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Abstract: Efficient member revocation and strong security against attacks are prominent requirements 
in group signature schemes. Among the revocation approaches Verifier-local revocation is the most 
flexible and efficient method since it  requires to  inform only the verifiers regarding the  revoked 
members. The verifier-local revocation technique uses a token system to manage members’ status. 
However, the existing group signature schemes with verifier-local r evocability r ely o n weaker 
security. On the other hand, existing static group signature schemes rely on a stronger security 
notion called, full-anonymity. Achieving the full-anonymity for group signature schemes with 
verifier-local revocation i s a  quite challenging t ask. This paper aims to obtain stronger security 
for the lattice-based group signature schemes with verifier-local revocability, which is closer to the 
full-anonymity. Moreover, this paper delivers a new key-generation method which outputs revocation 
tokens without deriving from the users’ signing keys. By applying the tracing algorithm given in 
group signature schemes for static groups, this paper also outputs an efficient tracing mechanism. 
Thus, we deliver a new group signature scheme with verifier-local revocation that satisfies a stronger 
security from lattices.

Keywords: lattice-based group signatures; verifier-local r evocation; a nonymity; almost-full 
anonymity; traceability16

1. Introduction17

Group Signatures, introduced by Chaum and van Heyst [1] allow the group members to issue18

signatures for the sake of the group while hiding their information (anonymity). On the other hand,19

the group manager can cancel anonymity of the signers and identify the owner of the signature20

(traceability). In other words, in group signature schemes, only the valid group members can sign21

messages, the receiver cannot identify the signer but he can authenticate any signature, and in the22

case of dispute an authorized person (the group manager) can identify the signer. Thus, the signer23

should be anonymous to the receivers and traceable to the authorities (the group manager). These24

two features (anonymity and traceability) make group signature schemes attractive to many real-life25

applications such as key-card access systems, digital right management, and anonymous printing.26

Since the group signatures have been introduced, many proposals have been presented with27

different levels of improvements and security. Among them, the scheme presented by Chen and28

Pedersen [2] and the scheme suggested by Ateniese and Tsudik [3] submitted new features such as29

framing resistance, coalition resistance, and exculpability. Again, Ateniese et al.[4] proposed a new30

scheme to overcome the weaknesses of the previous schemes, and it claimed that the new scheme31

is the first provably secure scheme in random oracle model. Later, Bellare et al. [5] formulated a32

stronger security model (BMW03 model) with two security requirements called full anonymity and full33

traceability, which imply the existing security properties. Even though the BMW03 model is known as34

the strongest security model at present, it serves for static groups only. By adopting the BMW03 model,35

several group signatures have been proposed but constructing a scheme which supports revocation36

and with a high-security level is a challenge.37
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1.1. Member revocation approaches38

In real world, almost all the group settings are stateless. Member revocation is one of the principal39

features of a group. Misbehaved and retired members should be restricted generating signatures on40

behalf of the group in future. One naive approach for member revocation is replacing all the keys41

newly except for the revoking member when a member is revoked. Thus any revoked member cannot42

produce a valid signature because he does not know the new keys. But since this approach requires to43

distribute the newly generated keys to all the members, verifiers, and authorized persons, this is not44

suitable for large groups. Bresson and Stern [6] proposed a method which requires signers to prove45

at the time of signing that his member certificate is not in the public revocation list. Camenisch et al.46

[7] suggested a revocation method that used dynamic accumulators (accumulator is an algorithm, that47

allows hashing a large set of inputs to one shorter value and dynamic accumulator allows to add or48

delete inputs dynamically). Since the approach proposed by Camenisch et al.[7] requires members to49

keep track of revoked user information, and needs to update their membership for each time that a50

member is revoked, workloads of the existing group members increase.51

A different approach called Verifier-local Revocation (VLR) was suggested by Brickell [8] and52

formalized by Boneh et al. [9] in their group signature scheme. In VLR mechanism, every member53

has a revocation token other than their secret signing key to identify his status, i.e., whether he is54

revoked or not. When a member is revoked his token is placed on a list called revocation list (RL) and55

the latest revocation list is passed to the verifiers. The verifiers can use this revocation list at the time56

of verifying a signature to authenticate whether the signer is an existing member or not. Since the57

number of verifiers in a group is less than the number of members, VLR mechanism is convenient for58

large groups than any other revocation approaches. Because of these reasons, VLR is considered as the59

most flexible revocation method at present.60

In general, group signature schemes consist of four algorithms, namely, KeyGen, Sign, Verify, and61

Open. On the other hand, any VLR group signature scheme consists of only the former three algorithms62

because it has an implicit tracing algorithm instead of Open for tracing misbehaved users.63

The implicit tracing algorithm executes Verifiy repeatedly for each user until it returns invalid.64

Then the implicit tracing algorithm returns the index of the first user for which Verifiy returns invalid.65

The returned index is the index of the misbehaved user. For a given signature, the implicit tracing66

algorithm can trace at least one user who generated the signature.67

Most of the VLR group signature schemes follow the bilinear map setting, which will be insecure68

when quantum computers become a reality. Lattice-based cryptography is one of the answers for69

post-quantum and the first lattice-based group signature scheme with VLR was proposed in 2014 by70

Langlois et al. [10].71

1.2. Lattice-based Group Signature Schemes72

At present lattice-based cryptography is the most important candidate for post-quantum73

cryptography because it holds a great promise against quantum computers. Lattice-based cryptography74

has strong security proofs based on the worst-case hardness of the lattice problems and efficient75

implementation.76

The first lattice-based group signature scheme was proposed by Gordon et al. [11] in 2010. A77

noticeable disadvantage of this scheme is the linear barrier. i.e., the size of the group signature increases78

with the number of members N in a group. Thus the size of the signatures given in the scheme in [11]79

is O(N) Then Camenisch et al.[12] proposed a more secure and efficient scheme with an anonymous80

attribute token system. However, Camenisch’s scheme [12] was also unable to overcome the linear-size81

problem as its signature size is still linear in N. Finally, the linear-size problem was overcome by the82

scheme proposed by Languillaumie et al. [13]. In their scheme, the group public key size and the83

signature size are both proportional to log N.84

However, above three lattice-based group signature schemes support only static groups, not85

dynamic groups. In 2014, Langlois et al.[10] suggested the first lattice-based group signature scheme86

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2018                   doi:10.20944/preprints201808.0014.v1

http://dx.doi.org/10.20944/preprints201808.0014.v1


3 of 28

that supports member revocation. In their scheme they have used Verifier-local Revocation (VLR) as the87

revocation mechanism and thus the first revocation scheme that is believed to be quantum-resistant88

at that time. Moreover, their scheme has several advantages over previously proposed schemes. For89

instance, the scheme given in [10] is simple as the signature of it is basically an all-in-one proof of90

knowledge. Further, it has shorter signatures and group public keys comparing to other schemes.91

Even though this scheme has several remarkable advantages over the previous works, the security92

of the scheme is weaker since the scheme satisfies a relaxed security notion called selfless-anonymity.93

Moreover, like any other VLR group signature scheme it has the implicit tracing algorithm that uses94

revocation token as the tracing key. Since the implicit tracing algorithm requires to run Verify until the95

algorithm returns invalid, this is not suitable for large groups.96

Most of the schemes proposed after 2003 use the BMW03 model, which is known as the strongest97

security model at present. Among those schemes, the lattice-based group signature scheme suggested98

by Ling et al. [14] has achieved significant features than the other schemes. The scheme [14] relies99

on relatively weak security assumptions and the size of the public key and the signature is shorter.100

Moreover, the scheme itself simpler since the construction is based on Boyen’s signature scheme [15]101

which is known as a simple construction. Addition to these, the scheme in [14] has a ring variant102

which is considered as a noticeable approach. However, this scheme satisfies only static groups, not103

dynamic groups because the scheme does not support member registration or member revocation.104

Later, Nguyen et al. [16] also proposed a simpler group signature scheme. In their scheme the105

security is reduced to the hardness of Short Integer Solution (SIS) and Learning With Errors (LWE) in106

the random oracle model. However, this scheme is also available for static groups not for dynamic107

groups.108

Libert et al.[17] constructed a group signature scheme based on lattice assumptions for dynamic109

groups. In their work, they have facilitated the user registration but have not considered the user110

revocation problem. The first fully dynamic group signature scheme from lattices was proposed by111

Ling et al. [? ] using accumulators, which seems to be less efficient than using VLR in large groups.112

1.3. Our Contribution113

In our work, we focus on presenting a lattice-based group signature scheme which supports114

efficient member revocation and which is with a high security level. When applying a member115

revocation mechanism, we consider an approach which will not require changing the existing keys116

when a member is revoked. Thus, Verifier-local Revocation (VLR) seems to be the most flexible revocation117

approaches for our scheme, because it only requires to update the verifiers with revocation information,118

but not the existing members at the member revocation. We adopt features in the BMW03 model to119

make our scheme secure. However, since the previous VLR schemes have not use the BMW03 model120

and the BMW03 model was not proposed for dynamic groups, we have to cope with revocation queries121

(in the anonymity game) in the BMW03 model. The revocation query allows the adversary to request122

for the revocation tokens of the members. However, if the adversary obtains the challenged members’123

tokens, he can identify the challenged signature’s index by executing Verify with the challenged124

members’ tokens. Thus, coping with revocation query in the BMW03 model is quite difficult. The125

scheme given in [18] which is based on general assumptions, provides member revocation with126

VLR and satisfies a stronger security than the security given in the original VLR group signature127

schemes. The scheme given in [18] suggested a security notion called almost-full anonymity, which is a128

restricted version of full anonymity given in the BMW03 model. The almost-full anonymity give all129

the secret signing keys to the adversary as the full-anonymity game and allow revocation query as an130

additional feature. However, it will not allow the adversary to access revocation token related to the131

challenging incides, and it will not generate the challenging signature for the indices which are used in132

the revocation queries. The scheme given in [18] is based on general assumption. Thus, we discuss133

how to employ the almost-full anonymity for lattice-based VLR group signature schemes. Thus, we134

use the almost-full anonymity to secure our lattice-based group signature scheme with VLR.135
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In the VLR group signature scheme given in [10] revocation tokens are part of the particular secret136

signing keys. Since we are providing all the secret keys to the adversary at the anonymity game, the137

adversary can create revocation tokens using the information he has. VLR schemes become insecure138

when revocation tokens are generated using secret signing keys and providing the secret keys to the139

adversary (as in full anonymity). Thus, we deliver a different method to generate revocation tokens in140

our scheme.141

The implicit tracing algorithm given in VLR group signature schemes are not suitable for a large142

groups because the time consumption is high in the implicit tracing algorithm. Thus we use the143

explicit tracing algorithm for the lattice-based group signature scheme with VLR to identify any user.144

Accordingly, we use the group manager’s secret key to find the signers instead of running Verify a145

linear time in the number of users as in previous VLR schemes with the implicit tracing algorithm.146

Since the explicit tracing algorithm, helps to identify any signer by running it only once, this can be147

used for any large groups. As a result, we propose a lattice-based group signature scheme, which is148

almost fully secured, supports member revocation and tracing signers efficiently, which provides a149

new method to generate revocation tokens, and suitable even for a large group.150

1.4. Road map151

In Section 2 we provide the preliminaries, and in Section 3 we discuss some of the existing security152

notions, the difficulty of adapting the BMW03 model to cope with revocation queries and recall the153

security notion, almost-full anonymity. In Section 4 we provide our lattice-based group signature scheme154

including a different method for generation of revocation tokens, explicit tracing algorithm, and155

underlying interactive argument system. The proof of the correctness and the security of the scheme is156

discussed in Section 5. In Section 6 we conclude the paper and discuss open problems.157

2. Preliminaries158

2.1. Notations159

For any integer k ≥ 1, we denote by [k] the set of integers {1, . . . , k}. We denote matrices by160

bold upper-case letters such as A, vectors by bold lower-case letters, such as x and assume that all161

vectors are in column form. The concatenation of matrices A ∈ Rn×m and B ∈ Rn×k is denoted by162

[A|B] ∈ Rn×(m+k). The concatenation of vectors x ∈ Rm and y ∈ Rk is denoted by (x‖y) ∈ Rm+k.163

If S is a finite set, b $← S means that b is chosen uniformly at random from S. If S is a probability164

distribution b $← S means that b is drawn according to S.165

A negligible function, denoted by negl(n), is an f (n) such that f(n) = o(n−c) for every fixed constant166

c. Moreover, the statistical distance between two distributions X and Y over a countable domain D is167

1
2 ∑d∈D |X(d)−Y(d)| and we say two distributions (formally, two ensembles of distributions indexed168

by n) are statistically close if their statistical distance is negligible in n.169

We denote by n the security parameter. The maximum number of expected users in a group170

is N = 2` and each member’s identity is denoted by a string d ∈ {0, 1}`, which is the binary171

representation of his index. Depending on the given n we fix the other parameters as in Table 1.172
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Table 1. Parameters of the scheme

Parameter Value or Asymptotic bound

Modulus q ω(n2 log n)
Dimension m ≥ 2n log q
Gaussian parameter σ ω(

√
n log q log n)

Integer norm bound β dσ · log me s.t (4β + 1)2 ≤ q
Number of decomposition p blog βc + 1

Sequence of integers:β1, β2, β3, . . . , βp
β1 = dβ/2e; β2 = d(β− β1)/2e;

β3 = d(β− β1 − β2)/2e; . . . ; βp = 1
Number of protocol repetitions t ω(log n)

Let k1 := m + ` and k2 := n + m + `. The norm bound for LWE noises is integer b such that173

q/b = `Õ(n). Let χ be a b-bounded distribution over Z.174

Let H1: {0, 1}∗ → Zn×`
q , H2: {0, 1}∗ → {1, 2, 3}t, and G: {0, 1}∗ → Zn×m

q are hash functions,175

modeled as random oracles.176

2.2. Lattices177

Let q be a prime and B = [b1| · · · |bm] ∈ Zr×m
q be linearly independent vectors in Zr

q. The
r-dimensional lattice Λ(B) for B is defined as

Λ(B) = {y ∈ Zr | y ≡ Bx mod q for some x ∈ Zm
q },

which is the set of all linear combinations of columns of B and m is the rank of B.178

We consider a discrete Gaussian distribution for a lattice. The Gaussian function centered179

in a vector c with parameter s > 0 is defined as ρs,c(x) = e−π‖(x−c)/s‖2
and the corresponding180

probability density function proportional to ρs,c is defined as Ds,c(x) = ρs,c(x)/sn for all x ∈ Rn. The181

discrete Gaussian distribution with respect to a lattice Λ is defined as DΛ,s,c(x) = Ds,c(x)/Ds,c(Λ) =182

ρs,c(x)/ρs,c(Λ) for all x ∈ Λ. Since Zm is also a lattice, we can define a discrete Gaussian distribution183

for Zm. By DZm ,σ, we denote the discrete Gaussian distribution for Zm around the origin with the184

standard deviation σ.185

2.3. Lattice-Related Properties186

Here we describe the hardness of computational problems of lattices that we use in our scheme.187

First we define SIVP problem. Then we define the two main average-case problems; LWE and SIS, and188

the hardness of them. We prove our scheme’s security based on their hardness.189

2.3.1. Approximate Shortest Independent Vectors Problem (SIVPγ)190

In general finding a good basis for a given lattice is called the basis reduction problem and SIVP is191

one of basis reduction problems.192

Definition 1 (Approximate Shortest Independent Vectors Problem (SIVPγ [19]). Given a basis B of an193

n-dimentional lattice L = L(B), finding linearly independent vectors s1, . . . , sn is SIVPγ problem, where194

||si|| ≤ γ(n) · λn(L) for all i (λn(L) is n-th successive minimum).195

2.3.2. Learning With Errors (LWE)196

Regev [20] introduced LWE problem, which is a lattice problem and hard to solve. His work is to197

result a reduction from worst-case lattice problems to a certain learning problem.198
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Definition 2 (Learning With Errors Problem (LWEn,q,χ) [19]). LWE is parametrized by n, m ≥ 1, q ≥ 2,199

and χ. For s ∈ Zn
q , the distribution As,χ is obtained by sampling a ∈ Zn

q uniformly at random and e← χ, and200

outputting the pair (a, aT · s + e).201

There are two version of LWE problem: Search-LWE and Decision-LWE. Search-LWE is to find202

the secret s and Decision-LWE is to distinguish LWE samples and samples chosen according to the203

uniformly distribution. We use the hardness of Decision-LWE problem for our scheme.204

For a prime power q, β ≥
√

nω(log n), and distribution χ, solving LWEn,q,χ problem is at least as205

hard as solving SIVPγ, where γ = Õ(nq/β) [20,21].206

2.3.3. Short Integer Solution (SISn,m,q,β)207

SIS was first introduced in seminal work of Ajtai [22]. SIS has served in many applications as208

identification schemes, one-way hash functions and digital signatures. SIS problem asks to find a209

sufficiently short nontrivial integer combination of given uniformly random elements of a certain large210

finite additive group, which sums to zero [19].211

Definition 3 (Short Integer Solution Problem (SISn,m,q,β) [19,20]). Given m uniformly random vectors212

ai ∈ Zn
q , forming the columns of a matrix A ∈ Zn×m

q , find a nonzero vector x ∈ Λ⊥(A) such that ||x|| ≤ β213

and Ax = 0 mod q.214

SIS problem is for homogeneous systems. Later, Gentry et al. [21] formalized its inhomogeneous215

version ISIS problem.216

Definition 4 (Inhomogeneous Short Integer Solution Problem (ISISn,m,q,β) [21]). Given matrix217

A ∈ Zn×m
q with m uniformly random vectors ai ∈ Zn

q and a uniformly random vector y ∈ Zn
q , ISISn,m,q,β asks218

to find a nonzero vector x ∈ Λ⊥u (A) such that ||x|| ≤ β and A · x = y mod q.219

For any m, β, and for any q ≥ β ·ω(
√

n log n), solving SISn,m,q,β problem and ISISn,m,q,β problem220

with non-negligible probability is at least as hard as solving SIVPγ problem, for some γ = β · Õ(
√

n)221

[21].222

2.4. Lattice-Related Algorithms223

For our construction, we require a family of functions such that each function capable of compute224

with any input but not feasible to invert the given input. Such family of functions are called one-way225

functions. Trapdoor functions are one-way functions that keep a secret information (trapdoor) and226

without this information finding the inverse of the function is hard. We use trapdoor functions in our227

constructions since anyone cannot identify the inverse of the function without the trapdoor.228

We use a randomized nearest-plane algorithm called SampleD, which was discussed in [21] and229

[23]. The algorithm SampleD samples from a discrete Gaussian DΛ,s,c over any lattice Λ. We use the230

version given in [23].231

• SampleD(R, A, u, σ) outputs x ∈ Zm sampled from the distribution DZm ,σ for any vector u in the232

image of A, a trapdoor R and σ = ω(
√

n log q log n). The output x should satisfy the condition233

A · x = u mod q.234

According to [21] the inputs to SampleD is an (ordered) basis B of an n-dimensional lattice Λ, a235

parameter s > 0, and a center c and SampleD always outputs a lattice vector.236

The notion of preimage sampleable trapdoor functions (PSTFs) was discussed in [21]. PSTFs237

are defined by probabilistic polynomial-time algorithms GenTrap, SamplePre. There are several238

constructions of PSTFs. We use GenTrap and SamplePre given in [23,24].239
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• GenTrap(n, m, q) is an efficient randomized algorithm that outputs a matrix A ∈ Zn×m
q and a240

trapdoor matrix R for a given any integers n ≥ 1, q ≥ 2, and sufficiently large m ≥ 2n log q. The241

distribution of the output A is negl(n)-far from the uniform distribution.242

• SamplePre(A, R, u, σ) outputs a sample e ∈ Zm from a distribution that is within negligible243

statistical distance of DΛ u
q (A),σ, on input a matrix A ∈ Zn×m

q , a trapdoor basis R, a target image244

u ∈ Zn
q , and the standard deviation σ = ω(

√
n log q log n).245

Moreover, we use witness decomposition and extensions technique ( WitnessDE) and matrix extension246

technique (MatrixExt) described in [10]. These techniques are needed to convince the verifier the247

prover’s witness in the interactive protocol discussed in Section 4.248

• WitnessDE outputs p vectors z1, . . . , zp ∈ SecretExt(d), on input x, the witness of the prover, for249

some d = d[1] · · · d[`] ∈ {0, 1}`, where d[i] is the i-th bit of the binary representation of d.250

SecretExt(d) is a set of all vectors x = (x0||x0
1||x1

1|| . . . ||x0
` ||x

1
`) ∈ Σ(2`+1)3m with 2`+ 1 blocks of251

size m, where `+ 1 blocks x0, xd[1]
1 , . . . , xd[`]

` are elements of {−1, 0, 1}3m, and remaining blocks252

are zero-blocks 03m.253

• MatrixExt outputs an extended matrix A∗ ∈ Zn×(2`+1)3m
q on input matrix A ∈ Zn×(2`+1)m

q , where254

A∗ is generated by appending 2m zero-columns to each of the component-matrices of A.255

2.5. VLR Group Signature256

VLR group signatures require distributing the revocation list only to the verifiers when a member257

is revoked. While VLR group signatures are for dynamic groups, the general group signature scheme258

is for static groups and consists of four probabilistic polynomial time (PPT) algorithms: KeyGen, Sign,259

Verify and Open [5].260

• KeyGen(n,N): This randomized PPT algorithm outputs a group public key gpk, a group manager261

secret key gmsk, and user secret keys gsk[d] (d ∈ {0, . . . , N− 1}) for the security parameter n262

and the number of group members N.263

• Sign(gpk, gsk[d], M): This randomized algorithm is used by group members to generate a264

signature Σ on a message M using the group public key gpk and user secret key gsk[d].265

• Verify(gpk, Σ, M): This deterministic algorithm verifies whether the generated signature Σ is266

valid on the given message M using gpk.267

• Open(gmsk, M, Σ): This algorithm takes as inputs the group manager’s secret key gmsk, a268

message M, and a signature Σ on M and returns the index of the user, who has generated the269

signature. If Open cannot find the signer, then it returns the failure symbol.270

271

VLR group signature schemes consist of three PPT algorithms [9] since the implicit tracing algorithm272

is used to trace the misbehaved users.273

• KeyGen(n,N): This randomized PPT algorithm takes as inputs n and N, where n ∈ N is the274

security parameter and N is the number of group users. Then it outputs a group public key gpk,275

a vector of user secret keys gsk = (gsk[0], gsk[1], . . . , gsk[N− 1]), and a vector of user revocation276

tokens grt = (grt[0], grt[1], . . . , grt[N− 1]), where gsk[i] is the i-th user’s secret key and grt[i] is277

his revocation token.278

• Sign(gpk, gsk[d], M): This randomized algorithm takes as inputs a secret signing key gsk[d], the279

group public key gpk and a message M ∈ {0, 1}∗, and returns a group signature Σ on M.280

• Verify(gpk, RL, Σ, M): This algorithm verifies whether the given Σ is a valid signature using the281

given group public key gpk and the message M. Then it validates the signer not being revoked282

using RL.283
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Implicit Tracing Algorithm: Any VLR group signature scheme has an implicit tracing algorithm, that284

uses grt as the tracing key. For a given valid message-signature pair (M, Σ), authorized person who285

knows all the tracing keys grt can execute Verify(gpk, RL=grt[i], Σ, M) for i = 0, 1, . . . , N− 1 until Verify286

returns Invalid. The first index i∗ ∈ {0, 1, . . . , N− 1} for which Verify returns Invalid is the index of the287

signer. The tracing algorithm fails if this algorithm verifies properly for all users on the given signature.288

Since the implicit tracing algorithm requires to run Verify linear times in N, it is inappropriate for a289

large group because to detect a single user the group manager has to check almost all users until he290

finds the user who generated the particular signature. In comparison to the algorithm Open, time291

consumption of the implicit tracing algorithm is high.292

2.6. Other Tools293

The interactive protocol, which is described in Section 4 is the main building block of our scheme.294

It allows the user to convince the verifier that he is a certified group member and not being revoked.295

We construct our scheme based on the construction of the scheme given in [10]. Hence, our296

scheme is based on a matrix A = [A0|A0
1|A1

1| . . . |A0
` |A

1
`] ∈ Zn×(2`+1)m

q and a vector u ∈ Zn
q . Each297

member has a revocation token other than their secret signing keys to confirm their validity to sign298

messages. At the verification stage, Revocation List, which is denoted by RL is given as an additional299

parameter to the verification algorithm. RL contains all the revocation tokens of the revoked users.300

Thus, the verifier can use RL to verify the validity of the user, who signed the message.301

In the construction, we use an one-time signature scheme OT S = (OGen, OSign, OVer). OGen is302

the key generation algorithm, OSign is the signing algorithm, and OVer is the verification algorithm303

[25]. OT S schemes are based on one-way functions, which are simpler to implement and are304

computationally efficient than trapdoor functions. OT S schemes are digital signature schemes,305

which require the signer to generate keys for each message to be signed. As a result, keys generated306

for each message are unique for the particular messages. OGen outputs a signing / verification key307

pair (osk, ovk) for input (1n). OSign takes osk and a message M as inputs and outputs a signature308

Σ. OVer is a deterministic algorithm that takes ovk, the message M, and the signature Σ as inputs to309

validate the signature Σ. Depending on the signature validation it outputs valid > or invalid ⊥ [26].310

3. Definitions of the Security Notations311

This section first discusses the existing security notions for anonymity. Then it explains difficulties312

of achieving full-anonymity for VLR schemes with revocation query and defines the almost-full313

anonymity. Finally, traceability is declared.314

Since Chaum and van Heyst [1] introduced group signatures, more security properties have been315

considered according to the requirements of different group signature schemes. As a result, we have a316

large set of security requirements including anonymity, traceability, unlinkability, unforgeability, and317

collusion resistance whose definitions and relations to each other have not been clearly understood [5].318

319

Simply speaking, anonymity and traceability mean are specified as the following.320

• Anonymity requires that no adversary recovers the identity of the user from its signature, which321

is generated by one of the indices from two indistinguishable indices.322

• Traceability requires that no adversary forges a signature that cannot be traced.323

In 2003 Bellare et al.[5] developed a standard security model (BMW03 model) for group signatures324

with two security properties, full anonymity and full traceability, which implies the existing unformalized325

requirements. In 2004 Boneh et al.[9] proposed a relaxed anonymity called selfless-anonymity, which is326

weaker in security in their scheme with VLR.327
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3.1. Anonymity328

• Full anonymity allows the adversary to corrupt all the users of the group, and the adversary can329

access the opening oracle to make queries. In the beginning, all the user secret keys and the330

public keys are given to the adversary, and he can obtain the outcome of the algorithm Open for331

any signature as he wishes.332

• Selfless-anonymity is a relaxed anonymity and it differs from the full-anonymity by the limitations333

it has. The selfless-anonymity provides none of the user secret keys to the adversary, but only the334

public keys at the beginning. However, even with these weaknesses, selfless-anonymity facilitates335

any user to determine whether his secret key is used to generate a particular signature if he336

forgets whether he signed the message. This CCA-anonymity notation, the selfless-anonymity337

allows three types of queries: Signing, Corruption, and Revocation.338

The anonymity game between a challenger and an adversary in selfless-anonymity is as follows.339

The adversary in selfless-anonymity game is weaker than the adversary in full anonymity game340

because the adversary in the selfless-anonymity game has not given access to any secret key. The341

adversary has to determine the key which is used to generate the signature in this game.342

• Initial Phase: The challenger C runs KeyGen algorithm to obtain a group public key gpk, group343

members’ secret keys gsk and tokens grt. Then gives gpk to the adversary A.344

• Query Phase: The adversary A can do the following queries.345

1. Signing: The adversary A requests a signature for any message M with any user index i,346

and the challenger C returns Σ = Sign(gpk, gsk[i], M).347

2. Corruption: The adversary A queries for the secret key of any user i, and the challenger C348

returns gsk[i].349

3. Revocation: The adversary A queries for the revocation token of any user i, and the350

challenger C returns grt[i].351

• Challenge Phase: The adversary A outputs a message M and two distinct identities i0, i1, such352

that A did not make the corruption or revocation queries for i0, i1. The Challenger C selects a bit353

b $← {0,1}, computes signature Σ∗ of user ib using Sign(gpk, gsk[ib], M), and sends the challenging354

signature Σ∗ to the adversary A.355

• Restricted Queries: Even after the challenge phase the adversary A can do the queries but with356

following restrictions.357

1. Signing: The adversary A can do this query as before.358

2. Corruption: The adversary A cannot query for i0 or i1.359

3. Revocation: The adversary A cannot query for i0 or i1.360

• Guessing Phase: Finally, the adversary A outputs a bit b′, the guess of b. If b′ = b, then A wins.361

We define the advantage of A in winning the game as AdvA = |Pr[b′ = b]− 1/2|. We say that362

any group signature is selfless-anonymous if AdvA is negligible.363

364

The first lattice-based VLR group signature scheme relies on the selfless-anonymity. Our goal is365

to present a lattice-based VLR group signature scheme with strong security. A naive adaptation of the366

full anonymity in the BMW03 model does not go well since it was presented for static groups.367

3.2. Coping with Revocation queries for Full Anonymity368

Since the full anonymity was originally proposed for static groups, the revocation query is not369

included in the previous full anonymity games given in the BMW03 model or in other schemes used the370

BMW03 model such as [14]. Our scheme is for dynamic-groups, which supports member revocation.371

Since we wish to make our VLR group signature scheme full-anonymous, we will concern a new372

security notion for “full anonymity with revocation query”. But here we have to concern about the373
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risk of giving revocation tokens to the adversary. Simply adding the revocation query given in the374

selfless-anonymity to the notion full anonymity will make our scheme insecure. The definition of full375

anonymity with revocation query is as below.376

• Initial Phase: The challenger C runs the algorithm KeyGen to obtain a group public key gpk, a377

group manager’s secret key gmsk, and group members’ secret keys gsk and revocation tokens378

grt. Then gives (gpk, gsk) to the adversary.379

• Query Phase: The adversary A can query any token (grt) of any user and A can access the380

opening oracle, which results with Open(gmsk, M, Σ) when A queried with any message M and381

a valid signature Σ.382

• Challenge Phase: The adversary A outputs a message M and two distinct identities i0, i1. The383

challenger C selects a bit b $← {0,1}, generates Σ∗ = Sign(gpk, gsk[ib], grt[ib], M) and sends Σ∗ to384

the adversary A. The adversary still can query the opening oracle except the signature challenged385

but he is not allowed for revocation queries.386

• Guessing Phase: Finally, adversary A outputs a bit b′, the guess of b. If b′ = b, then the adversary387

A wins.388

Here if the adversary A calls the challenge phase with the indices whose revocation tokens389

are already queried, and if we generate the challenging signature without any restrictions, then the390

adversary A can guess the index that used to generate the challenging signature easily. The adversary A391

can execute Verify with all the revocation tokens he has and guess the index of the generated signature.392

The advantage of A in winning the game is AdvA = |Pr[b′ = b]− 1/2|. Since the adversary can obtain393

the tokens of the challenged indices he can win the game easily. Thus, AdvA is not negligible.394

In such away, allowing the adversary A to query any revocation token and generating the395

challenged signature for the indices, even those indices’ revocation tokens are queried, makes our396

scheme none secured.397

398

Because of this problem, we have to concern a security notion which will not provide all the399

revocation tokens to the adversary. Thus, we use the almost-full anonymity given in [18], which is a400

restricted version of full anonymity.401

402

3.3. Almost Full Anonymity403

The idea of almost full anonymity is depicted in Figure 1. Here the challenger C generates the keys,404

and both gpk and gsk are given to the adversary A as the existing full anonymity game. The adversary405

A can query the opening oracle with any group signature of his choice on a message M, and the oracle406

returns Open(gmsk, M, Σ) as usual. In addition to that, the adversary A can query for the token of any407

user d, and the challenger returns grt[d]. This is the revocation query suggested to the full anonymity408

as the additional query, which was not in the original notion of full anonymity. Then adversary A409

outputs two valid identities i0, i1 with a message M. The challenger C selects one of the two identities,410

which are not being queried before in revocation query phase and outputs Σ∗. Here signatures are411

not generated for the indices that have been queried for revocation tokens since the adversary A412

can use the tokens and execute Verify to check the generated signature. The adversary’s goal is to413

determine the identity that is used to generate Σ∗. He still can query the opening oracle except for the414

challenged signature, and he can request revocation token of any user except the challenging indices.415

The almost-full anonymity game between a challenger and an adversary is as below.416

• Initial Phase: The challenger C runs the algorithm KeyGen to obtain a group public key gpk, a417

group manager’s secret key gmsk, and group members’ secret keys gsk and revocation tokens418

grt. Then gives (gpk, gsk) to the adversary.419
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Figure 1. Almost-full anonymity

• Query Phase: The adversary A can query any token (grt) of any user and A can access the420

opening oracle, which results with Open(gmsk, M, Σ) when A queried with any message M and421

a valid signature Σ.422

• Challenge Phase: The adversary A outputs a message M and two distinct identities i0, i1, such423

that A never queried the tokens of them. The challenger C selects a bit b $← {0,1}, generates424

Σ∗=Sign(gpk, gsk[ib], grt[ib], M), and sends Σ∗ to the adversary A. The adversary still can query425

the opening oracle except the signature challenged, and he can request revocation tokens of any426

user except the indices used for challenge.427

• Guessing Phase: Finally, adversary A outputs a bit b′, the guess of b. If b′ = b, then the adversary428

A wins.429

We define the advantage of A in the above game as AdvA = |Pr[b′ = b]− 1/2|. We say that any430

group signature is almost-full anonymous if for all polynomial N and for all adversaries, the AdvA is431

negligible in the security parameter n.432

433

Here we discuss the almost-full anonymity with regards to the full anonymity and the434

selfless-anonymity. As in any other anonymity game, in the almost-full anonymity game gpk is435

given to the adversary A and as in the full-anonymity all the user secret signing keys gsk are given to436

the adversary A at the beginning of the game. Even the member revocation tokens generated, they437

are not provided to A in initial phase. In query phase, A can access Open as in the full-anonymity438

and request for revocation tokens as in the selfless-anonymity game. Then A can outputs i0, i1, which439

are not used in the revocation query as in the selfless-anonymity. Still A can access Open but not the440

signature challenged and he is allowed for further revocation queries except for indices challenged.441

Thus, the almost-full anonymity is stronger than the selfless-anonymity since all the secret signing442

keys are provided to the adversary. But the almost-full anonymity is not strong as the full anonymity443

because all the revocation tokens are not given to the adversary. However, all the secret signing keys444

are given to the adversary. In the full anonymity given in the BMW03 model all the secret signing445

keys of the users (the only secret key of the users in that scheme has) are provided to the adversary.446

However, in VLR scheme we have another user’s key called tracing key (revocation token) which447

cannot disclose to the adversary without any restrictions. Thus we say the almost-full anonymity is a448

restricted version of the full anonymity and it is somewhat weaker than the full anonymity. To be full449

anonymous all the secret keys (both secret signing keys and revocation tokens) should be given to the450

adversary at the beginning of the game. Anyhow, the almost-full anonymity is a reasonable solution451

for our scheme rather than the selfless-anonymity.452

The VLR group signature scheme in [10] generates revocation tokens grt by taking a part of the453

secret keys gsk. Since we are providing all the secret keys to the adversary, and he can query revocation454
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tokens, he can create challenged indices’ tokens using the secret keys he has. Thus, we generate the455

revocation tokens in a different way as discussed in Section 4.456

3.4. Traceability457

The naive definition of traceability in [1] is to determine the correctness of the opening algorithm.458

Hence, for a valid signature signed by i with gsk[i], opening algorithm should return i. Later,459

traceability appeared with an actual security requirement, that it is not able to produce a signature460

which can not be traced to a group that generated the signature. However, the BMW03 model gave a461

much stronger notion called full-traceability, which can be viewed as a strong form of traceability and462

collusion-resistance.463

464

In the traceability game, the adversary’s challenge is to forge a signature that cannot be traced.465

Any group signature scheme is traceable if no adversary can win this challenge. Hence we say that a466

VLR group signature scheme is traceable if the adversary cannot forge a signature that can be traced to467

one of the users in his coalition using the implicit tracing algorithm. The traceability game, between a468

challenger C and an adversary A [10] is as follows.469

• Initial Phase: The challenger C runs KeyGen to obtain a group public key gpk, group members’470

secret keys gsk, and tokens grt. Then gives (gpk, grt) to the adversary A and sets corruption list471

U← ∅.472

• Query Phase: The adversary A can do the following queries.473

1. Signing: The adversary A requests a signature for any message M for any user index i and474

the challenger C returns Σ = Sign(gpk,gsk[i],M).475

2. Corruption: The adversary A queries for the secret key of any user i. The challenger C adds476

i to U, and returns gsk[i].477

• Challenge Phase: The adversary A outputs a message M∗, a set of revocation tokens RL∗, and a478

signature Σ∗.479

• The forgery adversary A wins if the followings are true.480

1. Σ∗ is accepted as a valid signature on the message M∗ with RL∗.481

2. Σ∗ traces to some user outside the coalition U\RL∗ or tracing algorithm fails.482

3. Σ∗ is not obtained by signing on M∗.483

The advantage of A is Advtrace
A = |Pr[Exptrace

A (n, N) = 1]|, where Exptrace
A is the traceability game484

between the challenger C and the adversary A. We say that a group signature scheme is traceable if485

Advtrace
A is negligible.486

487

The full traceability game between a challenger and an adversary is as below.488

As explained in [5] and in [14] the group public key gpk and the group manager’s secret key489

gmsk is given to the adversary A at the beginning of the game, and the adversary A makes queries as490

the following game.491

• Initial Phase: The challenger C runs KeyGen to obtain a group public key gpk, a group manager’s492

secret key gmsk, and group members’ secret keys gsk. Then gives gpk and gmsk to the adversary493

A and sets U← ∅.494

• Query Phase: The adversary A can do the following queries.495

1. Signing: The adversary A requests a signature for any message M for any user index i and496

the challenger C returns Σ = Sign(gpk,gsk[i],M).497

2. Corruption: The adversary A queries for the secret key of any user i. The challenger C adds498

i to U and returns gsk[i].499

• Challenge Phase: The adversary A outputs a message M∗ and a signature Σ∗.500
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• The forgery adversary A wins if the followings are true:501

1. Σ∗ is accepted as a valid signature on the message M∗.502

2. Σ∗ traces to some user outside the coalition U or tracing algorithm fails.503

3. Σ∗ is not obtained by signing on M∗.504

505

The advantage of A is Advtrace
A = |Pr[Exptrace

A (n, N) = 1]|, where Exptrace
A is the traceability game506

between the challenger C and the adversary A. We say that a group signature scheme is full-traceable507

if Advtrace
A is negligible for all polynomial N and for all polynomial time adversaries A.508

509

4. Our VLR Scheme510

In this section, first, we describe the underlying zero-knowledge interactive protocol system,511

which can be used by any signer to prove his validity. Then we discuss the adoption of the explicit512

tracing algorithm to our VLR scheme to trace the signer of any signature efficiently. Later in this section,513

we present our lattice-based group signature scheme which supports member revocation.514

In our scheme, we generate member revocation tokens as a combination of part of the public key515

and some randomness. Even there is no direct relationship to the secret keys we obtain the revocation516

tokens by using the member-indices. Thus each revocation token has a relation to each member’s517

index which is unique to the members. According to the scheme described in [10], revocation tokens518

can be obtained by a part of the public key and a part of the secret key. However since we are giving519

all the secret keys to the adversary at the anonymity game, the adversary may construct the challenged520

indices’ revocation tokens by studying the pattern of the queried revocation tokens and using the521

secret signing keys he has. Thus, we come with a solution to obtain revocation tokens in our scheme522

by using a random vector.523

Our scheme consists of four algorithms as below.524

• KeyGen(n,N): This randomized PPT algorithm on inputs the security parameter n ∈ N and the525

number of group users N outputs a group public key gpk, a group manager secret key gmsk, a526

vector of user secret keys gsk = (gsk[0], gsk[1], . . . , gsk[N− 1]), and a vector of user revocation527

tokens grt = (grt[0], grt[1], . . . , grt[N− 1]), where gsk[i] is the i-th user’s secret key and grt[i] is528

his revocation token.529

• Sign(gpk, gsk[d], grt[d], M): This randomized algorithm takes as inputs a secret signing key530

gsk[d], revocation token grt[d], the group public key gpk and a message M ∈ {0, 1}∗, and531

computes a group signature Σ on M.532

• Verify(gpk, RL, Σ, M): This algorithm determines whether the given Σ is a valid signature using533

the given group public key gpk and the message M. Then it validates the signer not being534

revoked using RL.535

• Open(gmsk, M, Σ): This algorithm takes as inputs the group manager’s secret key gmsk, a536

message M, and a signature Σ on M, and returns the index of the user who has generated the537

signature. It returns failure symbol when the user cannot be identified.538

539

4.1. The Underlying Zero Knowledge Interactive Protocol540

Zero Knowledge Interactive Protocol is the building block of this scheme as it allows a prover (signer)541

to argue that he is a certified group user who has a valid secret key.542

Let COM be the statistically hiding and computationally binding commitment scheme described543

in [27].544

Our scheme can be seen as an adaptation of [10] and [14]. In [28] combined interactive protocol is545

given that signer can prove his validity of signing, his revocation token is not in the revocation list, and546

his index is correctly encrypted. Thus, the interactive protocol given in [28] suits for our scheme well.547

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2018                   doi:10.20944/preprints201808.0014.v1

http://dx.doi.org/10.20944/preprints201808.0014.v1


14 of 28

We use matrix A = [A0|A0
1|A1

1| . . . |A0
` |A

1
`] ∈ Zn×(2`+1)m

q , vector u ∈ Zn
q , matrix B ∈ Zn×m

q , matrix548

V ∈ Zm×n
q , vector v ∈ Zm

q , matrix P ∈ Zk1×k2
q , and a vector c ∈ Zk1

q as the public parameters. The549

witness of the prover consists of vector x(d) = (x0||x0
1||x1

1|| . . . ||x0
` ||x

1
`) ∈ Σ(2`+1)m for some d ∈ {0, 1}`,550

a vector e1 ∈ Zm, a vector r ∈ Zn
q , and another vector e ∈ Zk2 . While keeping prover’s identity d551

in secret, he has to convince the verifier that A · x = u mod q, ||e1||∞ ≤ β and V · (B · r) + e1 = v552

mod q. Moreover, the prover has to show his identity is correctly encrypted, such that ||e||∞ ≤ b and553

Pe + (0k1−`||bq/2cd) = c mod q.554

We recall the underlying zero-knowledge protocol given in [28] in Appendix A.555

As discussed in [28] we construct an efficient simulator S interacting with a (probably dishonest)556

verifier V̂ , such that, given only the public input S outputs with probability negligibly apart from 2/3557

a simulated transcript that is statistically close to the one produced in the real interaction by the honest558

prover. Thus, the simulator can successfully imitate the honest prover with probability negligibly far559

from 2/3.560

4.2. Explicit Tracing Algorithm561

In general, VLR group signature scheme has the implicit tracing algorithm, which requires to run562

Verify linear in the number of users until the signer is traced. Because of this reason, the implicit tracing563

algorithm is inconvenient for large groups, and we use the explicit tracing algorithm while using some564

methods described in [14] to make our scheme flexible for any group size. In general, when the explicit565

tracing algorithm is used, the group manager’s or some other third party authorities’ involvement566

is required, and his secret key is used to decrypt the signature on a message to obtain the index of567

the signer. Since the scheme in [10] consists of the implicit tracing algorithm, it does not concern the568

group manager’s key or encryption and decryption of the identity of the signer as in [14], where the569

explicit tracing algorithm is used. Thus, we focus on generating the group manager’s secret key and570

encryption and decryption of the identity of the signer by using the techniques given in [14].571

4.3. Description of Our Scheme572

In this section, we describe the algorithms of our scheme with explicit tracing algorithm Open.573

Let n be the security parameter, and N be the maximum expected number of group members574

(users) of the group.575

576

Key Generation: This randomized algorithm KeyGen(n,N) proceeds through the following steps577

to generate a group public key gpk, group user secret keys gsk, group user tokens grt, and a group578

manager secret key gmsk.579

1. Run PPT algorithm GenTrap(n, m, q) to obtain a matrix A0 ∈ Zn×m
q and a trapdoor R.580

2. Sample a vector u $← Zn
q .581

3. Sample matrices Ab
i

$← Zn×m
q for each b ∈ {0, 1} and i ∈ [`].582

4. Set the public parameter, the matrix A = [A0|A0
1|A1

1| . . . |A0
` |A

1
`] ∈ Zn×(2`+1)m

q .583

5. Run the algorithm GenTrap(n,m,q) to obtain B ∈ Zn×m
q and trapdoor TB.584

6. For each user d ∈ {0, 1, · · ·, N − 1}, secret keys gsk[d] and revocation tokens grt[d] are generated585

as follows.586

(a) Let d[1] · · · d[`] ∈ {0, 1}` be the binary representation of d.587

(b) Sample vectors xd[1]
1 · · · xd[`]

` ← DZm ,σ.588

(c) Compute z = ∑`
i=1 Ad[i]

i · xd[i]
i mod q.589

(d) Get x0 ∈ Zm ← SampleD(R, A0, u− z, σ).590

(e) Let x1−d[1]
1 · · · x1−d[`]

` be zero vectors 0m.591

(f) Define x(d) = (x0||x0
1||x1

1|| . . . ||x0
` ||x

1
`) ∈ Σ(2`+1)m.592

If ||x(d)||∞ ≤ β, then proceed else repeat from (a).593

(g) Let the user secret key be gsk[d] = x(d).594
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(h) Sample a vector r1 ← DZm ,σ.595

(i) Get r2 ∈ Zm ← SampleD(TB, B, u− z, σ).596

(j) Compute r = r1 − r2.597

(k) Let the user revocation token be grt[d] = B · r.598

Finally the algorithm returns, gpk = ((A, u), B), gmsk = TB, gsk = (gsk[0], gsk[1], . . . ,599

gsk[N− 1]), grt = (grt[0], grt[1], . . . , grt[N− 1]).600

601

Signing: We use the one-time signature scheme OT S to generate keys and signatures to make602

our signature secure. Then we use the zero knowledge interactive protocol to show that the user is valid.603

The randomized algorithm Sign(gpk, gsk[d], grt[d], M) takes as inputs the group public key gpk, the604

user secret signing key gsk[d], revocation token grt[d], and generates Σ on a message M as follows.605

606

Let H1: {0, 1}∗ → Zn×`
q , H2: {0, 1}∗ → {1, 2, 3}t, and G: {0, 1}∗ → Zn×m

q be hash functions,607

modeled as a random oracle.608

1. Run OGen(1n) to obtain a key pair (ovk, osk).609

2. Encrypt the index d as follows.610

(a) Let G =H1(ovk).611

(b) Sample s← χn, e1 ← χm and e2 ← χ`.612

(c) Compute the ciphertext (c1, c2) pair which encrypts the index d613

(c1 = BTs + e1, c2 = GTs + e2 + bq/2cd).614

3. Sample ρ
$← {0, 1}n, let V = G(A, u, B, M, ρ) ∈ Zm×n

q .615

4. Compute v = V · (B · r) + e1 mod q (||e1||∞ ≤ β with overwhelming probability and B · r =616

grt[d]).617

5. Generate the parameters for the interactive protocol to show the index d is encrypted correctly as618

follows.619

P =

(
BT

GT Im+`

)
∈ Zk1×k2

q ; c =

(
c1

c2

)
∈ Zk1 ; e =

 s
e1

e2

 ∈ Zk2 . (1)

6. Repeat the zero knowledge interactive protocol 4.1 of the commitment described above t =620

ω(log n) times with the public parameter (A, u, B, V, v, P, c) and prover’s witness (x, r, e1, e) to621

make the soundness error negligible and prove that user is certified. Then make it non-interactive622

using the Fiat-Shamir heuristic as a triple,623

Π = ({CMT(k)}t
k=1, CH, {RSP(k)}t

k=1), where624

CH = ({Ch(k)}t
k=1) = H2(M, {CMT(k)}t

k=1, c1, c2).625

7. Compute OT S ; sig = OSig(osk, (c1, c2, Π)).626

8. Output signature Σ = (ovk, (c1, c2), Π, sig, v, ρ).627

628

Verification: On input gpk, RL= {{ui}i} ⊂ Zn
q , M, and Σ, the algorithm Verify checks whether629

the given signature Σ is valid on the given message M and signer is a valid member by executing the630

following steps.631

1. Parse the signature Σ as (ovk, (c1, c2), Π, sig, v, ρ).632

2. Get V = G(A, u, B, M, ρ) ∈ Zm×n
q .633

3. If OVer(ovk, (c1, c2), Π, sig) = 0 then return 0.634

4. Parse Π as ({CMT(k)}t
k=1, {Ch(k)}t

k=1, {RSP(k)}t
k=1).635

5. If (Ch(1), . . . , Ch(t)) 6= H2(M, {CMT(k)}t
k=1, c1, c2), then return 0 else proceed.636
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6. For k = 1 to t run the verification steps of the commitment scheme 4.1 with public parameter (A,637

u, B, V, v, P, c) to validate RSP(k) with respect to CMT(k) and Ch(k). If any of the conditions fails638

then output invalid and hold.639

7. For each ui ∈ RL compute e
′
i = v−V · ui mod q to check whether there exists an index i such640

that ||e′i ||∞ ≤ β. If so return invalid.641

8. Return valid.642

Open: The algorithm Open(gmsk, M, Σ) functions as follow, where gmsk = TB and Σ =643

(ovk, (c1, c2), Π, sig).644

1. Let G = [g1| . . . |g`] = H1(ovk).645

2. Then for i ∈ [`], sample yi ← SamplePre(TB, B, gi, σ).646

3. Let Y = [y1| . . . |y`] ∈ Zm×`.647

4. Compute d′ = (d′1, . . . , d′`) = c2 − YTc1 ∈ Z`
q.648

5. For each i ∈ [`] check whether d′i is closer to 0 than bq/2cmod q. If so di = 0 else 1.649

6. Return index d = (d1, . . . , d`) ∈ {0, 1}`.650

5. Correctness and Security of the Scheme651

5.1. Correctness652

Since we use the techniques in [14] and adapt the scheme provided in [10], Verify and Open in our653

scheme are also correct as the underlying arguments are same. Even though we have changed the654

revocation token generation regards to [10] there is no impact to the correctness of the scheme from655

new revocation token generation, since we check the signer’s authenticity with RL separately.656

657

For all n, N, all (gpk, gmsk, gsk, grt) outputted by KeyGen(n, N), all d ∈ {0, 1, . . . , N− 1}, and all658

M ∈ {0, 1}∗, Verify(gpk, RL, M, Sign(gpk, gsk[d], grt[d], M)) = valid; grt[d] /∈ RL and Open(gmsk, M,659

Sign(gpk, gsk[d], grt[d], M)) = d.660

661

We use the proof of correctness given in [10]. We prove the correctness of Open additionally.662

Lemma 1 ([10, Lemma. 4]). Let β = poly(n), q ≥ (4β + 1)2 and m ≥ 3n. Over the randomness of V ∈663

Zm×n
q ,664

Pr[∃ non-zero s ∈ Zn
q : ||V · s||∞ ≤ 2β] ≤ negl(n).

proof. Fix a non-zero vector s ∈ Zn
q . Then the vector V · s is uniformly distributed over Zm

q . It then follows665

that Pr[||V · s||∞ ≤ 2β] ≤ (4β+1)m

qm . Applying a union-bound get666

Pr[∃ non-zero s ∈ Zn
q : ||V · s||∞ ≤ 2β] ≤ qn(4β + 1)m

qm ≤ 1
(4β + 1)m−2n ≤ (4β + 1)−n = negl(n).

With overwhelming probability an honest signer (user) can get a valid witness (x, r, e1, e) to be667

used in the underlying argument system. Moreover, in the verification algorithm Verify will not return668

Invalid after the step 6 because steps 6 validates the signature using the underlying zero-knowledge669

interactive protocol. In step 7 of the verification algorithm Verify, the vector e′i for every i can be670

delivered as671

e′i = v−V · ui = V · grt[d] + e1 −V · ui = V · (grt[d]− ui) + e1 mod q.

If the verification algorithm Verify outputs Valid, that is ||e′i ||∞ ≤ β, for all i. This means grt[d] /∈ RL.672

If there exists an index i, where grt[d] = ui, then e′i = e1. Then the signature should not pass the Step 7673

of the verification process because ||e′i ||∞ = ||e1||∞ ≤ β.674
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Suppose there is a situation grt[d] /∈ RL, i.e., for every i, the vector si := grt[d]− ui mod q is675

non-zero. We can show for this case the verification algorithm outputs Valid with overwhelming676

probability. According to Lemma 1, ||V · si||∞ > 2β with overwhelming probability. On the other677

hand, ||V · si||∞ ≤ ||e′i ||∞ + ||e1||∞ ≤ ||e′i ||∞ + β. Thus, ||e′i ||∞ > 2β− β = β.678

Moreover, if the index of the signer is correctly encrypted in the ciphertext c at the time of signing,679

then the tracing algorithm Open returns the index of the signer correctly . Encryption of the index is680

guaranteed in the signing stage, since no member can pass the underlying interactive protocol without681

correct encryption of the index via a LWE function. In addition to that, Verify returns Invalid if the682

ciphertext c is not correct encryption of the index because it cannot pass the underlying interactive683

protocol’s checking without a correct encryption. Thus, this proves the correctness of the encryption of684

the index and that the tracing algorithm outputs the index of the correct signer.685

5.2. Almost-full Anonymity686

Theorem 1. In the random oracle model, the prosed VLR group signature scheme 4.3 is almost-full anonymous687

under the LWEn,q,χ assumption.688

We prove the anonymity of our scheme using eight indistinguishable games, where AdvA(G0) = ε689

and AdvA(G7) = 0.690

691

Game G0: This is the real anonymity game, that we assume the adversary A has advantage692

ε. At first the challenger C runs KeyGen(n, N) and generates keys gpk, gmsk, gsk[d]d∈{0,1}` , and693

grt[d]d∈{0,1}` . Then gpk and gsk are given to the adversary A. The adversary A can query for revocation694

tokens. When the adversary A requests for a token of user d then the challenger C returns grt[d].695

The adversary A can also query for opening of any signature and C answers with Open(gmsk, M, Σ)696

using gmsk TB. In the challenge phase A outputs a message M and two indices i0, i1 ∈ {0, 1}`,697

such that the adversary A did not make a revocation query for users i0, i1 ∈ {0, 1}`. Then C sends698

back Σ∗ = (ovk∗, (c∗1 , c∗2), Π∗, sig∗, v∗, ρ∗) which is generated using Sign(gpk, gsk[ib], grt[ib], M). The699

adversary A still can query for opening oracle except for challenged indices and he is not allowed for700

revocation queries with i0, i1. The adversary’s task is to determine the index, that is used to generate701

Σ∗. Thus A outputs b′ ∈ {0, 1}. If b′ = b then A wins.702

703

Game G1: In this game, a slight change is done compared to G0. The OT S key pair704

(ovk∗, osk∗) is generated at the beginning of the game. In the real game, OT S key pair is705

generated when generating a signature at the challenging phase. Thus, at the query phase if the706

adversary A queries for opening oracle with a signature Σ = (ovk, (c1, c2), Π, sig, v, ρ), where707

ovk = ovk∗ then the challenger C outputs a random bit and aborts. The games G0 and G1 are708

indistinguishable and ovk∗ is independent of the adversary’s request as it generated before the709

query phase. Accordingly, the probability of ovk = ovk∗ is negligible. Besides, after challenge710

signature Σ∗ = (ovk∗, (c∗1 , c∗2), Π∗, sig∗, v∗, ρ∗) is sent, if the adversary queries a valid signature711

Σ = (ovk, (c1, c2), Π, sig, v, ρ) with ovk = ovk∗ then sig is a forged one. Hence, the challenger aborting712

the game is negligible. Without losing the generality assume that A does not request for opening with713

a valid Σ with ovk = ovk∗.714

715

Game G2: In this game, we replace the encrypting matrices B and G with randomly obtained716

B∗ and G∗, and we program the random oracle H1 according to B and G. In real anonymity game,717

B is obtained from GenTrap and G is generated at the signature generation. In this game, we718

obtain uniformly random B∗ ∈ Zn×m
q and G∗ ∈ Zn×`

q . To answer the opening oracle requests with719

Σ = (ovk, (c1, c2), Π, sig, v, ρ) the challenger C samples Y ← (Dzm ,σ)
`, computes G = B∗Y ∈ Zn×`

q ,720

and programsH1(ovk∗) = G. This G is used to answer the opening and keep the track of (ovk,Y,G) to721

be reused if A repeats the same requests forH1(ovk). In the challenge phase, programH1(ovk)∗ = G∗722
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and compute (c∗1 , c∗2) to generate Σ∗. Since the distributions of G∗, B∗ are statistically close to the723

real game [21] and the distribution of G is statistically close to uniform over Zn×`
q [21] this game is724

indistinguishable from the game G1.725

726

Game G3: In this game, instead of generating the legitimate non-interactive proof Π, the727

challenger C simulates Π as discussed in Section 4.1. For each k ∈ [t] take a fake challenge
−
Ch(k) and728

run the interactive protocol. Then program the random oracle H1 accordingly. The challenger’s729

signature Σ∗ = (ovk∗, (c∗1 , c∗2), Π∗, sig∗, v∗, ρ∗) is statistically close to the signature in the previous730

games since the argument system is statistically zero-knowledge. Therefore G3 is indistinguishable731

from G2.732

733

Game G4: In this game, we replace the original revocation token used to generate the challenged734

signature Σ∗ = (ovk∗, (c∗1 , c∗2), Π∗, sig∗, v∗, ρ∗) where v = V · grt[ib] + e1 mod q, with a vector t735

sampled uniformly. We compute v = V · t + e1 mod q, where t $← Zn
q . V is uniformly random over736

Zm×n
q , e1 sampled from the error distribution χ, and we replace only grt[ib] by t. The rest of the game737

is same as previous game G3. Thus, the two games are statistically indistinguishable.738

739

Game G5: In this game we obtain v uniformly. Thus, we make details of revocation token740

totally independent of the bit b. We sample y $← Zm
q and set v = y. In the previous game, the pair741

(V, v) is a proper LWEn,q,χ instance and in this game we replace v with truly uniformly sampled742

y. Under the assumption that the LWEn,q,χ problem is hard (Section 2) the games G4 and G5 are743

indistinguishable. Suppose there is an algorithm B for solving the LWEn,q,χ problem. Then, B744

can interact with A by answering the queries that A makes. When A queries for the revocation745

token of any group member, B simply can answer with a value chosen uniformly random such746

as y $← Zm
q instead of providing grt. Rest of the game is same as the original poof given in747

the previous game. If adversary A can distinguish whether the revocation token is generated or748

chosen randomly the algorithm B is succeed. But this contradicts the hardness of the LWEn,q,χ problem.749

750

Game G6: In this game we modify the generation of ciphertext (c∗1 , c∗2) uniformly. Let c∗1 = x1751

and c∗2 = x2 + bq/2cdb, where x1 ∈ Zm and x2 ∈ Z` are uniformly random and db is the index of the752

challenger’s bit. The rest of the game is same as G5. The games G5 and G6 are indistinguishable under753

the assumption of the hardness of LWEn,q,χ problem defined in Section 2. Indeed, if A can distinguish754

two games, then A can also solve the LWE problem. That means, he can distinguish (B∗, (B∗)Ts + e1)755

from (B∗, z1) and (G∗, (G∗)Ts + e2) from (G∗, z2) which conflicts with LWEn,q,χ assumption.756

757

Game G7: In this game, we make Σ∗ totally independent of the bit b. Let c∗1 = x′1 and758

c∗2 = x′2, where x′1 ∈ Zm
q and x′2 ∈ Z`

q are uniformly random. The games G6 and G7 are statistically759

indistinguishable. Since this game G7 is independent from the challenger’s bit b, the advantage of the760

adversary winning the game AdvA is 0.761

762

Even the adversary A can do revocation query any number of times he can not learn about the763

secret keys since the revocation token consists of part of the public key and some randomness.764

765

Hence, these games prove that advantage of the adversary on almost-full anonymity of the scheme766

is negligible.767

This concludes the proof of anonymity.768
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5.3. Traceability769

We say in the random oracle model our VLR group signture scheme is traceable if the770

SIS∞
n,(l+1)m,q,2β problem is hard.771

Lemma 2 ([21]). For any m, β = poly(n), and for any q ≥ β.ω(
√

n log n), solving a random instance of the772

SIS2
n,m,q,β or ISIS2

n,m,q,β problem with non-negligible probability is at least as hard as approximating the SIVP2
γ773

problem on any lattice of dimension n to within certain γ = β · Õ(
√

n) factors.774

775

Theorem 2 ([10]). If there is a traceability adversary A with success probability ε and running time T, then there776

is an algorithm F that solves the SIS∞
n,(`+1).m,q,2β problem with success probability ε′ > (1− (7/9)t) · 1/2N,777

and running time T′ = 32 · T.qH/(ε− 3−t) + poly(n, N), where qH is the number of queries to the random778

oracleH : {0, 1}∗ → {1, 2, 3}t.779

780

According to Lemma 2 and Theorem 2, we can show that our scheme is traceable in the random781

oracle under the conditions of those theorems.782

783

Suppose there is an adversary A who can break the computational binding property of the784

commitment scheme COM with non-negligible probability. Hence A can solve the SIS∞
n,(`+1)m,q,2β785

problem. Thus, without loosing the generality, we assume that COM is computationally binding.786

Let forger F be a PPT algorithm that solves the SIS∞
n,(`+1)m,q,2β problem with non-negligible787

probability.788

789

The forgery F is given the verification key (A, u). F then generates a key pair (B, TB) and interacts790

with the adversary A by sending gpk = ((A, u), B) and responding to the A’s queries as follow.791

• Signatures queries: If the adversary A queries signature of user d on a random message M, then792

F returns Σ = Sign(gpk, gsk[d], grt[d], M) = (ovk, (c1, c2), Π′, sig, v, ρ), where Π′ is simulated793

without using the legitimate secret key and others are generated faithfully. The zeo-knowledge794

property of the given underlying interactive protocol guarantees that Σ is indistinguishable from795

the legitimate group signature.796

• Corruption queries: The corruption set CU is initially set to be empty. If the adversary A queries797

the secret key of any user d, then F adds d to the set CU and returns gsk[d].798

• Queries to the random oracles H1 and H2 are handled by consistently returning uniformly799

random values in {1, 2, 3}t. For each k ≤ qH, rk denotes the answer to the k-th query.800

Finally, A outputs a message M∗, revocation data RL∗ and a non-trivial forged signature Σ∗,801

which satisfies the requirements of the traceability game, where802

Σ∗ = (ovk, (c1, c2), M, ({CMT(k)}t
k=1, {Ch(k)}t

k=1, {RSP(k)}t
k=1), sig, v, ρ), such that803

Verify(gpk, M∗, RL∗, Σ∗) = Valid and Open fails or returns an user index outside of the coalition CU \RL∗804

805

Now let us show how F exploits the forgery.806

We require that A always queries H2 on input (M, {CMT(k)}t
k=1, c1, c2) before H1. As a result,807

with probability at least ε− 3−t, there exists certain k∗ ≤ qH such that the k∗-th oracle queries involves808

the tuple (M, {CMT(k)}t
k=1, c1, c2). Next, for any fixed k∗ run A many times and input as in the809

original run. For each repeated run, A returns same output for the first k∗-1 queries as in initial run810

and from the k∗-th query onwards return fresh random values. According to the forking lemma811

[[29], Lemma 7], with probability larger than 1/2, algorithm F can obtain a 3-fork involving tuple812

(M, {CMT(k)}t
k=1, c1, c2) after less than 32 · qH/(ε− 3−t) executions of A. Let the responses of F with813

respect to the 3-fork branches be814
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r(1)κ∗ = (Ch(1)1 , . . . , Ch(1)t ); r(2)κ∗ = (Ch(2)1 , . . . , Ch(2)t ); r(3)κ∗ = (Ch(3)1 , . . . , Ch(3)t ).

A simple calculation shows that: Pr[∃j ∈ {1, . . . , t}] : {Ch(1)i , Ch(2)i , Ch(3)i } = {1, 2, 3}1− (7/9)t.815

Under the condition of the existence of such index i, one parses the 3 forgeries corresponding to816

the fork branches to obtain (RSP(1)
i , RSP(2)

i , RSP(3)
i ).817

Then by using the knowledge extractor of the underlying argument system, we can extract vectors818

(y, e∗1 , r∗, e∗). We can get (s∗, e∗1 , e∗2) from e∗, which satisfy the followings.819

1. y = (y0||y0
1||y1

1|| . . . ||y0
` ||y

1
`) ∈ Secretβ(d) for some d ∈ {0, 1}`, and A · y = u mod q.820

2. ||e∗1 ||∞ ≤ β and V · (B · r∗) + e∗1 = v mod q.821

3. ||e∗||∞ ≤ b and (BTs∗ + e∗1 = c1 mod q), (GTs∗ + e∗2 + bq/2cd∗ = c2 mod q).822

We can check that, (c1, c2) is a correct encryption of d∗, the tracing algorithm Open(TB, M∗, Σ∗)823

returns d∗, Verify(gpk, Σ, M,∗ grt[j∗]) = Invalid and Verify(gpk, Σ, M,∗ RL∗) = Valid.824

It then follows, grt[j∗] /∈ RL, and j∗ /∈ CU. As a result (y, d∗) is a valid forgery. Furthermore, the825

analysis of the forgery signature shows that, if A has non-negligible success probability and returns in826

polynomial time, then so does F .827

This concludes the proof of traceability.828

6. Conclusion and Open Problems829

This paper presented a lattice-based scheme that provides member revocation facility using830

VLR which is the most efficient revocation approach up to now, while being almost-full anonymous.831

Moreover, the scheme provides explicit tracing algorithm Open which can be used to trace a signer in a832

large group efficiently. However, delivering an efficient VLR group signature scheme with full security833

is a challenging task which is not yet solved.834

Abbreviations835

The following abbreviations are used in this manuscript:836

837

A Adversary
Adv Advantage
C Challenger
DS Digital Signatures
E Encryption scheme
FDGS Fully dynamic group signature
GS Group Signature
NIZK Non-interactive zero knowledge
P Prover
RL Revocation list
V Verifier
VLR Verifier-local revocation

838

Appendix. Underlying Zero-Knowledge Interactive Protocol839

Let n be the security parameter and ` be the message length. Let modulus q = ω(n2 log n) be840

prime, dimension m ≥ 2n log q, and Gaussian parameter σ = ω(
√

n log q log n). The infinity norm841

bound β = dσ · log me s.t (4β + 1)2 ≤ q and norm bound for LWE noises is b s.t q/b = `Õ(n). Let842

k1 := m + ` and k2 := n + m + `.843

• The common inputs: Matrices A = [A0|A0
1|A1

1| . . . |A0
` |A

1
`] ∈ Zn×(2`+1)m

q , B ∈ Zn×m, V ∈ Zm×n
q ,844

and P ∈ Zk1×k2
q and vectors u $← Zn

q , v ∈ Zm
q , and c ∈ Zk1

q .845
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• The prover’s inputs: A vector x = (x0||x0
1||x1

1|| . . . ||x0
` ||x

1
`) ∈ Secretβ(d) for some secret d ∈846

{0, 1}`, vector e1 ∈ Zm, vector r ∈ Zn
q , and a vector e ∈ Zk2 . We use f instead of e1 hereunder to847

discard the confusing e1with e.848

• The prover’s goal is to convince the verifier in zero-knowledge that:849

– A · x = u mod q and x ∈ Secretβ(d).850

– ||f||∞ ≤ β and V · (B · r) + f = v mod q. (Here the revocation token is created separately851

with a matrix B and a vector r instead of using A0 and x0).852

– ||e||∞ ≤ b and Pe + (0k1−`||bq/2cd) = c mod q (b is the norm bound for LWE noises and853

p̄ = blog bc+ 1).854

Before the interaction, both the prover and the verifier form the public matrices: A∗ ←
MatrixExt(A), V∗ = V · B ∈ Zm×m

q , I∗ ∈ {0, 1}m×3m (I∗ is obtained by appending 2m zero-columns to

the identity matrix of order m), P∗ = [P | 0k1×2k2 ] ∈ Zk1×3k2
q , and

Q =

(
0(k1−`)×` | 0(k1−`)×`

bq/2cI` | 0`×`

)
∈ {0, bq/2c}k1×2`.

Then the prover uses the Decomposition-Extension technique provided in [10] with his witness855

vectors as below.856

• Let z1, . . . , zp ← WitnessDE(x).857

• Let f̃1, . . . , f̃p ← EleDec(f), then for each i ∈ [p], let fi ← EleExt(f̃i).858

• Let r̃1, . . . , r̃p ← EleDec(r), then for each i ∈ [p], let ri ← EleExt(r̃i).859

• Let ẽ1, . . . , ẽp̄ ← EleDec(e), then for each i ∈ [p], let ei ← EleExt(ẽi).860

At the interactive protocol, the prover instead convince the verifier that he knows z1, . . . , zp ∈861

Secretβ(d), f̃1, . . . , f̃p ∈ B3m, r̃1, . . . , r̃p ∈ B3m, and ẽ1, . . . , ẽp ∈ B3k2 , such that862 
A∗ · (∑p

j=1 β j · zj) = u mod q;

V∗ · (∑p
j=1 β j · rj) + I∗ · (∑P

j=1 β j · fj) = v mod q.

P∗ · (∑ p̄
j=1 bj · ej) + Q · d∗ = Pe + (0k1−`||bq/2cd) = c mod q.

Description of the protocol:863

1. Commitment: The prover samples randomness ρ1, ρ2, ρ3 for COM and the following uniformly
random objects:

c $← {0, 1}`;
πz,1, . . . , πz,p

$← S; π f ,1, . . . , π f ,p
$← S3m; πr,1, . . . , πr,p

$← S3m;

πe,1, . . . , πe,p̄
$← S3k2 ; τ

$← S2`;

kz,1, . . . , kz,p
$← Z(2`+1)3m

q ; k f ,1, . . . , k f ,p
$← Z3m

q ;

kr,1, . . . , kr,p
$← Z3m

q ; ke,1, . . . , ke,p̄
$← Z3k2

q ; kd
$← Z2`

q .

(A1)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2018                   doi:10.20944/preprints201808.0014.v1

http://dx.doi.org/10.20944/preprints201808.0014.v1


22 of 28

Then the prover sends the following commitment CMT = (c1, c2, c3) to the verifier.

c1 = COM(c, {πz,j, π f ,j, πr,j}
p
j=1), A∗ · (∑p

j=1 β j · kz,j);

V∗ · (∑p
j=1 β j · kr,j) + I∗ · (∑p

j=1 β j · k f ,j);

{πe,j, }
p̄
j=1; P∗(∑

p̄
j=1 bjke,j) + Qkd; τ; ρ1),

c2 = COM({Tc ◦ πz,j(kz,j), π f ,j(k f ,j), πr,j(kr,j)}
p
j=1;

{πe,j(ke,j)}
p̄
j=1; τ(kd); ρ2),

c3 =

COM({Tc ◦ πz,j(zj + kz,j), π f ,j(fj + k f ,j), πr,j(rj + kr,j)}
p
j=1;

{πe,j(ej + ke,j)}
p̄
j=1; τ(d∗ + kd); ρ3).

(A2)

2. Challenge: The verifier sends a challenge Ch $← {1, 2, 3} to the prover.864

3. Response: Depending on the challenge, the prover sends the response RSP computed as follows.865

• Case Ch = 1: Let d1 = d ⊕ c. For each j ∈ [p], let uz,j = Tc ◦ πz,j(zj); wz,j =

Tc ◦ πz,j(kz,j); u f ,j = π f ,j(fj); w f ,j = π f ,j(k f ,j); ur,j = πr,j(rj); wr,j = πr,j(kr,j). For each
j ∈ [ p̄], let ue,j = πe,j(ej); we,j = πe,j(ke,j). Let ud = τ(d∗); wd = τ(kd). Then send

RSP = (d1, {uz,j, wz,j, u f ,j, w f ,j, ur,j, wr,j}
p
j=1, {ue,j, we,j}

p̄
j=1, ud, wd, ρ2, ρ3). (A3)

• Case Ch = 2: Let d2 = c. For each j ∈ [p], let φz,j = πz,j; φ f ,j = π f ,j; φr,j = πr,j; sz,j =

zj + kz,j; s f ,j = fj + k f ,j; sr,j = rj + kr,j. For each j ∈ [ p̄], let φe,j = πe,j; se,j = ej + ke,j. Let
τ̂ = τ and sd = d∗ + kd. Then send

RSP = (d2, {φz,j, φ f ,j, φr,j, sz,j, s f ,j, sk,j}
p
j=1, {φe,j, se,j}

p̄
j=1, τ̂, sd, ρ1, ρ3) (A4)

• Case Ch = 3: Let d3 = c. For each j ∈ [p], let ψz,j = πz,j; ψ f ,j = π f ,j; ψr,j = πr,j; hz,j =

kz,j; h f ,j = k f ,j; hr,j = kr,j. For each j ∈ [ p̄], let ψe,j = πe,j; he,j = ke,j. Let τ̃ = τ and hd = kd.
Then send

RSP = (d3, {ψz,j, ψ f ,j, ψr,j, hz,j, h f ,j, hk,j}
p
j=1, {ψe,j, he,j}

p̄
j=1, τ̃, hd, ρ1, ρ2) (A5)

4. Receiving the response RSP, the verifier proceeds as follows:866

• Ch = 1: Parse RSP as in (A3).867

Check whether ∀ ∈ [p] : uz,j ∈ SecretExt(d1), u f ,j ∈ B3m, ur,j ∈ B3m, ∀j ∈ [ p̄] : ud ∈
B2`, ue,j ∈ B3k2 , and

c2 = COM({wz,j, w f ,j, wr,j}
p
j=1; {we,j}

p̄
j=1; wd; ρ2),

c3 = COM({uz,j + wz,j, u f ,j + w f ,j, ur,j + wr,j}
p
j=1;

{ue,j + we,j}
p̄
j=1; {ud + wd}; ρ3).

(A6)

• Ch = 2: Parse RSP as in (A4). Check whether :

c1 = COM(d2, {φz,j, φ f ,j, φr,j}
p
j=1, A∗(∑

p
j=1 β j · sz,j)− u;

V∗(∑
p
j=1 β j · sr,j) + I∗(∑

p
j=1 β j · s f ,j)− v;

{φe,j}
p̄
j=1; P∗ · (∑ p̄

j=1 bj · se,j) + Qsd − c; τ̂; ρ1),

c3 = COM({Td2 ◦ φz,j(sz,j), φ f ,j(s f ,j), φr,j(sr,j)}
p
j=1;

{φe,j(se,j)}
p̄
j=1; τ̂(sd); ρ3).

(A7)
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• Ch = 3:Parse RSP as in (A5). Check whether :

c1 = COM(d3, {ψz,j, ψ f ,j, ψr,j}
p
j=1, A∗ · (∑p

j=1 β j · hz,j);

V∗ · (∑p
j=1 β j · hr,j) + I∗ · (∑p

j=1 β j · h f ,j);

{φe,j}
p̄
j=1; P∗ · (∑ p̄

j=1 bj · he,j) + Qhd; τ̃; ρ1),

c2 = COM({Td3 ◦ ψz,j(hz,j), ψ f ,j(h f ,j), ψr,j(hr,j)}
p
j=1;

{ψe,j(he,j), }
p̄
j=1; τ̃(hd); ρ2).

(A8)

The verifier outputs Valid if and only if all the conditions hold. Otherwise, he outputs Invalid.868

Appendix A.1. Analysis of the protocol869

Let COM be a statistically hiding and computationally binding string commitment scheme. The870

interactive protocol is a zero-knowledge argument of knowledge with perfect completeness and871

soundness error 2/3 with (O(`m) log β +O(k2) log b) log q communication cost. Thus it satisfies the872

followings.873

• There exists an efficient simulator that, on input (A, u, B, V, v, P, c), outputs an accepted transcript874

which is statistically close to that produced by the real prover.875

• There exists an efficient knowledge extractor that, on input a commitment CMT and 3 valid876

responses (RSP(1), RSP(2), RSP(3)) corresponding to all 3 possible values of the challenging Ch,877

outputs vectors (y, f′, r′, e′) such that878

1. y = (y0||y0
1||y1

1|| . . . ||y0
` ||y

1
`) ∈ Secretβ(d) for some d ∈ {0, 1}`, and A · y = u mod q.879

2. ||f′||∞ ≤ β and V · (B · r) + f′ = v mod q.880

3. ||e′||∞ ≤ b and Pe′ + (0k1−`||bq/2cd) = c mod q.881

Appendix A.1.1. Completeness and Soundness882

An honest prover, with a valid witness (x, f, r, e) for some d ∈ {0, 1}`, can always obtain883

z1, . . . , zp ∈ Secretβ(d), f1, . . . , fp ∈ B3m, r1, . . . , rp ∈ B3m, and e1, . . . , ep̄ ∈ B3k2 via the884

Decomposition-Extension technique [10]. If he follows the protocol, he should always be accepted by885

the verifier. In this manner, the protocol has perfect completeness.886

The protocol admits a soundness error 2/3, which is natural for typical Stern-like protocols.887

However, this error can be made negligible by repeating the protocol t = ω(log n) times in parallel.888

Appendix A.1.2. Communication Cost889

The KTX scheme [27] COM outputs an element of Zn
q . Therefore the commitment CMT has bit-size890

3n log q = Õ(n). The response RSP is executed by, p permutations in S, p permutations in S3m, p̄891

permutations in S3k2 , one permutation in 2`, p vectors in Z(2`+1)3m
q , p vectors in Z3m

q , p̄ vectors in Z3k2
q ,892

and one vector in Z2`
q .893

In this manner, the bit size of RSP is bounded by (O(`m)p +O(k2) p̄) log q, where p = blog βc+ 1894

and p = blog bc+ 1. Thus the overall communication cost of the protocol is bounded by (O(`m) log β+895

O(k2) log b) log q.896

Appendix A.1.3. Zero-Knowledge Property897

If COM is statistically hiding, we can prove that, the interactive protocol is statistical898

zero-knowledge argument.899

First, construct a PPT simulator SIM interacting with a verifier V̂ such that, by giving only the900

public inputs, SIM outputs with probability close to 2/3 a simulated transcript that is statistically901

close to the outputs of an honest prover in the real interaction. From the public input (A, u, B, V, v,902

P, c) given by the protocol, both SIM and V̂ acquire matrices, A∗, V∗, I∗, P∗, and Q. Then SIM starts903
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simulation by selecting a random Ch ∈ {1, 2, 3}. This is a prediction of the challenge value that V̂ will904

not choose.905

Case Ch = 1 : SIM computes the vectors z′1, . . . , z′p ∈ Z(2`+1)3m
q such that A∗ · (∑p

j=1 β j · z′j) = u906

mod q, r′1, . . . , r′p ∈ Z3m
q and f′1, . . . , f′p ∈ Z3m

q such that V∗ · (∑p
j=1 β j · r′j) + I∗ · (∑p

j=1 β j · f′j) = v907

mod q, and e′1, . . . , e′p̄ ∈ Z3k
q and d′ ∈ Z2`

q , such that P∗ · (∑ p̄
j=1 bj · e′j) + Q · d′ = c mod q by using908

linear algebra.909

Then SIM samples objects as in equation (A1) and sends commitment CMT = (c′1, c′2, c′3) to V̂ ,910

where911 

c′1 = COM(c, {πz,j, π f ,j, πr,j}
p
j=1, A∗ · (∑p

j=1 β j · kz,j);

V∗ · (∑p
j=1 β j · kr,j) + I∗ · (∑p

j=1 β j · k f ,j)

{πe,j}
p̄
j=1, P∗ · (∑ p̄

j=1 bj · ke,j) + Qkd; τ; ρ1),

c′2 = COM({Tc ◦ πz,j(kz,j), π f ,j(k f ,j), πr,j(kr,j)}
p
j=1;

{πe,j(ke,j)}
p̄
j=1; τ(kd); ρ2),

c′3 = COM({Tc ◦ πz,j(z′j + kz,j), π f ,j(f
′
j + k f ,j), πr,j(r′j + kr,j)}

p
j=1;

{πe,j(e′j + ke,j)}
p̄
j=1; τ(d′ + kd); ρ3).

(A9)

For a challenge Ch from V̂ , SIM responds as follows:912

- If Ch = 1: Output ⊥ and abort.913

- If Ch = 2: Send,914

RSP = (c, {πz,j, π f ,j, πr,j, z′j + kz,j, f′j + k f ,j, r′j + kr,j}
p
j=1,915

{πe,j, e′j + ke,j}
p̄
j=1, d′ + kd, τ, ρ1, ρ3).916

- If Ch = 3: Send, RSP = (c, {πz,j, π f ,j, πr,j, kz,j, k f ,j, kr,j}
p
j=1,917

{πe,j, ke,j}
p̄
j=1, τ, ρ1, ρ2).918

919

Case Ch = 2 : SIM samples randomness ρ1, ρ2, ρ3 for COM and

d̂ $← {0, 1}`, c $← {0, 1}`; d′ $← B2`;

z′1, . . . , z′p
$← SecretExt(d); f′1, . . . , f′p

$← B3m; r′1, . . . , r′p
$← B3m;

e′1, . . . , e′p̄
$← B3k;

πz,1, . . . , πz,p
$← S; π f ,1, . . . , π f ,p

$← S3m; πr,1, . . . , πr,p
$← S3m;

πe,1, . . . , πe,p̄
$← S3k;

kz,1, . . . , kz,p
$← Z(2`+1)3m

q ; k f ,1, . . . , k f ,p
$← Z3m

q ; kr,1, . . . , kr,p
$← Z3m

q ;

ke,1, . . . , ke,p̄
$← Z3k

q ; kd
$← Z2`

q , τ
$← S2`.

Next SIM forms and sends commitment CMT as the same manner as in (A9).920

For a challenge Ch from V̂ , SIM responds as follows:921

- If Ch = 1: (d̂⊕ c {Tc ◦ πz,j(z′j), Tc ◦ πz,j(kz,j), π f ,j(f
′
j), π f ,j(k f ,j),922

πr,j(r′j), πr,j(kr,j)}
p
j=1, {πe,j(e′j), πe,j(ke,j)}

p̄
j=1, τ(d′), τ(kd)).923

- If Ch = 2: Output ⊥ and abort.924

- If Ch = 3: Send, RSP computed as in the case (Ch = 1, Ch = 3).925

926

Case Ch = 3 : SIM samples randomness as in Ch = 2 and sends the commitment CMT =927

(c′1, c′2, c′3) to V̂ , where c′2, c′3 are computed as in (A9), and928
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c′1 = COM (c, {πz,j, πe,j, πr,j}
p
j=1, A∗ · (

p

∑
j=1

β j · (z′j + kz,j))− u;

V∗ · (
p

∑
j=1

β j · (r′j + kr,j)) + I∗ · (
p

∑
j=1

β j · (f′j + k f ,j))− v;

{πe,j}
p̄
j=1; P∗

p̄

∑
j=1

bj(e′j + ke,j) + Q(d′ + kd)− c; τ; ρ1).

For a challenge Ch from V̂ , SIM responds as follows:929

- If Ch = 1: Send, RSP computed as in the case (Ch = 2, Ch = 1).930

- If Ch = 2: Send, RSP computed as in the case (Ch = 1, Ch = 2).931

- If Ch = 3: Output ⊥ and abort.932

Since COM is statistically hiding, the distribution of the commitment CMT and the distribution933

of the challenge Ch from V̂ for every case considered above are statistically close to those in the real934

interaction. Hence, the probability that the simulator outputs ⊥ is negligibly close to 1/3. Thus, the935

simulator SIM can successfully imitate the honest prover with probability negligibly close to 2/3.936

Appendix A.1.4. Argument of Knowledge937

Here we prove that, if COM is computationally binding, then the given protocol is an argument938

of knowledge. For a given commitment CMT and three valid responses RSP(1), RSP(2), RSP(3) to all939

three possible values of the challenge Ch, a valid witness can be extracted.940 

c1 = COM(d2, {φz,j, φ f ,j, φr,j}
p
j=1, A∗ · (∑p

j=1 β j · sz,j)− u;

V∗ · (∑p
j=1 β j · sr,j) + I∗ · (∑p

j=1 β j · s f ,j)− v;

{φe,j}
p̄
j=1; P∗ · (∑ p̄

j=1 bj · se,j) + Qsd − c; τ̂; ρ1)

= COM(d3, {ψz,j, ψ f ,j, ψr,j}
p
j=1, A∗ · (∑p

j=1 β j · hz,j);

V∗ · (∑p
j=1 β j · hr,j) + I∗ · (∑p

j=1 β j · h f ,j);

{ψe,j}
p̄
j=1; P∗ · (∑ p̄

j=1 bj · he,j) + Qhd; τ̃; ρ1),

c2 = COM({wz,j, w f ,j, wr,j}
p
j=1, {we,j}

p̄
j=1, wd; ρ2)

= COM({Td3 ◦ ψz,j(hz,j), ψ f ,j(h f ,j), ψr,j(hr,j)}
p
j=1;

{ψe,j(he,j)}
p̄
j=1, τ̃(hd); ρ2),

c3 = COM({uz,j + wz,j, u f ,j + w f ,j, ur,j + wr,j}
p
j=1;

{ue,j + we,j}
p̄
j=1, {ud + wd}; ρ3)

= COM({Td2 ◦ φz,j(sz,j), φ f ,j(s f ,j), φr,j(sr,j)}
p
j=1;

{φe,j(se,j)}
p̄
j=1, τ̂(sd); ρ3).

The computational binding property of COM implies that:941

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2018                   doi:10.20944/preprints201808.0014.v1

http://dx.doi.org/10.20944/preprints201808.0014.v1


26 of 28



d2 = d3;

ud ∈ B2`; τ̂ = τ̃; wd = τ̃(hd); ud + wd = τ̂(sd);

∀j ∈ [p] : φz,j = ψz,j; wz,j = Td2 ◦ φz,j(hz,j) and

uz,j + wz,j = Td2 ◦ φz,j(sz,j);

∀j ∈ [p] : φ f ,j = ψ f ,j; w f ,j = φ f ,j(h f ,j) and u f ,j + w f ,j = φ f ,j(s f ,j);

∀j ∈ [p] : φr,j = ψr,j; wr,j = φr,j(hr,j) and ur,j + wr,j = φr,j(sr,j);

∀j ∈ [ p̄] : φe,j = ψe,j; we,j = φe,j(he,j) and ue,j + we,j = φe,j(se,j);

A∗ · (∑p
j=1 β j · (sz,j − hz,j)) = u mod q;

V∗ · (∑p
j=1 β j · (sr,j − hr,j)) + I∗ · (∑p

j=1 β j · (s f ,j − h f ,j)) = v mod q;

P∗ · (∑ p̄
j=1 bjse,j) + Qsd − c = P∗ · (∑ p̄

j=1 bjhe,j) + Qhd mod q.

For each j ∈ [p], let y′j = (sz,j − hz,j). Then Td2 ◦ φz,j(y′j) = Td2 ◦ φz,j(sz,j) − Td2 ◦ φz,j(hz,j) =942

uz,j ∈ SecretExt(d1). Thus, φz,j(y′j) ∈ SecretExt(d1 ⊕ d2). Let d̄ = d1 ⊕ d2, then for all j ∈ [p], y′j ∈943

SecretExt(d̄), since the permutation φz,j ∈ S preserves the arrangements of the blocks of y′j. By944

removing the last 2m coordinates in each 3m-block of y′ obtain vectors y′ ∑
p
j=1 β j · y′j ∈ Z(2`+1)3m

q , and945

y ∈ Z(2`+1)m. Now we can declare946

||y||∞ ≤ ||y′||∞ ≤
p

∑
j=1

β j · ||yj||∞ =
p

∑
j=1

β j · 1 = β.

Moreover, since y′j ∈ SecretExt(d̄) for all j ∈ [p], we have that y ∈ Secretβ(d̄) and, A · y = A∗ · y′ =947

A∗ ·∑p
j=1 β j · yj = A∗(∑

p
j=1 β j · (sz,j − hz,j)) = u mod q.948

For each j ∈ [p], let f′j = (s f ,j − h f ,j). Then φ f ,j(f
′
j) = φ f ,j(s f ,j)− φe,j(h f ,j) = u f ,j ∈ B3m, which949

implies that f′j ∈ B3m. Let f̂ = ∑
p
j=1 β j · f′j ∈ Z3m and by dropping the last 2m coordinates from f̂ obtain950

f′ ∈ Zm. We can declare,951

||f′||∞ ≤ ||f̂||∞ ≤
p

∑
j=1

β j · ||f′j||∞ =
p

∑
j=1

β j · 1 = β.

Moreover, for each j ∈ [p], let r′j = (sr,j − hr,j). Then φr,j(r′j) = φr,j(sr,j)− φr,j(hr,j) = ur,j ∈ B3m,952

which implies that r′j ∈ B3m. Let r̂ = ∑
p
j=1 β j · r′j ∈ Z3m and by dropping the last 2m coordinates from r̂953

obtain r′ ∈ Zm. We can declare,954

||r′||∞ ≤ ||r̂||∞ ≤
p

∑
j=1

β j · ||r′j||∞ =
p

∑
j=1

β j · 1 = β.

We can obtain the relation:955

V∗ · r̂ + I∗ · f̂ = v mod q ⇐⇒ V∗ · (B · r′) + f′ = v mod q.

Let d∗ = sd − hd = τ̂−1(ud). Then it follows that d∗ ∈ B2`. Now let d∗ = (d1, . . . , d`, d`+1, . . . , d2`)956

and let d = (d1, . . . , d`) ∈ 0, 1`.957

For each j ∈ [ p̄], let e′j = (se,j − he,j). Then φe,j(e′j) = φe,j(se,j)− φe,j(he,j) = ue,j ∈ B3k, which

implies that e′j ∈ B3k. Let ê = ∑
p̄
j=1 bj · e′j and by dropping the last 2k coordinates from ê obtain e′ ∈ Zk.

We can declare,

||e′||∞ ≤ ||ê||∞ ≤
p̄

∑
j=1

bj · ||e′j||∞ =
p

∑
j=1

bj · 1 = b.
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Now, ||e′||∞ ≤ b, and P∗e′ + Qd∗ = Pe′ + (0k−`||bq/2cd) = c mod q.958
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