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Abstract 

Background: Diabetes is among the most prevalent diseases worldwide, of all the affected 
individuals a significant proportion of the population remains undiagnosed because of a lack of 
specific symptoms early in this disorder and inadequate diagnostics. Diabetes and its associated 
sequela, i.e., comorbidity are associated with microvascular and macrovascular complications. 
As diabetes is characterized by an altered metabolism of key metabolites and regulatory 
pathways. Metabolic phenotyping can provide us with a better understanding of the unique set 
of regulatory perturbations that predispose to diabetes and its associated comorbidities.  

Methodology: The present study utilizes the analytical platform NMR spectroscopy coupled with 
Random Forest statistical analysis to identify the discriminatory metabolites of diabetes (DB) 
and diabetes-related comorbidity (DC) along with the healthy control (HC) subjects. A combined 
and pairwise analysis was performed, between the serum samples of HC (n=50), and DB 
(n=38), and DC (n=35) individuals to identify the discriminatory metabolites responsible for 
class separation. The perturbed metabolites were further rigorously validated using t-test, 
AUROC analysis to examine the statistical significance of the identified metabolites.  

Results: The DB and DC patients were well discriminated from HC. However, 15 metabolites 
were found to be significantly perturbed in DC patients compared to DB, the identified panel 
of metabolites are TCA cycle (succinate, citrate), methylamine metabolism (trimethylamine, 
methylamine, betaine), -intermediates; energy metabolites (glucose, lactate, pyruvate); and 
amino acids (valine, arginine, glutamate, methionine, proline and threonine). The metabolites 
were further used to identify the perturbed metabolic pathway and correlation of metabolites 
in DC patients. 

Conclusion: The 1H NMR metabolomics may prove a promising technique to differentiate and 
predict diabetes and its comorbidities on their onset or progression by determining the altered 
levels of the metabolites in serum. 
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1. Introduction 

Diabetes is an enigmatic, genetically inherited, primarily a metabolic disorder characterized by 
multifaceted perturbation in metabolism mainly glucose and lipid1 in both -type 1 (insulin 
deficiency due to autoimmune destruction of the pancreatic b-cells)2 and -type 2 (insulin 
resistance or reduced insulin secretion due to islet cell dysfunction)3 diabetes. From being 
considered as the disease of the elderly, diabetes has now become the major cause of morbidity 
and mortality among youth and middle age population as well4-5. Owing to perpetually 
increasing industrialization, contracting urban-rural division, augmented economic growth, 
varying dietary norms, lesser or no physical activity and alleviated stress levels among all strata 
of society are the risk factors behind the diabetes6. Study performed by the Medical 
Expenditure Panel Survey showed that most adults with diabetes have at least one comorbid 
chronic disease and as many as 40% have at least three7. Diabetes in its course develops many 
co-morbidities associated with microvascular (neuropathy, nephropathy, and retinopathy) and 
macrovascular (atherosclerotic-related vascular disease, coronary heart disease, 
cerebrovascular disease, and peripheral vascular disease) complications8-9. However, patients 
with diabetes not only have diabetes-related comorbidity, they as well have nondiabetes-
related dysfunctions, such as musculoskeletal diseases and depression which take its toll on 
overall quality of life8, 10. The condition of multimorbidity in diabetic patients further worsen the 
patient's situation and the treatment strategy as a consequence affecting the success of the 
treatment. These co-morbidities are often challenging for physicians to manage because they 
can be present for years before becoming clinically apparent. Diagnosis and the treatment 
aspect of diabetes have been extensively studied, but the identification of early 
biomarkers/novel pathways suggestive of metabolic aberrations related to co-morbidity 
development is still unclear. Till now, most studies involving metabolomics of diabetes have 
focussed on its prediction rather than its co-morbidities. Improved prognosis may encourage 
early treatment interventions and reduce diabetes burden. Metabolomics is the study of small 
molecules and biochemical intermediates (metabolites), which are highly relevant to other 
regulatory mechanisms (e.g., genomics, transcriptome, and proteome) and sensitive to 
environmental stimuli, forming detailed representations of organismal phenotypes11. Over the 
past decade, the application of metabolomics has been used to gain new insights into the 
pathology of numerous diseases including diabetes12-13. Therefore, the application of 
metabolomics to study (diabetes and diabetes-related co-morbidities) pathophysiology 
represents a promising avenue of research to identify candidate biomarkers related to disease 
development and progression14. Metabolomics offers a new approach for the identification of 
novel risk markers of diseases with the advent of high-throughput analytical platforms in which 
simultaneous measurements of hundreds of analytes is possible15. Among the analytical 
techniques that can be used for metabolomics applications, nuclear magnetic resonance (NMR) 
spectroscopy and mass spectrometry (MS) are the most commonly used. NMR technique enjoys 
a vast range of simultaneous detectable metabolites not to mention a simple sample preparation 
and excellent reproducibility and non-destructive nature of the analysis16. Thus, combining 
metabolomics data with clinical and molecular data may open new vistas in the prediction of 
diabetes as well as its co-morbidities.  
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2. Methodology 

2.1 Recruitment of Subjects and Sample Collection: 

The diabetic patients were carefully chosen from those attending the OPD (outpatient 
department) of government hospital in Lucknow and Kanpur. To compare the findings an equal 
number of age-matched healthy individuals were studied. The study was spearheaded after 
due approval by the institutional research and ethics committee, (G.S.V.M. Medical College, 
Kanpur, Uttar Pradesh, ethical code No.14/Steno, on 13 January 2011) and acquiring written 
informed consent from all the study subjects. The serum samples used in this study were obtained 
from patients, diagnosed with diabetes and diabetes-related complication. A rigorous inclusion 
and exclusion criteria was followed for sample collection.  Inclusion Criteria: (a) The healthy 
control (HC) group (n=50) were age and sex-matched healthy subjects taken from the general 
population, free from any ailment and were not on any medication which could affect the 
parameters under study. (b) Diabetes (DB) patients with good glycaemic control (n=38), disease 
duration less than 7 years and glycated haemoglobin (HbA1C) level less than 8%. They were 
on lifestyle modifications and oral hypoglycemic drugs. (c) diabetes-related complication (DC) 
patients with inadequate glycaemic control (n=35), disease duration more than 7 years and 
Glycated haemoglobin (HbA1C) level more than 8%. They were on lifestyle modifications, oral 
hypoglycemic drugs, insulin or combination of all three. Exclusion criteria: The exclusion criteria 
for patients extended to those diagnosed with type 1 Diabetes Mellitus, acute complications for 
instance severe infections or major surgery, trauma, severe cardiovascular/respiratory diseases, 
pregnant and breastfeeding females. Recently diagnosed cases and those suffering from 
chronic diabetic co-morbidities were also excluded from the study. Based on the above inclusion 
and exclusion criteria, a total of 131 patients were recruited in this study. In each case, the 3.0 
ml of blood sample was drawn and processed to extract the serum. The collected serum was 

transferred into a sterile centrifuge tubes and stored at −80C immediately after processing 
until the NMR experiments were performed. The serum samples of patients those diagnosed with 
diabetes (DB) and diabetes-related complication (DC) along with age and sex-matched healthy 
control (HC) without any age-dependent problems were finally used in this study to profile the 
metabolic differences.  

 

2.2 NMR- Sample preparation, Data Acquisition, and Processing:  

The stored serum samples were thawed and centrifuged at 10,000 rpm for 5 minutes to remove 
precipitates or cellular debris if any. The serum samples (250 µl) was mixed with 250 µl of 
0.9% saline sodium phosphate buffer of strength 20 mM and pH 7.4 prepared in D2O. A 500 
µl aliquot was transferred into 5 mm NMR tubes with a coaxial insert containing a known 
concentration of TSP (0.1mM prepared in D2O) to provide a lock for NMR experiments, and as 
a standard external reference to aid chemical shift referencing for metabolite quantification 
and assignment. D2O (Deuterium oxide-as a co-solvent and to provide a deuterium 
field/frequency lock) and TSP (sodium salt of trimethylsilylpropionic acid-d4) used for NMR 
experiments were acquired from Sigma-Aldrich (Rhode Island, USA). For each sample, the NMR 
spectra were recorded at 300 Kelvin (K) on a Bruker Biospin Avance-III 800 MHz NMR 
spectrometer. Using standard parameters from the Bruker’s pulse program library sequence 
(cpmgpr1d), a transverse relaxation-edited CPMG (Carr–Purcell–Meiboom–Gill) 1D 1H NMR 
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spectra were acquired, mainly to get information about micromolecular metabolites and remove 
broad signals from proteins, cholesterols, and phospholipids. The obtained spectra were 
processed using Bruker NMR data Processing Software Topspin-v3.5. The 1H NMR spectra of 
all the serum samples were manually phased, and baseline corrected followed by calibrating 

each spectrum to the lactate resonance at (1.31) ppm. Further, all the spectra were subjected 

to visual inspection for acceptability and finally used for binning in the region (0.5 to 8.5) ppm.  

The CPMG data, spectral regions of 0.50 to 4.57) ppm and 5.1 to 8.5) ppm were 

subdivided into integrated regions of 0.01) ppm using AMIX 3.8.7, (Bruker, BioSpin), to reduce 
the complexity of the NMR data and aid data visualization using pattern recognition methods. 

The region distorted due to water suppression (5.1-4.7) ppm, were excluded. The obtained 
data were exported to Excel and subjected to multivariate pattern recognition and univariate 
analysis in the statistical analysis module of MetaboAnalyst, an open access web-based tool for 
metabolomics studies. The 1H-NMR signals of all common metabolites including amino acids, 
organic acids, and carbohydrates were assigned in reference to previous publications. 

 

2.3 Statistical Analysis: 

In the present article, we chose Random forest (RF) to select differentiating biomarkers 
between the different cohorts, i.e. diabetes (DB), diabetes-related co-morbidity (DC) and 
healthy control (HC). Prior to multivariate statistical analysis, the binned dataset was Pareto 
scaled, which is the recommended method for untargeted metabolomics studies. Subsequently, 
the normalized dataset was subjected to supervised classification methods— RF. It is a 
classification and regression technique which involves constructing a multitude of trees in the 
training phase. More precisely saying, it is an ensemble method of trees developed from a 
training dataset and validated internally to achieve an accurate prediction of the target 
variable from the predictors for the purpose of future observations. RF will create multiple 
classification and regression trees (CART) based on the bootstrap sample from the original 
training data. It also randomly searches the feature to determine the splitting point for growing 
a tree. In addition, the RF does not overfit as the number of trees increases but it will produce 
a restrictive value on the generalization error. Random Forest is best suited for the analysis of 
complex data structures embedded in small to moderate data sets. The strengths of RF lies in 
identifying outliers and anomalies in the data, displaying proximity clusters, predicting future 
outcomes, identifying relevant predictors, discovering data patterns, replacing missing values 
with imputations, and providing insightful graphics. The important variable/features were 
ranked by their contributions to classification accuracy, i.e., Mean Decrease Accuracy (MDA). 
Next, unpaired t-test was also applied for pairwise analysis to assess the significance of the 
change in the metabolic profile and a p-value of < 0.05 was used as the criterion for statistical 
significance. Receiver operating characteristic (ROC) analysis was also carried out to verify the 
robustness of discriminatory metabolites, which are generated by plotting the false positive rate 
against true positive rate and area under the curve (AUC) values were calculated as an 
indication of the prediction accuracy. ANOVA was performed for boxplot representation to 
visualize the comparative variation in the levels of significantly altered metabolites in different 
cohorts (DB, DC, and HC) identified in the multivariate analysis. The identified significant 
metabolites were further used for metabolic pathway analysis, to identify the altered metabolic 
pathways associated with the disease. 
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Table 1: Clinical and demographic details.  

Parameter HC DB DC 
Number 50 38 35 
Sex (M/F) 29/21 21/17 20/15 
Age 47.83±4.97 46.64±3.40 50.76±4.39 

BMI (Kg/m2) 24.64±0.8 27.27±0.91* 26.66±0.89ns 

HbA1C (%) 5.4±0.34 7.79±0.27* 8.3±0.3ns 

Disease duration (yrs) NA 5.45±1.13* 10.16±1.54s 

*Values expressed in mean±SEM, ns=difference in values not significant, s= difference in values 
significant (p<0.05). 

3. Results 

3.1 Metabolite Assignment: 

The standard one-dimension (1D) spectrum gave an overview of all metabolites. A typical 1D 
1H CPMG NMR spectra of serum samples obtained from the three groups are shown in Figure 
1. Chemical shifts were annotated as far as possible, by comparing them with the chemical shifts 
available with the software Chenomx17 (NMR Suite, v8.1, Chenomx Inc., Edmonton, Canada). 
The assigned resonances of the metabolite peaks were validated using: (a) previously reported 
NMR assignments of metabolites, data obtained from BMRB database (Biological Magnetic 
Resonance Data Bank)18 and HMDB (The Human Metabolome Database)19. The NMR spectra 
presented signals mainly from lipids/lipoproteins [e.g., low-density lipoprotein (LDL), very low-
density lipoprotein (VLDL), polyunsaturated fatty acids (PUFAs)], membrane metabolites [e.g., 
choline, phosphocholine (PC), and Glycerophosphocholine (GPC)], N-acetyl glycoproteins 
(NAG), and amino acids (e.g. leucine, isoleucine, valine, alanine, arginine, lysine, proline, 
glutamine, glutamate, glycine, threonine, histidine, tyrosine, and phenylalanine etc.). Other 
identified metabolites were glucose, lactate, acetate, citrate, pyruvate, betaine, creatine, 
creatinine, etc. 

 

Figure 1. Stack plot of representative 1D 1H NMR spectra of serum obtained from different 
groups. 

The peaks annotated in the figure show the assignments of serum metabolites. The abbreviations used are 
LDL/VLDL: Low/very-low-density lipoproteins; PUFA: polyunsaturated fatty acids; BCAA (Branched-chain amino 
acids): Isoleucine; Leucine; Valine; Aa: Acetoacetate; Lys: Lysine; Phe: Phenylalanine; Gly: Glycine; Val: Valine; 
Gln: Glutamine; Glu: Glutamate; Arg: Arginine; Ala: Alanine; Met: Methionine; MA: Methylamine; TMA: 
Trimethylamine. 
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3.2 Classification & Feature Selection: 

Random Forest was used for multivariate analysis of the 1D 1H NMR CPMG data sets. RF is a 
powerful supervised classification method available in the statistical analysis module of 
MetaboAnalyst20. RF uses an ensemble of classification trees, each of which is grown by random 
feature selection from a bootstrap sample at each branch. The class prediction is based on the 
majority vote of the ensemble. During tree construction, around one-third of the instances are 
left out of the bootstrap sample. This remaining data is then used as test sample to obtain an 
unbiased estimate of the classification and regression (OOB = out of the bag) errors as trees 
are added to the forest21. RF analysis was performed to get a discriminatory overview of the 
three cohorts and further pairwise analysis was also performed between the groups to identify 
the differentiating metabolites, i.e. DB vs. HC, DC vs. HC and DC vs. DB as shown in Figure 2. In 
RF analysis 500 trees were grown and 7 features were randomly selected at each node. The 
generalization error was estimated on the OOB samples. 

 

Figure 2. Random Forest classification. 

RF analysis of 1D 1H CPMG NMR spectra comprising of all the groups (A) and pairwise analysis (B, C, D). The 
overall error rate is shown by the red line; the respective colors show the error rates for each class. 

Next, we determined the important biomarkers in metabolomics dataset of pairwise 
analysis. Variable importance (VI) is based on MDA, which is the result of the permutation of the 
average over all trees and is used to measure the importance of the variables in RF. After 
manual data mining and processing, we identified metabolites significantly perturbed in sera 
of different cohorts (MDA ≥0.01) as enlisted in Table 2. The quantitative difference in the 
metabolite concentration was assessed using a t-test, (p-Value < 0.05). Further receiver’s 
operating characteristic (ROC) curves analysis was performed for the significant metabolite 
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markers to evaluate their predictive power or diagnostic accuracy. The area under the ROC 
curve (AUC) is generally considered as the method of choice for evaluating the performance of 
potential biomarkers. The higher the AUC, the better the prediction of the model and 
discriminatory ability (0.5 ≤ no discrimination; 1= perfect discrimination). The highest and lowest 
AUC values in our study range from 0.98 to 0.52 (Table 2) which indicated that these 
metabolites could be potential biomarkers for diagnosis, surveillance, and early detection of 
metabolic perturbations in such patients. A cumulative ROC curves of serum metabolites 
significantly altered in DB vs. HC, DC vs. HC, and DC vs. DB are shown in Figure S1. Henceforth 
these metabolites can be aptly used for clinical diagnosis and surveillance in diabetic patients. 
The discriminatory metabolites were mainly related to lipid, amino acid, glucose, and energy 
metabolism. 
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Figure 3. Box Plot’s. 

Box-whisker plots of metabolites that were significantly perturbed across the groups derived from 1D 1H CPMG 
NMR spectra using RF analysis. In the box plots, the boxes denote interquartile ranges, horizontal line inside the 
box denote the median, and bottom and top boundaries of boxes are 25th and 75th percentiles, respectively. 
Lower and upper whiskers are 5th and 95th percentiles, respectively. 
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 The increased and decreased levels of metabolites in the body fluids can differentiate 
between healthy and diseased states. Compared with those from healthy controls, serum 
samples of patients with DB and DC showed (a) increased levels of glucose, methionine, histidine 
(b) by the decreased levels of LDL/VLDL, lipids, polyunsaturated lipids, N-acetyl 
glycoproteins(NAG), lipids, lactate, pyruvate, citrate, succinate, acetoacetate, 
creatinine/creatine, and most of the amino acids (like alanine, valine, isoleucine, proline, 
glutamate, glutamine, arginine, histidine, and phenylalanine, etc). Most of the metabolites in DB 
and DC followed a similar pattern in a matter of their increased or decreased levels of serum 
with respect to the control group. However, when compared to the DB, the DC patients have an 
increased levels of succinate, citrate, glucose, threonine, PUFA and the decreased levels of 
LDL/VLDL, lipids, N-acetyl glycoproteins (NAG), pyruvate, creatine, and amino acids (like valine, 
arginine, glutamate, methionine, and proline. The results are summarized in Table 2 which clearly 
shows that protein biosynthesis, amino-acid metabolism, glucose-energy metabolism and 
glycerolipid metabolism are disturbed in patients with DC. Hence metabolic perturbation in 
patients with DC has been discussed in detail in the discussion section. 

Table 2: Metabolic differences between the DB and DC with respect to HC; and DC with respect 
to DB. The up (↑) and down (↓) arrows represent, increased and decreased levels of the 
metabolites respectively.  

# 1H ppm Metabolite 
DB vs. HC DC vs. HC DC vs. DB 

AUC↓↑ AUC↓↑ AUC↓↑ 

1 0.805-0.885 HDL/LDL 0.75 (↓) 0.71 (↓) 0.59 (↓)* 

2 0.935 Iso/Leucine 0.68 (↓)* 0.84 (↓) x (↓) 

3 1.015 Valine x (↓) x (↓) 0.58 (↓)* 

4 1.215-1.245 LDL/VLDL 0.71 (↓) 0.74 (↓) 0.57 (↓)* 

5 1.665-1.705 Arginine x (↓) 0.73 (↓) 0.63 (↓)* 

6 2.015 NAG 0.78 (↓) 0.82 (↓) 0.60 (↓)* 

7 2.115-2.135 Glutamate 0.86 (↓) 0.92 (↓) 0.63 (↓)* 

8 2.205 Acetoacetate x (↓) 0.86 (↓) x (↓) 

9 2.355 Pyruvate x (↓) x (↓) 0.57 (↓)* 

10 2.385 Succinate x(↓) x (↑) 0.52 (↑)* 

11 2.425-2.465 Glutamine 0.70 (↓) 0.84 (↓) x (↓) 

12 2.515,2.655 Citrate 0.82 (↓) 0.97 (↓) 0.70 (↑) 

13 2.545 Methylamine 0.78 (↓) 0.89 (↓) x (↑) 

14 2.615 Methionine 0.59 (↓)* x (↓) 0.68 (↓) 

15 2.905 Trimethylamine x (↓) 0.76 (↓) x (↑) 

16 3.015 Creatin-e/ine 0.71 (↓) 0.86 (↓) 0.58 (↓)* 

17 3.265 Betaine 0.67 (↓)* 0.87 (↓) x (↑) 

18 3.475,3.895,4.625 Glucose 0.92 (↑) 0.98 (↑) 0.67 (↑)* 

19 4.085 Lactate x (↓) 0.70 (↓) x (↓) 

20 4.125 Proline x (↓) x (↓) 0.58 (↓)* 

21 4.225-4.245 Threonine 0.76 (↓) 0.94 (↓) 0.53 (↑)* 

22 5.245-5.325 PUFA  0.68 (↓) 0.79 (↓) 0.64 (↑) 

23 7.295 Phenylalanine 0.53 (↓)* 0.85 (↓) x (↑) 

24 7.025, 7.725 Histidine 0.80 (↑) 0.87 (↑) x (↑) 
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Note: * = p-Value > 0.05, x = MDA value < 0.001 (ie. Metabolite not significant in the respective 
group). 

3.3 Metabolic Pathway Analysis: 

To gain insight into the metabolic mechanism of DC, the metabolic pathways of the significantly 
altered metabolites (identified through RF analysis) were analyzed using the ‘‘pathway 
analysis’’ module within the MetaboAnalyst software. This web-based Metabolic Pathway 
Analysis (MetPA) function implemented in MetaboAnalyst, It (MetPA) enables identification of 
altered metabolic pathways, metabolomic data interpretation, and visulization22. The 
metabolites as enlisted in Table S1 were only used for the detailed analysis of the perturbed 
metabolites in DC compared to HC and DB, metabolites such as lipids (V/LDL, PUFA),  NAG, are 
not recognized by the programme, hence were excluded from the list. The final list of altered 
metabolites were uploaded and analyzed in MetPA. The built-in human (Homo sapiens) 
pathway library and pathway analysis algorithm -hypergeometric test and -Relative-
betweenness Centrality was employed for Over-Representation Analysis and Pathway 
Topology Analysis respectively. All matched pathways are shown according to their p-values 
from the pathway enrichment analysis (vertical axis or y-axis, the intensity of color) and pathway 
impact values (horizontal axis or x-axis, the size of circle) from pathway topology analysis, with 
the most impacted pathways colored in red,  results as shown graphically in Figure 4. The 
metabolic pathways with an impact value greater than 0.1 were considered to be target 
pathways with high significance to disease morbidity. These pathways can be considered for 
further exploration through biochemical analysis. Taken together, DC patients have distinctive 
metabolic pathways compared to HC and DB patients.  

 

Figure 4. Pathway Analysis. 

Identification of the perturbed metabolic pathways by overrepresentation analysis (ORA) using the significantly 
altered metabolites identified by RF VIP score. The analysis was done by using a pathway library restricted to 
Humans, and p-values for ORA stand for hypergeometric test. Test p-value (vertical axis, intensity of color) and 
impact factor (horizontal axis, size of circle). 

3.4 Correlation analysis: 

Metabolites are fundamental to the biological system, to evaluate the complex interaction of 
perturbed metabolites we also performed correlation analysis (CA). CA is important to find the 
asymptomatic post diabetic associated complications among diabetic individual on the basis of 
metabolic profiling. The identified significantly changed serum metabolites in DC patients were 
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subjected to CA. The Colour Heat Map was designed using Pearson’s correlation coefficients 
analysis in statistical analysis Module of Metaboanalyst of 15 serum metabolites in DC patients 
to find the interrelation as depicted in Figure 5. To analyze the result of Color Heat Map we 
have taken only those metabolites which have a correlation score of r > 0.61 (Table S2). From 
this correlation color Heat Map we found that the amino acid intermediates of TCA cycle, 
glucogenic amino acids and methylamine metabolism were predominantly involved viz. 
succinate, citrate, as well as glutamate, arginine, and valine and methylamine are the most 
significantly positive correlated metabolites. Moreover, to this the correlated metabolites and 
the intermediated of TCA cycle will undoubtedly mark a print on asymptomatic post diabetic 
complication and probably these metabolites will be used as a prognostic marker for the prior 
onset of disease. This correlation map and metabolites will be a boon for future therapeutic 
strategies and also patient care beforehand.  

 

Figure 5. Correlation Analysis. 

A color heat map of the Pearson’s correlation coefficients computed for the 15 metabolites observed in the DC 
patients. The colors refer to the correlation coefficient ranging from 1 (red) to -1 (green). 

4. Discussion 

Diabetes is a lifestyle-related disorder, and thus it is crucial to focus efforts on the identification 
of biomarkers, which can help in the diagnosis and early intervention of the disease. In recent 
times metabolomics has emerged as an imperative tool in diabetes research13, 23. The present 
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study used the NMR based metabolomics coupled with Randon Forest to identify the 
discriminatory metabolites. Our results show significant variations in metabolic profiles of 
patients with DC compared to DB, suggesting that NMR-based metabolomics has a definite say 
in monitoring the metabolic signatures associated with DC. As evident from Table 2, 26 NMR-
based metabolite entities were found to be perturbed in sera of DB and DC patients compared 
to HC, whereas 15 metabolites were found to be perturbed in DC as compared to DB patients. 
The major group of altered metabolites in the sera of DC patients contained (a) intermediates 
of the tricarboxylic acid cycle (TCA cycle), products of glycolysis and energy metabolism (such 
as glucose, lactate, pyruvate, succinate, citrate, creatine and creatinine), (b) amino acids 
(glutamate, valine, proline, arginine) and (c) molecules related to lipid and membrane 
metabolism like lipoproteins (V/LDL), PUFA, and NAG. The implications of these metabolic 
differences and pathways in the pathophysiology of the DC have been discussed further. 

 

4.1 Energy Metabolism 

An elevated glucose is the metabolic hallmark of diabetes, and is due to the enhanced glucose 
production from noncarbohydrate sources (gluconeogenesis) and the breakdown of glycogen 
(glycogenolysis). As evident from our study, the DC patients has relatively higher levels of 
glucose compared to DB and HC. The increased level of glucose followed by decreased levels 
of lactate suggests disturbed glucose metabolism with dampened aerobic glycolytic activity in 
DC patients24. The elevated glucose (hyperglycemia) as evident could be one of the possible 
reasons inducing oxidative stress in such patients, a feature common to all cell types that are 
damaged by hyperglycemia owing to the increased production of Reactive oxygen species 
(ROS) and Reactive nitrogen species (RNS)25. Oxidative stress (imbalance between pro-oxidants 
and antioxidants) causes oxidation of various biomolecules including protein, lipids, 
carbohydrates, DNA, and mitochondrial DNA (mtDNA) within the body26-27. The damage to 
mitochondria further increases the production of ROS, rendering it susceptible to oxidative 
damage and mutations28. Mitochondrial dysfunction aggravates the energy crisis since that ATP 
is produced mainly from aerobic glucose oxidation in mitochondria. Creatine and creatinine 
plays a pivotal role in energy homeostasis, their depleted levels further support the notion of 
disorder of energy metabolism, moreover they also reflect the deteriorating condition of the DC 
patients, as evident in various reports creatine has protective effects against hyperglycemia 
and is an antioxidant29-30, whereas creatinine is a marker of low skeletal muscle mass and insulin 
resistance31. With respect to HC, DB and DC patients have decreased levels of energy 
metabolites, pyruvate, succinate, and citrate. Whereas, the decreased levels of pyruvate to the 
increased levels of succinate and citrate in DC compared to the DB patients, suggest that TCA 
cycle is altered to cause the accumulation of intermediate products of the TCA cycle and 
impaired aerobic glycolysis and, thus dampened oxidative phosphorylation and ATP production 
in such patients. As evident TCA cycle and its intermediates play an eminent role in the metabolic 
and physiological state of the co-morbid patients. 

4.2 Lipid metabolism 

Lipids are one of the primary sources of energy for metabolism. Lipid abnormalities are common 
in diabetic patients and have been reported to be the major predictors of metabolic 
disturbances and critical medical conditions, such as dyslipidemia, hypertension, diabetes and 
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cardiovascular diseases32. The serum samples of DC patients have significantly decreased levels 
of HDL, V/LDL and increased levels of PUFA compared to DB and HC. The increased levels of 
PUFA are thought to be widely beneficial to human health, because of their association with 
mitigation of the inflammatory response in disease conditions such as autoimmune, heart, arthritis 
and diabetes33. The possible reason for decreased serum levels of LDL could be due to 
peroxidation of LDL to Ox-LDL which is aberrantly involved in inflammatory processes through 
the formation of higher molecular weight complexes with distinct inflammatory mediators34. It is 
one of the significant risk factors for cardiovascular diseases and is also regarded as 
comorbidity affecting the development of kidney complications in diabetes35-36 and is also 
influential in the progression of diabetic neuropathy37. Further acetoacetate was also found to 
be down-regulated and its decrease reflects a disturbed lipid metabolism, for its reliance on 
ketone bodies to meets its energy requirements in diabetic patients38. Taken together, the lipid 
metabolic profiles in sera of DC patients suggested dysregulation of lipid metabolism and 
metabolic alterations in energy production. In addition to changes in lipoprotein levels, residual 
signals of N-acetyl glycoproteins (NAG) were found to be decreased in DC patients compared 
to DB and HC. N-acetyl glycoproteins (N-acetylglucosamine and N-acetylgalactosamine glycan 
moieties) are mainly acute phase proteins with anti-inflammatory properties and are expressed 
more during inflammation and immune responses, these proteins also help to protect the body 
from oxidative stress owing to their antioxidant properties39. Furthermore, methylamine, 
trimethylamine, and betaine are related to methylamine metabolism and are processed by gut 
microbiota40. The decrease in the serum levels of these metabolites suggests a reduced number 
and/or altered gut microbiota metabolism. Their decrease in the serum suggests liver dysfunction 
consistent in several human and animal studies41. Consequently, the observed reduction in major 
structural lipids may be a consequence of increased fatty acid β-oxidation and reduced 
bioavailability of fatty acids for phospholipid/structural lipid synthesis, followed by decreased 
levels of anti-inflammatory proteins owing to oxidative damage and hyperglycemia.  

 

4.3 Amino acid Metabolism 

Amino acids are small organic molecules that play a key metabolic and physiological roles in 
all living organisms. They serve as substrates for protein synthesis, glyconeogenesis, ureagenesis 
and precursors for syntheses of hormones and low-molecular-weight nitrogenous substances and 
various other catabolic processes42. Metabolic alterations in amino acids levels (a) essential, 
non-essential, conditionally essential, (b) glucogenic and ketogenic, (c) branched-chain amino 
acids (BCAA) and aromatic amino acids (AAA) in the serum are common in conditions of disease 
(e.g., cancer, diabetes)43-44. Amino acids serve as a key source of energy, especially during 
conditions in which glucose availability is limited.  Their significance is not limited to this only but 
are involved in protein biosynthesis as well as biosynthesis of several biogenic amines essential 
for survival in conditions of acute stress45. Muscles along with liver release a high quantity of 
amino acids present in the body to maintain the cellular homeostasis in conditions of energy 
deprivation46. The glucogenic amino acids are broken down into pyruvate, alpha-ketoglutarate, 
succinyl-CoA, fumarate, and oxaloacetate that can be predominantly converted into glucose or 
glycogen via TCA cycle or gluconeogenesis. As evident from our study the up and down-
regulated metabolites thus suggest perturbed glycolysis and beta-oxidation pathway. 
Consistent with this report, our results also indicate decreased levels of several amino acids in 
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the sera of DC patients (such as glutamate, glutamine, methionine, arginine, proline, BCAA -
isoleucine, leucine, valine) and increased levels of threonine and AAA-histidine, phenylalanine, 
suggesting the aberrant amino acid catabolism and protein biosynthesis. The BCAA and AAA 
are catabolized to replenish the depleted levels of TCA cycle intermediates or as acetyl 
derivatives to generate energy during stress suggesting dampened glycolysis alongside muscle 
and protein break down47. Serum levels of amino acids, particularly BCAA and AAA, have long 
been recognized as a marker of obesity-associated insulin resistance48-49. A noteworthy finding 
from our study was that the levels of proline and arginine were significantly lower in DC patients 
compared to DB and HC. Arginine being the most versatile amino acids in cells serves as a 
precursor for the synthesis of proteins, nitric oxide, urea, polyamines, proline, glutamate, and 
creatine50. Proline is a key precursor in the synthesis of skeletal muscle protein collagen which is 
a primary response to repair an injury51. Arginine and proline as found through studies play a 
pivotal role in wound healing when supplemented in diabetic patients. Thus their decreased 
level shows that the healing capacity is more perturbed in DC patients as compared to DB and 
HC52. The decreased levels of glutamate and glutamine suggest that they are being actively 
metabolized to meet the energy requirements of the cell via gluconeogenesis. Both glutamate 
and glutamine along with methionine are also important  components of the pathway, which 
leads to the synthesis of glutathione, an important intracellular antioxidant rendering cells more 
susceptible to oxidative stress. 
 

5. Conclusions 

In the present study, 1H NMR-based serum metabolomics combined with random forest analysis 
was used to identify the discriminatory metabolites.  About 24 metabolites were found be 
responsible for differentiating DC and DB independently from HC with high reliability. However, 
15 metabolites were identified as the discriminatory biomarkers of DC from DB. Our findings 
suggest that progression to DC is characterized by increased oxidative stress, perturbed states 
of inflammation, altered lipid metabolism and gut microbiota. More importantly, these findings 
serve as a basis for the identification of metabolic states in conjunction with metabolic pathways 
that can be used as diagnostic and prognostic indicators and also identify novel therapeutic 
targets owing to the perturbed metabolic pathways in pathophysiology of DC. 
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