environment generate a large amount of data through
continuous loop and interaction. The reinforcement learning utilizes these sample data to adjust the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 3 of 19

strategy . Afterwards it interacts with Env to enter new state and generate new 1(, , ,)t t t tdata s a r s  .
After that, the new samples are adopted to modify the strategy  for several times. After a great deal
of iterative learning, the agent finally learns the optimal strategy * to complete the corresponding
task.

Figure 1. The principle of reinforcement learning

Strategy π refers to the agent select action a under state s, it is the key problem in reinforcement
learning. The strategy π is a map from the agent aware of environmental state s to action a. The
random strategy selects corresponding action according to the probability (|)a s of each action;
Deterministic policy selects actions ()a s directly according to s.

: (|) 1

: () :

stochastic Policy a s

deterministic Policy s S A



 


 (1)

Calculating cumulative rewards or returns when a strategy π is given. The definition of
cumulative returns:

1 2 10

k
t t t t kk

G R R R 

   
   L (2)

Here, 0 1  is the discount factor of long-term income, meanwhile, state function is defined
as the cumulative return benefit corresponding to state s under a strategy π:

1
0

() |k
t k t

k

s E R S s  


 


 
  

 
 (3)

The corresponding state-action value function is defined as:

1
0

(,) | ,k
t k t t

k

q s a E R S s A a  


 


 
   

 
 (4)

2.2. Virtual Driving Environment Model Design

According to the description of intelligent vehicle driving scene, intelligent driving behavior
decision tasks include normal driving, changing overtaking, curve/ramp driving and so on. Here, if
environment model is built as a circular map with three lanes in Figure 2. Specifically, the cyan area
and outer lane boundary is seemed as insurmountable obstacles, while the others are free travel
space. The light blue lines indicate the desired path with rewards  , ,d d d dpath X Y  . Intelligent
vehicle (, , ,)c c cCar x y v drives in a circular map and learns intelligent driving maneuver,
including straight, changing, and curving driving behavior. Where , ,c c cx y  represents current
position and posture information of the intelligent vehicle.

Agent

Environment

ta
action

rewardstate
ts tr

1ts 

1tr 

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 4 of 19

Figure 2. Virtual environment abstract model

To simplify the environment model Env, the intelligent vehicle has n ranging beams Sensor. And
the farthest distance Maxd of each ranging beam is the same. What’s more, each ranging beam support
feedback information (, ,)i i end endSensor d x y to intelligent vehicle when it encounters obstacles. Here,

id is the length that ranging beam is blocked by obstacles or boundaries, ,end endx y is position
coordinate of the beam in contact with obstacles or boundaries. The intelligent vehicle speed keeps a
constant v , and angle control output is min maxt     . Thus, the key return function Reward for
the environment model Env is:

1

action money

when terminates
Reward

R R else

  
 (5)

2

1 *

0 _

0.1 _

action old

money

R

get money False
R

get money True

     

 

  

 (6)

1 2 3& &
_ =

True if x y
get money

False other else

         



 (7)

where, 1 is the positive penalty coefficient, actionR represents the difference penalty between the
front and rear successive front wheel angles ,old  of an intelligent vehicle. And the smaller change
between successive actions, the smaller penalty. moneyR represents the reward for a intelligent vehicle
driving on the desired path, (, ,)x y    is the difference between current posture  , ,c c cx y  and
desired path  , ,d d d dpath X Y  , 1 2 3, ,   is the fault-tolerant error.

Intelligent vehicles randomize initial position  0 0 0, ,x y  according to the given policies reset
to ensure a more adequate exploration of the environment and the stability of result. Intelligent
vehicle termination condition includes, 1) contact with obstacle or boundary; 2) meet the maximum
number of driving steps maxstepn Num . The optimal intelligent driving maneuver for intelligent
vehicle learning is , therefore, the strategy space of model is  = ,all reset   .

0 min max

0 min max

0 min max

[,]

: [,]

[,]
reset

x X X

y Y Y
  


 
 

 (8)

State space is assumed as  0 1() , ,..., nSensor d d d  , and motion space is assumed as
 () new   . For intelligent vehicle and environment model Env, the abstract model M is

constructed.

 = , , (), (), ,allM Env Car Sensor Reward  

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

3. Model Transfer Trajectory Planning Based on Deep Reinforcement Learning, DRL-MTTP

3.1. DDPG Network Structure and Algorithm Flow

For complex continuous state space ()Sensor and continuous action space () , it is
significant to train deep reinforcement learning model M in virtual environment M by DDPG
algorithm. DDPG is consisted of Actor policy network and Critic evaluation network in Figure 3. The
state ()sensors Sensor , speed v and the action old of the last moment are combined as

 , ,a sensor olds s v  . They are adopted as the input of Actor policy network. Meanwhile, the policy
network hidden layer utilizes three full connected networks. Each layer contains 512 neurons. Full
connection is followed by BN(batch normalization), then Relu is adopted as the activation function.
At the same time, the last layer of the network chooses tanh as the activation function to map the
network output between the interval [-1,1]. The network output is action ()  . After state as and
action is merged as (,)c as s  , then it is input to Critic evaluation network. The hidden layer of
evaluation network and the policy network hold the same structure, but its last layer is activated by
linear function such as E.q.(9). Thus, the network output is the corresponding Q value (,)aQ s  of
cs .

y kx b  (9)

where x is the input of last layer, y is the predicted Q value, ,k b is the weight and bias for
network training.

Figure 3. DDPG network structure

DDPG adopts Actor-Critic framework, including Actor and Critic structure. Here, the Actor part
includes the online policy network and the target policy network, the deterministic policy is adopted
to get a definite action from current state. The Critic part includes Online Q network and Target Q
network, Bellman equation of the action-state function Q are utilized to measure the quality of action.
The pseudo code of the DDPG algorithm is shown in Table 1, and the DDPG algorithm flow is shown
in Figure 4, input state  1 9,..., , , oldd d v  and output action  are represented respectively. DDPG
adopts a deterministic policy, and the policy output is an action. Therefore, it needs less sampled
data, meanwhile, the algorithm keeps more efficient. However, the disadvantage is that the
environment cannot be explored. In order to improve the algorithm exploration ability, OU stochastic
process is added to the deterministic policy action. Furthermore, environmental execution is carried
out after sampling from random process of the action. Due to its good correlation in time series, OU
stochastic processes are enable to explore environments with momentum properties by the agents.

Input (s1) | 11

Dense | 512 | ReLU

Dense | 512 | ReLU

Dense | 512 | ReLU

Dense (a) | 1 | Tanh

a

Actor Network

Input (s2) | 12

Dense | 512 | ReLU

Dense | 512 | ReLU

Dense | 512 | ReLU

Dense (Q) | 1 | Linear

Q

Critic Network

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

Table 1. Pseudo code of DDPG algorithm

Pseudo code of DDPG algorithm
1. Randomly initialize Critic Online Q network parameters Q and Actor's Online policy

network parameters  .
2. Initialize Critic Target Q network parameters Q Q ‘ and Actor's Target policy

network parameters   ’ .
3. Initialize Experience Replay Memory（R）.
4. for episode = 1, M do
5. Initialize the OU random process D for the exploration of action.
6. Input initial observation state 1s .
7. for 1,t T do
8. Choose action ta based on current strategy  ts and exploring noise tD :

 t t ta s D  .
9. Perform the action ta , get the reward tr , and observe the new state 1ts  .
10. Store the process  1t t t ts ,a ,r ,s  in R.
11. Sampling from R to get the process  1i i i is ,a ,r ,s  of batch N.

12. Set   1 1
' Q'

i i i iy r Q' s , ' s | |      // Q' is the state-action value calculated by the

Target Q network, and ' is the current strategy obtained by the Target policy
network.

13. Update Critic's Online Q network by minimizing the loss function:

  21 Q
i i ii

L y Q s ,a |
N

  .

14. Update the Actor's Online Policy Network with Sampling Gradient:

     1
ii i

Q
i a ss s ,a s

i

| s Q s,a | | s | |
N

 


 
        .

15. Update Critic's Target Q Network:  1Q' Q Q'      .
16. Update Actor's Target Policy Network:  1' '        .
17. end for
18. end for

Figure 4. DDPG algorithm flow chart

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 2 of 19

3.2. Model Transfer Strategy

The intelligent vehicle Car obtains optimal intelligent driving strategy  from environment
model M through deep reinforcement learning training. Besides, the real environment M* is
obviously different from the virtual environment model M, the former usually tends to be more
complex and time-varying. Therefore, if the training model of virtual environment M is directly
applied to real environment M*, it brings numerous predictable or unpredictable problems.

The decision tasks of intelligent vehicles include straight, changing lanes, crossing corners and
ramps driving, etc. So the model of intelligent driving tasks is abstracted from real environment M*
and migrated to virtual environment M, which is mapping into location area corresponding to ring
map in M. Then the optimal driving strategy  is adopted to plan control-trajectory sequence

 ,C   that achieve driving task, including control sequence  1 2= , ,..., t    and its
corresponding trajectory  1 2, ,..., tp p p  . Finally, intelligent vehicles are carried out task  to
complete the driving task in real environment M*.

According to different sub-task ¢ , such as lane keeping, lane changing and overtaking, the
fixed reference points  | = , ,ref ref ref refP x y ¢ in M is set as a reference target or local tasks. In terms of
driving task endpoint goal  , ,tar tar tar tarP x y  of path planning and intelligent parking posture

 * | * | * | *, ,M c M c M c MCar x y  in real environment M*, the model transfer strategy  is mapped to M
by Eq.(10). Finally, the intelligent parking posture is obtained as  , ,c c cCar x y  .

   
   
   
   

| * | * | * | * | *', ', ' cos sin , sin cos ,

: ', ', ' cos sin , sin cos ,

, , ' ', ' ',

, , , ,

tar ref

c M cM cM cM cM

tar tar tar tar tar tar tar ref

tar tar

c c c ref ref ref

x y x y x y

x y x y x y

x y x x y y

x y x x y y

  

      

     

 

  

  

    

   

     


      

 (10)

where  is the difference between target heading angle tar of vehicle driving destination and
heading angle tar of reference point. In order to keep the heading angle of target point tarP in real
environment coincide with heading angle of reference point refP in virtual environment, the real
environment coordinate system is rotated by  .  ', ', 'x y  is the pose corresponding to ego vehicle
in rotated coordinate system, and  ', ', 'tar tar tarx y  is the pose corresponding to the target point P in
the rotated coordinate system.  , ,x y    is the difference in pose between the ego vehicle and the
target point in the rotated coordinate system. And  , ,c c cx y  is the corresponding pose of the ego
vehicle in the virtual environment after the model transfer.

Figure 5(a) shows the real-world M* scene. The road condition information is composed of
invariants and variables. The invariants include the number of lanes and width of lanes. The variables
are the information of obstacles, which is feedback by the distance beam of intelligent vehicle. The
initial planning process is to travel along the current driving lane. When it is detected that there is a
vehicle with lower speed than the ego vehicle in front of current lane, the left lane is taken as a desired
path. The driving task is to switch to the left lane based on the behavioral decision planning. The
green vehicle is the current vehicle position [, , , ,]Tx y v x and the pose information is

 * , ,MCar x y  , the green dot in the center of left lane is the scattered point of path planning.
Here, the red point is the destination of current driving task  , ,tar tar tar tarP x y  . Figure 5(b) shows
the scene after * ,M tarCar P is migrated to  through the model. Mapping to the virtual environment
M, the intelligent vehicle pose is (, ,)c c cCar x y  . Acquire ()Sensor according to the distance
beam in M, then merge old into state s , and the control sequence  1 2= , ,..., t    and the
trajectory sequence  1 2, , ..., tp p p  are obtained by model M . Figure 5(c) shows the
corresponding scene of control sequence  1 2= , ,..., t    and track sequence  1 2, ,..., tp p p  in
the real environment M*.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 3 of 19

 , ,tar tar tar tarP x y 

 * | * | * | *, ,M c M c M c MCar x y 
(a)The scene of real environment M*

 | = , ,ref ref ref refP x y

 ,Traj
 , ,c c cCar x y 

(b)Scene after model transfer 

 , ,tar tar tar tarP x y 

 * | * | * | *, ,M cM c M c MCar x y 
(c)The corresponding scene of real environment M*

Figure 5. Transition diagram of the switch task model

3.3. Algorithm Framework of Model Transfer Based on Deep Reinforcement Learning

DRL-MTTP aims to abstract the complex real environment and transfer it to a simple virtual
environment through the model. Furthermore, the optimal intelligent driving strategy is applied to
the virtual environment, which is trained by the agent after deep reinforcement learning. Thus, the
optimal trajectory control sequence is obtained to realize the end-to-end trajectory planning in the
real environment. Figure 6 is technical diagram of DRL-MTTP.

The framework DRL-MTTP is shown in Table 2. Firstly, sub-task  and path planning data sets
are initialized according to upper data streams. After that, going into trajectory planning stage. Then
an appropriate target point targetP is selected as local goal based on the sub-task  . Thus, the selection
process is shown in Equation (11):

   2 2

1, 1 1

2
1,

1

t t t t t t

target

t t
t

s x x y y

l s

  




    

 



 (11)

where,  ,i ix y are the corresponding coordinates of iP . 1,t ts  is the straight-line distance between
1tP  and tP . l is the arc length threshold of path scatter points which is determined by sub-task  .

And targetP is the target point that satisfy the threshold requirement. Subsequently, target set is
obtained by adding noise to the target point targetP , and  , ,x y    satisfies Gaussian distribution.
Furthermore, corresponding position Car of intelligent vehicle in the virtual environment M is

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 4 of 19

calculated by model transfer for each target point targetP . Meanwhile, the status of environment s and
the status of intelligent vehicle x are gained by observing its range light beam in M .

During the planning time T , deep reinforcement learning model M is utilized in each unit of
time t to analyze state s and predict the action t . At the same time, the dynamic model is adopted
to simulate the prediction action. Meanwhile, environment state s and intelligent vehicle state x are
updated, and track t is recorded. Finally, control-trajectory sequence pair  = ,C   under real
environment M* is acquired by model transfer.

The second stage is about optimal trajectory selection. In this stage, the evaluation function of
each control-trajectory pair is calculated. At the same time, the collision probability of the trajectory
 is also judged. The control-trajectory pair with minimum J and no collision trajectory are decided
as the optimal trajectory.

     2
1 20

min
T

T targetJ dt h h          (12)

where, T is the termination time,  is the difference of continuous action, 1 2,  is the weight
coefficient, and h represents the rectangular area of vehicle outline at the end of vehicle trajectory.

Finally, the result of planning is executed. The intelligent vehicle implements the first  steps
of control sequence  . And the model reference control is utilized to enhance the robustness and
reduce the influence of system error by the model error. If the task is not terminated, planning action
of the first two phases is repeated to realize the intelligent vehicle dynamic trajectory planning.

Figure 6. block diagram of DRL-MTTP

Table 2. DRL-MTTP frame

DRL-MTTP frame
1. initialize terminal,  1 1 2: , , ..., mS P P P ; //receive tasks and data from the top
2. while terminal false
3. //trajectory planning stage
4.  1 1 2: , ,...,target mP S P P P ; //select a target from a path planning scatter set 1S

based on a task
5. for 0,i N do
6. ,target i target noiseP P   ; //add noise to generate target sets

7.  *, ,i target ref MCar P P Car ; // calculate the corresponding position and pose of

the intelligent vehicle by model transfer
8.  , ,M

is Car Sensorx ; // calculate state based on ranging light beam

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 5 of 19

9. for 0,t T do
10. M

t s  ; // calculate action by deep reinforcement learning model

11.  
0

,
t

if 


 x x ; // dynamic model simulation

12. i  x ; // record track
13. end for
14.    *: , * , , ,i i MC Car Car    ; //calculate control-trajectory sequence pair by

model transfer
15. end for // optimal trajectory selection stage
16. minJ   ;
17. for 0,i N do

18.      2
1 20

T

T targetJ dt h h          ; // calculate and obtain evaluation function

19. if minJ J and no collision //select the control-trajectory pair with minimum J
value and no collision as the optimal trajectory

20. minJ J ;
21. optimal iC C ;
22. end if
23. end for
24. // stage of execute the planning result
25.  1 2: , , , , , ,optimal T      ; //get the results of the first steps
26. update terminal; // whether the task ends or not
27. end while

4. Simulation Test on Trajectory Planning of Intelligent Vehicle

4.1. Deep Reinforcement Learning Model Training

In the virtual simulation environment Env, the circle map is 100m long and 50m wide. The
driveway is 3.4m wide, and size of intelligent vehicle is 2m×4m. Here speed 36 /v km h , which
keeps a constant. The dimension of ranging light beam 9n  , and the farthest ranging 20Maxd m ,
the largest output of angle max 0.3rad  . The desired dpath is the center line of middle lane. Besides,
errors 1 2 30.1 , 0.5236m     , continuous action penalty coefficient 1 =0.01 , and random initial
position    0 010,980 , 10,50x y  ,  0 / 2, / 2    . Maximum step number max 600Num  , and
step gap is 0.1s. Meanwhile, software environment is a Linux operating system with 16G memory,
and its graphics card is GTX1080 Ti. Meanwhile, it takes advantage of the deep learning framework
TensorFlow.

With the greater learning rate, the less effect of previous training is retained. Similarly, the
greater discount factor, the more emphasis on experience. The smaller discount factor, the more
attention is paid to the current return. If the number of hidden layers and hidden layer neurons are
too less, and the data are fitted well. Conversely, if the number of hidden layers and hidden layer
neurons are too larger, which leads to over-fitting easily. Therefore，a better network structure and
network parameters are designed after several trials. The hyperparameters in the deep reinforcement
learning model M are set as follows. The discount factor 0.9  , learning rate of the network of
Actor and Critic are both 410 , the optimization method of Adam [27] is adopted, soft update rate

=0.001 , hidden layer neurons number is 512, and the size of experience replay pool is 410 , the size
of batch is 64, the error is generated by Gaussian process. Then, initial variance max 2var  , minimum
variance min 0.01var  , and the attenuation rate is 410 .

As is shown in Figure 7, the rewards and the average Q value of agent gradually increase with
the number of iterations during the training process. Finally, it tends to be stable. While the loss
gradually decreases to 0 with the increasing of iteration times, it indicates the evaluation of network
is more and more effective. As the number of iterations increases, the noise decreases continuously.
Meanwhile, the agent with sufficient capability of exploration and detection are provided in the early

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 6 of 19

stage, and the sufficient mining ability are embodied in the later stage. Figure 7 shows that the model
learns from experience, and approaches to the optimal strategy continuously.

(a) (b) (c)

(d) (e) (f)

Figure 7. Training results of deep reinforcement learning model

4.2. Verification of Intelligent Vehicle Trajectory Planning Based on DRL-MTTP

4.2.1. Trajectory Planning of Lane Keeping

During the simulation test, the intelligent vehicle speed is set as 10m/s (36km/h). The intelligent
vehicle starts from the center position of the middle lane at 30° yaw angle and -30° yaw angle
respectively, which is shown in Figure 8(a) and Figure 8(e). The abscissa of Figure 8(b) and Figure
8(f) are "X/m" and their ordinate is "Y/m". The abscissa of Figure 8(c) and 8(g) are "time/0.1s", and
their ordinate are "heading angle/rad". Figure 8(d) and 8(h) abscissa are "time/0.1s" , and the ordinate
is "steering wheel angle/°".

Through the algorithm model, the steering wheel control sequence is adjusted to keep lane. At
beginning, the intelligent vehicle has a deviation in the initial position, and it reaches a stable lane
keeping after adjustment. Currently, the front wheel angle average value of three experiments is

0.0001635rad (0.009367 ). Therefore, the steering angle is stable around 0°, with the mean value
of 0.1562  .Meanwhile, the average lateral deviation after stabilization is 0.04cm.

(a)Initial status (b)Intelligent vehicle
planning trajectory

(c) Heading angle of

intelligent vehicle
(d)Steering wheel angle

control sequence

Y
 /

m

he
a

d
in

g
 a

n
g

le
 /

ra
d

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 7 of 19

(e)Initial status (f)Intelligent vehicle
planning trajectory

(g)Heading angle of
intelligent vehicle

(h)Steering wheel angle
control sequence

Figure 8. Lane retention experiment

4.2.2. Curve Track Planning

During the simulation test, the intelligent vehicle sets out with different yaw angles, which are
shown in Figure 9. Figure 9(b) and 9(f) have an abscissa of "X/m" and an ordinate of "Y/m". Figure
9(c) and 9(g) abscissa is "time/0.1s", ordinate is "heading angle/rad". Figure 9(d) and 9(h) abscissa is
"time/0.1s" and the ordinate is "steering wheel angle/°". Although there is a shock in the curve, the
intelligent vehicle still ultimately passes the curve successfully. Meanwhile, the curve of control
sequence and the change rate of yaw angle are relatively smooth.

(a)Initial status
(b) Intelligent vehicle
planning trajectory

(c)Heading angle of
intelligent vehicle

(d)Steering wheel angle
control sequence

20 25 30 35 40 45 50 55 60

X / m

0

1

2

3

4

5

6

7

8

9

10

11

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 8 of 19

(e)Initial status (f) Intelligent vehicle
planning trajectory

(g)Heading angle of
intelligent vehicle

(h)Steering wheel angle
control sequence

Figure 9. Curve driving experiment

4.3. Experimental Comparison and Analysis of the Three Trajectory Planning Methods

Nowadays, there are three trajectory planning methods comparison and experimental analysis
in this section. Those trajectory planning methods are called, optimal trajectory planning method
based on cubic polynomial, end-to-end trajectory planning method, and the model transfer trajectory
planning method based on deep reinforcement learning. The intelligent vehicle drives following
planning results in each simulation steps under the same tracking control error. Here, the
experiments only compare and analyze the performance of planning. The traditional trajectory
planning method adopts the angle control sequence based on preview window. However, the end-
to-end trajectory planning method [28] outputs the angle control sequence directly. The period of the
trajectory planning is 100ms. In other words, the intelligent vehicle is reprogrammed after keeping
the same deflection angle for 100ms.

4.3.1. Arc Straight Track Scene

In Figure 10, the arc radius is 300 meters, so it is large enough to be seemed as a straight line in
a small range. However, the curvature of is not equal to zero. The contrast experiment is shown in
Figure 11. Figure 11(a)~(c) is the experimental results based on cubic polynomial dynamic optimal
trajectory planning method, and Figure 11(d)~(f) is the experimental results of end-to-end trajectory
planning method, Figure 11(g)~(i) is the experimental results of model transfer trajectory planning
based on deep reinforcement learning. Figure 11(a), 11(d) and 11(g) have an abscissa of "X/m" and an
ordinate of "Y/m". The blue dotted line in the Fig is "expected path" and the red solid line is "actual
trajectory". Figure 11(b), 11(e), 11(h) abscissa is "time/0.1s", ordinate is "heading angle/rad". Figure
11(c), 11(f), 11(i) the abscissa is "time/0.1s" and the ordinate is "steering wheel angle/°".

The actual trajectory by the solid line in three methods are basically the same as the expected
trajectory by the dotted line. But the rotation angle control sequence of the first two methods is
oscillated continuously in the small range. The control sequence of our proposed method in this paper
shows periodic and continuous variation, it is relative non-step oscillation. The experimental results
verify that the model transfer trajectory planning method based on deep reinforcement learning
performs well, and control action is continuity when it is driving nearly straightly.

st
ee

rin
g

 w
he

e
l a

ng
le

 /
 °

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 9 of 19

Figure 10. Arc straight track scene diagram

(a) Intelligent vehicle
planning trajectory

(b) Heading angle of
intelligent vehicle

(c) Steering wheel angle
control sequence

(d) Intelligent vehicle

planning trajectory
(e) Heading angle of

intelligent vehicle
(f) Steering wheel angle

control sequence

(g) Intelligent vehicle
planning trajectory

(h) Heading angle of
intelligent vehicle

(i) Steering wheel angle
control sequence

Figure 11. Contrast experiment of Arc straight track scene

4.3.2. S-type Ramp Scene

Figure 12 is the schematic diagram of ‘S’ ramp. The intelligent vehicle is initially situated in the
left lane of lower right corner. After driving at a yaw angle from the north, the vehicle turns left and
enters 45°ramp. After driving a distance, it turns right in the middle lane and completes intelligent
driving. The experiment results are shown in Figure 13. Figure 13(a)~(c) are the experimental results
based on cubic polynomial dynamic optimal trajectory planning, Figure 13(d)~(f) are the
experimental results of end-to-end trajectory planning based on depth network, and Figure 13(g)~(i)
are the experimental results of model transfer trajectory planning based on deep reinforcement
learning. The abscissa of Figure 13(a), 13(d) and 13(g) are "X/m", and an ordinate of Figure 13(a), 13(d)
and 13(g) are "Y/m". The blue dotted line in Figure 13(a) is "expected path" and the red solid line is
"actual trajectory". Figure 13(b), 13(e), 13(h) abscissa is "time/0.1s", ordinate is "heading angle/rad".
The abscissa of Figure 13(c), 13(f), 13(i) are "time/0.1s", and their ordinate are "steering wheel angle/°".

According to the comparison results between actual trajectory and desired path based on those
three planning methods, the results show that the proposed method maintains the intelligent vehicle

Y
 /

m
Y

 /
m

Y
 /

m

h
e

a
d

in
g

 a
n

g
le

 /
ra

d

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 10 of 19

a better turning performance, especially in straight and curve combined continuously roads. Finally,
we gain that the lateral deviation of our proposed method is the least, and the performance
outperforms the other two methods.

Figure 12. schematic diagram of S ramp

(a) Intelligent vehicle
planning trajectory

(b) Heading angle of
intelligent vehicle

(c) Steering wheel angle
control sequence

(d) Intelligent vehicle

planning trajectory
(e) Heading angle of

intelligent vehicle
(f) Steering wheel angle

control sequence

(g) Intelligent vehicle
planning trajectory

(h) Heading angle of
intelligent vehicle

(i) Steering wheel angle
control sequence

Figure 13. Contrast experiment of S-type ramp scene

5. Real Vehicle Verification of Dynamic Trajectory Planning

The vehicle real-time position is collected by GPS/IMU inertial navigation system, The
surroundings sensory data is acquired by camera, lidar, and millimeter-wave radar, which are
mounted on the driverless vehicle. Figure 14 shows the actual vehicle dynamic trajectory planning
process. Figure 14(a)~(i) are captured when the vehicle is turning in different scenes. Here Figure
14(a)~(f) are the outside view, while Figure 14(g)~(i) are the inside view of driverless vehicle. Figure

Y
 /

m

0 10 20 30 40 50 60

time / 0.1s

-20

-15

-10

-5

0

5

10

15

20

h
e

a
d

in
g

 a
n

g
le

 /
ra

d

st
e

er
in

g
 w

he
el

 a
n

gl
e

 /
 °

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 11 of 19

14 shows that the driverless performance of intelligent vehicle is stable and efficient when it turns
around 90°; Fig14.(j)~(o) are captured when the driverless vehicle is overtaking and lane changing.
Figure 14(j)~(l) show the outside-view and Figure 14(m)~(o) show the internal view. And they
indicate that the intelligent vehicle achieves self-overtaking and lane changing driving behaviors
safety and stably. Figure 14(p)~(r) are real-time screenshot and interface of intelligent driving
trajectory planning. Fig14(r) is the tracking result when the actual vehicle verifies the curve driving.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 12 of 19

(p) (q) (r)

Figure 14. Experimental results of real vehicle

6. Conclusions

It’s different for traditional trajectory planning method to eliminate errors by vehicle models
and road conditions. Furthermore, there are no vehicle dynamics constraints. A model transfer
trajectory planning method based on deep reinforcement learning is proposed in this paper. At first,
the complex real environment is abstracted by MTTP, then the abstracted model is transferred into a
simple virtual environment through the transfer model. Secondly, the optimal intelligent driving
maneuver after deep reinforcement learning training is applied to obtain the optimal control-
trajectory sequence in the virtual environment. Thereby, end-to-end trajectory planning of intelligent
vehicle in the real environment is realized. Meanwhile, an evaluation function is designed to estimate
the planning validness of control-trajectory sequences, and to judge the risk of collision in real
environment. Furthermore, an optimal control-trajectory sequence is decided and executed by the
intelligent land vehicle. Finally, the comparison experiments analysis of multiple driving scenes and
multiple trajectory planning methods verify the better optimization performance of MTTP, and that
it brings a more continuous rotation angle control sequence and smaller lateral error for the intelligent
land vehicle. However, the speed of vehicles is assumed as a constant and driving on a typical
structured environment in this paper, the next stage will further consider variable speed driving and
more complex environments.

Author Contributions: Conceptualization, Xuanya Shao and Yadong Wei.; Methodology, Xuanya Shao.;
Software, Xuanya Shao and Yadong Wei.; Writing-Original Draft Preparation, Yadong Wei.; Writing-Review &
Editing, Lingli Yu and Kaijun Zhou; Supervision, Lingli Yu and Kaijun Zhou.

Funding: This research was funded by Major Projects of Science and Technology in Hunan (Grant
No.2017GK1010), National Key Research and Development Plan (Grant No. 2018YFB1201602), State Key
Laboratory of Mechanical Transmissions of Chongqing University (SKLMT-KFKT-201602), State Key Laboratory
of Robotics and System (HIT)(SKLRS-2017-KF-13), National Natural Science Foundation of China (Grant
No.61403426) and Fundamental Research Funds for the Central Universities of Central South University (Grant
No.2018zzts557).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wei K, Ren B. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous

Obstacle Avoidance Based on an Improved RRT Algorithm[J]. Sensors, 2018, 18(2):571.
2. Coombes M, Fletcher T, Chen WH, Liu C. Optimal Polygon Decomposition for UAV Survey

Coverage Path Planning in Wind[J]. Sensors, 2018, 18(7):2132.
3. Rastelli J P, Lattarulo R, Nashashibi F. Dynamic trajectory generation using continuous-

curvature algorithms for door to door assistance vehicles[C]. Proceedings of IEEE Intelligent
Vehicles Symposium., 2014, 510-515.

4. Cong Y, Sawodny O, Chen H, et al. Motion planning for an autonomous vehicle driving on
motorways by using flatness properties[C]. IEEE International Conference on Control
Applications., 2010: 908-913.

5. Yu L, Long Z, Zhou K. Non-time trajectory tracking method based on Bezier curve for robot[J].
Chinese Journal of Scientific Instrument, 2016.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 13 of 19

6. Sahingoz O K. Generation of Bezier Curve-Based Flyable Trajectories for Multi-UAV Systems
with Parallel Genetic Algorithm[J]. Journal of Intelligent & Robotic Systems, 2014, 74(1-2):499-
511.

7. Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks
and tree search[J]. Nature, 2016, 529(7587):484-489.

8. Santana E, Hotz G. Learning a Driving Simulator. arXiv: 1608.01230 [cs.LG], 2016,
https://arxiv.org/abs/ 1608.01230v1.

9. Paxton, Chris; Raman, Vasumathi; Hager, Gregory D. et al. Combining Neural Networks and
Tree Search for Task and Motion Planning in Challenging Environments[C]. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) , Sep. 24-28, 2017. Vancouver,
Canada, 6059-6066.

10. Pfeiffer M, Schaeuble M, Nieto J, et al. From Perception to Decision: A Data-driven Approach to
End-to-end Motion Planning for Autonomous Ground Robots [C]. IEEE International
Conference on Robotics and Automation (ICRA) 2017, 1527-1533.

11. Liu W, Li Z, Li L, et al. Parking Like a Human: A Direct Trajectory Planning Solution[J]. IEEE
Transactions on Intelligent Transportation Systems, 2017, 18(12): 3388-3397.

12. Lin Y L, Li L, Dai X Y, et al. Master general parking skill via deep learning[C]. IEEE Intelligent
Vehicles Symposium, 2017, 941-946.

13. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement
learning[J]. Nature, 2015, 518(7540): 529.

14. Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[J].
Computer Science, 2015, 8(6), A187.

15. Levine S, Levine S, Levine S, et al. Continuous deep Q-learning with model-based
acceleration[C] International Conference on International Conference on Machine
Learning.2016:2829-2838.

16. Schaul T, Horgan D, Gregor K, et al. Universal value function approximators[C] International
Conference on Machine Learning. 2015: 1312-1320.

17. Metz L, Ibarz J, Jaitly N, et al. Discrete sequential prediction of continuous actions for deep RL[J].
arXiv preprint arXiv: 1705.05035, 2017.

18. Schaul T, Quan J, Antonoglou I, et al. Prioritized experience replay[J]. arXiv preprint
arXiv:1511.05952, 2015.

19. Andrychowicz M, Wolski F, Ray A, et al. Hindsight experience replay[C]. Advances in Neural
Information Processing Systems. 2017: 5048-5058.

20. Uhlenbeck G E, Ornstein L S. On the Theory of the Brownian Motion[J]. Physical Review, 1930,
17(2-3):323-342.

21. Plappert M, Houthooft R, Dhariwal P, et al. Parameter space noise for exploration. arXiv preprint
arXiv:1706.01905, 2017.

22. Gu S, Holly E, Lillicrap T, et al. Deep reinforcement learning for robotic manipulation with
asynchronous off-policy updates[C]. IEEE International Conference on Robotics and
Automation (ICRA),2017: 3389-3396.

23. Genders W, Razavi S. Using a deep reinforcement learning agent for traffic signal control. arXiv
preprint arXiv:1611.01142, 2016.

24. Isele D, Rahimi R, Cosgun A, et al. Navigating Occluded Intersections with Autonomous
Vehicles using Deep Reinforcement Learning. arXiv preprint arXiv:1705.01196, 2017.

25. Tai L, Paolo G, Liu M. Virtual-to-real deep reinforcement learning: Continuous control of mobile
robots for mapless navigation[C]. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017: 31-36.

26. Mirowski P, Pascanu R, Viola F, et al. Learning to navigate in complex environments. arXiv
preprint arXiv:1611.03673, 2016.

27. Kinga D, Adam J B. A method for stochastic optimization[C]. International Conference on
Learning Representations (ICLR). 2015.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

 14 of 19

28. Wei Liu, Zhiheng Li, Li Li, Fei-Yue Wang, Parking like human: A direct trajectory planning
solution[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(12), pp. 3388-3397.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20944/preprints201808.0049.v1

Peer-reviewed version available at Sensors 2018, 18, 2905; doi:10.3390/s18092905

http://dx.doi.org/10.20944/preprints201808.0049.v1
http://dx.doi.org/10.3390/s18092905

