TL-moments for Type-I Censored Data with an Application to the Weibull Distribution

Hager A. Ibrahim², Mahmoud Riad Mahmoud¹, Fatma A. Khalil² and Ghada A. El-Kelany²

Abstract

This paper aims to provide an adaptation of the TL-moments method to censored data. The present study concentrates on Type-I censored data. The idea of using TL-moments with censored data may seem conflicting. But our perspective in that, we may use data censored from one side and trimmed from the other side. This study is applied to estimate the two unknown parameters of the Weibull distribution. The suggested point is compared with Direct L-moments and ML methods. A Monte Carlo simulation study is carried out to compare these method in terms of estimate average, root of mean square error (RMSE) and relative absolute biases (RAB).

Keywords: Censored Data; Estimation; Direct L-moments; TL-moments; Maximum likelihood; Weibull Distribution.

1 Introduction

In the second half of the last century, there has been a great attention paid for using unconventional estimation methods in the theory of estimation in addition to the classical methods. Classical estimation methods (e.g, method of moments, method of least squares, and maximum likelihood method) work well in cases where the distribution belongs to the exponential family. However, in some applications, the data contain there are some extreme observations which may influence the values of the estimator greatly. Therefore, if there is a concern about outliers, one should use a robust method of estimation which has been developed to reduce the influence of outliers on the final estimates. Using a robust estimation techniques for estimating unknown parameters has a great importance to the investigator in many fields, such as in industrial, medical applications and occasionally in business

¹Dept. of Mathematical Statistics, Institute of Statistics Studies and Research, Cairo University, Egypt.

²Dept. of Statistics, Faculty of Commerce, AL-Azhar University (Girls, Branch), Cairo, Egypt.

applications. In recent Decades, a great attention for dealing with outliers has been focused on robust estimation methods; see, for example, Barnett and Lewis (1994).

L-moments method has been noticed as appealing alternative to the conventional moments method, see Hosking (1990). To avert the effect of outliers, Elamir and Seheult (2003) introduced an alternative robust approach of L-moments which they called trimmed L-moments (TL-moments). TL-moments have some advantages over L-moments and the method of moments; Tl-moments exist whether or not the mean exist (for example, the Cauchy distribution) and they are more robust to the presence of outliers.

The idea of TL-moments, the expected value $E(X_{r-k:r})$ is replaced with the expected value $E(X_{r+t_1-k:r+t_1+t_2})$. Thus, for each r, we increase the sample size of a random sample from the original r to $r + t_1 + t_2$, working only with the expected values of these r modified order statistics $X_{t_1+1:r+t_1+t_2}, X_{t_1+2:r+t_1+t_2}, ..., X_{t_1+r:r+t_1+t_2}$ by trimming the smallest t_1 and largest t_2 from the conceptual random sample. This modification is called the r^{th} trimmed L-moment (TL-moment) and marked as $\lambda_r^{(t_1,t_2)}$.

TL-moment of the r^{th} order of the random variable X is defined as:

$$\lambda_r^{(t_1,t_2)} = \frac{1}{r} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} E(X_{r+t_1-k:r+t_1+t_2}), \quad r = 1, 2, \dots$$
(1.1)

The expectation of the order statistics are given by:

$$E(X_{i:r}) = \frac{r!}{(i-1)!(r-i)!} \int_0^1 u^{i-1} (1-u)^{r-i} q(u) du.$$

Its basic idea for the method of expectation is to take the expected values of some functions of the random variable of interest and extend them to a sample and equate the corresponding results and solve for the unknown parameters.

This paper is concerned with comparing the performance of three estimating methods; namely, TLmoments, Direct L-moments, and maximum likelihood (ML); with Type-I censored data. This study is applied to estimate the two unknown parameters of the Weibull distribution by quantile function takes the form:

$$q(u) = a[-\log(1-u)]^{\frac{1}{b}}, \quad 0 \le u \le 1.$$
(1.2)

This article is organized as follows; TL-moments for censored data, in general case, is introduced in Section 2. TL-moments for the Weibull distribution is presented in Section 3. Simulation study and concluding remarks are presented in section 4 and 5 respectively.

2 TL-moments for censored data

For the analysis of censored samples; Wang (1990a, b, 1996a) introduced the concept of partial probability-weighted moments (PPWMs). Hosking (1995) defined two variants of L-moments, which he used with right-censored data. Zafirakou-Koulouris *et al.* (1998) extended the applicability of L-moments to left-censored data. Mahmoud *et al.* (2017) introduced two variant of what they termed the method of Direct L-moments and used them of right and left censored data from the Kumaraswamy distribution.

The aim of this section is introducing an adaptation of the TL-moments method to censored data. In fact, the idea of using TL-moment with censored data may seem conflicting, but the idea is that we may use data censored from one side and trimmed from the other side.

2.1 Right Censoring for Left Trim

Let $x_1, x_2, ..., x_n$ be a Type-I censored random sample of size n from a population with distribution function F(x) and quantile function q(u). We know, from formula of TL-moments (1.1), that TLmoments are defined as:

$$\lambda_r^{(t_1,t_2)} = \frac{(r+t_1+t_2)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r+t_1-k-1)!(t_2+k)!} \binom{r-1}{k} \int_0^1 u^{r+t_1-k-1} (1-u)^{t_2+k} q(u) du.$$
(2.1)

When we suppose left trim t_1 , i.e. $t_2 = 0$. From formula (2.1) we get

$$\lambda_r^{(t_1,0)} = \frac{(r+t_1)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r+t_1-k-1)!k!} \binom{r-1}{k} \int_0^1 u^{r+t_1-k-1} (1-u)^k q(u) du.$$
(2.2)

In this case, let the censoring time T satisfy F(T) = c and c is the fraction of observed data. The random sample takes the form $x_{t_1+1}, x_{t_1+2}, ..., x_n$.

$$\underbrace{x_{1:n} \le x_{2:n} \le \dots \le x_{t_1:n}}_{t_1 \text{ (trimmed)}} \le \underbrace{x_{t_1+1:n} \le x_{t_1+2:n} \le \dots \le x_{m:n}}_{\text{m (observed)}} \le T \le \underbrace{x_{m+1:n} \le \dots \le x_{n-1:n} \le x_{n:n}}_{n-t_1-m \text{ (censored)}}$$

2.1.1 TL-moments for Right Censoring (Type-AT)

The quantile function of Type-AT TL-moments is

$$y^{A}(u) = q(uc), \quad 0 < u < 1.$$
 (2.3)

substitution into equation (2.2) leads to the Type-AT TL-moments where:

$$\mu_r^{A(t_1,0)} = \frac{(r+t_1)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r+t_1-k-1)!k!} \binom{r-1}{k} \int_0^1 u^{r+t_1-k-1} (1-u)^k y^A(u) du$$
$$= \frac{(r+t_1)!}{rc^{r+t_1}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r+t_1-k-1)!k!} \binom{r-1}{k} \int_0^c u^{r+t_1-k-1} (c-u)^k q(u) du.$$
(2.4)

When we suppose the value of smallest trim is equal to one, i.e. $t_1 = 1$, from (2.4), we get

$$\mu_r^{A(1,0)} = \frac{(r+1)!}{rc^{r+1}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k)!k!} \binom{r-1}{k} \int_0^c u^{r-k} (c-u)^k q(u) du.$$
(2.5)

In this case, the first four Type-AT TL-moments are given by the follows:

$$\mu_1^{A(1,0)} = \frac{2}{c^2} \int_0^c uq(u) du,$$
(2.6a)

$$\mu_2^{A(1,0)} = \frac{3}{c^3} \left[\frac{1}{2} \int_0^c u^2 q(u) du - \int_0^c u(c-u) q(u) du \right],$$
(2.6b)

$$\mu_3^{A(1,0)} = \frac{4}{c^4} \left[\frac{1}{3} \int_0^c u^3 q(u) du - 2 \int_0^c u^2 (c-u) q(u) du + \int_0^c u (c-u)^2 q(u) du \right],$$
(2.6c)

$$\mu_4^{A(1,0)} = \frac{5}{c^5} \left[\frac{1}{4} \int_0^c u^4 q(u) du - 3 \int_0^c u^3 (c-u) q(u) du + \frac{9}{2} \int_0^c u^2 (c-u)^2 q(u) du - \int_0^c u (c-u)^3 q(u) du \right].$$
(2.6d)

When we suppose the value of smallest trim is equal to two, i.e. $t_1 = 2$, from (2.4), we get

$$\mu_r^{A(2,0)} = \frac{(r+2)!}{rc^{r+2}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k+1)!k!} \binom{r-1}{k} \int_0^c u^{r-k+1} (c-u)^k q(u) du.$$
(2.7)

Substituting r = 1, 2, 3, 4 in Eq. (2.7), we get the first four Type-AT TL-moments:

$$\mu_1^{A(2,0)} = \frac{3}{c^3} \int_0^c u^2 q(u) du, \tag{2.8a}$$

$$\mu_2^{A(2,0)} = \frac{4}{2c^4} \left[\int_0^c u^3 q(u) du - 3 \int_0^c u^2 (c-u) q(u) du \right],$$
(2.8b)

$$\mu_3^{A(2,0)} = \frac{5}{3c^5} \left[\int_0^c u^4 q(u) du - 8 \int_0^c u^3 (c-u) q(u) du + 6 \int_0^c u^2 (c-u)^2 q(u) du \right],$$
(2.8c)

$$\mu_4^{A(2,0)} = \frac{6}{4c^6} \left[\int_0^c u^5 q(u) du - 15 \int_0^c u^4 (c-u) q(u) du + 30 \int_0^c u^3 (c-u)^2 q(u) du - 10 \int_0^c u^2 (c-u)^3 q(u) du \right].$$
(2.8d)

Using the method of expectations, Type-AT TL-moments estimators is given by:

$$M_r^{A(t_1,0)} = \frac{1}{r\binom{m}{r+t_1}} \sum_{i=t_1+1}^m \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} \binom{i-1}{r+t_1-k-1} \binom{m-i}{k} X_{i:n}$$
(2.9)

2.1.2 TL-moments for Right Censoring (Type-BT)

The quantile function of Type-BT TL-moments is

$$y^{B}(u) = \begin{cases} q(u), & 0 < u < c \\ q(c), & c \le u < 1 \end{cases}$$

substitution into the formula of left trimming in (2.2), the Type-BT TL-moments are given by

$$\begin{split} \mu_r^{B(t_1,0)} &= \frac{(r+t_1)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r+t_1-k-1)!k!} \binom{r-1}{k} \int_0^1 u^{r+t_1-k-1} (1-u)^k y^B(u) du \\ &= \frac{(r+t_1)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r+t_1-k-1)!k!} \binom{r-1}{k} \ast \\ & \left[\int_0^c u^{r+t_1-k-1} (1-u)^k q(u) du + q(c) \int_c^1 u^{r+t_1-k-1} (1-u)^k du \right]. \end{split}$$

Using the results in appendix, the second integration can be written as

$$\mu_r^{B(t_1,0)} = \frac{(r+t_1)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r+t_1-k-1)!k!} \binom{r-1}{k} *$$

$$\left[\beta^c (r+t_1-k,k+1)q(c) + \int_0^c u^{r+t_1-k-1} (1-u)^k q(u) du \right],$$
(2.10)

where $\beta^{c}(a, b)$ is the upper incomplete beta function.

When we suppose the value of smallest trim is equal to one, i.e. $t_1 = 1$, from (2.10), we get

$$\mu_r^{B(1,0)} = \frac{(r+1)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k)!k!} {r-1 \choose k} *$$

$$\left[\beta^c (r-k+1,k+1)q(c) + \int_0^c u^{r-k} (1-u)^k q(u) du \right]$$
(2.11)

In this case, the first four TL-moments for Type-BT right censoring are calculated as follows:

$$\mu_1^{B(1,0)} = (1-c^2)q(c) + 2\int_0^c uq(u)du,$$
(2.12a)

$$\mu_2^{B(1,0)} = \left(3\beta_c(2,2) - \frac{c^3}{2}\right)q(c) + \frac{3}{2}\int_0^c u^2q(u)du - 3\int_0^c u(1-u)q(u)du, \tag{2.12b}$$

$$\mu_3^{B(1,0)} = \left(8\beta_c(3,2) - 4\beta_c(2,3) - \frac{c^4}{3}\right)q(c) + \frac{4}{3}\int_0^c u^3q(u)du - 8\int_0^c u^2(1-u)q(u)du + 4\int_0^c u(1-u)^2q(u)du,$$
(2.12c)

$$\mu_4^{B(1,0)} = \left(15\beta_c(4,2) - \frac{45}{2}\beta_c(3,3) + 5\beta_c(2,4) - \frac{c^2}{4}\right)q(c) + \frac{5}{4}\int_0^c u^4q(u)du - 15\int_0^c u^3(1-u)q(u)du + \frac{45}{2}\int_0^c u^2(1-u)^2q(u)du - 5\int_0^c u(1-u)^3q(u)du.$$
(2.12d)

When we suppose the value of smallest trim is equal to two, i.e. $t_1 = 2$, from (2.10), we get

$$\mu_r^{B(2,0)} = \frac{(r+2)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k+1)!k!} \binom{r-1}{k} * \left[\beta^c (r-k+2,k+1)q(c) + \int_0^c q(u)u^{r-k+1}(1-u)^k du \right]$$
(2.13)

In this case, the first four TL-moments for Type-BT right censoring are calculated as follows:

$$\mu_1^{B(2,0)} = (1-c^3)q(c) + 3\int_0^c u^2 q(u)du, \qquad (2.14a)$$

$$\mu_2^{B(2,0)} = \left(6\beta_c(3,2) - \frac{c^4}{2}\right)q(c) + 2\left[\int_0^c u^3q(u)du - 3\int_0^c u^2(1-u)q(u)du\right],$$
(2.14b)
$$B(2,0) = \left(\frac{40}{2}e_1(u,1) - \frac{c^5}{2}e_2(u,1) - \frac{c^5}{2}e_2(u,1)\right)$$

$$\mu_3^{B(2,0)} = \left(\frac{40}{3}\beta_c(4,2) - 10\beta_c(3,3) - \frac{c^3}{3}\right)q(c) + \frac{5}{3}\left[\int_0^c u^4 q(u)du - 8\int_0^c u^3(1-u)q(u)du + 6\int_0^c u^2(1-u)^2q(u)du\right], \quad (2.14c)$$

$$\mu_4^{B(2,0)} = \left(\frac{45}{2}\beta_c(5,2) - 45\beta_c(4,3) + 15\beta_c(3,4) - \frac{c^6}{4}\right)q(c) + \frac{3}{2}\left[\int_0^c u^5q(u)du - 15\int_0^c u^4(1-u)q(u)du + 30\int_0^c u^3(1-u)^2q(u)du - 10\int_0^c u^2(1-u)^3q(u)du.$$
(2.14d)

Using the method of expectations, Type-BT TL-moments estimators is given by:

$$M_{r}^{B(t_{1},0)} = \frac{1}{r\binom{n}{(r+t_{1})}} \left[\sum_{i=t_{1}+1}^{m} \sum_{k=0}^{r-1} (-1)^{k} \binom{r-1}{k} \binom{i-1}{r+t_{1}-k-1} \binom{n-i}{k} X_{i:n} + \left(\sum_{i=m+1}^{n} \sum_{k=0}^{r-1} (-1)^{k} \binom{r-1}{k} \binom{i-1}{r+t_{1}-k-1} \binom{n-i}{k} \right) T \right].$$
(2.15)

2.2 Left Censoring for Right Trim

Let $x_1, x_2, ..., x_n$ be a random sample of size n. When we suppose right trim t_2 , i.e. $t_1 = 0$. From formula (2.1) we get

$$\lambda_r^{(0,t_2)} = \frac{(r+t_2)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+t_2)!} \binom{r-1}{k} \int_0^1 q(u) u^{r-k-1} (1-u)^{k+t_2} du.$$
(2.16)

In this case, The random sample become on the form of $x_1, x_2, ..., x_{n-t_2}$. Type-I left censoring occurs when the observations below censoring time T are censored:

$$\underbrace{x_{1:n} \leq x_{2:n} \leq \cdots \leq x_{m-1:n}}_{\text{s (censored)}} \leq T \leq \underbrace{x_{m:n} \leq x_{m+1:n} \cdots \leq x_{n-t_2:n}}_{\text{n-}t_2\text{-s (observed)}} \leq \underbrace{x_{t_2:n} \leq x_{t_2+1:n} \cdots \leq x_{n:n}}_{t_2(\text{trimmed})}$$

Let censoring time T satisfy $F(T) = h$ and h is the fraction of censored data.

2.2.1 TL-moments for Left Censoring (Type-A'T)

The quantile function of Type-A'T TL-moments is

$$y^{A'}(u) = q((1-h)u + h) \quad 0 < u < 1$$

substitution into (2.16) leads to the Type-A'T TL-moments where:

$$\mu_r^{A'(0,t_2)} = \frac{(r+t_2)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+t_2)!} \binom{r-1}{k} \int_0^1 y^{A'}(u) u^{r-k-1} (1-u)^{k+t_2} du$$
$$= \frac{(r+t_2)!}{r(1-h)^{r+t_2}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+t_2)!} \binom{r-1}{k} \int_h^1 q(u) (u-h)^{r-k-1} (1-u)^{k+t_2} du \quad (2.17)$$

When we suppose the value of largest trim is equal to one, i.e. $t_2 = 1$, from (2.17), we get

$$\mu_r^{A'(0,1)} = \frac{(r+1)!}{r(1-h)^{r+1}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+1)!} \binom{r-1}{k} \int_h^1 q(u)(u-h)^{r-k-1}(1-u)^{k+1} du \quad (2.18)$$

In this case, the first four TL-moments for Type-A'T left censoring are calculated as follows:

$$\mu_1^{A'(0,1)} = \frac{2}{(1-h)^2} \int_h^1 (1-u)q(u)du,$$
(2.19a)

$$\mu_2^{A'(0,1)} = \frac{3}{(1-h)^3} \left[\int_h^1 (u-h)(1-u)q(u)du - \frac{1}{2} \int_h^1 (1-u)^2 q(u)du \right],$$
(2.19b)

$$\mu_{3}^{A'(0,1)} = \frac{4}{(1-h)^{4}} \left[\int_{h}^{1} (u-h)^{2} (1-u)q(u)du - 2 \int_{h}^{1} (u-h)(1-u)^{2}q(u)du + \frac{1}{3} \int_{h}^{1} (1-u)^{3}q(u)du \right],$$
(2.19c)

$$\mu_4^{A'(0,1)} = \frac{5}{(1-h)^5} \left[\int_h^1 (u-h)^3 (1-u)q(u)du - \frac{9}{2} \int_h^1 (u-h)^2 (1-u)^2 q(u)du + 3 \int_h^1 (u-h)(1-u)^3 q(u)du - \frac{1}{4} \int_h^1 (1-u)^4 q(u)du \right].$$
(2.19d)

When we suppose the value of largest trim is equal to two, i.e. $t_2 = 2$, from (2.17), we get

$$\mu_r^{A'(0,2)} = \frac{(r+2)!}{r(1-h)^{r+2}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+2)!} \binom{r-1}{k} \int_h^1 q(u)(u-h)^{r-k-1}(1-u)^{k+2} du \quad (2.20)$$

In this case, the first four TL-moments for Type-A'T left censoring are calculated as follows:

$$\mu_1^{A'(0,2)} = \frac{3}{(1-h)^3} \int_h^1 (1-u)^2 q(u) du, \qquad (2.21a)$$

$$\mu_2^{A'(0,2)} = \frac{4}{2(1-h)^4} \left[3\int_h^1 (u-h)(1-u)^2 q(u)du - \int_h^1 (1-u)^3 q(u)du \right],$$
(2.21b)

$$\mu_{3}^{A'(0,2)} = \frac{5}{3(1-h)^{5}} \left[6 \int_{h}^{1} (u-h)^{2} (1-u)^{2} q(u) du - 8 \int_{h}^{1} (u-h)(1-u)^{3} q(u) du + \int_{h}^{1} (1-u)^{4} q(u) du \right], \quad (2.21c)$$

$$\mu_4^{A'(0,2)} = \frac{6}{4(1-h)^6} \left[10 \int_h^1 (u-h)^3 (1-u)^2 q(u) du - 30 \int_h^1 (u-h)^2 (1-u)^3 q(u) du + 15 \int_h^1 (u-h)(1-u)^4 q(u) du - \int_h^1 (1-u)^5 q(u) du \right].$$
(2.21d)

Using the method of expectations, Type-A'T TL-moments estimators is given by:

$$M_r^{A'(0,t_2)} = \frac{1}{r\binom{n-t_2-s}{r+t_2}} \sum_{i=1}^{n-t_2-s} \sum_{k=0}^{s-1} (-1)^k \binom{r-1}{k} \binom{i-1}{r-k-1} \binom{n-t_2-s-i}{k+t_2} X_{s+i:n}$$
(2.22)

2.2.2 TL-moments for Left Censoring (Type-B'T)

The quantile function of Type-B'T TL-moments is

$$y^{B'}(u) = \begin{cases} q(h), & 0 < u \le h \\ q(u), & h < u < 1 \end{cases}$$

substitution into equation (2.16) leads to the Type-B'T TL-moments where:

Using the results in appendix, the first integration can be written as

$$\mu_r^{B'(0,t_2)} = \frac{(r+t_2)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+t_2)!} \binom{r-1}{k} \\ * \left[\beta_h(r-k,k+t_2+1)q(h) + \int_h^1 u^{r-k-1}(1-u)^{k+t_2}q(u)du \right],$$
(2.23)

where $\beta_z(a, b)$ is the lower incomplete beta function.

When we suppose the value of largest trim is equal to one, i.e. $t_2 = 1$, from (2.23), we get

$$\mu_r^{B'(0,1)} = \frac{(r+1)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+1)!} \binom{r-1}{k} \\ * \left[\beta_h (r-k,k+2)q(h) + \int_h^1 u^{r-k-1} (1-u)^{k+1}q(u) du \right].$$
(2.24)

The first four TL-moments for Type-B'T left censoring are calculated as follows:

$$\mu_1^{B'(0,1)} = \left[1 - (1-h)^2\right] q(h) + 2 \int_h^1 (1-u)q(u)du, \qquad (2.25a)$$
$$\mu_2^{B'(0,1)} = \left[\frac{1}{2}(-1 + (1-h)^3) + 3\beta_h(2,2)\right] q(h)$$
$$+ 3 \int_h^1 u(1-u)q(u)du - \frac{3}{2} \int_h^1 (1-u)^2 q(u)du, \qquad (2.25b)$$

$$\mu_{3}^{B'(0,1)} = \left[\frac{1}{3}(1-(1-h)^{4}) - 8\beta_{h}(2,3) + 4\beta_{h}(3,2)\right]q(h) + 4\int_{h}^{1}u^{2}(1-u)q(u)du - 8\int_{h}^{1}u(1-u)^{2}q(u)du + \frac{4}{3}\int_{h}^{1}(1-u)^{3}q(u)du,$$
(2.25c)
$$B'(0,1) = \left[\frac{1}{4}(1-u)^{4}$$

$$\mu_{4}^{B'(0,1)} = \left[\frac{1}{4}(-1+(1-h)^{5})-15\beta_{h}(2,4)+\frac{45}{2}\beta_{h}(3,3)+5\beta_{h}(4,2)\right]q(h)$$

+ $5\int_{h}^{1}u^{3}(1-u)q(u)du-\frac{45}{2}\int_{h}^{1}u^{2}(1-u)^{2}q(u)du$
+ $15\int_{h}^{1}u(1-u)^{3}q(u)du-\frac{5}{4}\int_{h}^{1}(1-u)^{4}q(u)du.$ (2.25d)

When we suppose the value of largest trim is equal to two, i.e. $t_2 = 2$, from (2.23), we get

$$\mu_r^{B'(0,2)} = \frac{(r+2)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+2)!} \binom{r-1}{k} \\ * \left[\beta_h (r-k,k+3)q(h) + \int_h^1 q(u)u^{r-k-1}(1-u)^{k+2}q(u)du \right].$$
(2.26)

The first four TL-moments for Type-B'T left censoring are calculated as follows:

$$\mu_1^{B'(0,2)} = \left[1 - (1-h)^3\right] q(h) + 3 \int_h^1 (1-u)^2 q(u) du, \qquad (2.27a)$$

$$\mu_2^{B'(0,2)} = \left[\frac{1}{2}(-1 + (1-h)^4) + 6\beta_h(2,3)\right]q(h) + 6\int_h^1 u(1-u)^2q(u)du - 2\int_h^1 (1-u)^3q(u)du, \qquad (2.27b)$$

$$\mu_{3}^{B'(0,2)} = \left[\frac{1}{3}(1-(1-h)^{5}) - \frac{40}{3}\beta_{h}(2,4) + 10\beta_{h}(3,3)\right]q(h) \\ + 10\int_{h}^{1}u^{2}(1-u)^{2}q(u)du - \frac{40}{3}\int_{h}^{1}u(1-u)^{3}q(u)du \\ + \frac{5}{3}\int_{h}^{1}(1-u)^{4}q(u)du,$$
(2.27c)

$$\mu_{4}^{B'(0,2)} \left[\frac{1}{4} (-1 + (1-h)^{6}) + \frac{45}{2} \beta_{h}(3,5) - 45 \beta_{h}(3,4) + 15 \beta_{h}(4,3) \right] q(h) + 15 \int_{h}^{1} u^{3}(1-u)^{2}q(u) du - 45 \int_{h}^{1} u^{2}(1-u)^{3}q(u) du + \frac{45}{2} \int_{h}^{1} u(1-u)^{4}q(u) du - \frac{3}{2} \int_{h}^{1} (1-u)^{4}q(u) du.$$
(2.27d)

Using the method of expectations, Type-B'T TL-moments estimators is given by:

$$M_{r}^{B'(0,t_{2})} = \frac{1}{r\binom{n}{(r+t_{2})}} \left[\left(\sum_{i=1}^{s} \sum_{k=0}^{r-1} (-1)^{k} \binom{r-1}{k} \binom{i-1}{r-k-1} \binom{n-i}{k+t_{2}} T \right) + \left(\sum_{i=s+1}^{n-t_{2}} \sum_{k=0}^{r-1} (-1)^{k} \binom{r-1}{k} \binom{i-1}{r-k-1} \binom{n-i}{k+t_{2}} \right) X_{i:n} \right].$$
(2.28)

3 TL-moments for Censored Data for Weibull distribution

In this section, the r^{th} population TL-moments for the Weibull distribution is introduced.

3.1 Right censoring with left trim

• **Type-AT**; $t_1 = 1$

From equation (2.4), the r^{th} population Type-AT TL-moments for Type-I right censoring for the

Weibull distribution is:

$$\mu_r^{A(t_1,0)} = \frac{a(r+t_1)!}{rc^{r+t_1}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r+t_1-k-1)!k!} \binom{r-1}{k} \int_0^c u^{r+t_1-k-1} (c-u)^k [-\log(1-u)]^{\frac{1}{b}} du.$$
(3.1)

By taking that the value of smallest trim is equal to one $t_1 = 1$, from (2.5) we get

$$\mu_r^{A(1,0)} = \frac{a(r+1)!}{rc^{r+1}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k)!k!} \binom{r-1}{k} \int_0^c u^{r-k} (c-u)^k [-\log(1-u)]^{\frac{1}{b}} du.$$
(3.2)

Substituting r = 1, 2 in equation (2.6a); the first two Type-AT TL-moments for Type-I right censoring with left trim for Weibull distribution will be:

$$\mu_1^{A(1,0)} = \frac{2a}{c^2} \int_0^c u [-\log(1-u)]^{\frac{1}{b}} du.$$

Putting $z = -\log(1 - u)$ this equation becomes:

$$\mu_1^{A(1,0)} = \frac{2a}{c^2} \int_0^{-\log(1-c)} (1-e^{-z}) z^{\frac{1}{b}} e^{-z} dz$$
$$= \frac{2a}{c^2} \left[\int_0^{-\log(1-c)} z^{\frac{1}{b}} e^{-z} dz - \int_0^{-\log(1-c)} z^{\frac{1}{b}} e^{-2z} dz \right].$$

Using the results in the appendix this equation can be written as

$$\mu_1^{A(1,0)} = \frac{2a}{c^2} \left[\gamma(-\log(1-c), \frac{1}{b} + 1) - 2^{-(\frac{1}{b} + 1)} \gamma(-2\log(1-c), \frac{1}{b} + 1) \right],$$
(3.3)

where $\gamma(c, b)$ is the lower incomplete gamma function.

Similarly, from equation (2.6b), we can also obtain the second Type-AT TL-moments, in case

 $t_1 = 1$, for Type-I right censoring for the Weibull distribution as follows:

$$\begin{split} \mu_2^{A(1,0)} &= \frac{3a}{c^3} \left[\frac{1}{2} \int_0^c u^2 [-\log(1-u)]^{\frac{1}{b}} du - \int_0^c u(c-u) [-\log(1-u)]^{\frac{1}{b}} du \right] \\ &= \frac{3a}{c^3} \left[\frac{3}{2} \int_0^c u^2 [-\log(1-u)]^{\frac{1}{b}} du - c \int_0^c u [-\log(1-u)]^{\frac{1}{b}} du \right] \\ &= \frac{3a}{c^3} \left[\frac{3}{2} \int_0^{-\log(1-c)} (1-e^{-z})^2 z^{\frac{1}{b}} e^{-z} dz - c \int_0^{-\log(1-c)} (1-e^{-z}) z^{\frac{1}{b}} e^{-z} dz \right] \\ &= \frac{3a}{c^3} \left[\frac{3}{2} \int_0^{-\log(1-c)} (1-2e^{-z}+e^{-2z}) z^{\frac{1}{b}} e^{-z} dz - c \int_0^{-\log(1-c)} (1-e^{-z}) z^{\frac{1}{b}} e^{-z} dz \right] \\ &= \frac{3a}{c^3} \left[(\frac{3}{2}-c) \int_0^{-\log(1-c)} z^{\frac{1}{b}} e^{-z} dz - (3-c) \int_0^{-\log(1-c)} z^{\frac{1}{b}} e^{-2z} dz \right] \\ &= \frac{3a}{c^3} \left[(\frac{3}{2}-c) \gamma(-\log(1-c), \frac{1}{b}+1) - (3-c) 2^{-(\frac{1}{b}+1)} \gamma(-2\log(1-c), \frac{1}{b}+1) \right] \\ &\quad + \frac{3^{-\frac{1}{b}}}{2} \gamma(-3\log(1-c), \frac{1}{b}+1) \right]. \end{split}$$

• **Type-AT**; $t_1 = 2$

When we suppose the value of smallest trim is equal to two, i.e. $t_1 = 2$, from (2.7), we get

$$\mu_r^{A(2,0)} = \frac{a(r+2)!}{rc^{r+2}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k+1)!k!} \binom{r-1}{k} \int_0^c u^{r-k+1} (c-u)^k [-\log(1-u)]^{\frac{1}{b}} du.$$
(3.5)

Substituting r = 1, 2 in equation (3.5); the first two Type-AT TL-moments for Type-I right censoring with left trim for Weibull distribution will be:

$$\mu_1^{A(2,0)} = \frac{3a}{c^3} \left[\gamma(-\log(1-c), \frac{1}{b} + 1) - 2^{-\frac{1}{b}} \gamma(-2\log(1-c), \frac{1}{b} + 1) + 3^{-(\frac{1}{b}+1)} \gamma(-3\log(1-c), \frac{1}{b} + 1) \right].$$
(3.6)

And,

$$\mu_2^{A(2,0)} = \frac{2a}{c^4} \left[(4-3c)\gamma(-\log(1-c), \frac{1}{b}+1) - 2^{-\frac{1}{b}}(6-3c)\gamma(-2\log(1-c), \frac{1}{b}+1) + 3^{-\frac{1}{b}}(4-c)\gamma(-3\log(1-c), \frac{1}{b}+1) - 4^{-\frac{1}{b}}\gamma(-4\log(1-c), \frac{1}{b}+1) \right].$$
(3.7)

• **Type-BT**; $t_1 = 1$

From equation (2.10), the r^{th} population Type-BT TL-moments for Type-I right censoring for

the Weibull distribution is:

$$\mu_r^{B(t_1,0)} = \frac{a(r+t_1)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r+t_1-k-1)!k!} \binom{r-1}{k} * \left[\beta^c (r+t_1-k,k+1)[-\log(1-c)]^{\frac{1}{b}} + \int_0^c u^{r+t_1-k-1} (1-u)^k [-\log(1-u)]^{\frac{1}{b}} du \right].$$
(3.8)

By taking that the value of smallest trim is equal to one $t_1 = 1$, from (2.11) we get

$$\mu_r^{B(1,0)} = \frac{a(r+1)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k)!k!} \binom{r-1}{k} * \left[\beta^c (r-k+1,k+1)[-\log(1-c)]^{\frac{1}{b}} + \int_0^c u^{r-k} (1-u)^k [-\log(1-u)]^{\frac{1}{b}} du \right].$$
(3.9)

Substituting r = 1, 2 in equation (3.9); the first two Type-BT TL-moments for Type-I right censoring with left trim for Weibull distribution will be:

$$\mu_1^{B(1,0)} = 2a \left[\frac{1}{2} (1-c^2) [-\log(1-c)]^{\frac{1}{b}} + \gamma(-\log(1-c), \frac{1}{b} + 1) -2^{-(\frac{1}{b}+1)} \gamma(-2\log(1-c), \frac{1}{b} + 1) \right].$$
(3.10)

And,

$$\mu_2^{B(1,0)} = 3a \left[\frac{1}{2} (c^2 - c^3) [-\log(1-c)]^{\frac{1}{b}} + \frac{1}{2} \gamma (-\log(1-c), \frac{1}{b} + 1) - 2^{-\frac{1}{b}} \gamma (-2\log(1-c), \frac{1}{b} + 1) + \frac{3^{-\frac{1}{b}}}{2} \gamma (-3\log(1-c), \frac{1}{b} + 1) \right].$$
(3.11)

• **Type-BT**; $t_1 = 2$

When we suppose the value of smallest trim is equal to two, i.e. $t_1 = 2$, from (2.13), we get

$$\mu_r^{B(2,0)} = \frac{a(r+2)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k+1)!k!} \binom{r-1}{k} \left[\beta^c (r-k+2,k+1)[-\log(1-c)]^{\frac{1}{b}} + \int_0^c u^{r-k+1} (1-u)^k [-\log(1-u)]^{\frac{1}{b}} du \right].$$
(3.12)

Substituting r = 1, 2 in equation (3.12); the first two Type-BT TL-moments for Type-I right

censoring with left trim for Weibull distribution will be:

$$\mu_1^{B(2,0)} = 3a \left[\frac{1-c^3}{3} \left[-\log(1-c) \right]^{\frac{1}{b}} + \gamma \left(-\log(1-c), \frac{1}{b} + 1 \right) -2^{-\frac{1}{b}} \gamma \left(-2\log(1-c), \frac{1}{b} + 1 \right) + 3^{-(\frac{1}{b}+1)} \gamma \left(-3\log(1-c), \frac{1}{b} + 1 \right) \right].$$
(3.13)

And,

$$\mu_2^{B(2,0)} = 2a \left[(3\beta_c(3,2) - \frac{c^4}{4}) [-\log(1-c)]^{\frac{1}{b}} + \gamma(-\log(1-c), \frac{1}{b} + 1) - 3 * 2^{-\frac{1}{b}} \gamma(-2\log(1-c), \frac{1}{b} + 1) + 3^{1-\frac{1}{b}} \gamma(-3\log(1-c), \frac{1}{b} + 1) - 4^{-\frac{1}{b}} \gamma(-4\log(1-c), \frac{1}{b} + 1) \right].$$
(3.14)

3.2 Left censoring with right trim

• **Type-**A'**T**; $t_2 = 1$

From equation (2.17), the r^{th} population Type-A'T TL-moments for Type-I left censoring for the Weibull distribution is:

$$\mu_r^{A'(0,t_2)} = \frac{a(r+t_2)!}{r(1-h)^{r+t_2}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+t_2)!} \binom{r-1}{k} *$$

$$\int_h^1 [-\log(1-u)]^{\frac{1}{b}} (u-h)^{r-k-1} (1-u)^{k+t_2} du.$$
(3.15)

When we suppose the value of largest trim is equal to one, i.e. $t_2 = 1$, from (2.18), we get

$$\mu_1^{A'(0,1)} = \frac{a(r+1)!}{r(1-h)^{r+1}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+1)!} \binom{r-1}{k} *$$

$$\int_h^1 (u-h)^{r-k-1} (1-u)^{k+1} [-\log(1-u)]^{\frac{1}{b}} du.$$
(3.16)

Substituting r = 1, 2 in equation (3.16); the first two Type-A'T TL-moments for Type-I left censoring with right trim for Weibull distribution will be:

$$\mu_1^{A'(0,1)} = \frac{2^{-\frac{1}{b}}a}{(1-h)^2} \Gamma(-2\log(1-h), \frac{1}{b}+1).$$
(3.17)

And,

$$\mu_2^{A'(0,1)} = \frac{3a}{2(1-h)^3} \left[(1-h)2^{-\frac{1}{b}} \Gamma(-2\log(1-h), \frac{1}{b}+1) - 3^{-\frac{1}{b}} \Gamma(-3\log(1-h), \frac{1}{b}+1) \right].$$
(3.18)

• **Type-**A'**T**; $t_2 = 2$

When we suppose the value of largest trim is equal to one, i.e. $t_2 = 2$, from (2.20), we get

$$\mu_r^{A'(0,2)} = \frac{a(r+2)!}{r(1-h)^{r+2}} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+2)!} \binom{r-1}{k} \int_h^1 (u-h)^{r-k-1} (1-u)^{k+2} [-\log(1-u)]^{\frac{1}{b}} du$$
(3.19)

Substituting r = 1, 2 in equation (3.19); the first two Type-A'T TL-moments for Type-I left censoring with right trim for Weibull distribution will be:

$$\mu_1^{A'(0,2)} = \frac{3a}{(1-h)^3} \Gamma(-3\log(1-h), \frac{1}{b} + 1).$$
(3.20)

And,

$$\mu_2^{A'(0,1)} = \frac{2a}{(1-h)^4} \left[3^{-\frac{1}{b}} (1-h)\Gamma(-3\log(1-h), \frac{1}{b}+1) - 4^{-\frac{1}{b}}\Gamma(-4\log(1-h), \frac{1}{b}+1) \right].$$
(3.21)

• **Type-**B'**T**; $t_2 = 1$

From equation (2.23), the r^{th} population Type-B'T TL-moments for Type-I left censoring for the Weibull distribution is:

$$\mu_r^{B'(0,t_2)} = \frac{a(r+t_2)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+t_2)!} \binom{r-1}{k} * \left[\beta_h(r-k,k+t_2+1)[-\log(1-h)]^{\frac{1}{b}} + \int_h^1 u^{r-k-1}(1-u)^{k+t_2}[-\log(1-u)]^{\frac{1}{b}} du \right].$$
(3.22)

When we suppose the value of largest trim is equal to one, i.e. $t_2 = 1$, from (2.24), we get

$$\mu_r^{B'(0,1)} = \frac{a(r+1)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+1)!} \binom{r-1}{k} *$$

$$\left[\beta_h (r-k,k+2) [-\log(1-h)]^{\frac{1}{b}} + \int_h^1 u^{r-k-1} (1-u)^{k+1} [-\log(1-u)]^{\frac{1}{b}} du \right].$$
(3.23)

Substituting r = 1, 2 in equation (3.23); the first two Type-B'T TL-moments for Type-I left

censoring with right trim for Weibull distribution will be:

$$\mu_1^{B(0,1)} = a \left[1 - (1-h)^2 \right] \left[-\log(1-h) \right]^{\frac{1}{b}} + 2^{-\frac{1}{b}} a \Gamma(-2\log(1-c), \frac{1}{b} + 1).$$
(3.24)

And,

$$\mu_{2}^{B'(0,1)} = 3a \left[\left[\frac{1}{6} (-1 + (1-h)^{3}) + \beta_{h}(2,2) \right] \left[-\log(1-h) \right]^{\frac{1}{b}} + 2^{-(\frac{1}{b}+1)} \Gamma(-2\log(1-h), \frac{1}{b}+1) - \frac{3^{-\frac{1}{b}}}{2} \Gamma(-3\log(1-h), \frac{1}{b}+1) \right].$$
(3.25)

• **Type-**B'**T**; $t_2 = 2$

When we suppose the value of largest trim is equal to one, i.e. $t_2 = 2$, from (2.26), we get

$$\mu_r^{B'(0,2)} = \frac{a(r+2)!}{r} \sum_{k=0}^{r-1} \frac{(-1)^k}{(r-k-1)!(k+2)!} \binom{r-1}{k} * [\beta_h(r-k,k+3)[-\log(1-h)]^{\frac{1}{b}} + \int_h^1 [-\log(1-u)]^{\frac{1}{b}} u^{r-k-1}(1-u)^{k+2} du]. \quad (3.26)$$

Substituting r = 1, 2 in equation (3.26); the first two Type-B'T TL-moments for Type-I left censoring with right trim for Weibull distribution will be:

$$\mu_1^{B(2,0)} = 3a \left[\frac{1}{3} \left[1 - (1-h)^3 \right] \left[-\log(1-h) \right]^{\frac{1}{b}} + 3^{-(\frac{1}{b}+1)} \Gamma(-3\log(1-h), \frac{1}{b} + 1) \right].$$
(3.27)

And,

$$\mu_2^{B'(0,1)} = 2a \left[\left[\frac{1}{4} (-1 + (1-h)^4) + 3\beta_h(2,3) \right] \left[-\log(1-h) \right]^{\frac{1}{b}} + 3^{-\frac{1}{b}} \Gamma(-3\log(1-h), \frac{1}{b} + 1) - 4^{-\frac{1}{b}} \Gamma(-4\log(1-h), \frac{1}{b} + 1) \right].$$
(3.28)

4 Simulation Study

This section is devoted to illustrate the effect of an adaptation of the TL-moments method to censored data in estimation process using a comparative numerical study. We will estimate the two unknown parameters of the Weibull distribution using TL-moments, Direct L-moments and ML methods given both right and left Type-I censored data. In this study we used the TLmoments by trimming one and two data from the right and also from the left. A comparative numerical study was carried out among the three methods based on estimate average, root of

mean square error (RMSE) and relative absolute biases (RAB). Following are the steps of this numerical study:

- 1. Generate random sample size n (60, 100 and 200) from the Weibull distribution with parameters (a, b) take these initial values (0.5, 5), (2, 4) and (0.2, 0.8).
- 2. The generated data is ordered.
- 3. Determine the level of censoring, take c = 20% and c = 50%.
- 4. Use TL-moments, Direct L-moments and ML estimators formulas mentioned in (2.9), (2.15),
 (2.22) and (2.28) respectively and equate them with the corresponding theoretical moments to get a and b estimates.
- 5. The simulation process to be repeated 5000 times.
- 6. Calculate means, root of mean square error (RMSE) and relative absolute biases (RAB) for each sample size used and parameter values considered.
- 7. The simulation results are reported in Table (1) to Table (6).

5 RESULTS AND CONCLUSION

The simulations show, when the data contained outliers the TL-moments gave better estimates comparing by Direct L-moments and ML methods. The tables show the results of various simulation studies to assess the effect of the adaptation of the TL-moments method to censored data. It should be noticed that; the RMSE and RAB of are fluctuate with small variations because the estimates of the parameter a and b have negative but small covariance. In all cases, results berform better when n gets larger.

The estimates, root of mean square error (RMSE) and relative absolute biases (RAB) for two parameters of Wiebull distribution using TL-moments, L-moments and ML method based on left censoring (a=0.5 and b=5) in the presence of outliers.

						Typ	e (A)		Ì				
				Estimat	ion of a					Estimat	n of b		
u	Meth.		10%			30%			10%			30%	
		Est.	RMSE	RAB	Est.	RMSE	\mathbf{RAB}	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	0.5613	0.5620	0.0075	0.5075	0.5100	0.0001	1.4030	1.4047	2.5876	1.2473	1.2542	2.8165
л С	\mathbf{AD}	0.5603	0.5610	0.0291	0.4916	0.4940	0.0001	1.8638	1.8772	0.0786	1.4723	3.2285	2.4888
0.7	AT1	0.5036	0.5037	0.0000	0.5038	0.5040	0.0000	5.0780	5.1329	0.0012	4.9823	5.0541	0.0000
	AT2	0.5003	0.5005	0.0000	0.5017	0.5019	0.0000	5.2738	5.3525	0.0149	5.2834	5.3844	0.0160
	ML	0.5364	0.5367	0.0026	0.4914	0.4920	0.0001	1.5442	1.5454	2.3884	1.3901	1.3920	<mark>2.6062</mark>
(AD	0.5399	0.5402	0.0031	0.4939	0.4947	0.0000	2.3484	2.3592	1.4061	1.7971	1.8096	2.0517
50	AT1	0.5019	0.5020	0.0000	0.5020	0.5022	0.0000	5.0142	5.0442	0.0000	4.9952	5.0375	0.0000
	AT2	0.4999	0.5000	0.0000	0.5008	0.5009	0.0000	5.1309	5.1714	0.0034	5.1746	5.2336	0.0060
	ML	0.5038	0.5171	0.0000	0.4799	0.4802	0.0008	1.7578	1.7588	2.1022	1.5982	1.5992	2.3143
	AD	0.5223	0.5224	0.0010	0.4966	0.4968	0.0000	3.0862	3.0935	0.7325	2.4767	2.4848	1.2733
100	AT1	0.5013	0.5013	0.0000	0.5010	0.5011	0.0000	5.0041	5.0203	0.0000	4.9551	4.9740	0.0004
	AT2	0.5003	0.5004	0.0000	0.5004	0.5005	0.0000	5.0571	5.0788	0.0006	5.0339	5.0576	0.0002
						Typ	e (B)						
				Estimat	ion of a					Estimat	\mathbf{b} of b		
u	Meth.		10%			30%			10%			30%	
		Est.	RMSE	\mathbf{RAB}	$\mathbf{Est.}$	RMSE	\mathbf{RAB}	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	0.5613	0.5620	0.0075	0.5075	0.5100	0.0001	1.4030	1.4047	2.5876	1.2473	1.2542	2.8165
25	BD	0.5908	0.5912	0.0165	0.5633	0.5641	0.0080	2.2917	2.3030	1.4668	1.9279	1.9444	1.8874
0	BT1	0.5102	0.5104	0.0002	0.5093	0.5095	0.0001	4.7625	4.8242	0.0112	4.5723	4.6449	0.0365
	BT2	0.5056	0.5059	0.0000	0.5044	0.5047	0.0000	5.0295	5.1229	0.0001	5.0961	5.2076	0.0018
	ML	0.5364	0.5367	0.0026	0.4914	0.4920	0.0001	1.5442	1.5454	2.3884	1.3901	1.3920	2.6062
	BD	0.5585	0.5587	0.0068	0.5405	0.5409	0.0032	2.8124	2.8219	0.9571	2.4155	2.4289	1.3358
ne	BT1	0.5050	0.5051	0.0000	0.5044	0.5046	0.0000	4.8992	4.9339	0.0020	4.8112	4.8607	0.0071
	BT2	0.5027	0.5029	0.0000	0.5023	0.5025	0.0000	5.0393	5.0897	0.0003	5.0666	5.1393	0.0008
	MT.	0 5038	0 5171	0000 0	0.4799	0.4802	0,0008	1 7578	1 7588	9 1099	1 5082	1 5002	9 3143
	BD	0.5315	0.5315	0.0019	0.5217	0.5218	0.0009	3.5139	3.5209	0.4416	3.1174	3.1255	0.7088
TUU	BT1	0.5025	0.5026	0.0000	0.5019	0.5020	0.0000	4.9548	4.9739	0.0004	4.8774	4.8987	0.0030
	BT2	0.5018	0.5019	0.0000	0.5012	0.5013	0.0000	5.0034	5.0303	0.0000	4.9661	4.9962	0.0002

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2018 doi:10.20

19

The estimates, root of mean square error (RMSE) and relative absolute biases (RAB) for two parameters of Wiebull distribution using TL-moments, L-moments and ML method based on left censoring (a=2 and b=4) in the presence of outliers.

Type	(A)						0						
				Estimat	ion of a					Estimat	ion of b		
u	Meth.		10%			30%			10%			30%	
		Est.	RMSE	RAB	Est.	RMSE	RAB	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	2.273	2.279	0.037	1.928	1.936	0.002	1.351	1.355	1.753	1.125	1.128	2.065
л С	\mathbf{AD}	2.281	2.284	0.039	1.794	1.808	0.021	1.722	1.744	1.297	0.910	2.104	2.386
07	AT1	2.018	2.020	0.000	2.017	2.018	0.000	4.046	4.091	0.000	3.980	4.041	0.000
	AT2	2.001	2.003	0.000	2.010	2.012	0.000	4.186	4.250	0.008	4.289	4.379	0.021
	MI,	2,167	2.168	0.014	1,748	5,529	1.528	1.483	1.484	1.583	1.005	1.336	2, 2, 4, 2,
	A D	2 180	2 181	0.016	1 846	1 852	0.011	2.016	2 168	0.083	1 001	2.015	2,114
50	AT1	2.008	2.009	0.000	2.009	2.010	0.000	4.016	4.039	0.000	3.975	4.014	0.000
	$\mathbf{AT2}$	1.998	1.999	0.000	2.005	2.006	0.000	4.095	4.128	0.002	4.141	4.194	0.004
		690.6			5 5 7 6					010			000 F
		2.003	2.004	0.005	1.003	1.004	010.0	1.070	1.0/1	1.349	1.449	1.40U	1.020
100		2.104	2.104	0.005	1.913	1.914	0.003	2.693	2.699	0.426	1.966 9.066	1.974	1.033
	AT2	2.000 2.000	2.0012	0.000	2.004	2.004	0.000	4.057	4.029	0.00.0	3.986 4.060	4.004 4.084	0.000
Type	(B)												
				Estimat	ion of a					Estimat	i <mark>on of b</mark>		
u	Meth.		10%			30%			10%			30%	
		Est.	RMSE	RAB	Est.	RMSE	RAB	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	2.273	2.279	0.037	1.928	1.936	0.002	1.351	1.355	1.753	1.125	1.128	2.065
с Д	BD	2.387	2.389	0.074	2.177	2.183	0.015	2.030	2.052	0.969	2.704	8.551	1.828
04	BT1	2.050	2.051	0.001	2.035	2.037	0.000	3.836	3.884	0.006	3.580	3.661	0.044
	BT2	2.030	2.032	0.000	2.018	2.019	0.000	4.017	4.090	0.000	4.079	4.187	0.001
	ML	2.167	2.168	0.014	1.748	5.529	1.528	1.483	1.484	1.583	1.005 1.806	1.336	2.242
50		047.7	64777		011.2	011.2		2.1441	2.400		1.03U	21013 0 0 17	
		2.023	2.024	00000	110.2	210.2	00000	3.917	3.944 4 0.41		3.800	3.847 4 119	
	D12	e10.2	010.2	0000	2.009	010.2	0.000	4.002	4.U41	0.000	4. 040	611.	0.000
	ML	2.083	2.084	0.003	1.853	1.854	0.010	1.676	1.677	1.349	1.449	1.450	1.626
100	BD	2.137	2.137	0.009	2.061	2.062	0.001	2.973	2.979	0.263	2.513	2.521	0.552
	BT1	2.011	2.012	0.000	2.007	2.008	0.000	3.984	3.998	0.000	3.916	3.938	0.001
	B12	2.008	2.008	0.000	2.004	2.005	0.000	4.019	4.038	0.000	4.007	4.038	0.000

20

The estimates, root of mean square error (RMSE) and relative absolute biases (RAB) for two parameters of Wiebull distribution using TL-moments, $\Gamma_{-moments}$ and M_{L} method based on left censoring (a=0, 2) and b=0.8) in the mesence of outliers

						Tvn							
				Estimat	ion of a					Estimat	ion of b		
u	Meth.		20%			50%			20%			50%	
		$\mathbf{Est.}$	RMSE	\mathbf{RAB}	$\mathbf{Est.}$	RMSE	\mathbf{RAB}	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	0.244	0.248	0.009	0.225	0.230	0.003	0.614	0.617	0.043	0.578	0.582	0.061
C D	\mathbf{AD}	0.205	0.210	0.000	0.177	0.184	0.002	0.523	0.527	0.095	0.487	0.492	0.122
00	AT1	0.211	0.214	0.000	0.209	0.213	0.000	0.796	0.803	0.000	0.788	0.798	0.000
	AT2	0.202	0.205	0.000	0.204	0.207	0.000	0.836	0.845	0.001	0.844	0.859	0.002
	ML	0.225	0.227	0.003	0.212	0.215	0.000	0.640	0.642	-0.159	0.609	0.612	0.045
	\mathbf{AD}	0.199	0.202	0.000	0.177	0.181	0.002	0.559	0.563	0.072	0.524	0.528	0.095
DO.	AT1	0.205	0.207	0.000	0.206	0.208	0.000	0.797	0.801	0.000	0.796	0.801	0.000
	AT2	0.200	0.202	0.000	0.202	0.204	0.000	0.820	0.826	0.000	0.831	0.839	0.001
	ML	0.211	0.212	0.000	0.203	0.204	0.000	0.676	0.677	0.019	0.648	0.650	0.028
	\mathbf{AD}	0.199	0.201	0.000	0.182	0.183	0.001	0.616	0.618	0.042	0.579	0.582	090.0
00	AT1	0.202	0.203	0.000	0.203	0.204	0.000	0.796	0.798	0.000	0.792	0.795	0.000
	AT2	0.200	0.201	0.000	0.201	0.202	0.000	0.806	0.809	0.000	0.807	0.811	0.000
						Typ.	e (B)						
				Estimat	ion of a					Estimat	f_{1} of b		
u	Meth.		20%			50%			20%			50%	
		$\operatorname{Est.}$	RMSE	RAB	Est.	RMSE	\mathbf{RAB}	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	0.244	0.248	0.009	0.225	0.230	0.003	0.614	0.617	0.043	0.578	0.582	0.061
GO GO	BD	0.225	0.229	0.003	0.227	0.231	0.003	0.548	0.553	0.078	0.548	0.553	0.079
2	BT1	0.224	0.228	0.003	0.220	0.224	0.002	0.753	0.759	0.002	0.743	0.753	0.003
	BT2	0.216	0.219	0.001	0.212	0.216	0.000	0.797	0.806	0.000	0.803	0.818	0.000
	ML	0.225	0.227	0.003	0.212	0.215	0.000	0.640	0.642	-0.159	0.609	0.612	0.045
	BD	0.217	0.219	0.001	0.219	0.222	0.001	0.586	0.589	0.057	0.587	0.590	0.056
	BT1	0.212	0.214	0.000	0.211	0.213	0.000	0.774	0.778	0.000	0.772	0.778	0.000
	BT2	0.208	0.210	0.000	0.207	0.209	0.000	0.799	0.805	0.000	0.807	0.816	0.000
	ML	0.211	0.212	0.000	0.203	0.204	0.000	0.676	0.677	0.019	0.648	0.650	0.028
	BD	0.212	0.213	0.000	0.212	0.213	0.000	0.640	0.643	0.031	0.636	0.638	0.033
000	BT1	0.205	0.206	0.000	0.205	0.206	0.000	0.784	0.786	0.000	0.782	0.785	0.000
	BT2	0.204	0.205	0.000	0.203	0.204	0.000	0.794	0.797	0.000	0.796	0.801	0.000

The estimates, root of mean square error (RMSE) and relative absolute biases (RAB) for two parameters of Wiebull distribution using TL-moments, L-moments and ML method based on right censoring (a=0.5 and b=5) in the presence of outliers.

Type	(A)						0						
	, ,			Estimat	ion of a					Estimat	<mark>iion of b</mark>		
n	Meth.		10%			30%			10%			30%	
		Est.	RMSE	RAB	Est.	RMSE	\mathbf{RAB}	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	0.500	0.500	0.000	0.547	0.549	0.004	3.889	3.911	0.246	3.183	3.215	0.660
л С	\mathbf{AD}	0.502	0.503	0.000	0.552	0.554	0.005	4.061	4.085	0.176	3.336	3.373	0.553
07	AT1	0.497	0.497	0.000	0.511	0.512	0.000	4.753	4.790	0.012	4.350	4.425	0.084
	AT2	0.497	0.497	0.000	0.504	0.505	0.000	4.886	4.933	0.002	4.643	4.743	0.025
	ML	0.500	0.501	0.000	0.536	0.537	0.002	4.051	4.069	0.179	3.464	3.493	0.471
		0 503	0 803		0 540	0 571		1 910	1 921	194	3 697	3 660	0 276
50					0.507	0 508		1 727	4.201		0.041 A KKA	0.000 1 611	0.020
	AT2	0.499	0.499	0.000	0.502	0.503	0.000	4.884	4.918	0.003	4.782	4.854	0.009
	\mathbf{ML}	0.499	0.499	0.000	0.518	0.518	0.000	4.459	4.469	0.058	4.041	4.059	0.183
	\mathbf{AD}	0.500	0.500	0.000	0.518	0.519	0.000	4.584	4.595	0.034	4.211	4.232	0.124
TUU	AT1	0.498	0.498	0.000	0.503	0.503	0.000	4.893	4.907	0.002	4.779	4.808	0.009
	AT2	0.498	0.498	0.000	0.501	0.501	0.000	4.932	4.948	0.000	4.875	4.910	0.003
Type	(B)												
				Estimat	ion of a					Estimat	ion of b		
n	Meth.		10%			30%			10%			30%	
		Est.	RMSE	RAB	Est.	RMSE	RAB	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	0.500	0.500	0.000	0.547	0.549	0.004	3.889	3.911	0.246	3.183	3.215	0.660
ы	BD	0.500	0.500	0.000	0.532	0.533	0.002	4.124	4.146	0.153	3.582	3.620	0.401
04	BT1	0.500	0.500	0.000	0.519	0.521	0.000	4.543	4.578	0.041	4.133	4.205	0.150
	BT2	0.500	0.500	0.000	0.519	0.520	0.000	4.518	4.566	0.046	4.212	4.309	0.123
	l							1		1			1
	ML	0.500	0.501	0.000	0.536	0.537	0.002	4.051	4.069	0.179	3.464	3.493	0.471
50	BD	0.501	0.501	0.000	0.523	0.524	0.001	4.267	4.286	0.107	3.862	3.893	0.259
00	BT1	0.501	0.501	0.000	0.514	0.514	0.000	4.623	4.651	0.028	4.369	4.427	0.079
	BT2	0.501	0.501	0.000	0.513	0.514	0.000	4.602	4.637	0.031	4.432	4.512	0.064
	1											1	
	ML	0.499	0.499	0.000	0.518	0.518	0.000	4.459	4.469	0.058	4.041	4.059	0.183
100	BD	0.499	0.499	0.000	0.511	0.512	0.000	4.606	4.616	0.030	4.347	4.366	0.085
	BT1	0.500	0.500	0.000	0.507	0.507	0.000	4.791	4.804	0.008	4.637	4.668	0.026
	BT2	0.499	0.499	0.000	0.507	0.507	0.000	4.766	4.783	0.010	4.644	4.688	0.025

The estimates, root of mean square error (RMSE) and relative absolute biases (RAB) for two parameters of Wiebull distribution using TL-moments, L-moments and ML method based on right censoring (a=2 and b=4) in the presence of outliers.

Type	(A)						5						
				Estimat	ion of a					Estimat	<mark>iion of b</mark>		
n	Meth.		10%			30%			10%			30%	
		Est.	RMSE	RAB	Est.	RMSE	RAB	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	2.007	2.009	0.000	2.167	2.174	0.014	3.148	3.168	0.181	2.769	2.797	0.378
26	\mathbf{AD}	2.015	2.016	0.000	2.172	2.179	0.014	3.313	3.335	0.117	2.919	2.950	0.291
07	AT1	1.990	1.991	0.000	2.039	2.043	0.000	3.785	3.818	0.011	3.578	3.628	0.044
	AT2	1.988	1.989	0.000	2.016	2.020	0.000	3.895	3.937	0.002	3.772	3.836	0.012
	ML	9 00 C	000 6		9 136	111 6	0000	3 900	3 206	0 19K	9 017	010	000
		2.000	2.009 2.010		001.2	2.141.2	0.009	0.430	0.000	071.0	116.2		767.0
50			2.016	0.000	2.138	2.143	0.009	3.443	3.461	0.077	3.077	3.104	0.212
		1 001 1 001	1.996 1 005	0.000	2.U32 9 016	2.036 2.036	0.000	3.840 3.093	3.800 3.056	0.000	3.047 3.705	3.090 3.859	0.031
		њее•т	nee.T	0000	010.7	CT0.7	0000	0700	0.00	100.0	0.00	9.00 P	
	ML	2.001	2.002	0.000	2.071	2.072	0.002	3.565	3.574	0.047	3.341	3.355	0.108
	AD	2.005	2.005	0.000	2.069	2.071	0.002	3.671	3.680	0.027	3.478	3.495	0.067
TUU	AT1	1.995	1.996	0.000	2.017	2.018	0.000	3.885	3.897	0.003	3.828	3.851	0.007
	$\mathbf{AT2}$	1.995	1.995	0.000	2.010	2.011	0.000	3.925	3.940	0.001	3.900	3.928	0.002
\mathbf{Type}	(B)												
				Estimat	ion of a					Estimat	ion of b		
u	Meth.		10%			30%			10%			30%	
		Est.	RMSE	RAB	Est.	RMSE	RAB	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	2.007	2.009	0.000	2.167	2.174	0.014	3.148	3.168	0.181	2.769	2.797	0.378
95	BD	2.005	2.007	0.000	2.116	2.122	0.006	3.346	3.366	0.106	3.054	3.084	0.223
24	BT1	2.005	2.006	0.000	2.081	2.086	0.003	3.604	3.635	0.039	3.392	3.446	0.092
	BT2	2.005	2.006	0.000	2.081	2.087	0.003	3.583	3.625	0.043	3.442	3.519	0.077
	ML	2.008	2.009	0.000	2.136	2.141	0.009	3.290	<u>3.306</u>	0.125	2.917	2.940	0.292
	BD	2.007	2.008	0.000	2.093	2.096	0.004	3.472	3.489	0.069	3.195	3.221	0.161
00	BT1	2.007	2.008	0.000	2.065	2.068	0.002	3.693	3.719	0.023	3.491	3.537	0.064
	BT2	2.007	2.008	0.000	2.065	2.069	0.002	3.675	3.709	0.026	3.529	3.595	0.055
										1			
	ML	2.001	2.002	0.000	2.071	2.072	0.002	3.565	3.574	0.047	3.341	3.355	0.108
100	BD	2.001	2.002	0.000	2.045	2.047	0.001	3.687	3.695	0.024	3.560	3.575	0.048
001	BT1	2.001	2.002	0.000	2.031	2.032	0.000	3.809	3.821	0.009	3.743	3.766	0.016
	BT2	2.001	2.002	0.000	2.031	2.033	0.000	3.798	3.815	0.010	3.757	3.789	0.014

The estimates, root of mean square error (RMSE) and relative absolute biases (RAB) for two parameters of Wiebull distribution using TL-moments, L-moments and ML method based on right censoring (a=0.2 and b=0.8) in the presence of outliers.

Type	(A)					þ	Ď			-			
				Estimat	ion of a					Estimat	ion of b		
u	Meth.		10%			30%			10%			30%	
		Est.	RMSE	\mathbf{RAB}	Est.	RMSE	\mathbf{RAB}	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	0.207	0.210	0.000	0.269	0.289	0.024	0.691	0.696	0.014	0.645	0.653	0.029
л С	\mathbf{AD}	0.197	0.200	0.000	0.233	0.253	0.005	0.751	0.758	0.002	0.710	0.720	0.010
07	AT1	0.196	0.199	0.000	0.224	0.244	0.002	0.769	0.777	0.001	0.740	0.754	0.004
	$\mathbf{AT2}$	0.196	0.199	0.000	0.221	0.243	0.002	0.778	0.789	0.000	0.758	0.774	0.002
	T A T	206 0	000 U		0 96 0	190 U	100	114 0	0 71 K		999 U	0 679	ου υ
		007·0	0.200		0.204	07.0	0.014	0. / TL	0T/0	0.009	0.000	0.013	0.022
50	AD	0.197	0.199	0.000	0.224	0.235	0.003	0.767	0.773	0.001	0.728	0.736	0.006
)	AT1	0.196	0.199	0.000	0.217	0.228	0.001	0.780	0.787	0.000	0.753	0.764	0.002
	AT2	0.196	0.199	0.000	0.214	0.226	0.001	0.786	0.795	0.000	0.767	0.782	0.001
	MI	0.203	0.204	0.000	0.225	0.230	0,003	0.745	0.747	0.003	0.718	0.722	0.008
	A D	0.199	0.200	0.000	0.210	0.214	0.000	0.778	0.780	0.000	0.762	797.0	0.001
100	AT1	0.199	0.200	0.000	0.207	0.211	0.000	0.785	0.788	0.000	0.775	0.780	
	AT2	0.199	0.200	0.000	0.206	0.210	0.000	0.789	0.793	0.000	0.781	0.787	0.000
Type	(B)												
				Estimat	ion of a					Estimat	ion of b		
u	Meth.		10%			30%			10%			30%	
		Est.	RMSE	RAB	Est.	RMSE	\mathbf{RAB}	Est.	RMSE	RAB	Est.	RMSE	RAB
	ML	0.207	0.210	0.000	0.269	0.289	0.024	0.691	0.696	0.014	0.645	0.653	0.029
о К	BD	0.206	0.209	0.000	0.281	0.317	0.033	0.700	0.707	0.012	0.645	0.657	0.029
04	BT1	0.206	0.209	0.000	0.288	0.332	0.039	0.690	0.700	0.015	0.646	0.662	0.029
	BT2	0.204	0.208	0.000	0.290	0.339	0.040	0.678	0.690	0.018	0.651	0.672	0.027
	ТЛТ	0 90E	906 U		0 967	790 U	V 10 0	1 <u>1 7</u> 0	0 71K		U GGG	0 672	0 000
	BD	0.204	0.207	0.000	0.254	0.274	0.015	0.724	0.730	0.000	0.000	0.69.0	0.018
50	BT1	0.204	0.206	0.000	0.258	0.283	0.017	0.714	0.722	0.009	0.681	0.695	0.017
	BT2	0.203	0.205	0.000	0.260	0.287	0.018	0.702	0.713	0.011	0.686	0.704	0.016
	ML	0.203	0.204	0.000	0.225	0.230	0.003	0.745	0.747	0.003	0.718	0.722	0.008
100	BD	0.202	0.203	0.000	0.221	0.226	0.002	0.759	0.762	0.002	0.736	0.741	0.005
	BT1	0.202	0.203	0.000	0.223	0.228	0.002	0.755	0.759	0.002	0.735	0.742	0.005
	BT2	0.202	0.203	0.000	0.224	0.229	0.003	0.750	0.755	0.003	0.736	0.745	0.005

24

doi:10.20944/preprints201808.0039.v1

eer-reviewed version available at *Math. Comput. Appl.* **2018**, 23, 47; <u>doi:10.3390/mca23030047</u>

APPENDIX

The formal definition of the gamma function take the following form:

$$\alpha^{-b}\Gamma(b) = \int_0^\infty x^{b-1} e^{-\alpha x} dx; \qquad \alpha > 0, \tag{A. 1}$$

putting $y = e^{-\alpha x}$ this form becomes:

$$\int_{0}^{1} \left(-\log(y)\right)^{b-1} dy = \Gamma(b).$$
 (A. 2)

Also; the lower incomplete gamma function is:

$$\alpha^{-b}\gamma(\alpha c, b) = \int_0^c x^{b-1} e^{-\alpha x} dx, \qquad (A. 3)$$

it can be shown that,

$$\int_{0}^{c} \left(-\log(y) \right)^{b-1} dy = \gamma(c, b).$$
 (A. 4)

And; the upper incomplete gamma function is

$$\alpha^{-b}\Gamma(\alpha c, b) = \int_{c}^{\infty} x^{b-1} e^{-\alpha x} dx, \qquad (A. 5)$$

it can be shown that,

$$\int_{c}^{\infty} \left(-\log(y)\right)^{b-1} dy = \Gamma(c,b). \tag{A. 6}$$

The formal definition of the beta function take the following form:

$$\beta(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt.$$
(A. 7)

Lower incomplete beta function:

$$\beta_c(a,b) = \int_0^c t^{a-1} (1-t)^{b-1} dt.$$
 (A. 8)

Upper incomplete beta function:

$$\beta^{c}(a,b) = \int_{c}^{1} t^{a-1} (1-t)^{b-1} dt.$$
 (A. 9)

References

- Barnett, V., & Lewis, T. (1994). Outliers in statistical data (Vol. 3) (No. 1). Wiley New York.
- Elamir, E. A., & Scheult, A. H. (2003). Trimmed l-moments. Computational Statistics & Data Analysis, 43(3), 299–314.
- Hosking, J. (1990). L-moments: analysis and estimation of distributions using linear combinations of statistics. J. Roy. Statist. Soc. B, 52, 105–124.
- Hosking, J. (1995). The use of L-moments in the analysis of censored data. In N. Balakrishnan (Ed.), Recent Advances in Life-Testing and Reliability (pp. 546–560). CRC Press, Boca Raton, Fla.
- Mahmoud, M. R., Khalil, F. A., El-Kelany, G. A., & Ibrahim, H. A. (2017). Direct L-moments for Type-I censored data with application to the Kumaraswamy distribution. *Cogent Mathematics*, 4(1), 1357236.
- Wang, Q. (1990a). Estimation of the GEV distribution from censored samples by method of partial probability weighted moments. *Journal of Hydrology*, 120(1), 103–114.
- Wang, Q. (1990b). Unbiased estimation of probability weighted moments and partial probability weighted moments from systematic and historical flood information and their application to estimating the GEV distribution. Journal of hydrology, 120(1-4), 115–124.
- Wang, Q. (1996a). Using partial probability weighted moments to fit the extreme value distributions to censored samples. Water Resources Research, 32(6), 1767–1771.
- Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal of applied mechanics, 103(730), 293–297.
- Zafirakou-Koulouris, A., Vogel, R. M., Craig, S. M., & Habermeier, J. (1998). L moment diagrams for censored observations. Water resources research, 34(5), 1241–1249.