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Abstract: A basic pattern in the body plan architecture of many animals, plants and some molecular 
and cellular systems is five-part units. This pattern has been understood as a result of genetic 
blueprints in development and as a widely conserved evolutionary character. Despite some efforts, a 
definitive explanation of the abundance of pentagonal symmetry at so many levels of complexity is 
still missing. Based on both, a computational platform and a statistical spatial organization 
argument, we show that five-fold morphology is substantially different from other abundant 
symmetries like three-fold, four-fold and six-fold symmetries in terms of spatial interacting 
elements. We develop a measuring system to determine levels of spatial organization in 2D 
polygons (homogeneous or heterogeneous partition of defined areas) based in principles of 
regularity in a morphospace. We found that spatial organization of five-fold symmetry is statistically 
higher than all other symmetries studied here (three to ten-fold symmetries) in terms of spatial 
homogeneity. The significance of our findings is based on the statistical constancy of geometrical 
constraints derived from spatial organization of shapes, beyond the material or complexity level of 
the many different systems where pentagonal symmetry occurs. 
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1. Introduction 

One of the most conspicuous properties in many biological systems is the pentagonal symmetry 
[1]. There are many notable examples of pentagonal symmetry in the members of some biological 
groups like Echinodermata, radiolarians, flowering plants and some fruits. In many cases, the 
five-fold symmetry is clearly displayed but in some others the radial symmetry is lost and it only 
remains a bilateral symmetry. In this last case, however the body is still divided into five parts. For 
this reason, we relax the restriction of symmetry and in both cases we will say that the structure 
displays five-fold organization (FO) which in terms of phenotype is uncovered as fivefold 
symmetry. These five-part units are very common in both animal and plant design and, 
traditionally, in biology this design symmetry and their emergence have been approached by 
developmental genetics, evolutionary biology and ecology [2, 3, 4, 5, 6, 7, 8, 9 and 10]. In spite of its 
abundance in nature, there are few general comments on the extended frequency of FO as a shape, 
with some important exceptions [10 and 11]. In a pioneering work, Breder [11] shows that FO is the 
basic pattern of many flowers, dicotyledons, echinoderms, the vertebrate body section, the distal 
ends of tetrapod limbs, and of the oral armature of priapulids. Breder concludes “Five-partness, 
where it appears, is held to with great rigidity, even when extensive evolutionary change has taken 
place. This does not seem to be the case to such a marked extent where other symmetries are 
concerned, as the coelenterates witness”. The reasons for the success of FO, where it appears, are not 
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yet understood. In a biological context, some hypotheses have been formulated in sea urchins and 
flowers, either based on their functional, ecological role, developmental constraints [7, 8,9, 13, 14 and 
15] or its robustness and formation derived from mechanical [16] or mathematical models [17]. 
However, if these hypotheses are true they do not explain the occurrence and robustness of FO in all 
other organisms and in the remaining non-organismic entities such as molecules, cellular and 
inorganic organizations. Breder [11] suggested that the origin of the stability of the FO lies in the 
geometrical properties of the pentagon.  

Convex polygons are plane entities and their geometry restricts the way inner regions 
(considered as sub-entities) are partitioned. These surface regions distribute areas inside polygons 
and, with a proper measure of spatial organization in 2D shapes, a measure of that distribution can 
be determined. In fact, an important constraint in any spatial region may be the spatial homogeneity 
or regularity. In general, the absence of spatial disparity among areas inside a region (a bounded 
polygon) is considered synonymous of regularity and the presence of disparity is considered spatial 
heterogeneity. Therefore, our definition of spatial heterogeneity is based on the unequal distribution 
of areas inside polygons. We propose a parameter to define quantitatively the spatial organization of 
polygonal constituent elements according to this couple of concepts. It has been shown in a previous 
work [18] that eutacticity is a parameter closely linked with regularity and it is a suitable 
measurement of spatial homogeneity and heterogeneity. That regularity is derived from measures of 
variation of partitioning areas. The spontaneous organization of individual blocks into ordered 
structures is ubiquitous in nature and found at all length scales, thus the shape of the building blocks 
becomes increasingly important [19 and 20]. The analysis of abstract entities, such as the geometry of 
these building blocks, into constituent elements and their degrees of interaction among internal 
parts represents a source of important information in terms of constrictions and evolvability [21]. 
This approach is called modularity. It is assumed that systems are composed by individual elements 
or modules and knowledge of modules and their integration is important to understand some 
properties of these particular systems. This concept can be a useful tool to infer features on the way 
organisms or generic systems are build, for instance due to organizational principles of 
self-maintaining systems [22], or it may be an “evolved property” [21]. In this work, we study the 
problem of the high frequency of FO in nature by using the concept of module in simple polygonal 
organizations. Intuitively, here, a module is a summation of particular elements from many 
polygons and it will depict non trivial differences between shapes, in terms of spatial organization, 
inside a universe of shapes or star morphospace. Thus, our main aim is the analysis of FO 
partitioning in order to understand not just the description of modules in a generic morphospace of 
stars, but the proposal of a plausible hypothesis regarding the high occurrence of FO in terms of 
spatial efficiency.  

A theoretical morphospace has been used in an evolutionary context as a geometric space of 
both existent and non-existent biological forms [23]. An important step towards the proof that 
spatial efficiency is related with the high occurrence of FO, is the developing of a morphospace of 
stars with different symmetries. The goal in this case will be to show that FO is restricted to a 
particular zone of spatial homogeneity inside the morphospace. Therefore, we claim that spatial 
organization should be considered an important way to find how existent shapes appears in the 
morphological context of phenotypes or generic spatial organizations in nature.  

The rest of the paper is distributed as follows: Section 3.1 of Methods shows the statistical basis 
of spatial homogeneity and heterogeneity for our work: We introduce two statistical parameters 
defining the variability of areas inside polygons, which, in turn, will define particular spatial 
configurations. Section 3.2 is about the mathematical basis of eutacticity, based on previous 
references [24 and 25]. Our numerical proof in Section 3.3 and 3.4 will define the amplitude of spatial 
variability of sub-elements in polygons derived from stars, called modules, showing the association 
between eutacticity and our statistical argument. In Section 4.1 of results, a universe of shapes 𝛤 or 
star morphospace is shown and its statistical categorization is given.  
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2. Methods  
 
Section 2.1 Statistics of spatial organization for shapes 𝛤. 
 
To establish a proper measure of spatial organization we start by defining a shape 𝛤. A shape 𝛤 

is a set of spatial planar confined regions called sub-localities inside a locality 𝐿௜ . Hence, a shape 
might be a regular or irregular polygon. In addition, we will see that each shape 𝛤 can be associated 
to a star which, eventually, will be turned into a number (a set of area) that can be subject to be 
statistically analyzed. Our statistical analysis will be derived from localities and their sub-localities 
coming from constructions of shapes 𝛤. The main idea to establish the generic name of shapes 𝛤 is 
because it useful to define either shapes or numbers associated with shapes.  

Each locality 𝐿௜  is constituted by a subset of a given number 𝑁௜  of sub-localities, 𝑆௜ଵ, 𝑆௜ଶ, … , 𝑆௜ಿ೔
 

such that 𝐿௜ =∪௝ୀଵ
ே೔ 𝑆௜௝ , where 𝐿௜  is a convex regular or irregular polygon in ℝଶ. Let 𝐴௜௝ be the area 

of each sub-locality. If 𝐴௜௝ = 𝐴௜௞∀ 𝑘, 𝑗, then we said that 𝐿௜  is regular (Figure 1). In contrast, if there 
exists some  𝑗 ≠ 𝑘  such that 𝐴௜௝ ≠ 𝐴௜௞  then we say that 𝐿௜  is not regular. Therefore, let 𝐴௜ =

∑ 𝐴௜௝
ே೔
௝ୀଵ  be the sum of all the associated areas of every locality; this set determines 𝛤 = {𝐴௜} . 

Therefore, 𝛤 is a generalization of locality or any set of sub-localities which will be understood as a 
number in statistical terms. Therefore, the area average of a locality 𝐿௜  is:  

 
𝐴̅௜ =

ଵ

ே೔
∑ 𝐴௜௝

ே೔
௝ୀଵ                 (1) 

 
and  
 

𝜎௜ = ට
ଵ

ே೔ିଵ
∑ (𝐴௜௝ − 𝐴ప

ഥ )ଶே೔
௝ୀଵ

          (2) 

 
is the standard deviation of each locality. Notice that if 𝜎௜ = 0 ⇒ 𝐴௜௝ = 𝐴௜௞ ∀ 𝑗, 𝑘. 

 
 
Figure 1. Schematic properties of two different shapes 𝜞. a) A square is a locality associated to four 

subareas from four sub-localities 𝑆ଵ, 𝑆ଶ, … , 𝑆ସ which are all equal. b) A shape 𝛤 with a four-fold partition such 

that any of their sub-localities have unequal subareas is not regular; the set of areas defined by sub-localities 

𝑆ଵand 𝑆ଶ are smaller than those of 𝑆ଷ and 𝑆ସ.  

 
Section 2.2 Mathematical basis of eutacticity. 
 
A star 𝜓 is a set of 𝑛 vectors {𝘶ଵ, 𝘶ଶ, … , 𝘶௡} with a common origin in an N-dimensional space 

(ℝே). The star is eutactic if it can be obtained by projecting an orthogonal set. Eutacticity is sharply 
linked with regularity by considering that a given polygon, polyhedron and, in general, polytope 
can be associated with a star of vectors (pointing from the center to the vertices) and it has been 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2018                   doi:10.20944/preprints201808.0042.v1

Peer-reviewed version available at Entropy 2018, 20, 705; doi:10.3390/e20090705

http://dx.doi.org/10.20944/preprints201808.0042.v1
http://dx.doi.org/10.3390/e20090705


 2 of 17 

 

demonstrated that stars associated with regular polytopes are eutactic [26]. A good numerical 
criterion for obtaining the eutacticity of a star, suitable for dealing with experimental measurements, 
was proposed in Ref. [27] and is as follows. Let 𝐵  be the matrix whose 𝑁  columns are the 
coordinates of the vectors forming a star 𝜓, with respect to a given fixed orthonormal basis of ℝଶ. 
The star is eutactic if and only if: 
 
𝜀 =

்௥(ௌ)

ඥ்௥(ௌௌ)√ଶ
= 1                                                                                (3)                                                                                                             

 
Where 𝑆 = 𝐵𝐵் ; 𝑇𝑟 denotes the trace and the superindex 𝑇 denotes the transpose. Notice that 

the parameter 𝜀 can indicate the degree of eutacticity of the star represented by 𝐵: if it is not strictly 
1, which is the highest value of eutacticity, then the closer to 1 the more eutactic the star is. In case of 
planar stars, it can be proved that:  

 
ଵ

√ଶ
≤ 𝜀 ≤ 1                                                                                 (4) 

                                                                                                                           
The strategy is the to associate a given polygon or locality 𝐿௜ , with a star 𝜓, and to use Eq. 3 to 

measure its value of eutacticity. Next, a measure of spatial organization can be proposed and used to 
measure the regularity of a form 𝛤, using sub-locality areas. For this goal, we should prove that the 
closer 𝜀 is to 1, the more regular (the feature of spatial homogeneity) the star is (section 2.3). Our 
hypothesis is that the higher the eutacticity, the more homogeneous (i. e., the area variability of the 
sub-locality decreases) the partition of the space is. Lower values of eutacticity imply unequal 
partition of the space, or more area variability or spatial heterogeneity. According to equations (1) 
and (2), the variability defining regularity must occur inside localities. In order to support statistical 
variation between highly regular stars or highly eutactic stars, in contrast with non regular stars, we 
need to define spatial variability between two experimental groups, highly eutactic and less eutactic 
stars and polygons associated with them.  

 
Section 2.3 The eutacticity and the standard deviation of dispersion mean of a module. 
 
The algorithms used in this section are found at reference [24]. In this section, we will show that 

eutacticity is an important parameter measuring spatial organization. Here, we introduce the 
concept of module to support the statistical framework of Section 2.1, linking this with vector stars 
𝜓 described in Section 2.2. Spatial organization is the fundamental property to quantify regularity 
using polygons. A partition of the localities 𝐿௜  into sub-localities 𝑆௜ଵ, 𝑆௜ଶ, … , 𝑆௜ಿ೔

 is proposed using 
Voronoi tessellations as proposed in Ref. [24]. The goal in Ref. [24] was to verify the spatial 
distribution of areas inside localities by comparing stars with high and low values of eutacticity. In 
this way, two experimental groups can be distinguished; 𝜓௔ representing eutactic stars (𝜀 = 1) and 
𝜓௕  representing stars with a lower value of eutacticity (𝜀 = 0.8) . With these two groups, we 
proceed as follows. There will be 𝜓ଵ, 𝜓ଶ, … , 𝜓௞ stars such that 1) All of them have the same value of 
𝜀; 2) Any of them has the same number of vectors ν; 3) They are geometrical random stars, even 
though any of them has the same eutacticity value (point 1). Finally, 4) Stars 𝜓ଵ, 𝜓ଶ, … , 𝜓௞ are the 
building blocks to construct localities 𝐿ଵ , 𝐿ଶ, … , 𝐿௞  with the number 𝑁௜  of sub-localities 
𝑆௜ଵ, 𝑆௜ଶ, … , 𝑆௜ಿ೔

associated with the same number of vectors ν. In fact, according to the property 2, we 
have 𝑁௜ = 𝑁௝ = ѵ, ∀ 𝑖, 𝑗, which is an important condition to  with a formal definition of module. 
Intuitively, a module is a summation of particular sub-localities from many localities and it will be 
used to contrast two arbitrary values of 𝜀 numerically (Figure 2).  
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Figure 2. Construction of a module from 𝒌 stars. A module is an average derived from an area 
summation of a particular sub-locality (e.g., sub-locality 1) from 𝑘 stars 𝜓 with a constant value 𝜀. 
In this figure the second sub index of A is referring to sub-locality 1. Stars 𝜓ଵ, 𝜓ଶ, … , 𝜓௞ are the 
building blocks to construct localities 𝐿ଵ, 𝐿ଶ, … , 𝐿௞. This process is applied to build modules of the 
two experimental groups of stars, 𝜓௔ and 𝜓௕. Figure modified from reference 24. 
 

According to Ref. [24], let us assume that the areas 𝐴௜,௝ associated to sub-localities of the two 
groups of stars (𝜓௔, 𝜓௕) have two crucial components: a) The eutacticity 𝜀 of the star 𝜓 and b) a set 
of random points 𝜔௠,௡  defining the associated areas 𝐴௜,௝ . It is important to highlight that 
𝐿ଵ, 𝐿ଶ, … , 𝐿௞  depend on 𝜓ଵ, 𝜓ଶ, … , 𝜓௞ (property 4 of stars 𝜓). According to this, 𝜓ଵ, 𝜓ଶ, … , 𝜓௞  are 
associated with 𝜔௠,௡  which will define regions to establish sub-localities 𝑆௜ଵ, 𝑆௜ଶ, … , 𝑆௜ಿ೔

. In that 
sense, let us call 𝜓ଵ,௝

ఠభ,೙, 𝜓ଶ,௝

ఠమ,೙, … , 𝜓௞,௝

ఠೖ,೙ to the stars, where 𝑗 represents the particular sub-locality and 
𝑛 is the set of random points 𝑛 = 1, … , 𝛼. So 𝜔௠,௜ ≠ 𝜔௠,௝ for every 𝑖 ≠ 𝑗. In this case, 𝑚 = 1, … , 𝑘 is 
a simple tag to associate star 𝑘 with 𝜔௞ and subsequently with a set 𝛼 of random points, and the 
associated areas are 𝐴ଵ,௝

ఠభ,೙, 𝐴ଶ,௝

ఠమ,೙, … , 𝐴௞,௝

ఠೖ,೙ . Therefore, the module for a particular sub-locality is 
defined using the average of its areas. Modules for particular sub-localities of two experimental 
groups of stars (𝜓௔, 𝜓௕) are built in order to contrast its sub-locality area variations. 
 

In Table 1, an example of the analysis of module 1, which is exclusive for sub-locality 1 in a 
locality of 𝑗 sub-localities, is shown: 
 

Table 1: Calculation of a module for sub-locality 1. 
 

 Set of random points 𝜔௠,௡ defining the associated areas 
𝐴௜,௝ for sub-locality 1 [algorithm defined in Ref. 24]. 

 Summation 
of areas for 
star  

𝜓௞ 
Stars 𝜔ଵ,ଵ 𝜔ଵ,ଶ … 𝜔ଵ,ఈ   

𝜓ଵ 𝐴ଵ,ଵ

ఠభ,భ  𝐴ଵ,ଵ

ఠభ,మ  … 𝐴ଵ,ଵ

ఠభ,ഀ ⇒ 1

𝛼
෍ 𝐴ଵ,ଵ

ఠభ,೙

ఈ

௡ୀଵ

 

𝜓ଶ 𝐴ଶ,ଵ

ఠమ,భ  𝐴ଶ,ଵ

ఠమ,మ  … 𝐴ଶ,ଵ

ఠమ,ഀ ⇒ 1

𝛼
෍ 𝐴ଶ,ଵ

ఠమ,೙

ఈ

௡ୀଵ

 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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𝜓௞ 𝐴
௞,ଵ

ఠೖ,భ  𝐴
௞,ଵ

ఠೖ,మ … 𝐴
௞,ଵ

ఠೖ,ഀ ⇒ 1

𝛼
෍ 𝐴௞,ଵ

ఠೖ,೙

ఈ

௡ୀଵ

 

 
The summation 𝛴 of module 1 derived from sub-locality 1 in a locality with 𝑗 sub-localities, 𝑘 

stars and a set 𝛼 of randomly generated points will be defined by: 
 
ଵ

ఈ
൫∑ 𝐴ଵଵ

ఠభ೙ఈ
௡ୀଵ + ∑ 𝐴ଶଵ

ఠమ೙ఈ
௡ୀଵ + ⋯ + ∑ 𝐴௞ଵ

ఠೖ೙ఈ
௡ୀଵ ൯                                                 (5)                                                                 

 
Therefore, the average for module 1 is: 
 
𝐴̅ఓభ

=
ଵ

ఈ௞
∑ ∑ 𝐴

௜,ଵ

ఠ೔,೙ఈ
௡ୀଵ

௞
௜ୀଵ                              

 
and the standard deviation: 
 

𝜎ఓభ
= ට

ଵ

(ఈିଵ)(௞ିଵ)
∑ ∑ (𝐴௜ଵ

ఠ೔೙ − 𝐴̅ఓ)ଶ௞
௜ୀଵ

ఈ
௡ୀଵ                                                      (6)                                                                        

 
In general, for any sub-locality 𝐴

௜,௝

ఠ೔,೙  associated with the star 𝑆௜ , we can obtain the average of 
each star and the average of each set of random points of the module 𝐴ఓೕ

. This average is: 
 
𝐴̅ఓೕ

=
ଵ

ఈ௞
∑ ∑ 𝐴

௜,௝

ఠ೔,೙ఈ
௡ୀଵ

௞
௜ୀଵ              

 
and the standard deviation: 
 

𝜎ఓೕ
= ට

ଵ

(ఈିଵ)(௞ିଵ)
∑ ∑ (𝐴

௜,௝

ఠ೔,೙ − 𝐴̅ఓೕ
)ଶ௞

௡ୀଵ
ఈ
௜ୀଵ                                                      (7) 

                                                                        
If now we fix a star, the average of areas and standard deviation of this locality by summation 

over 𝛼 random set of points is 
 
𝐴̅ఓೕ

(𝑆௜) =
ଵ

ఈ
∑ 𝐴

௜,௝

ఠ೔,೙ఈ
௡ୀଵ    

 
And 

𝜎ఓೕ
(𝑆௜) = ට

ଵ

ఈିଵ
∑ (𝐴

௜,௝

ఠ೔,೙ − 𝐴̅ఓೕ
(𝑆௜))ଶఈ

௡ୀଵ                                                         (8) 

                                                                            
The average of these standard deviations is calculated by performing summation over the 𝑘 

stars: 
 
𝜎തఓೕ

=
ଵ

௞
∑ 𝜎ఓೕ

(𝑆௜)௞
௜ୀଵ                                            (Dispersion mean of module 𝑗; 9) 

 
which will have the final standard deviation: 
 

𝜎ௌఓ = ට
ଵ

(௞ିଵ)
∑ (𝜎ఓೕ

(𝑆௜) − 𝜎തఓೕ
)ଶ௞

௜ୀଵ ;        (Standard variation of dispersion mean of module; 10) 

 
Figure 3 shows that this standard deviation reflects the spatial variation of areas inside a given 

number of stars with ε= 1 (𝜓௔), in contrast with a second set of stars with 𝜀 = 0.8 (𝜓௕). Thus, the 
eutacticity parameter ε turns out to be useful to determine the spatial variation of areas inside 
localities (Eq. 10) when two values of eutacticity are compared. The use of modules associate the 
value 𝜀 with spatial organization since the variation of area sub-localties from two different values 
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of eutacticity represents variation in module area for any sub-locality (Figure 4). Low values of 
eutacticty imply spatial heterogeneity while high values imply spatial homogeneity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Dispersion mean of modules (DMM) and the standard variation of dispersion mean 
(SDM). DMM is the average of standard deviation of areas derived from equation 9, from 100 
localities using 100 sets of random points with several number of sub-localities with 𝜀 = 1 (𝜓௔; 
yellow bars) and 𝜀 = 0.8 (𝜓௕; orange bars). ANOVA test was performed in order to contrast eutactic 
values of DMM between 𝜓௔ and 𝜓௕. The obtained statistical significances of p range from less than 
0.0001 for partitions with three modules and four modules (***); less than 0.05 for partitions with 5 
modules (*); and less than 0.01 for partitions with 6 and 7 modules (**). The null hypothesis was 
rejected in 23 of the 25 modules. The SDM (equation 10) for module with 𝜀 = 1 (𝜓௔; grey bars) is 
notably smaller than the one obtained from module with 𝜀 = 0.8 (𝜓௕; blue bars). Figure modified 
from reference 24. 
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Figure 4. Scheme for area variability of modules defined by regular stars (a) versus modules 
defined by irregular stars (b) ones. In case (a), low variability in areas (spatial homogeneity derived 
from standard variation of dispersion mean of module; equation 10) is depicted; this low variability 
implies non-significant overlap between modules. On the contrary, in case (b) high variability in 
areas (spatial variability derived from standard variation of dispersion mean of module) is depicted; 
it implies significant overlap between modules or high variation (modified from reference 24). 

 
Section 2.4 Standard deviation of partition variability  
 
The main objective of our research is to understand the high frequency of five-fold organization 

in some animal and plants architectures. In past sections 2.1, 2.2 and 2.3 we focused on a 
computational and quantitative method able to establish some important practical details 
concerning the measurement of planar spatial variations of shapes 𝛤 . However, to unveil the 
geometrical properties that favors FO against any other symmetry, we can go beyond by proposing 
a numerical approach using partitions of planar discs (localities) divided into three to ten 
sub-localities. In fact, this numerical experiment is necessary to relate equations (1) and (2) with a 
proper collection of data reflecting a quantification of standard deviations of spatial organization in 
FO. A complete view of a wide spectrum of partitions of shapes 𝛤 is obtained if we design a 
numerical model not restricted to the eutacticity parameter, since this parameter is proposed mainly 
as a tool but it is not a definite proof. Our geometrical design has as a first condition, the fact that 
planar discs with different number of sub-localities remains with a constant area during the 
experiment in order to have normalized data. Although we consider partitions of discs ranging from 
three to ten sob-localities and each partition must be with a constant area during the experiment, we 
include ten levels of variability. Therefore, each partition with particular constant area has ten levels 
of variability during the experiment. According to section 2.1, the standard deviation of each locality 
can be obtained by using equation 2. For this purpose, we use Voronoi diagrams to model space 
partitioning with different number of parts (from three to ten), where two variables are studied, 
namely, partitioning number (pn) and partition variability (pv), which are defined as follows: 

 
a) Partitioning number (pn) defines the number of partitions inside a disc (ranging from three 

to ten).  
b) Partition variability (pv) determines multiple levels of variability (ten) inside discs by using 

random points, which in turn define the Voronoi diagrams. These levels of variability will 
be defined below. 
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The algorithm to build partitioning and levels of variability of discs is described in the next 7 
steps as follows: 

 
1. We consider initially a disk with a unitary radius where a second inscribed disk will be 

partitioned into a pn with a pv during the experiment (steps 4 and 5 of this algorithm, 
respectively). These discs are defined by particular features each: a) The first disc is the 
external limit of the second and their coordinates are constant during the experiment (b) The 
second one is constantly changing to obtain a pv (step 5 of this algorithm) and it is obtained 
by establishing a Voronoi tessellation. These two features a) and b) are described in the next 
steps 2) and 3) of this algorithm.   

2. Features of external disc. The boundaries of the external limit are defined by 24 fixed points 
generated as follows: The radius of the external disk is set to r=1 and consecutive points are 
separated by an angle θ/24. The functionality of this feature lies in the establishment of a 
fixed limit of reference to maintain a constant area during variation of partitions. 

3. Features of internal disc. The boundaries of the internal limit are defined by 24 fixed points 
generated as follows: The radius of the internal disk is initially set to r=0.53±0.4 (established 
by the first level of variability step 6 of this algorithm) with 24 points consecutively 
separated by an angle θ/24. These radii are derived from a Voronoi tessellation whose points 
are the 24 points established before in this step beside the points derived from step 5. The 
functionality of this feature lies in the establishment of an internal limit able to change, 
providing statistical variation determining levels of variability of areas inside discs.   

4. Now, we define partition numbering (pn) inside the disk. Once a number of partitions is 
defined, say n (where 3 ≤ n ≤ 10 and 𝑛 ∊ 𝕫) to define a Voronoi tessellation, points are 
located in the disk at angles 2π/n ± 0.069 radians but at different radius. These radius values 
will define the pv, as described in the next item.  

5. Partition variability (pv). For each angular region defined above, 10 points are located at 
radius (between r=0 and r=10) at different positions to define different degrees of variability 
using Voronoi tessellations. The first point (first level of variability) is at r=1. After the 
second point all of them are located at random radius between 1 to 10. Hence, each level of 
variability (ten) is given by radii ranges except 1 which is fixed at 1 (Figure 5); a) 1, b) 1-2, c) 
1-3, d) 1-4, e) 1-5, f) 1-6, g) 1-7, h) 1-8, i) 1-9 and j) 1-10. Partition variability will define the 
broad spectrum of possibilities for area distribution inside discs without losing partitioning 
number. According to equation (1) the average of areas requires a summation of 
sub-localities areas (𝐴௜௝) which were derived from partitions. 

6. Once that partition areas (𝐴௜௝) inside discs were obtained and equation (1) was solved, 
equation (2) is used to get standard deviations (𝜎௜) of variability for each disc. In order to 
normalize the level of variability for each pn, an index dividing the standard deviation of 
partitions and the particular area average of each partition was obtained (variability 
average; supporting information 1). There are eight particular area averages of partitions 
since we have a sample of 8 discs with different pn (from 3 to 10). These particular area 
averages are derived from a value n/(≈108.5±1.5) which are n values obtained from the first 
level of variability (pv) at r=1. It is important to say that the radius of the external disc (1) 
and the radius of the internal disc (r=0.53±0.4) was modified in order to get the particular 
area averages. However, in spite of the modification the index between external discs and 
the internal ones remains constant. A sample of 20 discs to get 20 standard deviations 
(20 𝜎௜) was generated for each pn, and also for each level of pv (10) giving a sample of 200 
discs for each pn. An average of standard deviations (𝜎పഥ ; variability average) was derived 
for each level of variability. 

7.  Finally, a standard deviation of all variability averages is obtained for each pn. 
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Figure 5. Defining partitioning number and partition variability. A disc is build to get Voronoi 
diagrams with constant area in spite of variability. The disc of this figure has a partitioning number 
of 2. The magnitude of the radius defines ten levels of variability; a) 1, b) 1-2, c) 1-3, d) 1-4, e) 1-5, f) 
1-6, g) 1-7, h) 1-8, i) 1-9 and j) 1-10. Each level of variability is given by radii ranges except a) which is 
fixed at 1.    
 
3. Results 

 
Section 3.1 Star morphospace for shapes 𝛤. 
 
From section 2.3 of methods we can conclude that the higher the eutacticity value the higher the 

spatial homogeneity inside shapes, that is, less the standard variation of dispersion mean (equation 
10; Figure 3). In other words, spatial heterogeneity increases according to the decreasing of 
eutacticity. In order to define particular values of this property, regarding spatial organization for 
statistical geometrical samples of several shapes 𝛤 we must build that universe of shapes or star 
morphospace. Random stars (n=10,000), with number of vectors N= 3, 4, 5, 6, 7, 8, 9 and 10 were 
generated according to a well established previous methodology reported in reference [24]. Once 
these sets of stars are generated eutacticity is measured in stars given eight particular statistical 
distributions (Figure 6). Those distributions are characterized by a mean which will give us a first 
insight about particular values of spatial organization for shapes 𝛤  which will determine the 
resulting morphospace (Figure 7). As already has been mentioned in section 2.2, in planar stars the 
range for eutacticity values is ଵ

√ଶ
≤ 𝜀 ≤ 1, which is a range between 0.7 and 1. A first interesting fact 

to highlight in figure 6 is that the eutacticity mean value for stars with five vectors (0.89388) is higher 
than those values for both four and six vectors (0.88126 and 0.88324 respectively). As it was expected 
from a first eye approach, over the statistical distribution for stars with three vectors (Figure 6.a) the 
eutacticity value was lower (0.84827) than for all remaining stars (Figure 7 and 8). For stars above 
seven vectors eutacticity values fall over 0.918. It is important to say at this point that stars with 
eight, nine and ten vectors can be considered as multiples of degree 2, 3, 4 and 5. However, it is not 
the case for stars with seven vectors. In fact, structures of seven folding order or higher are rare or 
absent, except those that can be considered as multiples of the 2, 3, 4 and 5 [11]. Shapes with more 
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than seven vectors can serve as controls to understand spatial deviations from the most abundant 
stars (3, 4, 5 and 6) although they will be included in our final analysis.  

Figure 6. Statistical distributions for random stars showing frequency of eutacticity values. The 
abscissa indicates eutacticity values (ranging from 0.7 to 1), and ordinate is frequency for vector stars 
ranging from 3 to 10 vectors (letters from a=3, b=4, c=5, d=6, e=7, f=8, g=9 and h=10).   
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Figure 7. Star morphospace for eutacticity values derived from shapes 𝜞. Eutacticity means 
obtained from statistical distributions for vector stars ranging from 3 to 10 vectors. 

 

 
Figure 8. Standardized score Wilcoxon/Kruskall Wallis for vector stars ranging from 3 to 10 
vectors. Score for five vector stars is the closest value to zero.   
 
The resulting morphospace comes from the eutacticity values derived from distributions of Figure 6. 
However, our first result there will not be evident up to the establishment of a formal test comparing 
distributions. Since we detected that the statistical distributions are non normal (Figure 6), we 
decided contrast samples using a nonparametric statistical test, the Wilcoxon/Kruskall-Wallis test 
using the program JMP 8.0. Figure 8 shows the standardized score Wilcoxon/Kruskall Wallis 
contrasting statistical differences among eutacticity values from all distributions. The 
Wilcoxon/Kruskall Wallis standardized scores for 3, 4, 5 and 6 vector star distributions fall below the 
mean while values for seven vectors or more are over the mean. Interestingly, score for five vector 
stars is the nearest value to zero. This fact reflects the increasing of eutacticity mean for five vector 
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stars visualized in the morphospace of Figure 7 in the middle of four and six vectors. In addition, 
four and six vector stars remain closest between them in contrast with five vector stars. Concerning 
this last point, we focused on comparing only four, five and six vector stars including a statistical 
analysis contrasting only these samples. Figure 9 shows how distribution of eutacticity values for 
five vector stars are considerably away from four and six vector star samples. According to this, we 
can conclude that eutacticity is a suitable measure able to detect variations of spatial organization 
inside polygons. The average for areas inside regular stars associated to highly eutactic stars reflects 
a tendency toward equal partition of internal space, while the high variation of SDM indicates that 
low eutactic stars has a much less equal distribution of areas. In that sense, statistically, five-folding 
stars are showing that they are in a particular position which is more regular than that for 
four-folding and six-folding organizations but less than organizations whose vectors are above 
seven vectors.  

 
Figure 9. Standardized score Wilcoxon/Kruskall Wallis for vector stars ranging from 4 to 6 
vectors. According to the standardized score Wilcoxon/Kruskall Wallis test five vector stars are 
statistically dissimilar to four and six vectors distributions. 
 

The final part of our methodology (section 2.4) is based on a numerical approach determining 
particular values for partitions ranging from three to ten sub-localities, using equations (1) and (2). 
The results of this experiment are shown in Figure 10 and Figure 11. Interestingly, the curves for 
variability averages between partitions are different (right side squares in Figure 10). Each level of 
variability was composed of a sample of 20 standard deviations and according to Figure 10 it 
depends on the partitioning number and level of variation. In addition, the lowest value for 
standard deviation of the overall sample determined by the variability average is that for five 
partitioning number. Therefore, we can conclude that equation (2) is an appropriate way to explain 
that the high frequency of FO in nature is derived from an equal spatial partitioning in spite of 
spatial variation.  
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Figure 10. Partitioning number and partition variation of planar discs. A sample of 80 planar discs 
shows how partitioning number (vertical left side) determines segmentation of an almost constant 
area (≈108.5±1.5) into particular number of sub-localities. Partition variability (bottom horizontal 
numbers) installs levels of variability giving ten constant and subtle increases of area to generate 
random segmentations. Variability averages (right vertical graphics) reflects average of standard 
deviations (𝜎పഥ )  which is derived for each level of variability. It is important to note how each 
increase of variability enhance heterogeneity for every partitioning equally even the graphics are 
dissimilar.  

 
Figure 11. Standard deviation of all variability averages for each partitioning number. An average 
of standard deviations (𝜎పഥ ; variability average) was derived for each level of variability from figure 
10. A standard deviation of all variability averages is obtained for each partitioning number. 
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According to this data, five-fold organizations are at the lowest level of dissimilarity among areas 
inside discs.  

 
4. Discussion 

 
Our final resulting conclusions are that the spatial organization for five-folding architectures or 

FO can be associated to a particular distribution of homogeneous internal space given by its 
geometry (Figure 11). That is, our idea lies on a suggestion that geometry defines a source of 
information and not just is a consequence of traditional physical button-up development. This last 
idea is notably different from those given by functional, ecological and even mechanical 
explanations because those hypotheses consider that form follows function. We consider that the 
significance of our findings is based on the statistical constancy of geometrical constraints, derived 
from spatial organization of shapes beyond the material or complexity level of many different 
systems. Our geometrical argument is not against the selective performance for five-folding 
symmetries in nature, since the high well qualified performance of this geometry during evolution 
could be a generic geometric constraint defined first as a system character before to be a biological 
character.       

Supplementary Information 1 (Table PDF): In order to normalize the level of variability for each pn, an index 
dividing the standard deviation of partitions and the particular area average of each partition was obtained 
(variability average). There are eight particular area averages of partitions since we have a sample of 8 discs 
with different pn (from 3 to 10). These particular area averages are derived from a value n/(≈108.5±1.5) which 
are n values obtained from the first level of variability (pv) at r=1. It is important to say that the radius of the 
external disc (1) and the radius of the internal disc (r=0.53±0.4) was modified in order to get the particular area 
averages. However, in spite of the modification the index between external discs and the internal ones remains 
constant. A sample of 20 discs to get 20 standard deviations (20 𝜎௜) was generated for each pn, and also for 
each level of pv (10) giving a sample of 200 discs for each pn. An average of standard deviations (𝜎పഥ ; variability 
average) was derived for each level of variability. 
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