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Abstract

Background: Diabetes is among the most prevalent diseases worldwide, of all the affected
individuals a significant proportion of the population remains undiagnosed because of a lack of
specific symptoms early in this disorder and inadequate diagnostics. Diabetes and its associated
sequelq, i.e., comorbidity are associated with microvascular and macrovascular complications.
As diabetes is characterized by an altered metabolism of key metabolites and regulatory
pathways. Metabolic phenotyping can provide us with a better understanding of the unique set
of regulatory perturbations that predispose to diabetes and its associated comorbidities.

Methodology: The present study utilizes the analytical platform NMR spectroscopy coupled with
Random Forest statistical analysis to identify the discriminatory metabolites of diabetes (DB)
and diabetes-related comorbidity (DC) along with the healthy control (HC) subjects. A combined
and pairwise analysis was performed, between the serum samples of HC (n=50), and DB
(n=38), and DC (n=35) individuals to identify the discriminatory metabolites responsible for
class separation. The perturbed metabolites were further rigorously validated using t-test,
AUROC analysis to examine the statistical significance of the identified metabolites.

Results: The DB and DC patients were well discriminated from HC. However, 15 metabolites
were found to be significantly perturbed in DC patients compared to DB, the identified panel
of metabolites are TCA cycle (succinate, citrate), methylamine metabolism (trimethylamine,
methylamine, betaine), -intermediates; energy metabolites (glucose, lactate, pyruvate); and
amino acids (valine, arginine, glutamate, methionine, proline and threonine). The metabolites
were further used to identify the perturbed metabolic pathway and correlation of metabolites
in DC patients.

Conclusion: The 'TH NMR metabolomics may prove a promising technique to differentiate and
predict diabetes and its comorbidities on their onset or progression by determining the altered
levels of the metabolites in serum.
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1. Introduction

Diabetes is an enigmatic, genetically inherited, primarily a metabolic disorder characterized by
multifaceted perturbation in metabolism mainly glucose and lipid! in both -type 1 (insulin
deficiency due to autoimmune destruction of the pancreatic b-cells)2 and -type 2 (insulin
resistance or reduced insulin secretion due to islet cell dysfunction)® diabetes. From being
considered as the disease of the elderly, diabetes has now become the major cause of morbidity
and mortality among youth and middle age population as well45. Owing to perpetually
increasing industrialization, contracting urban-rural division, augmented economic growth,
varying dietary norms, lesser or no physical activity and alleviated stress levels among all strata
of society are the risk factors behind the diabetesb. Study performed by the Medical
Expenditure Panel Survey showed that most adults with diabetes have at least one comorbid
chronic disease and as many as 40% have at least three?. Diabetes in its course develops many
co-morbidities associated with microvascular (neuropathy, nephropathy, and retinopathy) and
macrovascular  (atherosclerotic-related  vascular  disease, coronary heart disease,
cerebrovascular disease, and peripheral vascular disease) complications®9. However, patients
with diabetes not only have diabetes-related comorbidity, they as well have nondiabetes-
related dysfunctions, such as musculoskeletal diseases and depression which take its toll on
overall quality of life® 10. The condition of multimorbidity in diabetic patients further worsen the
patient's situation and the treatment strategy as a consequence affecting the success of the
treatment. These co-morbidities are often challenging for physicians to manage because they
can be present for years before becoming clinically apparent. Diagnosis and the treatment
aspect of diabetes have been extensively studied, but the identification of early
biomarkers/novel pathways suggestive of metabolic aberrations related to co-morbidity
development is still unclear. Till now, most studies involving metabolomics of diabetes have
focussed on its prediction rather than its co-morbidities. Improved prognosis may encourage
early treatment interventions and reduce diabetes burden. Metabolomics is the study of small
molecules and biochemical intermediates (metabolites), which are highly relevant to other
regulatory mechanisms (e.g., genomics, transcriptome, and proteome) and sensitive to
environmental stimuli, forming detailed representations of organismal phenotypes!!. Over the
past decade, the application of metabolomics has been used to gain new insights into the
pathology of numerous diseases including diabetes'?13. Therefore, the application of
metabolomics to study (diabetes and diabetes-related co-morbidities) pathophysiology
represents a promising avenue of research to identify candidate biomarkers related to disease
development and progression!4. Metabolomics offers a new approach for the identification of
novel risk markers of diseases with the advent of high-throughput analytical platforms in which
simultaneous measurements of hundreds of analytes is possible!>. Among the analytical
techniques that can be used for metabolomics applications, nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS) are the most commonly used. NMR technique enjoys
a vast range of simultaneous detectable metabolites not to mention a simple sample preparation
and excellent reproducibility and non-destructive nature of the analysis'6. Thus, combining
metabolomics data with clinical and molecular data may open new vistas in the prediction of
diabetes as well as its co-morbidities.
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2. Methodology
2.1 Recruitment of Subjects and Sample Collection:

The diabetic patients were carefully chosen from those attending the OPD (outpatient
department) of government hospital in Lucknow and Kanpur. To compare the findings an equal
number of age-matched healthy individuals were studied. The study was spearheaded after
due approval by the institutional research and ethics committee, (G.S.V.M. Medical College,
Kanpur, Uttar Pradesh, ethical code No.14/Steno, on 13 January 2011) and acquiring written
informed consent from all the study subjects. The serum samples used in this study were obtained
from patients, diagnosed with diabetes and diabetes-related complication. A rigorous inclusion
and exclusion criteria was followed for sample collection. Inclusion Criteria: (a) The healthy
control (HC) group (n=50) were age and sex-matched healthy subjects taken from the general
population, free from any ailment and were not on any medication which could affect the
parameters under study. (b) Diabetes (DB) patients with good glycaemic control (n=38), disease
duration less than 7 years and glycated haemoglobin (HbATC) level less than 8%. They were
on lifestyle modifications and oral hypoglycemic drugs. (c) diabetes-related complication (DC)
patients with inadequate glycaemic control (n=35), disease duration more than 7 years and
Glycated haemoglobin (HbA1C) level more than 8%. They were on lifestyle modifications, oral
hypoglycemic drugs, insulin or combination of all three. Exclusion criteria: The exclusion criteria
for patients extended to those diagnosed with type 1 Diabetes Mellitus, acute complications for
instance severe infections or major surgery, trauma, severe cardiovascular /respiratory diseases,
pregnant and breastfeeding females. Recently diagnosed cases and those suffering from
chronic diabetic co-morbidities were also excluded from the study. Based on the above inclusion
and exclusion criteria, a total of 131 patients were recruited in this study. In each case, the 3.0
ml of blood sample was drawn and processed to extract the serum. The collected serum was
transferred into a sterile centrifuge tubes and stored at —80°C immediately after processing
until the NMR experiments were performed. The serum samples of patients those diagnosed with
diabetes (DB) and diabetes-related complication (DC) along with age and sex-matched healthy
control (HC) without any age-dependent problems were finally used in this study to profile the
metabolic differences.

2.2 NMR- Sample preparation, Data Acquisition, and Processing:

The stored serum samples were thawed and centrifuged at 10,000 rpm for 5 minutes to remove
precipitates or cellular debris if any. The serum samples (250 Yl) was mixed with 250 [l of
0.9% saline sodium phosphate buffer of strength 20 mM and pH 7.4 prepared in D2O. A 500
Ml aliquot was transferred into 5 mm NMR tubes with a coaxial insert containing a known
concentration of TSP (0.1mM prepared in D20) to provide a lock for NMR experiments, and as
a standard external reference to aid chemical shift referencing for metabolite quantification
and assignment. D2O (Deuterium oxide-as a co-solvent and to provide a deuterium
field /frequency lock) and TSP (sodium salt of trimethylsilylpropionic acid-d4) used for NMR
experiments were acquired from Sigma-Aldrich (Rhode Island, USA). For each sample, the NMR
spectra were recorded at 300 Kelvin (K) on a Bruker Biospin Avance-lll 800 MHz NMR
spectrometer. Using standard parameters from the Bruker’s pulse program library sequence
(cpmgpr1d), a transverse relaxation-edited CPMG (Carr—Purcell-Meiboom—Gill) 1D 'H NMR
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spectra were acquired, mainly to get information about micromolecular metabolites and remove
broad signals from proteins, cholesterols, and phospholipids. The obtained spectra were
processed using Bruker NMR data Processing Software Topspin-v3.5. The TH NMR spectra of
all the serum samples were manually phased, and baseline corrected followed by calibrating
each spectrum to the lactate resonance at 6(1.31) ppm. Further, all the spectra were subjected
to visual inspection for acceptability and finally used for binning in the region (0.5 to 8.5) ppm.
The CPMG data, spectral regions of 8(0.50 to 4.57) ppm and 8(5.1 to 8.5) ppm were
subdivided into integrated regions of 5(0.01) ppm using AMIX 3.8.7, (Bruker, BioSpin), to reduce
the complexity of the NMR data and aid data visualization using pattern recognition methods.
The region distorted due to water suppression 8(5.1-4.7) ppm, were excluded. The obtained
data were exported to Excel and subjected to multivariate pattern recognition and univariate
analysis in the statistical analysis module of MetaboAnalyst, an open access web-based tool for
metabolomics studies. The TH-NMR signals of all common metabolites including amino acids,
organic acids, and carbohydrates were assigned in reference to previous publications.

2.3 Statistical Analysis:

In the present article, we chose Random forest (RF) to select differentiating biomarkers
between the different cohorts, i.e. diabetes (DB), diabetes-related co-morbidity (DC) and
healthy control (HC). Prior to multivariate statistical analysis, the binned dataset was Pareto
scaled, which is the recommended method for untargeted metabolomics studies. Subsequently,
the normalized dataset was subjected to supervised classification methods— RF. It is a
classification and regression technique which involves constructing a multitude of trees in the
training phase. More precisely saying, it is an ensemble method of trees developed from a
training dataset and validated internally to achieve an accurate prediction of the target
variable from the predictors for the purpose of future observations. RF will create multiple
classification and regression trees (CART) based on the bootstrap sample from the original
training data. It also randomly searches the feature to determine the splitting point for growing
a tree. In addition, the RF does not overfit as the number of trees increases but it will produce
a restrictive value on the generalization error. Random Forest is best suited for the analysis of
complex data structures embedded in small to moderate data sets. The strengths of RF lies in
identifying outliers and anomalies in the data, displaying proximity clusters, predicting future
outcomes, identifying relevant predictors, discovering data patterns, replacing missing values
with imputations, and providing insightful graphics. The important variable/features were
ranked by their contributions to classification accuracy, i.e., Mean Decrease Accuracy (MDA).
Next, unpaired t-test was also applied for pairwise analysis to assess the significance of the
change in the metabolic profile and a p-value of < 0.05 was used as the criterion for statistical
significance. Receiver operating characteristic (ROC) analysis was also carried out to verify the
robustness of discriminatory metabolites, which are generated by plotting the false positive rate
against true positive rate and area under the curve (AUC) values were calculated as an
indication of the prediction accuracy. ANOVA was performed for boxplot representation to
visualize the comparative variation in the levels of significantly altered metabolites in different
cohorts (DB, DC, and HC) identified in the multivariate analysis. The identified significant
metabolites were further used for metabolic pathway analysis, to identify the altered metabolic
pathways associated with the disease.
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Table 1: Clinical and demographic details.
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Parameter HC DB DC
Number 50 38 35
Sex (M/F) 29/21 21/17 20/15
Age 47.8314.97 46.6413.40 50.7614.39
BMI (Kg/m?2) 24.6410.8 27.2710.91%* 26.66+0.89n
HbATC (%) 5.4+0.34 7.7910.27% 8.3%0.3n
Disease duration (yrs) | NA 5.45+1.13% 10.16+1.54

*Values expressed in meantSEM, ns=difference in values not significant, s= difference in values
significant (p<0.05).

3. Results

3.1 Metabolite Assignment:

The standard one-dimension (1D) spectrum gave an overview of all metabolites. A typical 1D
TH CPMG NMR spectra of serum samples obtained from the three groups are shown in Figure
1. Chemical shifts were annotated as far as possible, by comparing them with the chemical shifts
available with the software Chenomx!? (NMR Suite, v8.1, Chenomx Inc., Edmonton, Canada).
The assigned resonances of the metabolite peaks were validated using: (a) previously reported
NMR assignments of metabolites, data obtained from BMRB database (Biological Magnetic
Resonance Data Bank)'® and HMDB (The Human Metabolome Database)!?. The NMR spectra
presented signals mainly from lipids/lipoproteins [e.g., low-density lipoprotein (LDL), very low-
density lipoprotein (VLDL), polyunsaturated fatty acids (PUFAs)], membrane metabolites [e.g.,
choline, phosphocholine (PC), and Glycerophosphocholine (GPC)], N-acetyl glycoproteins
(NAG), and amino acids (e.g.
glutamine, glutamate, glycine, threonine, histidine, tyrosine, and phenylalanine etc.). Other
identified metabolites were glucose, lactate, acetate, citrate, pyruvate, betaine, creatine,

leucine, isoleucine, valine, alanine, arginine, lysine, proline,

creatinine, efc.

1
] @ @y o 2 N £ =
g 5 Eif poral| ||| & 232, J52| | 15 E £ g T""iqe
= "329‘62 g .E_Iu‘E **30 :.:'5 g Z‘g E’>5
; zzgEs \ = 875 ||, - Ug ¢ 3 EEA ='|féu,.'E"-6']/ "‘.l
T O e R T S T O
", l l DC ] o [ T ,_ﬁ.!.._a‘l .!,’W‘\‘U‘ VAUAT N L \I‘ \w - 'JL" ""I #l\ \N“J J' ‘L“
ek )J I“I 7 ﬂ ‘I (‘! \lk %]Jl | \Jw hﬁ MeiFJ'yruvufeszrolme C' JH} ’\“
L H J ] DB J‘ ‘IL.. = ’L.«_/&wr“vlh‘ eir u J L\.“JJ| s lxwwé‘wuiigu\," I “‘\—‘/\-/\’“"‘/‘ I‘L ““‘y‘l‘
TMA Citrate I J | |
: el ‘.‘J‘ : HC . J‘ L ; ﬂl,JW‘ JM! Iwwm \HJ‘ ‘ | wau\.w M \U\J«J \—J LLU'” L
85 8 7.5 7 535 6 5.5 4.6 4.2 . 8 34 3 3 2 3 2 1. 5 1
H (ppm)

Figure 1. Stack plot of representative 1D TH NMR spectra of serum obtained from different
groups.

The peaks annotated in the figure show the assignments of serum metabolites. The abbreviations used are
LDL/VLDL: Low/very-low-density lipoproteins; PUFA: polyunsaturated fatty acids; BCAA (Branched-chain amino
acids): Isoleucine; Leucine; Valine; Aa: Acetoacetate; Lys: Lysine; Phe: Phenylalanine; Gly: Glycine; Val: Valine;
Gln: Glutamine; Glu: Glutamate; Arg: Arginine; Ala: Alanine; Met: Methionine; MA: Methylamine; TMA:

Trimethylamine.


http://dx.doi.org/10.20944/preprints201808.0018.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2018 d0i:10.20944/preprints201808.0018.v1

3.2 Classification & Feature Selection:

Random Forest was used for multivariate analysis of the 1D 'TH NMR CPMG data sets. RF is a
powerful supervised classification method available in the statistical analysis module of
MetaboAnalyst20, RF uses an ensemble of classification trees, each of which is grown by random
feature selection from a bootstrap sample at each branch. The class prediction is based on the
majority vote of the ensemble. During tree construction, around one-third of the instances are
left out of the bootstrap sample. This remaining data is then used as test sample to obtain an
unbiased estimate of the classification and regression (OOB = out of the bag) errors as trees
are added to the forest2!. RF analysis was performed to get a discriminatory overview of the
three cohorts and further pairwise analysis was also performed between the groups to identify
the differentiating metabolites, i.e. DB vs. HC, DC vs. HC and DC vs. DB as shown in Figure 2. In
RF analysis 500 trees were grown and 7 features were randomly selected at each node. The
generalization error was estimated on the OOB samples.

Random Forest Classification
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Figure 2. Random Forest classification.

RF analysis of 1D TH CPMG NMR spectra comprising of all the groups (A) and pairwise analysis (B, C, D). The
overall error rate is shown by the red line; the respective colors show the error rates for each class.

Next, we determined the important biomarkers in metabolomics dataset of pairwise
analysis. Variable importance (VI) is based on MDA, which is the result of the permutation of the
average over all trees and is used to measure the importance of the variables in RF. After
manual data mining and processing, we identified metabolites significantly perturbed in sera
of different cohorts (MDA >0.01) as enlisted in Table 2. The quantitative difference in the
metabolite concentration was assessed using a t-test, (p-Value < 0.05). Further receiver’s
operating characteristic (ROC) curves analysis was performed for the significant metabolite
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markers to evaluate their predictive power or diagnostic accuracy. The area under the ROC
curve (AUC) is generally considered as the method of choice for evaluating the performance of
potential biomarkers. The higher the AUC, the better the prediction of the model and
discriminatory ability (0.5 < no discrimination; 1= perfect discrimination). The highest and lowest
AUC values in our study range from 0.98 to 0.52 (Table 2) which indicated that these
metabolites could be potential biomarkers for diagnosis, surveillance, and early detection of
metabolic perturbations in such patients. A cumulative ROC curves of serum metabolites
significantly altered in DB vs. HC, DC vs. HC, and DC vs. DB are shown in Figure S1. Henceforth
these metabolites can be aptly used for clinical diagnosis and surveillance in diabetic patients.
The discriminatory metabolites were mainly related to lipid, amino acid, glucose, and energy
metabolism.
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Figure 3. Box Plot’s.

00 QQ) QS:

Box-whisker plots of metabolites that were significantly perturbed across the groups derived from 1D 1TH CPMG
NMR spectra using RF analysis. In the box plots, the boxes denote interquartile ranges, horizontal line inside the
box denote the median, and bottom and top boundaries of boxes are 25th and 75th percentiles, respectively.

Lower and upper whiskers are 5th and 95th percentiles, respectively.
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The increased and decreased levels of metabolites in the body fluids can differentiate
between healthy and diseased states. Compared with those from healthy controls, serum
samples of patients with DB and DC showed (a) increased levels of glucose, methionine, histidine
(b) by levels of LDL/VLDL, lipids, polyunsaturated
glycoproteins(NAG), citrate,

the decreased lipids, N-acetyl

lipids, lactate, pyruvate, succinate,  acetoacetate,
creatinine/creatine, and most of the amino acids (like alanine, valine, isoleucine, proline,
glutamate, glutamine, arginine, histidine, and phenylalanine, etc). Most of the metabolites in DB
and DC followed a similar pattern in a matter of their increased or decreased levels of serum
with respect to the control group. However, when compared to the DB, the DC patients have an
increased levels of succinate, citrate, glucose, threonine, PUFA and the decreased levels of
LDL/VLDL, lipids, N-acetyl glycoproteins (NAG), pyruvate, creatine, and amino acids (like valine,
arginine, glutamate, methionine, and proline. The results are summarized in Table 2 which clearly
shows that protein biosynthesis, amino-acid metabolism, glucose-energy metabolism and
glycerolipid metabolism are disturbed in patients with DC. Hence metabolic perturbation in

patients with DC has been discussed in detail in the discussion section.

Table 2: Metabolic differences between the DB and DC with respect to HC; and DC with respect
to DB. The up (1) and down (]) arrows represent, increased and decreased levels of the
metabolites respectively.

. DB vs. HC | DCvs. HC | DCvs. DB

# H ppm Metabolite
auc|? auc|? auc|?

1 0.805-0.885 HDL/LDL 0.75 () 0.71 (]) 0.59 (|)*
2 0.935 Iso/Leucine 0.68 (|)* 0.84 (]) x ()
3 1.015 Valine x (]) x (]) 0.58 (|)*
4 1.215-1.245 LDL/VLDL 0.71 () 074(]) | 0.57 ()
5 1.665-1.705 Arginine x () 0.73 (]) 0.63 (|)*
6 2.015 NAG 0.78 () 0.82 () 0.60 (|)*
7 2.115-2.135 Glutamate 0.86 () 0.92(]) 0.63 (|)*
8 2.205 Acetoacetate x () 0.86 (]) x ()
9 2.355 Pyruvate x () x () 0.57 ()*
10 2.385 Succinate x(]) x (1) 0.52 (1)*
11 2.425-2.465 Glutamine 0.70 (]) 0.84 () x (])
12 2.515,2.655 Citrate 0.82(]) 0.97 (l) 0.70 (1)
13 2.545 Methylamine 0.78 (]) 0.89(]) x (1)
14 2.615 Methionine 0.59 (})* x () 0.68 (])
15 2.905 Trimethylamine x () 0.76 (]) x (1)
16 3.015 Creatin-e/ine 0.71 () 0.86 () 0.58 (|)*
17 3.265 Betaine 0.67 (})* 0.87 () x (1)
18 | 3.475,3.895,4.625 | Glucose 0.92 (1) 0.98 (1) 0.67 (1)*
19 4.085 Lactate x (]) 0.70 () x (])
20 4.125 Proline x (]) x (]) 0.58 (|)*
21 4.225-4.245 Threonine 0.76 (]) 0.94 (]) 0.53 (1)*
22 5.245-5.325 PUFA 0.68 (]) 0.79 (]) 0.64 (1)
23 7.295 Phenylalanine 0.53 (})* 0.85(]) x (1)
24 7.025,7.725 Histidine 0.80 (1) 0.87 (1) x (1)
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Note: * = p-Value > 0.05, x = MDA value < 0.001 (ie. Metabolite not significant in the respective
group).

3.3 Metabolic Pathway Analysis:

To gain insight into the metabolic mechanism of DC, the metabolic pathways of the significantly
altered metabolites (identified through RF analysis) were analyzed using the “pathway
analysis” module within the MetaboAnalyst software. This web-based Metabolic Pathway
Analysis (MetPA) function implemented in MetaboAnalyst, It (MetPA) enables identification of
altered metabolic pathways, metabolomic data interpretation, and visulization?2, The
metabolites as enlisted in Table S1 were only used for the detailed analysis of the perturbed
metabolites in DC compared to HC and DB, metabolites such as lipids (V/LDL, PUFA), NAG, are
not recognized by the programme, hence were excluded from the list. The final list of altered
metabolites were uploaded and analyzed in MetPA. The built-in human (Homo sapiens)
pathway library and pathway analysis algorithm -hypergeometric test and -Relative-
betweenness Centrality was employed for Over-Representation Analysis and Pathway
Topology Analysis respectively. All matched pathways are shown according to their p-values
from the pathway enrichment analysis (vertical axis or y-axis, the intensity of color) and pathway
impact values (horizontal axis or x-axis, the size of circle) from pathway topology analysis, with
the most impacted pathways colored in red, results as shown graphically in Figure 4. The
metabolic pathways with an impact value greater than 0.1 were considered to be target
pathways with high significance to disease morbidity. These pathways can be considered for
further exploration through biochemical analysis. Taken together, DC patients have distinctive
metabolic pathways compared to HC and DB patients.
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Figure 4. Pathway Analysis.

Identification of the perturbed metabolic pathways by overrepresentation analysis (ORA) using the significantly
altered metabolites identified by RF VIP score. The analysis was done by using a pathway library restricted to
Humans, and p-values for ORA stand for hypergeometric test. Test p-value (vertical axis, intensity of color) and

impact factor (horizontal axis, size of circle).
3.4 Correlation analysis:

Metabolites are fundamental to the biological system, to evaluate the complex interaction of
perturbed metabolites we also performed correlation analysis (CA). CA is important to find the
asymptomatic post diabetic associated complications among diabetic individual on the basis of
metabolic profiling. The identified significantly changed serum metabolites in DC patients were
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subjected to CA. The Colour Heat Map was designed using Pearson’s correlation coefficients
analysis in statistical analysis Module of Metaboanalyst of 15 serum metabolites in DC patients
to find the interrelation as depicted in Figure 5. To analyze the result of Color Heat Map we
have taken only those metabolites which have a correlation score of r > 0.61 (Table $2). From
this correlation color Heat Map we found that the amino acid intermediates of TCA cycle,
glucogenic amino acids and methylamine metabolism were predominantly involved viz.
succinate, citrate, as well as glutamate, arginine, and valine and methylamine are the most
significantly positive correlated metabolites. Moreover, to this the correlated metabolites and
the intermediated of TCA cycle will undoubtedly mark a print on asymptomatic post diabetic
complication and probably these metabolites will be used as a prognostic marker for the prior
onset of disease. This correlation map and metabolites will be a boon for future therapeutic
strategies and also patient care beforehand.
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Figure 5. Correlation Analysis.

A color heat map of the Pearson’s correlation coefficients computed for the 15 metabolites observed in the DC
patients. The colors refer to the correlation coefficient ranging from 1 (red) to -1 (green).

4. Discussion

Diabetes is a lifestyle-related disorder, and thus it is crucial to focus efforts on the identification
of biomarkers, which can help in the diagnosis and early intervention of the disease. In recent
times metabolomics has emerged as an imperative tool in diabetes research!3 23, The present
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study used the NMR based metabolomics coupled with Randon Forest to identify the
discriminatory metabolites. Our results show significant variations in metabolic profiles of
patients with DC compared to DB, suggesting that NMR-based metabolomics has a definite say
in monitoring the metabolic signatures associated with DC. As evident from Table 2, 26 NMR-
based metabolite entities were found to be perturbed in sera of DB and DC patients compared
to HC, whereas 15 metabolites were found to be perturbed in DC as compared to DB patients.
The major group of altered metabolites in the sera of DC patients contained (a) intermediates
of the tricarboxylic acid cycle (TCA cycle), products of glycolysis and energy metabolism (such
as glucose, lactate, pyruvate, succinate, citrate, creatine and creatinine), (b) amino acids
(glutamate, valine, proline, arginine) and (c) molecules related to lipid and membrane
metabolism like lipoproteins (V/LDL), PUFA, and NAG. The implications of these metabolic
differences and pathways in the pathophysiology of the DC have been discussed further.

4.1 Energy Metabolism

An elevated glucose is the metabolic hallmark of diabetes, and is due to the enhanced glucose
production from noncarbohydrate sources (gluconeogenesis) and the breakdown of glycogen
(glycogenolysis). As evident from our study, the DC patients has relatively higher levels of
glucose compared to DB and HC. The increased level of glucose followed by decreased levels
of lactate suggests disturbed glucose metabolism with dampened aerobic glycolytic activity in
DC patients?4, The elevated glucose (hyperglycemia) as evident could be one of the possible
reasons inducing oxidative stress in such patients, a feature common to all cell types that are
damaged by hyperglycemia owing to the increased production of Reactive oxygen species
(ROS) and Reactive nitrogen species (RNS)25, Oxidative stress (imbalance between pro-oxidants
and antioxidants) causes oxidation of various biomolecules including protein, lipids,
carbohydrates, DNA, and mitochondrial DNA (miDNA) within the body?¢-?7. The damage to
mitochondria further increases the production of ROS, rendering it susceptible to oxidative
damage and mutations28. Mitochondrial dysfunction aggravates the energy crisis since that ATP
is produced mainly from aerobic glucose oxidation in mitochondria. Creatine and creatinine
plays a pivotal role in energy homeostasis, their depleted levels further support the notion of
disorder of energy metabolism, moreover they also reflect the deteriorating condition of the DC
patients, as evident in various reports creatine has protective effects against hyperglycemia
and is an antioxidant29-3°, whereas creatinine is a marker of low skeletal muscle mass and insulin
resistance3!. With respect to HC, DB and DC patients have decreased levels of energy
metabolites, pyruvate, succinate, and citrate. Whereas, the decreased levels of pyruvate to the
increased levels of succinate and citrate in DC compared to the DB patients, suggest that TCA
cycle is altered to cause the accumulation of intermediate products of the TCA cycle and
impaired aerobic glycolysis and, thus dampened oxidative phosphorylation and ATP production
in such patients. As evident TCA cycle and its intermediates play an eminent role in the metabolic
and physiological state of the co-morbid patients.

4.2 Lipid metabolism

Lipids are one of the primary sources of energy for metabolism. Lipid abnormalities are common
in diabetic patients and have been reported to be the major predictors of metabolic
disturbances and critical medical conditions, such as dyslipidemia, hypertension, diabetes and
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cardiovascular diseases32. The serum samples of DC patients have significantly decreased levels
of HDL, V/LDL and increased levels of PUFA compared to DB and HC. The increased levels of
PUFA are thought to be widely beneficial to human health, because of their association with
mitigation of the inflammatory response in disease conditions such as autoimmune, heart, arthritis
and diabetes33. The possible reason for decreased serum levels of LDL could be due to
peroxidation of LDL to Ox-LDL which is aberrantly involved in inflammatory processes through
the formation of higher molecular weight complexes with distinct inflammatory mediators34. It is
one of the significant risk factors for cardiovascular diseases and is also regarded as
comorbidity affecting the development of kidney complications in diabetes35-3¢ and is also
influential in the progression of diabetic neuropathy?. Further acetoacetate was also found to
be down-regulated and its decrease reflects a disturbed lipid metabolism, for its reliance on
ketone bodies to meets its energy requirements in diabetic patients38. Taken together, the lipid
metabolic profiles in sera of DC patients suggested dysregulation of lipid metabolism and
metabolic alterations in energy production. In addition to changes in lipoprotein levels, residual
signals of N-acetyl glycoproteins (NAG) were found to be decreased in DC patients compared
to DB and HC. N-acetyl glycoproteins (N-acetylglucosamine and N-acetylgalactosamine glycan
moieties) are mainly acute phase proteins with anti-inflammatory properties and are expressed
more during inflammation and immune responses, these proteins also help to protect the body
from oxidative stress owing to their antioxidant properties??. Furthermore, methylamine,
trimethylamine, and betaine are related to methylamine metabolism and are processed by gut
microbiota4?. The decrease in the serum levels of these metabolites suggests a reduced number
and /or altered gut microbiota metabolism. Their decrease in the serum suggests liver dysfunction
consistent in several human and animal studies#!. Consequently, the observed reduction in major
structural lipids may be a consequence of increased fatty acid B-oxidation and reduced
bioavailability of fatty acids for phospholipid/structural lipid synthesis, followed by decreased
levels of anti-inflammatory proteins owing to oxidative damage and hyperglycemia.

4.3 Amino acid Metabolism

Amino acids are small organic molecules that play a key metabolic and physiological roles in
all living organisms. They serve as substrates for protein synthesis, glyconeogenesis, ureagenesis
and precursors for syntheses of hormones and low-molecular-weight nitrogenous substances and
various other catabolic processes?2. Metabolic alterations in amino acids levels (a) essential,
non-essential, conditionally essential, (b) glucogenic and ketogenic, (c) branched-chain amino
acids (BCAA) and aromatic amino acids (AAA) in the serum are common in conditions of disease
(e.g., cancer, diabetes)*3-44, Amino acids serve as a key source of energy, especially during
conditions in which glucose availability is limited. Their significance is not limited to this only but
are involved in protein biosynthesis as well as biosynthesis of several biogenic amines essential
for survival in conditions of acute stress#3. Muscles along with liver release a high quantity of
amino acids present in the body to maintain the cellular homeostasis in conditions of energy
deprivation4®, The glucogenic amino acids are broken down into pyruvate, alpha-ketoglutarate,
succinyl-CoA, fumarate, and oxaloacetate that can be predominantly converted into glucose or
glycogen via TCA cycle or gluconeogenesis. As evident from our study the up and down-
regulated metabolites thus suggest perturbed glycolysis and beta-oxidation pathway.
Consistent with this report, our results also indicate decreased levels of several amino acids in
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the sera of DC patients (such as glutamate, glutamine, methionine, arginine, proline, BCAA -
isoleucine, leucine, valine) and increased levels of threonine and AAA-histidine, phenylalanine,
suggesting the aberrant amino acid catabolism and protein biosynthesis. The BCAA and AAA
are catabolized to replenish the depleted levels of TCA cycle intermediates or as acetyl
derivatives to generate energy during stress suggesting dampened glycolysis alongside muscle
and protein break down#”. Serum levels of amino acids, particularly BCAA and AAA, have long
been recognized as a marker of obesity-associated insulin resistance48-49. A noteworthy finding
from our study was that the levels of proline and arginine were significantly lower in DC patients
compared to DB and HC. Arginine being the most versatile amino acids in cells serves as a
precursor for the synthesis of proteins, nitric oxide, urea, polyamines, proline, glutamate, and
creatine39. Proline is a key precursor in the synthesis of skeletal muscle protein collagen which is
a primary response to repair an injury5l. Arginine and proline as found through studies play a
pivotal role in wound healing when supplemented in diabetic patients. Thus their decreased
level shows that the healing capacity is more perturbed in DC patients as compared to DB and
HC52, The decreased levels of glutamate and glutamine suggest that they are being actively
metabolized to meet the energy requirements of the cell via gluconeogenesis. Both glutamate
and glutamine along with methionine are also important components of the pathway, which
leads to the synthesis of glutathione, an important intracellular antioxidant rendering cells more
susceptible to oxidative stress.

5. Conclusions

In the present study, "TH NMR-based serum metabolomics combined with random forest analysis
was used to identify the discriminatory metabolites. About 24 metabolites were found be
responsible for differentiating DC and DB independently from HC with high reliability. However,
15 metabolites were identified as the discriminatory biomarkers of DC from DB. Our findings
suggest that progression to DC is characterized by increased oxidative stress, perturbed states
of inflammation, altered lipid metabolism and gut microbiota. More importantly, these findings
serve as a basis for the identification of metabolic states in conjunction with metabolic pathways
that can be used as diagnostic and prognostic indicators and also identify novel therapeutic
targets owing to the perturbed metabolic pathways in pathophysiology of DC.
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