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Abstract: The stellar winds of the central stars of planetary nebulae play an essential role in
planetary nebulae shaping. In the interacting stellar winds model, the fast stellar wind injects
energy and momentum which are transfered to the nebular envelope through an X-ray-emitting
hot bubble. Together with other physical processes, such as the ionization of the nebular envelope,
the asymmetrical mass-loss in the AGB, and the action of collimated outflows and magnetic fields,
the presurized hot gas determines the expansion and evolution of planetary nebulae. Chandra and
XMM-Newton have provided us with detailed information of this hot gas. Here in this talk I will
review our current understanding of the effects of the fast stellar wind in the shaping and evolution
of planetary nebulae and give some hints of the promissing future of this research.
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1. Introduction

Planetary nebulae (PNe) are the descendants of low- to intermediate-mass (0.8-1.0 M� ≤ Mi ≤
8-10 M�) stars. PNe are formed when these stars climb up to the tip of the asymptotic giant branch
(AGB) and heavy mass loss through slow (∼10 km s−1) and dense winds powered by radiation
pressure on neutral dust grains eject the stellar envelope. As the hot stellar core is exposed, the sudden
increase in ionizing flux and fast stellar wind 1000-4000 km s−1 [12] developed by the central star will
ionize and sweep up the slow AGB wind to form a PN.

In the now classical interacting stellar winds (ISW) model [7,20], the expansion of PNe is powered
by isotropic fast stellar winds. As these stellar winds encounters the slow AGB wind, a reverse-shock
heats the stellar wind up to X-ray-emitting million-Kelvin temperatures, resulting a onion-like structure
similar to that proposed for Wolf-Rayet bubbles by Weaver at al [42]. The extreme heating of this shock
produces an over-pressurized hot bubble that works like a spherical piston displacing undisturbed gas
upstream into into a thin, dense, rim.

2. Past and Current X-ray Observations of PNe

Hot bubbles have an X-ray limb-brightened morphology, with diffuse X-ray emission confined
within the central cavity defined by the inner rim of PNe, as revealed in the first Chandra observations
of PNe [4,18]. Since these early observations, Chandra and XMM-Newton have produced exquisite
images and spectra of the diffuse X-ray emission from the hot bubbles of PNe [9–11,17,19,27,28,30].

All these results have been put in context and expanded by the analysis and new deep X-ray
observations obtained in the framework of the Chandra Planetary Nebula Survey [ChanPlaNS, 16],
which has surveyed the X-ray emission from ∼50 PNe, all within 1.5 kpc, with a total exposure time
over 1 Ms. These Chandra X-ray observations have made clear that the detections of diffuse X-ray
emission is always confined within sharp closed innermost optical shells, i.e., the hot bubbles [8,26]. So
far, there is no evidence of X-ray emission associated with fast collimated outflows, but for the highly
collimated ultrafast (>1000 km s−1) proto-PN Hen 3-1475 [32].

The emerging picture implies that a closed inner shell is necessary, but not enough for the
detection of hot X-ray-emitting gas. This is only present in young PNe, as testified by the high electron
density (Ne > 1000 cm−3) and small nebular radius (<0.15 pc) of PNe with diffuse X-ray emission [8].
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Obviously, the rapidly changing stellar wind, whose mechanical power declines in a few thousand
years, and the fast nebular expansion make the X-ray luminosity drop quickly [36]. As a rule of thumb,
diffuse X-ray emission is very unlike among PNe with dynamical ages above 5000 yrs [30].

3. The Future of X-ray Studies of PNe

3.1. Future X-ray Observations of PNe

The current Chandra and XMM-Newton CCD spectroscopic observations of PNe have limited
spectral resolution, typically ≈70 eV, which is degraded in cases of low count rate [39]. High-dispersion
grating spectroscopic observations of the two X-ray brightest PNe, BD+30◦3639 and NGC 6543, have
provided interesting insights on the physical processes associated with the production of hot gas in
PNe.

The Chandra X-ray Observatory’s Low Energy Transmission Gratings and Advanced CCD
Imaging Spectrometer (LETG/ACIS-S) were used to obtain a deep high-dispersion spectrum of
BD+30◦3639 [43]. The brightest lines in this spectrum are associated with highly ionized (H- and
He-like) species of C, O, Ne, such as O VIII λ18.97, C VI λ33.6, Ne IX λλ13.45,13.55,13.7, and O VII

λλ21.60,21.80,22.10. The hot plasma has a range of temperatures between 1.7×106 K and 2.9×106 K,
with chemical abundances consistent with enhancement of carbon and neon.

As for NGC 6543, a 435 ks XMM-Newton Reflection Grating Spectrometer (RGS) exposure provided
only a clear detection of the He-like triplet of O VII at 22 Å [14], although it must be noted that only 70
ks were useful because high background conditions affected most of these observations. The absence
of the H-like O VIII points to lower TX than in BD+30◦3639, kT ≈ 0.147 keV (or TX ≈ 1.7 × 106 K). The
N VII line at 24.78 Å was tentatively detected. The weakness of the N lines implies a low N/O ratio,
favoring nebular abundances and high mixing. The lack of Ne and C lines indicates lower Ne/O and
C/O than in BD+30◦3639.

These high-dispersion grating X-ray spectroscopic observations are at the technical limit of Chandra
and XMM-Newton. All other X-ray-emitting PNe are fainter or have lower surface brightness than of
BD+30◦3639 and NGC 6543. We should not expect an outbreak in our understanding of the production
of hot gas in PNe and their effects in their expansion and evolution until the upcoming ATHENA, the
Advanced Telescope for High-Energy Astrophysics. ATHENA is the second large-class ESA mission
(L2), which is expected to be launched by 2028. ATHENA will have two main instruments, the Wide
Field Imager (WFI) and the X-ray Integral Field Unit (XIFU). The former will have unprecedented
sensitivity to diffuse X-ray emission, whereas the latter will be capable to provide high dispersion
spectra of sources as faint as PNe. This is illustrated in Figure 1. A single 10 ks WFI exposure can very
easily determine whether the abundances of the X-ray-emitting plasma in NGC 6543 are nebular or
stellar. Furthermore, a 20 ks XIFU exposure can even look into the details of the plasma physics to
accurately determine the physical conditions and chemical abundances.
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Figure 1. (left) Simulated ATHENA WFI 10 ks spectrum of NGC 6543 modeled using nebular (black) or
stellar (blue) abundances. (right) Simulated ATHENA XIFU 20 ks spectrum of NGC 6543.

3.2. Effects of the Stellar and Nebular Evolution

The stellar evolution determines the mechanical luminosity of the stellar wind, i.e., the energy
and momentum injected into the hot bubble. The nebular evolution, particularly the volume of the hot
bubble, determines the energy density inside it. The most complete 1-D models taken into account the
effects of the stellar and nebular evolution are those by Steffen et al [36]. Their predictions compare
reasonably well with detailed X-ray observations of PNe [30].

More complete 2-D models have the possibility to include effects of turbulent mixing. Previous
models [23,37] have been superseded by the recent 2-D hydro-dynamical simulations presented by
Toalá & Arthur [38]. These new models show the relevance of turbulent mixing and heat conduction
on the evolution of the hot gas in PNe [39]. Rayleigh-Taylor instabilities at the interface are shown to
be responsible for shadowing instabilities, which have notable effects in the mid-IR (dust) and near-IR
H2 (molecular) morphologies [6]. Future multi-dimensional hydro-dynamical models will need to
account also for faster and brighter CSPN evolutionary tracks [25].

The end of the pressure-dominated hot bubble occurs when the stellar wind mechanical power
drops below a limit when it is not able anymore to push the nebular rim. The rim thickness then
increases and, at some moment in the late evolution, it would even be able to backfill the central cavity
[2,35]. It is difficult, however, to compare theoretical predictions of this effect with observations given
the different distances (and spatial scales) of PNe, projection effects, and small-scale nebular features
[31].

Alternatively, the hot bubble can get pinched. Then it would be unable to retain the hot gas, as
shown in most PNe with open bipolar lobes or pinched hot inner rims [16]. Similar processes have
been investigated in Wolf-Rayet bubbles, given their large angular size. The nebula S 308 is one of
these cases where the highly pressurized hot gas is producing a blowout feature on the otherwise
round nebular morphology [3,40].

3.3. Effects of Asymmetries in the AGB Envelope or Fast Wind

The effects of asymmetric mass-loss on the hot bubble have received little attention up to now.
The symmetric fast stellar wind can find an asymmetrical distribution of the nebular envelope, due
either to asymmetrical mass loss during the AGB or to a symmetric AGB wind shaped by collimated
outflows [33].

If the fast stellar wind is much faster than the AGB wind, the hot bubble is expected to become
isobaric and push away the asymmetric envelope. The shape of the PN becomes self-similar for stellar
winds with constant (unreallistic) properties [5]. More detailed simulations show that the action of
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a symmetric fast stellar wind on a asymmetric AGB envelope may result in elliptical PNe, whereas
spherical PNe are unlikely to evolve from bipolar proto-PNe or elliptical PNe [15].

Alternatively, the fast stellar wind might be collimated. The interaction of a fast collimated fast
winds (CFW) with a spherical AGB wind has been investigated by Lee & Sahai [21] and Akashi &
Soker [1]. A 1,000 km s−1 CFW will be able to produce a bow-shock driven shell, where the wind itself
would be surrounded by a hot X-ray-emitting cocoon.

3.4. Effects of Magnetic Fields

Heat conduction is largely influenced by magnetic fields, suppressing conduction normal to the
field. Even a weak stellar magnetic field, B? ≤ 1 G, can result in asymmetric thermal conduction in
colliding stellar winds, because the reduced mixing along the equatorial direction implies an additional
pumping (more pressure) along the main axis [34,44].

These results, however, do not account for radiative and photo-ionization effects, which tend to
make isobaric the pressure inside the hot bubble. Magneto-radiative-hydrodynamical simulations are
required to solve this issue.

3.5. Ignored Physics

The limitations of the current X-ray observations (and theoretical models) of hot bubble in PNe do
not allow us to investigate a series of physical processes with potential implications on the evolution
of PNe. The hot bubble, for instance, is assumed to be isobaric. We have seen above that magnetic
fields may change this situation, but certainly the interaction of the hot bubble with the AGN envelope
is complex and can produce short-lived non-isobaric regions. The 2-D radiative hydro-dynamical
simulations of Toalá & Arthur [39] predict the presence of pockets of plasma with varying physical
conditions at the interface between the hot bubble and the nebular rim.

Charge-exchange reactions (CXE) may be important between ions of the stellar winds and the
nebular envelope. These have been suggested to play an important role in the interactions of the
post-born-again and present fast stellar winds with H-poor ejecta in the born-again PNe A 30 and A 78.
In this particular cases, soft thermal emission from H-poor knots ablated by the stellar wind, which is
mass loaded to raise its density and damp its velocity, produce the extremaly soft spectrum mostly
consistent of a single C VI line emission [13,41]. The evaporation of clumps of cold material, whcih
may survive inside the hot bubble and photo-evaporate [22,24], may produce similar effects.

As important can be the recombination of carbon ions from the hot bubble with cool e−. These
can cross the contact discontinuity into the cold nebula to produce the continuum emission excess
attributed to recombination lines of C VI in BD+30◦3639 [29].

4. Summary

The hot gas resulting from the wind-wind interaction is one main PN shaping agent (in addition
to collimated outflows, ionization, azimuthal density gradients, ...) Hot gas mostly affects the early
post-AGB evolution. Once the stellar wind power declines, the hot bubble pressure is not enough to
keep the nebular expansion. Rims depressurizes very quickly, within 5,000 yrs from the PN formation,
or even faster if the hot bubble gets pinched.

Hot gas reveals complex physical processes: RRC, CEX, local non-equilibrium, weak magnetic
fields, ... Delicate interactions can produce subtle effects: shadowing instabilities, cold clumps
evaporation, ... The community needs to get ready for the next generation of X-ray telescopes with all
(observational and theoretical) homework done.
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