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1 Abstract: Efficient member revocation and strong security against attacks are prominent requirements
> in group signature schemes. Among the revocation approaches Verifier-local revocation is the most
s flexible and efficient method since it requires to inform only the verifiers regarding the revoked
« members. The verifier-local revocation technique uses a token system to manage members’ status.
s However, the existing group signature schemes with verifier-local r evocability r ely on weaker
s security. On the other hand, existing static group signature schemes rely on a stronger security
» notion called, full-anonymity. Achieving the full-anonymity for group signature schemes with
s verifier-local revocation is a quite challenging t ask. This paper aims to obtain stronger security
o  for the lattice-based group signature schemes with verifier-local revocability, which is closer to the
10 full-anonymity. Moreover, this paper delivers a new key-generation method which outputs revocation
1 tokens without deriving from the users’ signing keys. By applying the tracing algorithm given in
12 group signature schemes for static groups, this paper also outputs an efficient tracing mechanism.
1z Thus, we deliver a new group signature scheme with verifier-local revocation that satisfies a stronger
1 security from lattices.

1s  Keywords: lattice-based group signatures; verifier-localr evocation; a nonymity; almost-full
1e  anonymity; traceability

7 1. Introduction

-

18 Group Signatures, introduced by Chaum and van Heyst [1] allow the group members to issue
1o signatures for the sake of the group while hiding their information (anonymity). On the other hand,
20 the group manager can cancel anonymity of the signers and identify the owner of the signature
=z (traceability). In other words, in group signature schemes, only the valid group members can sign
22 messages, the receiver cannot identify the signer but he can authenticate any signature, and in the
=3 case of dispute an authorized person (the group manager) can identify the signer. Thus, the signer
2« should be anonymous to the receivers and traceable to the authorities (the group manager). These
= two features (anonymity and traceability) make group signature schemes attractive to many real-life
26 applications such as key-card access systems, digital right management, and anonymous printing.

27 Since the group signatures have been introduced, many proposals have been presented with
2 different levels of improvements and security. Among them, the scheme presented by Chen and
20 Pedersen [2] and the scheme suggested by Ateniese and Tsudik [3] submitted new features such as
s framing resistance, coalition resistance, and exculpability. Again, Ateniese et al.[4] proposed a new
a1 scheme to overcome the weaknesses of the previous schemes, and it claimed that the new scheme
sz is the first provably secure scheme in random oracle model. Later, Bellare et al. [5] formulated a
33 stronger security model (BMWO03 model) with two security requirements called full anonymity and full
s« traceability, which imply the existing security properties. Even though the BMWO03 model is known as
55 the strongest security model at present, it serves for static groups only. By adopting the BMW03 model,
36 several group signatures have been proposed but constructing a scheme which supports revocation
sz and with a high-security level is a challenge.
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s 1.1. Member revocation approaches

39 In real world, almost all the group settings are stateless. Member revocation is one of the principal
20 features of a group. Misbehaved and retired members should be restricted generating signatures on
a1 behalf of the group in future. One naive approach for member revocation is replacing all the keys
a2 newly except for the revoking member when a member is revoked. Thus any revoked member cannot
a3 produce a valid signature because he does not know the new keys. But since this approach requires to
«s distribute the newly generated keys to all the members, verifiers, and authorized persons, this is not
s suitable for large groups. Bresson and Stern [6] proposed a method which requires signers to prove
s at the time of signing that his member certificate is not in the public revocation list. Camenisch et al.
47z [7] suggested a revocation method that used dynamic accumulators (accumulator is an algorithm, that
«s allows hashing a large set of inputs to one shorter value and dynamic accumulator allows to add or
a0 delete inputs dynamically). Since the approach proposed by Camenisch et al.[7] requires members to
so keep track of revoked user information, and needs to update their membership for each time that a
s:  member is revoked, workloads of the existing group members increase.

52 A different approach called Verifier-local Revocation (VLR) was suggested by Brickell [8] and
ss formalized by Boneh et al.[9] in their group signature scheme. In VLR mechanism, every member
s« has a revocation token other than their secret signing key to identify his status, i.e., whether he is
ss revoked or not. When a member is revoked his token is placed on a list called revocation list (RL) and
ss the latest revocation list is passed to the verifiers. The verifiers can use this revocation list at the time
sz of verifying a signature to authenticate whether the signer is an existing member or not. Since the
ss number of verifiers in a group is less than the number of members, VLR mechanism is convenient for
so large groups than any other revocation approaches. Because of these reasons, VLR is considered as the
e most flexible revocation method at present.

61 In general, group signature schemes consist of four algorithms, namely, KeyGen, Sign, Verify, and
s2  Open. On the other hand, any VLR group signature scheme consists of only the former three algorithms
es because it has an implicit tracing algorithm instead of Open for tracing misbehaved users.

ca The implicit tracing algorithm executes Verifiy repeatedly for each user until it returns invalid.
es Then the implicit tracing algorithm returns the index of the first user for which Verifiy returns invalid.
es The returned index is the index of the misbehaved user. For a given signature, the implicit tracing
ez algorithm can trace at least one user who generated the signature.

o8 Most of the VLR group signature schemes follow the bilinear map setting, which will be insecure
e when quantum computers become a reality. Lattice-based cryptography is one of the answers for
7 post-quantum and the first lattice-based group signature scheme with VLR was proposed in 2014 by
= Langlois et al. [10].

72 1.2. Lattice-based Group Signature Schemes

73 At present lattice-based cryptography is the most important candidate for post-quantum
7a cryptography because it holds a great promise against quantum computers. Lattice-based cryptography
75 has strong security proofs based on the worst-case hardness of the lattice problems and efficient
76 implementation.

77 The first lattice-based group signature scheme was proposed by Gordon et al.[11] in 2010. A
7e noticeable disadvantage of this scheme is the linear barrier. i.e., the size of the group signature increases
7 with the number of members N in a group. Thus the size of the signatures given in the scheme in [11]
so is O(N) Then Camenisch et al.[12] proposed a more secure and efficient scheme with an anonymous
a1 attribute token system. However, Camenisch’s scheme [12] was also unable to overcome the linear-size
s2 problem as its signature size is still linear in N. Finally, the linear-size problem was overcome by the
es scheme proposed by Languillaumie et al. [13]. In their scheme, the group public key size and the
es signature size are both proportional to log N.

a5 However, above three lattice-based group signature schemes support only static groups, not
ss dynamic groups. In 2014, Langlois et al.[10] suggested the first lattice-based group signature scheme
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ez that supports member revocation. In their scheme they have used Verifier-local Revocation (VLR) as the
ss revocation mechanism and thus the first revocation scheme that is believed to be quantum-resistant
e at that time. Moreover, their scheme has several advantages over previously proposed schemes. For
%0 instance, the scheme given in [10] is simple as the signature of it is basically an all-in-one proof of
o1 knowledge. Further, it has shorter signatures and group public keys comparing to other schemes.
o2 Even though this scheme has several remarkable advantages over the previous works, the security
o3 of the scheme is weaker since the scheme satisfies a relaxed security notion called selfless-anonymity.
sa Moreover, like any other VLR group signature scheme it has the implicit tracing algorithm that uses
s revocation token as the tracing key. Since the implicit tracing algorithm requires to run Verify until the
s algorithm returns invalid, this is not suitable for large groups.

o7 Most of the schemes proposed after 2003 use the BMWO03 model, which is known as the strongest
s security model at present. Among those schemes, the lattice-based group signature scheme suggested
s by Ling et al.[14] has achieved significant features than the other schemes. The scheme [14] relies
100 on relatively weak security assumptions and the size of the public key and the signature is shorter.
101 Moreover, the scheme itself simpler since the construction is based on Boyen'’s signature scheme [15]
102 which is known as a simple construction. Addition to these, the scheme in [14] has a ring variant
103 which is considered as a noticeable approach. However, this scheme satisfies only static groups, not
14 dynamic groups because the scheme does not support member registration or member revocation.
105 Later, Nguyen et al.[16] also proposed a simpler group signature scheme. In their scheme the
10s  security is reduced to the hardness of Short Integer Solution (SIS) and Learning With Errors (LWE) in
107 the random oracle model. However, this scheme is also available for static groups not for dynamic
108 groups.

109 Libert et al.[17] constructed a group signature scheme based on lattice assumptions for dynamic
1o groups. In their work, they have facilitated the user registration but have not considered the user
w1 revocation problem. The first fully dynamic group signature scheme from lattices was proposed by
12 Ling et al. [? ] using accumulators, which seems to be less efficient than using VLR in large groups.

us  1.3. Our Contribution

114 In our work, we focus on presenting a lattice-based group signature scheme which supports
us efficient member revocation and which is with a high security level. When applying a member
us revocation mechanism, we consider an approach which will not require changing the existing keys
1z when a member is revoked. Thus, Verifier-local Revocation (VLR) seems to be the most flexible revocation
us approaches for our scheme, because it only requires to update the verifiers with revocation information,
e but not the existing members at the member revocation. We adopt features in the BMWO03 model to
120 make our scheme secure. However, since the previous VLR schemes have not use the BMWO03 model
121 and the BMWO03 model was not proposed for dynamic groups, we have to cope with revocation queries
122 (in the anonymity game) in the BMWO03 model. The revocation query allows the adversary to request
123 for the revocation tokens of the members. However, if the adversary obtains the challenged members
122 tokens, he can identify the challenged signature’s index by executing Verify with the challenged
125 members’ tokens. Thus, coping with revocation query in the BMWO03 model is quite difficult. The

7

126 scheme given in [18] which is based on general assumptions, provides member revocation with
12z VLR and satisfies a stronger security than the security given in the original VLR group signature
12s  schemes. The scheme given in [18] suggested a security notion called almost-full anonymity, which is a
120 restricted version of full anonymity given in the BMWO03 model. The almost-full anonymity give all
130 the secret signing keys to the adversary as the full-anonymity game and allow revocation query as an
11 additional feature. However, it will not allow the adversary to access revocation token related to the
132 challenging incides, and it will not generate the challenging signature for the indices which are used in
133 the revocation queries. The scheme given in [18] is based on general assumption. Thus, we discuss
134 how to employ the almost-full anonymity for lattice-based VLR group signature schemes. Thus, we
135 use the almost-full anonymity to secure our lattice-based group signature scheme with VLR.
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136 In the VLR group signature scheme given in [10] revocation tokens are part of the particular secret
137 signing keys. Since we are providing all the secret keys to the adversary at the anonymity game, the
13 adversary can create revocation tokens using the information he has. VLR schemes become insecure
13s  when revocation tokens are generated using secret signing keys and providing the secret keys to the
10 adversary (as in full anonymity). Thus, we deliver a different method to generate revocation tokens in
11 our scheme.

142 The implicit tracing algorithm given in VLR group signature schemes are not suitable for a large
13 groups because the time consumption is high in the implicit tracing algorithm. Thus we use the
1as  explicit tracing algorithm for the lattice-based group signature scheme with VLR to identify any user.
s Accordingly, we use the group manager’s secret key to find the signers instead of running Verify a
146 linear time in the number of users as in previous VLR schemes with the implicit tracing algorithm.
1z Since the explicit tracing algorithm, helps to identify any signer by running it only once, this can be
s used for any large groups. As a result, we propose a lattice-based group signature scheme, which is
10 almost fully secured, supports member revocation and tracing signers efficiently, which provides a
10 new method to generate revocation tokens, and suitable even for a large group.

w1 1.4. Road map

152 In Section 2 we provide the preliminaries, and in Section 3 we discuss some of the existing security
153 notions, the difficulty of adapting the BMWO03 model to cope with revocation queries and recall the
1ss  security notion, almost-full anonymity. In Section 4 we provide our lattice-based group signature scheme
15 including a different method for generation of revocation tokens, explicit tracing algorithm, and
156 underlying interactive argument system. The proof of the correctness and the security of the scheme is
157 discussed in Section 5. In Section 6 we conclude the paper and discuss open problems.

1ss 2. Preliminaries

5o 2.1. Notations

160 For any integer k > 1, we denote by [k] the set of integers {1,...,k}. We denote matrices by
161 bold upper-case letters such as A, vectors by bold lower-case letters, such as x and assume that all
12 vectors are in column form. The concatenation of matrices A € R"*™ and B € R"*K is denoted by
s [A|B] € Rtk The concatenation of vectors x € R™ and y € RF is denoted by (x||y) € R™+k,

s If S is a finite set, b & S means that b is chosen uniformly at random from S. If S is a probability

ws  distribution b < S means that b is drawn according to S.

166 A negligible function, denoted by negl(n), is an f (1) such that f(n) = o(n~°) for every fixed constant
167 €. Moreover, the statistical distance between two distributions X and Y over a countable domain D is
1s 1 Y4ep |X(d) — Y(d)| and we say two distributions (formally, two ensembles of distributions indexed
1es by n) are statistically close if their statistical distance is negligible in 7.

170 We denote by n the security parameter. The maximum number of expected users in a group
i is N = 2! and each member’s identity is denoted by a string d € {0,1}¢, which is the binary
12 representation of his index. Depending on the given n we fix the other parameters as in Table 1.
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Table 1. Parameters of the scheme

Parameter Value or Asymptotic bound

Modulus g w(n®logn)

Dimension m > 2nlogq

Gaussian parameter o w(y/nlogqlogn)

Integer norm bound f [o-logm]st(4B+1)2<gq

Number of decomposition p |logp] +1

i = [B/2];p2 = [(B—Pp1)/2];
Sequence of integers:B1, B2, B3, - - -, P =B/
; BersbupaPar B gy = [(5—p1 = po)/20;... 16y = 1

Number of protocol repetitions ¢ w(logn)
173 Let ki := m +{ and ky := n +m + £. The norm bound for LWE noises is integer b such that
s q/b = (O (n). Let x be a b-bounded distribution over Z.
175 Let Hq: {0,1}* — ngz, Hp: {0,1}* — {1,2,3}}, and G: {0,1}* — Zy*™ are hash functions,

176  modeled as random oracles.

17z 2.2. Lattices

Let g be a prime and B = [by|---[by] € ZJ*™ be linearly independent vectors in Zj. The
r-dimensional lattice A(B) for B is defined as

A(B) ={y € Z" | y = Bx mod q for some x € Z'},

17s  which is the set of all linear combinations of columns of B and m is the rank of B.

170 We consider a discrete Gaussian distribution for a lattice. The Gaussian function centered
w0 in a vector ¢ with parameter s > 0 is defined as psc(x) = e ™lIx=9)/ sI” and the corresponding
11 probability density function proportional to p; ¢ is defined as Ds¢(x) = psc(x)/s" for all x € R". The
12 discrete Gaussian distribution with respect to a lattice A is defined as Dp ¢ ¢(x) = Dsc(x)/Dsc(A) =
183 Ps,c(X)/ps,c(A) forall x € A. Since Z™ is also a lattice, we can define a discrete Gaussian distribution
s for Z™. By Dzn ,, we denote the discrete Gaussian distribution for Z™ around the origin with the
15 standard deviation ¢.

18 2.3. Lattice-Related Properties

167 Here we describe the hardness of computational problems of lattices that we use in our scheme.
1ee  First we define SIVP problem. Then we define the two main average-case problems; LWE and SIS, and
1o the hardness of them. We prove our scheme’s security based on their hardness.

1o 2.3.1. Approximate Shortest Independent Vectors Problem (SIV P,)
101 In general finding a good basis for a given lattice is called the basis reduction problem and SIVP is

102 one of basis reduction problems.

103 Definition 1 (Approximate Shortest Independent Vectors Problem (SIV P, [19]). Given a basis B of an
s n-dimentional lattice L = L(B), finding linearly independent vectors sy, ...,s, is SIVP, problem, where
s ||si|| < y(n) - An(L) forall i (A, (L) is n-th successive minimum,).

s 2.3.2. Learning With Errors (LWE)

107 Regev [20] introduced LWE problem, which is a lattice problem and hard to solve. His work is to
10s  result a reduction from worst-case lattice problems to a certain learning problem.
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1o Definition 2 (Learning With Errors Problem (LWE,, 4x) [19]). LWE is parametrized by n,m > 1,q > 2,
200 and x. Fors € Zy, the distribution As,y is obtained by sampling a € Zg uniformly at random and e <— x, and
200 outputting the pair (a,a’ -s +e).

202 There are two version of LWE problem: Search-LWE and Decision-LWE. Search-LWE is to find
203 the secret s and Decision-LWE is to distinguish LWE samples and samples chosen according to the
204 uniformly distribution. We use the hardness of Decision-LWE problem for our scheme.

205 For a prime power g, § > \/nw(logn), and distribution yx, solving LWE,, 5, problem is at least as
200 hard as solving SIVP,, where v = O(nq/p) [20,21].

207 2.3.3. Short Integer Solution (SIS, 4,)

208 SIS was first introduced in seminal work of Ajtai [22]. SIS has served in many applications as
200 identification schemes, one-way hash functions and digital signatures. SIS problem asks to find a
210 sufficiently short nontrivial integer combination of given uniformly random elements of a certain large
2 finite additive group, which sums to zero [19].

212 Definition 3 (Short Integer Solution Problem (SIS, ;, 4 ) [19,20]). Given m uniformly random vectors
25 a; € Zy, forming the columns of a matrix A € Zi*™, find a nonzero vector x € A+ (A) such that ||x|| < B
214 and Ax =0 mod q.

215 SIS problem is for homogeneous systems. Later, Gentry et al. [21] formalized its inhomogeneous
z6  version ISIS problem.

27 Definition 4 (Inhomogeneous Short Integer Solution Problem (ISIS,,  4p) [21]). Given matrix
2 A € Zy™" with m uniformly random vectors a; € Zg and a uniformly random vector'y € Zy, ISIS;, y, 4 g asks
210 to find a nonzero vector x € Ay (A) such that ||x|| < Band A-x =y mod g.

220 For any m, B, and for any g > B - w(y/nlogn), solving SIS, , 4 6 problem and ISIS,; ;4,6 problem
222 with non-negligible probability is at least as hard as solving SIV P, problem, for some y = 8- O(+/1)
222 [21]

223 2.4. Lattice-Related Algorithms

224 For our construction, we require a family of functions such that each function capable of compute
225 with any input but not feasible to invert the given input. Such family of functions are called one-way
226 functions. Trapdoor functions are one-way functions that keep a secret information (trapdoor) and
22z without this information finding the inverse of the function is hard. We use trapdoor functions in our
226 constructions since anyone cannot identify the inverse of the function without the trapdoor.

220 We use a randomized nearest-plane algorithm called SampleD, which was discussed in [21] and
230 [23]. The algorithm SampleD samples from a discrete Gaussian D ;. over any lattice A. We use the
21 version given in [23].

232 e SampleD(R, A, u, 0) outputs x € Z™ sampled from the distribution Dzn ,, for any vector u in the
233 image of A, a trapdoor R and o = w(+/nlogglogn). The output x should satisfy the condition
234 A-x=umodg.

235 According to [21] the inputs to SampleD is an (ordered) basis B of an n-dimensional lattice A, a
236 parameter s > 0, and a center ¢ and SampleD always outputs a lattice vector.

237 The notion of preimage sampleable trapdoor functions (PSTFs) was discussed in [21]. PSTFs

23 are defined by probabilistic polynomial-time algorithms GenTrap, SamplePre. There are several
230 constructions of PSTFs. We use GenTrap and SamplePre given in [23,24].
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240 e GenTrap(n, m, q) is an efficient randomized algorithm that outputs a matrix A € Z;*" and a
241 trapdoor matrix R for a given any integers n > 1,4 > 2, and sulfficiently large m > 2nloggq. The
202 distribution of the output A is negl(n)-far from the uniform distribution.
243 e SamplePre(A, R, u, 0) outputs a sample e € Z™ from a distribution that is within negligible
244 statistical distance of D A (A)0r ON input a matrix A € Zg*™, a trapdoor basis R, a target image
2as u € Zjj, and the standard deviation ¢ = w(/nlogqlogn).
246 Moreover, we use witness decomposition and extensions technique ( WitnessDE) and matrix extension

2ez  technique (MatrixExt) described in [10]. These techniques are needed to convince the verifier the
2es  prover’s witness in the interactive protocol discussed in Section 4.

240 e WitnessDE outputs p vectors zy, ...,z € SecretExt(d), on input x, the witness of the prover, for
250 somed = d[1] - --d[¢] € {0,1}, where d[i] is the i-th bit of the binary representation of d.

251 SecretExt(d) is a set of all vectors x = (xo|[XJ[[x}]| ... |[x0||x}) € =13 with 2¢ + 1 blocks of
252 size m, where ¢ + 1 blocks x, x'fm, ceey xzm are elements of {—1,0, 1}3m, and remaining blocks
253 are zero-blocks 0°".

258 e MatrixExt outputs an extended matrix A* € ZZX @EF13m on input matrix A € Zg 8 (%H)m, where
285 A is generated by appending 2m zero-columns to each of the component-matrices of A.

=6 2.5. VLR Group Signature

257 VLR group signatures require distributing the revocation list only to the verifiers when a member

2e  is revoked. While VLR group signatures are for dynamic groups, the general group signature scheme
20 is for static groups and consists of four probabilistic polynomial time (PPT) algorithms: KeyGen, Sign,
260 Verify and Open [5].

261 o KeyGen(n,N): This randomized PPT algorithm outputs a group public key gpk, a group manager

262 secret key gmsk, and user secret keys gsk[d] (d € {0,...,N — 1}) for the security parameter n
263 and the number of group members N.

264 o Sign(gpk, gsk[d], M): This randomized algorithm is used by group members to generate a
265 signature ¥ on a message M using the group public key gpk and user secret key gsk[d].

266 o Verify(gpk, £, M): This deterministic algorithm verifies whether the generated signature X is
267 valid on the given message M using gpk.

268 e Open(gmsk, M, ¥): This algorithm takes as inputs the group manager’s secret key gmsk, a
260 message M, and a signature £ on M and returns the index of the user, who has generated the
270 signature. If Open cannot find the signer, then it returns the failure symbol.

272 VLR group signature schemes consist of three PPT algorithms [9] since the implicit tracing algorithm

273 is used to trace the misbehaved users.

274 o KeyGen(n,N): This randomized PPT algorithm takes as inputs # and N, where n € N is the

275 security parameter and N is the number of group users. Then it outputs a group public key gpk,
276 a vector of user secret keys gsk = (gsk|[0], gsk[1], ..., gsk[N — 1]), and a vector of user revocation
277 tokens grt = (grt[0], grt[1], ..., grt[N — 1]), where gsk|i] is the i-th user’s secret key and grt[i] is
278 his revocation token.

279 o Sign(gpk, gsk[d], M): This randomized algorithm takes as inputs a secret signing key gsk[d], the
280 group public key gpk and a message M € {0,1}*, and returns a group signature ¥ on M.

201 o Verify(gpk, RL, X, M): This algorithm verifies whether the given X is a valid signature using the
282 given group public key gpk and the message M. Then it validates the signer not being revoked

283 using RL.


http://dx.doi.org/10.20944/preprints201808.0014.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2018 d0i:10.20944/preprints201808.0014.v1

8 of 28

208 Implicit Tracing Algorithm: Any VLR group signature scheme has an implicit tracing algorithm, that
zes  Uses grt as the tracing key. For a given valid message-signature pair (M, ¥), authorized person who
2es  knows all the tracing keys grt can execute Verify(gpk, RL=grt[i], X, M) fori = 0,1,...,N — 1 until Verify
27 returns Invalid. The first index i* € {0,1,...,N — 1} for which Verify returns Invalid is the index of the
2.8 signer. The tracing algorithm fails if this algorithm verifies properly for all users on the given signature.
2e0  Since the implicit tracing algorithm requires to run Verify linear times in N, it is inappropriate for a
200 large group because to detect a single user the group manager has to check almost all users until he
201 finds the user who generated the particular signature. In comparison to the algorithm Open, time
202 consumption of the implicit tracing algorithm is high.

203 2.6. Other Tools

204 The interactive protocol, which is described in Section 4 is the main building block of our scheme.
205 It allows the user to convince the verifier that he is a certified group member and not being revoked.
206 We construct our scheme based on the construction of the scheme given in [10]. Hence, our

207 scheme is based on a matrix A = [Ag|A?|A]|...|AYA]] € Z;X(zzﬂ)m and a vector u € Zj. Each

20s member has a revocation token other than their secret signing keys to confirm their validity to sign
200 Mmessages. At the verification stage, Revocation List, which is denoted by RL is given as an additional
;0 parameter to the verification algorithm. RL contains all the revocation tokens of the revoked users.
s1  Thus, the verifier can use RL to verify the validity of the user, who signed the message.

302 In the construction, we use an one-time signature scheme O7 S = (OGen, OSign, OVer). OGen is
;03 the key generation algorithm, OSign is the signing algorithm, and OVer is the verification algorithm
ss  [25]. OTS schemes are based on one-way functions, which are simpler to implement and are
s computationally efficient than trapdoor functions. O7TS schemes are digital signature schemes,
s0s which require the signer to generate keys for each message to be signed. As a result, keys generated
507 for each message are unique for the particular messages. OGen outputs a signing / verification key
s pair (osk, ovk) for input (1"). OSign takes osk and a message M as inputs and outputs a signature
a0 2. OVer is a deterministic algorithm that takes ovk, the message M, and the signature X as inputs to
a0 validate the signature >. Depending on the signature validation it outputs valid T or invalid L [26].

s 3. Definitions of the Security Notations

a12 This section first discusses the existing security notions for anonymity. Then it explains difficulties
a3 of achieving full-anonymity for VLR schemes with revocation query and defines the almost-full
s anonymity. Finally, traceability is declared.

a1 Since Chaum and van Heyst [1] introduced group signatures, more security properties have been
as  considered according to the requirements of different group signature schemes. As a result, we have a
a1z large set of security requirements including anonymity, traceability, unlinkability, unforgeability, and
a1s  collusion resistance whose definitions and relations to each other have not been clearly understood [5].

320 Simply speaking, anonymity and traceability mean are specified as the following.

a2 o Anonymity requires that no adversary recovers the identity of the user from its signature, which
322 is generated by one of the indices from two indistinguishable indices.

323 o Traceability requires that no adversary forges a signature that cannot be traced.

324 In 2003 Bellare et al.[5] developed a standard security model (BMWO03 model) for group signatures

:2s  with two security properties, full anonymity and full traceability, which implies the existing unformalized
226 requirements. In 2004 Boneh et al.[9] proposed a relaxed anonymity called selfless-anonymity, which is
;27 weaker in security in their scheme with VLR.


http://dx.doi.org/10.20944/preprints201808.0014.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2018 d0i:10.20944/preprints201808.0014.v1

9 of 28
28 3.1. Anonymity
320 o Full anonymity allows the adversary to corrupt all the users of the group, and the adversary can
330 access the opening oracle to make queries. In the beginning, all the user secret keys and the
331 public keys are given to the adversary, and he can obtain the outcome of the algorithm Open for
332 any signature as he wishes.
333 o Selfless-anonymity is a relaxed anonymity and it differs from the full-anonymity by the limitations
338 it has. The selfless-anonymity provides none of the user secret keys to the adversary, but only the
335 public keys at the beginning. However, even with these weaknesses, selfless-anonymity facilitates
336 any user to determine whether his secret key is used to generate a particular signature if he
337 forgets whether he signed the message. This CCA-anonymity notation, the selfless-anonymity
238 allows three types of queries: Signing, Corruption, and Revocation.
330 The anonymity game between a challenger and an adversary in selfless-anonymity is as follows.
340 The adversary in selfless-anonymity game is weaker than the adversary in full anonymity game

;a1 because the adversary in the selfless-anonymity game has not given access to any secret key. The
sz adversary has to determine the key which is used to generate the signature in this game.

343 o Initial Phase: The challenger C runs KeyGen algorithm to obtain a group public key gpk, group

344 members’ secret keys gsk and tokens grt. Then gives gpk to the adversary A.

245 o Query Phase: The adversary A can do the following queries.

346 1. Signing: The adversary A requests a signature for any message M with any user index i,
347 and the challenger C returns X = Sign(gpk, gsk[i], M).

348 2. Corruption: The adversary A queries for the secret key of any user i, and the challenger C
340 returns gsk[i].

350 3. Revocation: The adversary A queries for the revocation token of any user i, and the
361 challenger C returns grt[i].

352 o Challenge Phase: The adversary A outputs a message M and two distinct identities iy, i1, such
353 that A did not make the corruption or revocation queries for iy, i1. The Challenger C selects a bit
354 b {0,1}, computes signature X* of user ij, using Sign(gpk, gsk[i;], M), and sends the challenging
355 signature X* to the adversary A.

356 o Restricted Queries: Even after the challenge phase the adversary A can do the queries but with
357 following restrictions.

358 1. Signing: The adversary A can do this query as before.

359 2. Corruption: The adversary A cannot query for iy or iy.

360 3. Revocation: The adversary A cannot query for iy or ij.

361 e Guessing Phase: Finally, the adversary A outputs a bit t/, the guess of b. If b’ = b, then A wins.

362 We define the advantage of A in winning the game as Advy = |Pr[b’ = b] —1/2|. We say that
63 any group signature is selfless-anonymous if Adv, is negligible.

365 The first lattice-based VLR group signature scheme relies on the selfless-anonymity. Our goal is
e to present a lattice-based VLR group signature scheme with strong security. A naive adaptation of the
se7  full anonymity in the BMWO03 model does not go well since it was presented for static groups.

ses  3.2. Coping with Revocation queries for Full Anonymity

369 Since the full anonymity was originally proposed for static groups, the revocation query is not
s70  included in the previous full anonymity games given in the BMWO03 model or in other schemes used the
sn - BMWO03 model such as [14]. Our scheme is for dynamic-groups, which supports member revocation.
sz Since we wish to make our VLR group signature scheme full-anonymous, we will concern a new
a3 security notion for “full anonymity with revocation query”. But here we have to concern about the
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s7a  risk of giving revocation tokens to the adversary. Simply adding the revocation query given in the
a5 selfless-anonymity to the notion full anonymity will make our scheme insecure. The definition of full
w76 anonymity with revocation query is as below.

377 o Initial Phase: The challenger C runs the algorithm KeyGen to obtain a group public key gpk, a

378 group manager’s secret key gmsk, and group members’ secret keys gsk and revocation tokens
379 grt. Then gives (gpk, gsk) to the adversary.

380 e Query Phase: The adversary A can query any token (grt) of any user and A can access the
301 opening oracle, which results with Open(gmsk, M, ) when A queried with any message M and
382 a valid signature X.

383 e Challenge Phase: The adversary A outputs a message M and two distinct identities iy, i1. The
384 challenger C selects a bit b & 101y, generates X* = Sign(gpk, gsk|i;], grt[ip], M) and sends Z* to
385 the adversary A. The adversary still can query the opening oracle except the signature challenged
386 but he is not allowed for revocation queries.

387 e Guessing Phase: Finally, adversary A outputs a bit t/, the guess of b. If b’ = b, then the adversary
388 A wins.

389 Here if the adversary A calls the challenge phase with the indices whose revocation tokens

s0 are already queried, and if we generate the challenging signature without any restrictions, then the
;01 adversary A can guess the index that used to generate the challenging signature easily. The adversary A
302 can execute Verify with all the revocation tokens he has and guess the index of the generated signature.
ses  The advantage of A in winning the game is Advy = | Pr[b’ = b] — 1/2|. Since the adversary can obtain
s0a  the tokens of the challenged indices he can win the game easily. Thus, Adv, is not negligible.

205 In such away, allowing the adversary A to query any revocation token and generating the
»s challenged signature for the indices, even those indices’ revocation tokens are queried, makes our
sz scheme none secured.

399 Because of this problem, we have to concern a security notion which will not provide all the
a0 revocation tokens to the adversary. Thus, we use the almost-full anonymity given in [18], which is a
an  restricted version of full anonymity.

a3 3.3. Almost Full Anonymity

404 The idea of almost full anonymity is depicted in Figure 1. Here the challenger C generates the keys,
205 and both gpk and gsk are given to the adversary A as the existing full anonymity game. The adversary
s A can query the opening oracle with any group signature of his choice on a message M, and the oracle
w7 returns Open(gmsk, M, X) as usual. In addition to that, the adversary A can query for the token of any
a8 user d, and the challenger returns grt[d]. This is the revocation query suggested to the full anonymity
«00 as the additional query, which was not in the original notion of full anonymity. Then adversary A
a0 outputs two valid identities iy, i1 with a message M. The challenger C selects one of the two identities,
a1 which are not being queried before in revocation query phase and outputs X*. Here signatures are
a2 not generated for the indices that have been queried for revocation tokens since the adversary A
a3 can use the tokens and execute Verify to check the generated signature. The adversary’s goal is to
s1s  determine the identity that is used to generate ©*. He still can query the opening oracle except for the
a5 challenged signature, and he can request revocation token of any user except the challenging indices.
a1ie  The almost-full anonymity game between a challenger and an adversary is as below.

a17 o Initial Phase: The challenger C runs the algorithm KeyGen to obtain a group public key gpk, a
a1s group manager’s secret key gmsk, and group members’ secret keys gsk and revocation tokens
419 grt. Then gives (gpk, gsk) to the adversary.
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Challenger Adversary
gpk, gsk
‘ i

;;:, Revocation ort[i]

5

& M,Z

Open(gmsk, M, Z)
If ig,i; have not been used M* i, i
to make revocation query 1 -0s 71 - —
~ b1 Adversary still can query opening
b € {0,1} ; _; oracle except for Z* and
b he can request revocation tokens
except iy,iy
If b = bthen A wins!
Figure 1. Almost-full anonymity

420 e Query Phase: The adversary A can query any token (grt) of any user and A can access the
az opening oracle, which results with Open(gmsk, M, ) when A queried with any message M and
a22 a valid signature X.
a23 o Challenge Phase: The adversary A outputs a message M and two distinct identities iy, i1, such
424 that A never queried the tokens of them. The challenger C selects a bit b & {0,1}, generates
a2 Y*=Sign(gpk, gsk|ip], grt[iy], M), and sends X* to the adversary A. The adversary still can query
a26 the opening oracle except the signature challenged, and he can request revocation tokens of any
az7 user except the indices used for challenge.
a28 e Guessing Phase: Finally, adversary A outputs a bit ', the guess of b. If b’ = b, then the adversary
429 A wins.
a30 We define the advantage of A in the above game as Advs = | Pr[b' = b] — 1/2|. We say that any

a1 group signature is almost-full anonymous if for all polynomial N and for all adversaries, the Adv, is
a2 negligible in the security parameter 7.

434 Here we discuss the almost-full anonymity with regards to the full anonymity and the
a5 selfless-anonymity. As in any other anonymity game, in the almost-full anonymity game gpk is
as  given to the adversary A and as in the full-anonymity all the user secret signing keys gsk are given to
a7 the adversary A at the beginning of the game. Even the member revocation tokens generated, they
as  are not provided to A in initial phase. In query phase, A can access Open as in the full-anonymity
a3 and request for revocation tokens as in the selfless-anonymity game. Then A can outputs iy, i1, which
a0 are not used in the revocation query as in the selfless-anonymity. Still A can access Open but not the
s signature challenged and he is allowed for further revocation queries except for indices challenged.
a2 Thus, the almost-full anonymity is stronger than the selfless-anonymity since all the secret signing
a3 keys are provided to the adversary. But the almost-full anonymity is not strong as the full anonymity
aas  because all the revocation tokens are not given to the adversary. However, all the secret signing keys
a5 are given to the adversary. In the full anonymity given in the BMWO03 model all the secret signing
as  keys of the users (the only secret key of the users in that scheme has) are provided to the adversary.
sz However, in VLR scheme we have another user’s key called tracing key (revocation token) which
ass  cannot disclose to the adversary without any restrictions. Thus we say the almost-full anonymity is a
a0 restricted version of the full anonymity and it is somewhat weaker than the full anonymity. To be full
a0 anonymous all the secret keys (both secret signing keys and revocation tokens) should be given to the
4«51 adversary at the beginning of the game. Anyhow, the almost-full anonymity is a reasonable solution
a2 for our scheme rather than the selfless-anonymity.

as3 The VLR group signature scheme in [10] generates revocation tokens grt by taking a part of the
asa secret keys gsk. Since we are providing all the secret keys to the adversary, and he can query revocation
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ass  tokens, he can create challenged indices’ tokens using the secret keys he has. Thus, we generate the
sse  revocation tokens in a different way as discussed in Section 4.

a7 3.4. Traceability

ass The naive definition of traceability in [1] is to determine the correctness of the opening algorithm.
ase  Hence, for a valid signature signed by i with gsk[i], opening algorithm should return i. Later,
w0 traceability appeared with an actual security requirement, that it is not able to produce a signature
a2 which can not be traced to a group that generated the signature. However, the BMW03 model gave a
a2 much stronger notion called full-traceability, which can be viewed as a strong form of traceability and
63 collusion-resistance.

a65 In the traceability game, the adversary’s challenge is to forge a signature that cannot be traced.
a6 Any group signature scheme is traceable if no adversary can win this challenge. Hence we say that a
sz VLR group signature scheme is traceable if the adversary cannot forge a signature that can be traced to
ass one of the users in his coalition using the implicit tracing algorithm. The traceability game, between a
a0 challenger C and an adversary A [10] is as follows.

470 o Initial Phase: The challenger C runs KeyGen to obtain a group public key gpk, group members’

an1 secret keys gsk, and tokens grt. Then gives (gpk, grt) to the adversary A and sets corruption list
a72 U<+ @.

a73 e Query Phase: The adversary A can do the following queries.

ara 1. Signing: The adversary A requests a signature for any message M for any user index i and
a7s the challenger C returns X = Sign(gpk,gskl[i],M).

476 2. Corruption: The adversary A queries for the secret key of any user i. The challenger C adds
477 i to U, and returns gsk[i].

a78 e Challenge Phase: The adversary A outputs a message M*, a set of revocation tokens RL*, and a
a9 signature L*.

480 o The forgery adversary A wins if the followings are true.

281 1. X* is accepted as a valid signature on the message M* with RL".

482 2. XI* traces to some user outside the coalition U\RL" or tracing algorithm fails.

a83 3. X* is not obtained by signing on M*.

asa The advantage of A is Adv!]*® = | Pr[Exp’;"“(n, N) = 1]|, where Exp/{* is the traceability game

ass  between the challenger C and the adversary A. We say that a group signature scheme is traceable if
ass  Adv'7 is negligible.

ass The full traceability game between a challenger and an adversary is as below.

280 As explained in [5] and in [14] the group public key gpk and the group manager’s secret key
w0 gmsk is given to the adversary A at the beginning of the game, and the adversary A makes queries as
a1 the following game.

a92 o Initial Phase: The challenger C runs KeyGen to obtain a group public key gpk, a group manager’s

403 secret key gmsk, and group members’ secret keys gsk. Then gives gpk and gmsk to the adversary
404 A and sets U < @.

a05 o Query Phase: The adversary A can do the following queries.

a06 1. Signing: The adversary A requests a signature for any message M for any user index i and
a07 the challenger C returns X = Sign(gpk,gsk[i],M).

a98 2. Corruption: The adversary A queries for the secret key of any user i. The challenger C adds
490 i to U and returns gsk[i].

500 e Challenge Phase: The adversary A outputs a message M* and a signature X*.
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s01 o The forgery adversary A wins if the followings are true:
502 1. X* is accepted as a valid signature on the message M*.
503 2. X* traces to some user outside the coalition U or tracing algorithm fails.
s04 3. X* is not obtained by signing on M*.
s06 The advantage of A is Adv]* = | Pr[Exp’"“(n, N) = 1]|, where Exp/{* is the traceability game

sor  between the challenger C and the adversary A. We say that a group signature scheme is full-traceable
sos  if Adv/"“ is negligible for all polynomial N and for all polynomial time adversaries A.

s.0 4. Our VLR Scheme

s11 In this section, first, we describe the underlying zero-knowledge interactive protocol system,
si2 which can be used by any signer to prove his validity. Then we discuss the adoption of the explicit
sis  tracing algorithm to our VLR scheme to trace the signer of any signature efficiently. Later in this section,
s1e  We present our lattice-based group signature scheme which supports member revocation.

515 In our scheme, we generate member revocation tokens as a combination of part of the public key
s1s  and some randomness. Even there is no direct relationship to the secret keys we obtain the revocation
siz tokens by using the member-indices. Thus each revocation token has a relation to each member’s
sie  index which is unique to the members. According to the scheme described in [10], revocation tokens
s1s  can be obtained by a part of the public key and a part of the secret key. However since we are giving
s20 all the secret keys to the adversary at the anonymity game, the adversary may construct the challenged
sz indices’ revocation tokens by studying the pattern of the queried revocation tokens and using the
s22 secret signing keys he has. Thus, we come with a solution to obtain revocation tokens in our scheme
s23 by using a random vector.

524 Our scheme consists of four algorithms as below.

525 o KeyGen(n,N): This randomized PPT algorithm on inputs the security parameter n € N and the

526 number of group users N outputs a group public key gpk, a group manager secret key gmsk, a
527 vector of user secret keys gsk = (gsk[0], gsk[1], ..., gsk[N — 1]), and a vector of user revocation
52 tokens grt = (grt[0], grt[1], ..., grt[N — 1]), where gsk[i] is the i-th user’s secret key and grt[i] is
520 his revocation token.

530 o Sign(gpk, gsk[d], grt[d], M): This randomized algorithm takes as inputs a secret signing key
531 gsk[d], revocation token grt[d], the group public key gpk and a message M € {0,1}*, and
532 computes a group signature X on M.

533 o Verify(gpk, RL, ¥, M): This algorithm determines whether the given X is a valid signature using
s34 the given group public key gpk and the message M. Then it validates the signer not being
535 revoked using RL.

536 e Open(gmsk, M, ¥): This algorithm takes as inputs the group manager’s secret key gmsk, a
537 message M, and a signature £ on M, and returns the index of the user who has generated the
538 signature. It returns failure symbol when the user cannot be identified.

seo  4.1. The Underlying Zero Knowledge Interactive Protocol

sa1 Zero Knowledge Interactive Protocol is the building block of this scheme as it allows a prover (signer)
sez to argue that he is a certified group user who has a valid secret key.

543 Let COM be the statistically hiding and computationally binding commitment scheme described
saa in [27].

545 Our scheme can be seen as an adaptation of [10] and [14]. In [28] combined interactive protocol is

sas  given that signer can prove his validity of signing, his revocation token is not in the revocation list, and
se7  his index is correctly encrypted. Thus, the interactive protocol given in [28] suits for our scheme well.
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548 We use matrix A = [Ag|AJ|A]]...|AYA}] € Z"X(Zul)m

sa0 V € Z;”X”, vector v € Z;”, matrix P € Z;leZ, and a vector ¢ € Zgl as the public parameters. The

,vector u € Z", matrix B € ZZX’”, matrix

sso  Witness of the prover consists of vector x(4) = (x| ]| (X0 xh) € 2D for some d € {0,1},
ss1 a vector e; € Z", a vector r € Zj, and another vector e € Z*2. While keeping prover’s identity d
ss=  in secret, he has to convince the verifier that A-x = umod g, ||e1||, < Band V- (B 1) +e; = v
sss mod q. Moreover, the prover has to show his identity is correctly encrypted, such that ||e||cc < b and
s Pe + (0F17¢||g/2]d) = ¢ mod g.

55 We recall the underlying zero-knowledge protocol given in [28] in Appendix A.

556 As discussed in [28] we construct an efficient simulator S interacting with a (probably dishonest)
ss»  verifier V, such that, given only the public input S outputs with probability negligibly apart from 2/3
sss  a simulated transcript that is statistically close to the one produced in the real interaction by the honest
sss  prover. Thus, the simulator can successfully imitate the honest prover with probability negligibly far
seo from 2/3.

sex 4.2, Explicit Tracing Algorithm

562 In general, VLR group signature scheme has the implicit tracing algorithm, which requires to run
ses  Verify linear in the number of users until the signer is traced. Because of this reason, the implicit tracing
ses algorithm is inconvenient for large groups, and we use the explicit tracing algorithm while using some
ses methods described in [14] to make our scheme flexible for any group size. In general, when the explicit
ses tracing algorithm is used, the group manager’s or some other third party authorities” involvement
sez is required, and his secret key is used to decrypt the signature on a message to obtain the index of
ses the signer. Since the scheme in [10] consists of the implicit tracing algorithm, it does not concern the
ses  group manager’s key or encryption and decryption of the identity of the signer as in [14], where the
s explicit tracing algorithm is used. Thus, we focus on generating the group manager’s secret key and
snencryption and decryption of the identity of the signer by using the techniques given in [14].

sz 4.3. Description of Our Scheme

573 In this section, we describe the algorithms of our scheme with explicit tracing algorithm Open.
574 Let n be the security parameter, and N be the maximum expected number of group members
s7s  (users) of the group.

577 Key Generation: This randomized algorithm KeyGen(n,N) proceeds through the following steps
s to generate a group public key gpk, group user secret keys gsk, group user tokens grt, and a group
s7o manager secret key gmsk.

580 1. Run PPT algorithm GenTrap(n, m, q) to obtain a matrix Ay € Z;’;X’" and a trapdoor R.
581 2. Sample a vector u & Zy.

se2 3. Sample matrices A? & Zy*™ foreach b € {0,1} and i € [{].

583 4. Set the public parameter, the matrix A = [Ag|AJ|Al|...|A)A}] € Z;X(%H) ",

sea 5. Run the algorithm GenTrap(n,m,q) to obtain B € Zi*™ and trapdoor Tg.

s85 6. Foreachuserd € {0,1,---,N — 1}, secret keys gskld] and revocation tokens grt[d] are generated
586 as follows.

587 (a) Letd[1]-- {;O 1}¢ be the binary representation of d.

s88 (b) Sample vectors x1 g[ I Dzm .

s89 (c) Compute z = Z d“ x2 mod q.

590 (d) Get XP € Z’” — SadmpIeD ﬁ Ap,u—2z,0).

501 (e) Letx - xt M pe zero vectors 0.

502 (f) Deflnex (x0||x1||x1|| ||x2||x}) € x2t+1)m

593 If | |x( ||oo < B, then proceed else reFeat from (a).

504 (g) Let the user secret key be gsk[d] = x'9)
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505 (h) Sample a vector r; <~ Dgm ;.
506 (i) Getry € Z™M «+ SampIeD(TB,B u—2z,0).
507 (j) Computer =r1; — 7.
so8 (k) Let the user revocation token be grt[d] =
599 Finally the algorithm returns, gpk = ((A,u), B), gmsk = T, gsk = (gsk][0], gsk[1], ...,
oo gsk[N —1]), grt = (grt[0], grt[1], ..., grt[N — 1]).
602 Signing: We use the one-time signature scheme O7'S to generate keys and signatures to make

03 our signature secure. Then we use the zero knowledge interactive protocol to show that the user is valid.
sos The randomized algorithm Sign(gpk, gsk|[d], grt[d], M) takes as inputs the group public key gpk, the
eos user secret signing key gsk|[d], revocation token grt[d], and generates £ on a message M as follows.

607 Let Hq: {0,1}* — ZZXZ, Hy: {0,1}* — {1,2,3}!, and G: {0,1}* — Zy*™ be hash functions,
e0s modeled as a random oracle.

600 1. Run OGen(1") to obtain a key pair (ovk, osk).
610 2. Encrypt the index d as follows.

611 (a) Let G = H] (OVk)

612 (b) Sample s <— x"*, e; <= X" and e; < Xt

613 (c) Compute the c1phertext (€1, ¢2) pair which encrypts the index d
614 (c1 =BTs+ej, 0= GTls+e,+ lg/2]d).

ws 3. Samplep & {0,1}",let V =G(A,u,B,M,p) € ZI'*".

o160 4. Computev =V - (B-r)+e; mod g (||e1]|, < B with overwhelming probability and B - r =

617 gl‘t[d])
618 5. Generate the parameters for the interactive protocol to show the index d is encrypted correctly as
619 follows.
s
BT
P= ( “Gr | T ) € Z " e = ( 2 ) eZMe=| e | ez 1)
€2
620 6. Repeat the zero knowledge interactive protocol 4.1 of the commitment described above t =
621 w(logn) times with the public parameter (A, u, B, V, v, P, ¢) and prover’s witness (x, r, e1, e) to
622 make the soundness error negligible and prove that user is certified. Then make it non-interactive
623 using the Fiat-Shamir heuristic as a triple,
= ({cMT®} _  CH,{RSPW} ), where
625 ({Cl’l }k 1) HZ(M, {CMT(k)},tczl,Cl,Cz).

626 7. Compute OTS;sig = OSig(osk, (c1, ¢, IT)).
627 8. Output signature X = (ovk, (¢, ¢2),I1,sig, v, p).

629 Verification: On input gpk, RL= {{u;};} C Z[!, M, and %, the algorithm Verify checks whether
e30 the given signature X is valid on the given message M and signer is a valid member by executing the
o1 following steps.

Parse the signature X as (ovk, (¢1, ¢2),I1,sig, v, p).

GetV=G(A,u,B,M,p) € Zg””.

If OVer(ovk, (¢, cz) H sig) =0 then return 0.

Parse IT as ({CMT }k 1 ,{Chlk }k {RSP }k 1)-

If (ChM), . (6)) £ Ho(M, {CMT }k 1, €1, €2), then return 0 else proceed.

o
w
»
A ~ .; .
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637 6. For k = 1 to t run the verification steps of the commitment scheme 4.1 with public parameter (A,
638 u, B, V, v, P, ¢) to validate RSPK) with respect to CMT® and Chb). If any of the conditions fails
639 then output invalid and hold.
640 7. For each u; € RL compute e; = v — V- u; mod g to check whether there exists an index i such
sa1 that ]|e;| |, < B. If so return invalid.
642 8. Return valid.
643 Open: The algorithm Open(gmsk, M, X) functions as follow, where gmsk = T and X =
644 (OVk, (Cl,Cz), H, Slg)
oas 1. Let G = [gy]...|g/] = H1i(ovk).
cas 2. Then for i € [¢], sample y; <— SamplePre(Tg, B, g;, 7).
647 3. LetY = [y1| .o |y€] S mef_
cas 4. Computed’ = (d},...,d})) =c;—Y'¢; € Zg.
649 5. For each i € [¢] check whether d! is closer to 0 than [g/2]mod g. If so d; = 0 else 1.
o50 6. Returnindexd = (dy,...,d;) € {0,1}%.
es1 5. Correctness and Security of the Scheme
es2  0.1. Correctness
653 Since we use the techniques in [14] and adapt the scheme provided in [10], Verify and Open in our

ess  scheme are also correct as the underlying arguments are same. Even though we have changed the
ess revocation token generation regards to [10] there is no impact to the correctness of the scheme from
ess New revocation token generation, since we check the signer’s authenticity with RL separately.

o58 For all n, N, all (gpk, gmsk, gsk, grt) outputted by KeyGen(n, N), alld € {0,1,...,N — 1}, and all
eso M € {0,1}*, Verify(gpk, RL, M, Sign(gpk, gskld], grtld], M)) = valid; grtld] ¢ RL and Open(gmsk, M,
sso  Sign(gpk, gskld], grtld], M)) =d.

662 We use the proof of correctness given in [10]. We prove the correctness of Open additionally.

s Lemma 1 ([10, Lemma. 4]). Let B = poly(n),q > (4B + 1)? and m > 3n. Over the randomness of V €

664 ZZD(n,

Pr[3non-zeros € Zy : ||V s[|eo < 2] < negl(n).

005 proof. Fix a non-zero vector s € Zy. Then the vector V - s is uniformly distributed over Zg'. It then follows

sos that Pr[||V-s||e < 28] < W. Applying a union-bound get

"(4p+1)" 1 _
- n : . o < < q ( < < n— .
Pr[dnon-zeros € Zy : ||V s[|e < 2f] < P S @i S (4+1) negl(n)
667 With overwhelming probability an honest signer (user) can get a valid witness (x, r, e1, e) to be

sss Used in the underlying argument system. Moreover, in the verification algorithm Verify will not return
eso Invalid after the step 6 because steps 6 validates the signature using the underlying zero-knowledge
oo interactive protocol. In step 7 of the verification algorithm Verify, the vector e/ for every i can be
e delivered as

e,=v—V.-u=V-grtld +e;—V-u; = V- (grtfd] —u;) + e; mod q.

o72 If the verification algorithm Verify outputs Valid, thatis ||e/||cc < B, for alli. This means grt[d] ¢ RL.
ors If there exists an index i, where grt[d] = u;, then €] = e;. Then the signature should not pass the Step 7
o7a  Of the verification process because |||/ = [|€1]|cc < B.
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675 Suppose there is a situation grt[d] ¢ RL, i.e., for every i, the vector s; := grt[d] —u; mod g is
ere non-zero. We can show for this case the verification algorithm outputs Valid with overwhelming
ez probability. According to Lemma 1, ||V - s;||c > 2B with overwhelming probability. On the other
ore hand, [V 5;l|oo < [lellloo & [[e1][eo < |[€l]]eo + B Thus, [[el]|ec > 26 — B = f.

679 Moreover, if the index of the signer is correctly encrypted in the ciphertext c at the time of signing,
eeo then the tracing algorithm Open returns the index of the signer correctly . Encryption of the index is
se guaranteed in the signing stage, since no member can pass the underlying interactive protocol without
sz correct encryption of the index via a LWE function. In addition to that, Verify returns Invalid if the
ees ciphertext c¢ is not correct encryption of the index because it cannot pass the underlying interactive
sss protocol’s checking without a correct encryption. Thus, this proves the correctness of the encryption of
ses the index and that the tracing algorithm outputs the index of the correct signer.

ses 0.2, Almost-full Anonymity

sez  Theorem 1. In the random oracle model, the prosed VLR group signature scheme 4.3 is almost-full anonymous
sss  under the LWE, g assumption.

689 We prove the anonymity of our scheme using eight indistinguishable games, where Advs(Go) = €
es0 and Ad’UA(G7) =0.

692 Game Gj: This is the real anonymity game, that we assume the adversary A has advantage
o3 €. At first the challenger C runs KeyGen(n, N) and generates keys gpk, gmsk, gskld] ;. (01} and
oo grtldl;c o 1yr. Then gpk and gsk are given to the adversary A. The adversary A can query for revocation
s tokens. When the adversary A requests for a token of user d then the challenger C returns grt[d].
s The adversary A can also query for opening of any signature and C answers with Open(gmsk, M, X)
o7 using gmsk Tp. In the challenge phase A outputs a message M and two indices ig,i; € {0,1}¢,
es such that the adversary A did not make a revocation query for users ig,i; € {0,1}¢. Then C sends
oo back X* = (ovk™, (¢, ¢;), IT%,sig", v*, p*) which is generated using Sign(gpk, gsk([i,], grt[i,], M). The
70 adversary A still can query for opening oracle except for challenged indices and he is not allowed for
701 revocation queries with 7y, i;. The adversary’s task is to determine the index, that is used to generate
702 2*. Thus A outputs b’ € {0,1}. If ¥’ = b then A wins.

708 Game Gjp: In this game, a slight change is done compared to Gg. The OTS key pair
75 (ovk™,0sk”) is generated at the beginning of the game. In the real game, OT S key pair is
s generated when generating a signature at the challenging phase. Thus, at the query phase if the
7z adversary A queries for opening oracle with a signature ¥ = (ovk, (c1,¢2),11,5ig,v,p), where
s ovk = ovk® then the challenger C outputs a random bit and aborts. The games Gy and G; are
700 indistinguishable and ovk™ is independent of the adversary’s request as it generated before the
70 query phase. Accordingly, the probability of ovk = ovk™ is negligible. Besides, after challenge
71 signature ¥ = (ovk*, (cj,c;), I1%,sig*,v*,p*) is sent, if the adversary queries a valid signature
nz X = (0vk, (¢1,¢2),11,sig, v, p) with ovk = ovk™ then sig is a forged one. Hence, the challenger aborting
=3 the game is negligible. Without losing the generality assume that A does not request for opening with
71a avalid ¥ with ovk = ovk™.

716 Game Gy: In this game, we replace the encrypting matrices B and G with randomly obtained
7z B* and G*, and we program the random oracle 7{; according to B and G. In real anonymity game,
ne B is obtained from GenTrap and G is generated at the signature generation. In this game, we
71e  obtain uniformly random B* € Z*™ and G* € ngg. To answer the opening oracle requests with
20 X = (ovk, (c1,¢2),I1,sig, v, p) the challenger C samples Y < (Dzm,a)g, computes G = B*Y € ngg,
722 and programs H;(ovk™) = G. This G is used to answer the opening and keep the track of (ovk,Y,G) to
722 be reused if A repeats the same requests for 7{1 (ovk). In the challenge phase, program H; (ovk)* = G*
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222 and compute (¢}, c;) to generate L*. Since the distributions of G*, B* are statistically close to the
724 real game [21] and the distribution of G is statistically close to uniform over nge [21] this game is
725 indistinguishable from the game G;.

727 Game Gjz: In this game, instead of generating the legitimate non-interactive proof I1, the

26 challenger C simulates IT as discussed in Section 4.1. For each k € [t] take a fake challenge Ch(¥) and
720 run the interactive protocol. Then program the random oracle H; accordingly. The challenger’s
70 signature X* = (ovk™, (¢, c}), IT%,sig", v*, p*) is statistically close to the signature in the previous
731 games since the argument system is statistically zero-knowledge. Therefore Gj3 is indistinguishable
732 from Go.

738 Game Gy: In this game, we replace the original revocation token used to generate the challenged
s signature ©* = (ovk’™, (¢}, c;),IT%,sig*, v*, p*) where v = V - grt[i,| + e; mod g, with a vector t
736 sampled uniformly. We compute v =V -t+e; mod g, where t & Zy. V is uniformly random over
737 Zg'"", e; sampled from the error distribution x, and we replace only grt[iy] by t. The rest of the game
73e 1S same as previous game G3. Thus, the two games are statistically indistinguishable.

740 Game Gs: In this game we obtain v uniformly. Thus, we make details of revocation token

71 totally independent of the bit b. We sample y & Zg and set v =y. In the previous game, the pair
22 (V, v) is a proper LWE,, 4, instance and in this game we replace v with truly uniformly sampled
73 y. Under the assumption that the LWE,, ;, problem is hard (Section 2) the games G4 and Gs are
7aa  indistinguishable. Suppose there is an algorithm B for solving the LWE,, ;, problem. Then, B
zes can interact with A by answering the queries that A makes. When A queries for the revocation
s token of any group member, B simply can answer with a value chosen uniformly random such

747 as'y & Zy instead of providing grt. Rest of the game is same as the original poof given in
=s the previous game. If adversary A can distinguish whether the revocation token is generated or
70 chosen randomly the algorithm B is succeed. But this contradicts the hardness of the LWE,, 4 x problem.

751 Game Gg: In this game we modify the generation of ciphertext (cj, ¢;) uniformly. Let ¢] = x;
752 and ¢ = xo + |/2]dy, where x; € Z™ and x, € Z are uniformly random and dj, is the index of the
753 challenger’s bit. The rest of the game is same as Gs. The games Gs and Gg are indistinguishable under
75 the assumption of the hardness of LWE,, 4 , problem defined in Section 2. Indeed, if A can distinguish
755 two games, then A can also solve the LWE problem. That means, he can distinguish (B*, (B*)s + e;)
756 from (B*,z;) and (G*, (G*)Ts + e;) from (G*, z;) which conflicts with LWE, 4,y assumption.

758 Game G7: In this game, we make L* totally independent of the bit b. Let ¢ = x| and
70 €5 = Xp, where x| € Zj and x; € Zg are uniformly random. The games Gy and Gy are statistically
760 indistinguishable. Since this game Gy is independent from the challenger’s bit b, the advantage of the
761 adversary winning the game Adv 4 is 0.

763 Even the adversary A can do revocation query any number of times he can not learn about the
7ea  secret keys since the revocation token consists of part of the public key and some randomness.

766 Hence, these games prove that advantage of the adversary on almost-full anonymity of the scheme
767 is negligible.
768 This concludes the proof of anonymity.
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o0 5.3. Traceability

770 We say in the random oracle model our VLR group signture scheme is traceable if the
™ SIS;?i(lJrl)m,q,Zﬁ problem is hard.

722 Lemma 2 ([21]). Forany m, p = poly(n), and for any g > B.w(+/nlogn), solving a random instance of the
773 SIS%,,m,q,ﬁ or ISIS%,m’q,ﬁ problem with non-negligible probability i~s at least as hard as approximating the SIVP,ZY
774 problem on any lattice of dimension n to within certain -y = B - O(/n) factors.

776 Theorem 2 ([10]). If thereis a traceability adversary A with success probability € and running time T, then there
wreis an algorithm F that solves the SIS, . y) ,, o o5 problem with success probability € > (1 — (7/ 9)")-1/2N,
77s and running time T' = 32 - T.qy /(€ —37") + poly(n, N), where gy is the number of queries to the random
77 oracle H : {0,1}* — {1,2,3}".

781 According to Lemma 2 and Theorem 2, we can show that our scheme is traceable in the random
7e2 oracle under the conditions of those theorems.

784 Suppose there is an adversary A who can break the computational binding property of the
7es commitment scheme COM with non-negligible probability. Hence A can solve the SIS;’:( +1)mg,28
zss problem. Thus, without loosing the generality, we assume that COM is computationally binding.

787 Let forger F be a PPT algorithm that solves the SISZ’X +1)m,q28 problem with non-negligible

e probability.

790 The forgery F is given the verification key (A, u). F then generates a key pair (B, Tg) and interacts
71 with the adversary A by sending gpk = ((A, u), B) and responding to the A’s queries as follow.

792 o Signatures queries: If the adversary A queries signature of user 4 on a random message M, then
703 F returns £ = Sign(gpk, gskld], grtld], M) = (ovk, (¢1,¢2), I, sig, v, p), where IT is simulated
708 without using the legitimate secret key and others are generated faithfully. The zeo-knowledge
705 property of the given underlying interactive protocol guarantees that X is indistinguishable from
796 the legitimate group signature.

797 o Corruption queries: The corruption set CU is initially set to be empty. If the adversary A queries
798 the secret key of any user d, then F adds d to the set CU and returns gsk[d].

799 e Queries to the random oracles H; and H, are handled by consistently returning uniformly
800 random values in {1,2,3}!. For each k < g3, r, denotes the answer to the k-th query.

so1 Finally, A outputs a message M*, revocation data RL* and a non-trivial forged signature X*,
sz Which satisfies the requirements of the traceability game, where

sos L = (ovk, (c1,¢2), M, {CMTW} _ {Ch®}_  {RSPW}_ ), sig,v,p), such that

soa Verify(gpk, M*, RL*, £*) = Valid and Open fails or returns an user index outside of the coalition CU \ RL*

s06 Now let us show how F exploits the forgery.

807 We require that A always queries 1, on input (M, {CMT(k)},tczl, c1,¢p) before H;. As a result,
sos with probability at least € — 377, there exists certain k* < g, such that the k*-th oracle queries involves
w0 the tuple (M, {CMT®}!_ ¢1,¢)). Next, for any fixed k* run A many times and input as in the
s10  original run. For each repeated run, A returns same output for the first k-1 queries as in initial run
sun  and from the k*-th query onwards return fresh random values. According to the forking lemma
sz [[29], Lemma 7], with probability larger than 1/2, algorithm F can obtain a 3-fork involving tuple
sz (M, {CMT(k) }]t{:l, c1, ) after less than 32 - gH / (e — 3™") executions of A. Let the responses of F with
s1a  respect to the 3-fork branches be
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P = cn,.., iy = cn®,.. ch®; ¥ = (e, ., cn®).

o1 A simple calculation shows that: Pr[3j € {1,...,t}]: {Chfl), Chfz),Chfa)} ={1,2,3}1—(7/9)".
816 Under the condition of the existence of such index 7, one parses the 3 forgeries corresponding to
a1z the fork branches to obtain (RSPZ.(l), RSPZ.(Z), RSPi(3)).
818 Then by using the knowledge extractor of the underlying argument system, we can extract vectors
si0 (y,e], 1", e"). We can get (s*, e], ;) from e*, which satisfy the followings.
820 Loy = (yol[¥dlyill--- 110l ly}) € Secretg(d) for some d € {0,1}!,and A -y = u mod gq.
e21 2. |lef]|lee < pand V- (B-r*) +ef =v mod g.
822 3. ||e*|| < band (BTs* + e =¢; mod q), (GTs* + e} + [q/2]d* = c; mod q).
823 We can check that, (¢, ¢p) is a correct encryption of 4%, the tracing algorithm Open(Tg, M*, X*)
s2a returns d*, Verify(gpk, X, M,* grt[j*]) = Invalid and Verify(gpk, £, M,* RL*) = Valid.
826 It then follows, grt[j*| ¢ RL, and j* ¢ CU. As a result (y, d*) is a valid forgery. Furthermore, the

26 analysis of the forgery signature shows that, if A has non-negligible success probability and returns in
a2z polynomial time, then so does F.
a2 This concludes the proof of traceability.

s20 6. Conclusion and Open Problems

830 This paper presented a lattice-based scheme that provides member revocation facility using
e1 VLR which is the most efficient revocation approach up to now, while being almost-full anonymous.
a2 Moreover, the scheme provides explicit tracing algorithm Open which can be used to trace a signer in a
sa3  large group efficiently. However, delivering an efficient VLR group signature scheme with full security
e3¢ is a challenging task which is not yet solved.

s3s  Abbreviations

sse  The following abbreviations are used in this manuscript:
837

A Adversary

Adv Advantage

C Challenger

DS Digital Signatures
E Encryption scheme

FDGS  Fully dynamic group signature
838

GS Group Signature
NIZK  Non-interactive zero knowledge

P Prover
RL Revocation list
A\ Verifier

VLR Verifier-local revocation

s30  Appendix. Underlying Zero-Knowledge Interactive Protocol

840 Let 1 be the security parameter and £ be the message length. Let modulus ¢ = w(n?logn) be
s prime, dimension m > 2nlogg, and Gaussian parameter ¢ = w(+/nlogqlogn). The infinity norm
sz bound B = [0 -logm] s.t (48 + 1) < g and norm bound for LWE noises is b s.t /b = (O(n). Let
sas ky:=m-+Landky :=n+m-+/L.

saa e The common inputs: Matrices A = [Ag|AJ|A]|...|A)A}] € ng(2€+1)m, B e Z"™", Ve Zy",

8as and P € Zsl “k2 and vectors u <i Zg’, v E Z;”, and c € Zgl.


http://dx.doi.org/10.20944/preprints201808.0014.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2018 d0i:10.20944/preprints201808.0014.v1

21 of 28
sas e The prover’s inputs: A vector x = (xo|[x}[[x][|...[[x}||x}) € Secretg(d) for some secret d €
847 {0, 1}5, vector e; € Z™, vector r € Zg‘, and a vector e € ZF2. We use f instead of e; hereunder to
sas discard the confusing e;with e.

840 e The prover’s goal is to convince the verifier in zero-knowledge that:

850 - A-x=u mod g and x € Secretg(d).

851 - ||flle < Band V- (B-r) +f=v mod g. (Here the revocation token is created separately
852 with a matrix B and a vector r instead of using Ay and xp).

ss3 - |le|l < band Pe + (0k1=¢|||g/2]d) = ¢ mod g (b is the norm bound for LWE noises and
854 ﬁ = UOg bJ + 1)

Before the interaction, both the prover and the verifier form the public matrices: A* <+
MatrixExt(A), V* = V- B € Z;”™", T" € {0, 1}m*3m (1* is obtained by appending 2m zero-columns to

the identity matrix of order m), P* = [P | 0F1%2k2] ¢ Zglxskz, and

olki—0)xt olki—0)xt
) ( oS -] € {0 las2p

ass Then the prover uses the Decomposition-Extension technique provided in [10] with his witness
sse  vectors as below.

Letzy,...,zp < WitnessDE(x). )
Letf;,...,f, < EleDec(f), then for each i € [p], let f; <— EleExt(f
Let#,...,¥y < EleDec(r), then for each i € [p], let r; <— EleExt(¥
Let&;,...,&; < EleDec(e), then for each i € [p], let e; <— EleExt(

i)-
i)-
é;).

861 At the interactive protocol, the prover instead convince the verifier that he knows z,...,z;, €
862 Secret,g(d), fl,...,fp € Bay, T1,...,Tp € B3y, and &y,...,8&, € Bgy,, such that

A" (Z]r;l ,3]' : z]-) =u mod g;
V* . (Zf:1 ,Bj . r]-) +I*. (2}321 ﬁj . fj) =v modq.

P ( ]1-7:1 bj-ej)+Q-d* =Pe+ (0k1=||g/2]d) = ¢ mod g.

ss3s  Description of the protocol:

1. Commitment: The prover samples randomness p1, p2, p3 for COM and the following uniformly
random objects:

c & {01}
$ o $ . $ .
Ty Tz S; TUf s T p € S3m; 1, +s Tlrp < Sam;
7'[9,1, ey Ne,ﬁ (i Sgkz,’T (i S%; (Al)
Kot ke & 2T, K, & 23

Kt Kep & 23K, kep & 22 kg & 72,
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Then the prover sends the following commitment CMT = (cy, ¢z, ¢3) to the verifier.

= COM(c, {72z, 70f,j, 70} 1), A" - (D)4 By - s y);
Vi f 1Bj K j) T (T By oKy );
{7, P (L, bike ) + Qka; T 1),

c2 = COM({Te 0 715, (ks ), 7Kg ), 70,1 (Kr i)}y
{700 (ke )}y T(a)i p2),

C3 —

COM({T; o nzj(zj +ky i), (£ + kg ), (g + k,,j)}le;
{ﬂe](e] + ke]) = (@ +Xkq);03).

(A2)

s6s 2. Challenge: The verifier sends a challenge Ch & {1,2,3} to the prover.
a5 3. Response: Depending on the challenge, the prover sends the response RSP computed as follows.

e Case Ch = 1: Letd; = d@®c. For each j € [p], let uw,; = Tco nzlj(zj);wz,j =
Teomyj(ky );ur; = mpi(f);wr; = 715 i(Kpei);wj = mi(x); wrj = m,i(k, ;). For each
j € [p), let U= ne,](e]) W= ne,]( e,]) Let uy = 7(d*);w; = 7(k4). Then send

RSP = (dl, {uzrj,wz,j,uf,j, wf,]-,ur,j,wr,j};;l, {ue,j,wg,]‘};;l,ud, Wd,pz,pg). (A3)

o Case Ch = 2: Letd, = c. Foreachj € [p], let ¢,; = m,j;¢r; = Tpi;rj = 7158, =
zj+k,j;sr; = fi+ kg ;s = 1;+k, ;. Foreachj € [p], let ¢, ; = 7, ;s.; = e + k. Let
T=Tands; = d*—i—kd Then send

RSP = (da, {‘Pz,j/ (Pf,j/ ‘Pr,j/ Sz,jr Sf,js sk,j}]r‘]:y {‘Pe,j/ Se,j}]}?:y 7,84, 01, P3) (Ad)

o Case Ch = 3: Letds = c. Foreachj € [p], let¢,; = 7, ;;¢r; = 75j;0r; = My =
kZ,j; hf,] = kf,j; hr,j = kr,j- Foreachj € []5], let lpe,j = Tle,js hg’]‘ = ke,]‘. Let T = tand hy = k;.

Then send
RSP = (d3, {2, ¥r i ¥rj bz hg g, hk,j}f:y {e, he,j}le, T,hy,01,02) (A5)
a6 4. Receiving the response RSP, the verifier proceeds as follows:
867 e Ch = 1: Parse RSP as in (A3).

Check whether V € [p] : u,; € SecretExt(dy),us; € Bay, u,; € B3y, Vj € [p] : uy €
BZg,ue,j S B3k2/ and

o= COM({Wz,j,Wf,j,Wr,j}le; {We,j}le;wd}Pz)/
c3 = COM ({uzr]- + Wy Up i+ We i uy i+ W, };;1) (A6)
{u2,j + WE,j}le? {ug +wy};p3).

e Ch = 2: Parse RSP as in (A4). Check whether :

¢; = COM(dy, {(Pz,]r ‘Pf]/(Pr,]}] 17 *(Z]le .Bj ’ Sz,j) —w

\A (Zp 1 Bjsrj) + (T i—1Bj-sfj) =V

{476,]}]':1/ : (ijl bj : Se,j) +Qs; —¢; %}Pl)/ (A7)
c3 = COM({Ty, © ,i(52,)), 1, (S5,1), drj(51,) Y-

{e(se) 3715 2(s4); p3).
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e Ch = 3:Parse RSP as in (A5). Check whether :

= CO'V'(d?w {9, ¥rjo ¥r Y A (S B b))
(T By ) + 1 (T By )
{4’61}] pPr (1 j—1bj - hej) +Qhy; T;01), (A8)
¢ = COM({Ty, o lPZj(hzj) Yri(hg ) ri(hy )}
{lPe,]'<he,j) }] 17T T(hg); p2)-

s68 The verifier outputs Valid if and only if all the conditions hold. Otherwise, he outputs Invalid.

seo  Appendix A.1. Analysis of the protocol

870 Let COM be a statistically hiding and computationally binding string commitment scheme. The
s interactive protocol is a zero-knowledge argument of knowledge with perfect completeness and
sz soundness error 2/3 with (O(¢m)log B + O(ky) log b) log g communication cost. Thus it satisfies the
ers  followings.

874 e There exists an efficient simulator that, on input (A, u, B, V, v, P, ¢), outputs an accepted transcript
875 which is statistically close to that produced by the real prover.

8760 o There exists an efficient knowledge extractor that, on input a commitment CMT and 3 valid
a77 responses (RSP(1), RSP(2), RSP®)) corresponding to all 3 possible values of the challenging Ch,
o78 outputs vectors (y, f, ', e’) such that

87 ol¥Iyill- - [1¥2l]y}) € Secretg(d) for some d € {0,1},and Ay = u mod g.

880 2 Tf'||m§ 'and V -(B-r) f =v mod

ss1 3. ||e/||eo < band Pe’ + (0117 ¢|||q/2] )—c mod .

sz Appendix A.1.1. Completeness and Soundness

883 An honest prover, with a valid witness (x,f,r,e) for some d € {0,1}5, can always obtain
ssa Z1,...,Zp € Secretlg(d),fl, ... fp € Bayri,...,tp € Bsy, and ey,...,e; € By, via the
ses Decomposition-Extension technique [10]. If he follows the protocol, he should always be accepted by
ses the verifier. In this manner, the protocol has perfect completeness.

sa7 The protocol admits a soundness error 2/3, which is natural for typical Stern-like protocols.
sss However, this error can be made negligible by repeating the protocol t = w(logn) times in parallel.

s Appendix A.1.2. Communication Cost

800 The KTX scheme [27] COM outputs an element of ZZ. Therefore the commitment CMT has bit-size
s 3nlogq = O(n). The response RSP is executed by, p permutations in S, p permutations in Sz, p
(20+1)3m

se2 permutations in Sz;,, one permutation in 2¢, p vectors in Zq , p vectors in Zsm, p vectors in ngz,
s03 and one vector in Zgz.

s0a In this manner, the bit size of RSP is bounded by (O (¢m)p + O(kz)p) log g, where p = |log f| +1
sos and p = |logb| + 1. Thus the overall communication cost of the protocol is bounded by (O (¢m) log B +

ss  O(ky)logb)logg.

s Appendix A.1.3. Zero-Knowledge Property

295 If COM is statistically hiding, we can prove that, the interactive protocol is statistical
se0  zero-knowledge argument.

%00 First, construct a PPT simulator SIM interacting with a verifier V such that, by giving only the
so1 public inputs, SIM outputs with probability close to 2/3 a simulated transcript that is statistically
%02 close to the outputs of an honest prover in the real interaction. From the public input (A, u, B, V, v,
e3P, c) given by the protocol, both SIM and V acquire matrices, A*, V*, I*, P*, and Q. Then SIM starts
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s0s simulation by selecting a random Ch € {1,2,3}. This is a prediction of the challenge value that V will
sos not choose.

006 Case Ch = 1 : SIM computes the vectors z{, ...,z € Zgﬂﬂ)m such that A* - (2]’.7:1 B z;) =u
1, Z3m and f},. ..,f/p € ng such that V* . (Zf 1Bj - r;) + I (Z;le B f;) =v
s mod g, and e],..., e} € Z;;’k and d’' € Z%Z, such that P* - (Zp 10j- € ) Q-d’ = ¢ mod g by using
s0s linear algebra.

910 Then SIM samples objects as in equation (A1) and sends commitment CMT = (c}, ¢}, c}) to v,
011 Where

o7 mod 4q, I'/l, cey

C1—COM {ﬂz],ﬂf],ﬂr,]}] 1 *'(Zleﬁj'kz,j);
V(T Y- 1:3] k) +1"- (Z]Pﬂﬁj'kf,j)
{ﬂe]}] L j—1bj - Kej) + Qkg; T; 01),
CQZCOM({Tcoﬁz;‘(k i) 70 (g ), 70 (O )}y (A9)
{ne,j(ke,j)}] 17T T(kg); p2),
= COM({T. o nZ](z ), 7 (6 + K ), 70 (0 + X )Y
{7[6](3 +k,]) j=17T T(d' +kq);03)-

012 For a challenge Ch from V, SIM responds as follows:
013 -If Ch = 1: Output L and abort.
014 -IfCh=2: Send,

_ ! p
s1s RSP = (c, {ﬂz,jr _7Tf,]'r TTrjs Z;- + kz,]‘, f] + kf,j/ I‘} + kr,]'}]':1r
{ne,jz e; + ke,j}]r'):y d + ki, T, 01, PB)'
-1f Ch = 3: Send, RSP = (¢, {7, j, 71, n,,j,kzlj,kf/j,kr,j}]’.’zl,

o {70 Ko}y, T, 01, 02)-

919

91

o

Case Ch = 2 : SIM samples randomness p1, 02, 03 for COM and

d& o, 1}5 c & {0,115d & By,
zy,..., 2 <—SecretExt(d) ) f’ B3m;r’l,..., ;, Ba;

el,...,eﬁ <— Bsy;

$ . $ ) $ .
T Tlzp < S; 7'[f11,. . 'fnf,p < Sz, T01sew s Tlrp < S3m;
$

71'6,1, ey 7Tg,,7 < Sgk,‘

Ko, ke & Z(2£+1)3m-kf1, . kf,, E 10, Yy & T3

Ket, -, ke e 735k Eptrdos,,

920 Next SIM forms and sends commitment CMT as the same manner as in (A9).

021 For a challenge Ch from V, SIM responds as follows:

922 -IfCh=1:d®c {TC o 71'2/]'(2}), T.o 7[2,]'(1( ) 7'L'f]( ) ”f](kf])

923 nr,j(r;')/ nr,j(kr,j)}]r'):y {ne,j(e;‘)/ ne,j(ke,j> j= 1T (d/) ( ))

024 - If Ch = 2: Output L and abort.

025 - If Ch = 3: Send, RSP computed as in the case (Ch = 1,Ch = 3).

027 Case Ch = 3 : SIM samples randomness as in Ch = 2 and sends the commitment CMT =

28 (C}, ¢, %) to V, where ¢}, ¢ are computed as in (A9), and
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P
¢j = COM (c, {72, 7t s ”r,j}]r;l,A* . (Z B;- (z;. +k;j)) —w
i=1
* d / * P /
V(Y By (k) + T () By (F +Kkp)) —v;
j=1 =1

_ p
{71'8,]'}]’?:1,'1)* 2 b](e; + ke,j) + Q(d, + kd) —C; T,‘pl).
=1

920 For a challenge Ch from v, SIM responds as follows:

030 - If Ch = 1: Send, RSP computed as in the case (Ch = 2,Ch = 1).

031 - If Ch = 2: Send, RSP computed as in the case (Ch = 1,Ch = 2).

032 - If Ch = 3: Output L and abort.

033 Since COM is statistically hiding, the distribution of the commitment CMT and the distribution

o3a  of the challenge Ch from V for every case considered above are statistically close to those in the real
o35 interaction. Hence, the probability that the simulator outputs L is negligibly close to 1/3. Thus, the
03s simulator SIM can successfully imitate the honest prover with probability negligibly close to 2/3.

o3z Appendix A.1.4. Argument of Knowledge

038 Here we prove that, if COM is computationally binding, then the given protocol is an argument
030 of knowledge. For a given commitment CMT and three valid responses RSP(1), RSP(2), RSP(®) to all
sa0 three possible values of the challenge Ch, a valid witness can be extracted.

1 = COM(dy, {2, b js prj iy A (1 B sj) —w
Ve (T By se) 1 (T By osyj) — v
{¢e,j}f=1}P* : (Zle bj-se;) +Qsq —¢;%;01)
= COM(ds, {92, Yp j Yri} i, A" (X1 B hz);
AR (Zf:l ,Bj : hr,j) +1I"- (Z]?:1 ,Bj ’ hf,j)/'
{lpe,j}]?zl?P* ) (Z]?:1 bj - hE,j) + Qhy; T; 1),
o = COM({w,;, wg; w,/j}le, {we,j}le,wd;pz)
= COM({Ty; 0 ¥i(he ), g, (g ), i (hy )}y
{we,j(he,j) ?zl'f(hd);PZ)f
3 = COM({u; +wyj up;+wpj i +w, i}
{uE,j + WE,]'}]P:y {ug +wy};03)
= COM({Ts, © ¢2,j(52,), 97, (57,), b, (5r,1) s
{<Pe,j(se,j)}f:1/f(Sd);Ps)-

oa1 The computational binding property of COM implies that:
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dy = d3;
u; € Byt =1twy =T(hy);uy +wy = (sy);
Vi€ lp]: (PZ]—l/’szZJ—szO(PZJ( )and
u,j+wy =Ty, 0, i(s,));
Vi€ lpl:9ri=vpiwgj = bpj(hy)) andug;+we; = ¢y (sg,);
Vi€ [pl: drj = jiWrj = ¢pj(hy ;) and u,j+ Wy = ¢ i(sy);
V] € [pl: Pe,j = Pe,js We,j = ¢e]( e]) a”due]+we] = 9’76](5@])
: (Z]‘zl 5] : (52,] - hz,])> =u mod g;
v (Ef 1 Bi (srj =Ty )) + T (X0 B~ (s5; —hy))) =v mod g;
P* - (L, byse) +Qsg —c=P*- (zf b, ;) +Qhy;  mod g.
0az For each j € [p], let y]. = (szj —hgj). Then Ty, o <Pz,]‘(y}) = Ty, 0 ¢2j(82j) — Tg, 0 P, j(hyj) =
o Uz; € SecretExt(dy). Thus, ¢,(y;) € SecretExt(d) @ dy). Let d = dy ®dy, then for all j € [p], y; €
sas  SecretExt(d), since the permutation ¢,; € S preserves the arrangements of the blocks of y;-. By

eas removing the last 2m coordinates in each 3m-block of y’ obtain vectors y’ 25‘7:1 Bi- y;- € ZSZZH)M, and

sss y € Z2AHDM Now we can declare

p p
Iylleo < 1yl < Y B Ilyjllee =Y Bj-1=p
=1

j=1
oa7 Moreover, sincey; € SecretExt(d) forall j € [p], we have thaty € Secretg(d) and, Ay = A" -y’ =
oas A*- Zp 1B yj = ( 1[3] (sZ,] ])) =u mod 4.
oa0 For eachj € [p], let £ = (s5j —hy ). Then ¢y ;(f;) = ¢r,i(sf,) — ¢ej(hy,) = ug; € Bsy, which

]

a

o implies that f;- € Bay. Letf = Z}g:l Bj - f} € Z*" and by dropping the last 2m coordinates from f obtain
o1 f € Z™. We can declare,

. P P
11k < Il < Y2 6l = 1= 6
j= j=

052 Moreover, for each j € [p], let r;- = (s;; —h, ;). Then gbr,]-(r;-) = ¢rj(s5rj) — ¢rj(hj) = u,; € By,
ess  which implies that r;- € Bay. Lett = Zf:l Bj - r} € Z°" and by dropping the last 2m coordinates from #
osa  Obtain ¥ € Z™. We can declare,

P 14
€l < [Elloo < B lIX oo = Y 1= B
j=1 =1
055 We can obtain the relation:

t+I*-f=v modg < V*-(B-r)+f =v mod q.
o6 Letd* =s; —hy = t7!(uy). Then it follows that d* € Byy. Now letd* = (dy,...,dy,dpiq,...,doy)
» andletd = (dy,...,dy) € 0,1%.
For each j € [p], let e;- = {se,j —h,;). Then (Pe,j(e;) = Pe,j(Se,j) — Pej(hej) = u.; € Bz, which
implies that €} € Byy. Let & = Zle bj - e; and by dropping the last 2k coordinates from & obtain e’ € /3
We can declare,

©
o

p P
€l < llello < Y by [l = Yoy 1 =0,
j= =
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Now, ||e/||c < b, and P*e’ + Qd* = Pe’ + (0°~|||g/2]d) = ¢ mod g.
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