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Abstract

Soft set theory is a mathematical tool for dealing with uncertainty. This
paper investigates limits of interval type of soft sets (for short, it-soft sets).
The concept of it-soft sets is first introduced. Then, limits of it-soft sets are
proposed and their properties are obtained. Next, point-wise continuity of
1t-soft sets and continuous it-soft sets are discussed. Finally, an application
for rough sets is given.
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1. Introduction

To solve complicated problems in economics, engineering, environmental
science and social science, methods in classical mathematics are not always
successful because of various types of uncertainties present in these prob-
lems. There are several theories: probability theory, fuzzy set theory [22],
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rough set theory [18] and the interval mathematics which we can consider
as mathematical tools for dealing with uncertainties. But all these theories
have their own difficulties. For example, probability theory can deal only
with stochastically stable phenomena (see [17]). To overcome these kinds
of difficulties, Molodtsov [17] proposed a completely new approach, which is
called soft set theory, for modeling uncertainty.

Presently, works on soft sets theory are progressing rapidly. Maji et al.
[14, 15] further studied soft sets theory and used this theory to solve some
decision making problems. Aktas et al. [1] defined soft groups. Jiang et al.
[7] extended soft sets with description logics. Feng et al. [4] investigated
the relationship among soft sets, rough sets and fuzzy sets. Ge et al. [§]
discussed the relationship between soft sets and topological spaces. Li et al.
[12] obtained the relationship among soft sets, soft rough sets and topologies.
Li et al. [13] studied parameter reductions of soft coverings.

Rough set theory, proposed by Pawlak [18], is an important tool for deal-
ing with fuzzyness and uncertainty of knowledge. After thirty years de-
velopment, this theory has been successfully applied to machine learning,
intelligent systems, inductive reasoning, pattern recognition, mereology, im-
age processing, signal analysis, knowledge discovery, decision analysis, expert
systems and many other fields [18, 19, 20, 21]. The basic structure of rough
set theory is an approximation space. Based on it, lower and upper approx-
imations can be induced. Through these rough approximations, knowledge
hidden in information systems may be revealed and expressed in the form of
decision rules [19, 20, 21]. Pawlak’s rough set model is based on the com-
pleteness of available information, and ignores the incompleteness of available
information and the possible existence of statistical information. This model
for extracting rules in uncoordinate decision information systems often seems
incapable. These have motivated many researchers to investigate probabilis-
tic generalization of rough set theory and provide new rough set model for
the study of uncertain information system.

Probabilistic rough set model is probabilistic generalization of rough set
theory. In probabilistic rough set model, probabilistic rough approximations
are dependent on parameters. Researching the infinite change trend or the
limit state of these approximations accordance with parameters is helpful for
the study of probabilistic rough sets.

It is well-known that calculus theory is the foundation of modern science.
Limits of functions are its basic concepts, which play an important role in the
process of development [10]. Since probabilistic rough approximations and
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level sets of a fuzzy set are both it-soft sets (i.e., interval type of soft sets
or soft sets whose parameter sets are the intervals in R), we may attempt to
study the infinite change trend or the limit state of it-soft sets. It is worth
mentioning that there is no systematic research and summary for limits of
it-soft sets although the limit though of it-soft sets has formed in [24, 25].

In general, most of uncertain mathematical theories can only deal with
uncertainty problems of discreteness. If limit theory of it-soft sets is es-
tablished, then these theories may be used to solve uncertainty problems of
continuity The purpose of this paper is to establish preliminarily limit theory
of interval type soft set so that some uncertain mathematical theories such
as rough set theory may be used to solve uncertainty problems of continuity.

The remaining part of this paper is organized as follows. In Section 2,
we recall some basic concepts about limits of set sequences and rough sets.
In Section 3, we introduce it-soft sets and related notions. In Sections 4,
we propose the concept of limits of it-soft sets and obtain their properties.
In Sections 5, we discuss the continuity of ¢t-soft sets including point-wise
continuity of it-soft sets and continuous it-soft sets. In Sections 6, we give
an application for rough sets. Sections 7 summarizes this paper.

2. Preliminaries

In this section, we recall some basic concepts about limits of s-sequences,
rough sets and ¢t-soft sets.

Throughout this paper, U denotes the universe which may be an infinite
set, 2V denotes the family of all subsets of U, E denotes a set of all possible
parameters, R denotes the set of all real numbers, N denotes the set of all
natural numbers and I denotes the interval in R.

2.1. Limits of set sequences
Definition 2.1 ([3, 9]). Let U be the universe. If for eachn € N, E, € 2Y,
then {E,} is called a set sequence in U. Define

lim B, ={r€U:{n€N:x€E,} is infinite},

n—o0
lim B, ={zeU:{ne N:x¢E,} is finite}.
n—0o0
If lim E, = lim E, = E, then {E, : n € N} is called to has the limit E,
n—oo

n—oo

which is denoted by lim E,, i.e., lim E, = E; If lim E, # lim E,, then
n—oo n—oo n—oo n—oo
{E, :n € N} is called to has no the limit.
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Obviously, lim E, C lim E,,.

n—00 n—00
Proposition 2.2 ([3, 9]). Let {E, :n € N} be a set sequence in U.
(1) Iim B, =N U Ex.
n—oo

n=1k=n

(2) lim B, = U N Br.

n—oo n=1k=n

Proposition 2.3 ([3, 9]). Let {E, :n € N} be a set sequence in U.

[e.9]

(1) If {E.} 1, then le E,= U E,.

n=1

(2) I/ {E.} . then lim B, = () B,

n=1

2.2. Rough sets

Let R be an equivalence relation on the universe U. Then the pair (U, R)
is called a Pawlak approximation space. Based on (U, R), one can define the
following two rough approximations:

RX)={zcU:[z|gC X}, RX)={zecU:xlgnX #0}.

Then R(X) and R(X) are called the Pawlak lower approximation and the
Pawlak upper approximation of X, respectively.

The boundary region of X, defined by the difference between these rough
approximations, that is Bndgr(X) = R(X) — R(X).

A set is rough if its boundary region is not empty; otherwise, it is crisp.
Thus, X is rough if R(X) # R(X).

Definition 2.4 (24, 25]). Let U be a finite universe. Then a function P :
2V — 10,1] 4s called a probability measure over U, if P(U) = 1 and P(AU
B) = P(A) + P(B) whenever AN B = ().

If P is a probability measure over U, A,B € 2V and P(B) > 0, then
P(A|B) = % is called the conditional probability of the event A when
the event B occurs.

Definition 2.5 ([24, 25]). Let U be a finite universe, R an equivalence rela-
tion over U and P a probability measure over U. Then the pair (U, R, P) is
called a probabilistic approximate space. Based on (U, R, P), the lower and
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upper approzimation of X, are respectively denoted by PI (X) and Pls(X),
are defined as follows:

PI(X)={xcU: P(X|[z]) > a}, PIs(X)={zcU: P(X|]) > pB),
where 0 < f < a < 1.

Theorem 2.6 ([24, 25]). Let (U, R, P) be a probabilistic approzimate space.
Then the following properties hold. o
(1) PL,(0) = PL.(0) =0, PL,(U) = PI,(U) = U.

(2) PL,(X) C PI(X).

(3> _Ia<U - X) =U _ﬁl—a(X>7 ﬁa(U - X) =U _ﬂl—a(X)'
(4) If X C Y, then PI(X) C PI,(Y), PI.(X) C PI.(Y).

(5) ]f0<0£1<052§1,0§51<ﬁ2<1 then

ﬂaz(X> - ﬂal(X)7 W&(X) - WBQ(X)'

Theorem 2.7 ([24, 25]). Let (U, R, P) be a probabilistic approzimate space.
Then for 0 <y <1, X € 2Y,
() lmPL(X)= 0 PL(X) = PL(X),
aty

a€(0,7)
lim PL,(X)= U PL(X)=PL,(X);
ey ac(l
(2) im PT,(X) = () PLa(X)=PL(X),
aT'y_ aE[O,v)_ L
limPI(X)= U PI.(X)=PL(X).
aly a€(y,1)

Although the limit though of it-soft sets has formed in Theorem 2.6, there
is no systematic research and summary for limits of ¢t-soft sets. Thus, limit
theory of interval type soft set deserves deeply study so that rough set theory
can be used to solve uncertainty problems of continuity.

3. Soft sets

Definition 3.1 ([17]). Let A C E. A pair (f, A) is called a soft set over U,
if f is a mapping given by f: A — 2Y. We also denote (f, A) by fa.

In other words, a soft set f4 over U is a parametrized family of subsets of
the universe U. For e € A, f(e) may be considered as the set of e-approximate
elements of the soft set f4. Clearly, a soft set is not a set.


http://dx.doi.org/10.20944/preprints201808.0010.v1
http://dx.doi.org/10.3390/sym10090406

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2018 d0i:10.20944/preprints201808.0010.v1

Definition 3.2 ([14]). Let f4 and gp be two soft sets over U.

(1) fa is called a soft subset of gg, if A C B and f(e) = g(e) for each
e € A. We denote it by fa C gp.

(2) fa is called a soft super set of gg, if gg C fa. We denote it by

fa ) gB-

Definition 3.3 ([14]). Let f4 and gp be two soft sets over U.
fa and gp are called soft equal, if A C B and f(e) = g(e) for each e € A.
We denote it by fa = gp.

Obviously, fa = gg if and only if f4 C g and f4 D gs.

Definition 3.4 ([14]). Let fa be a soft set over U.
(1) fa is called null, if f(e) =0 for each e € A. We denote it by 0.
(2) fa is called absolute, if f(e) = U for each e € A. We denote it by U.
(3) fa is called constant, if there exists X € 2Y such that f(e) = X for
each e € A. We denote it by X or Xa.

Definition 3.5 ([14]). Let f4 and gp be two soft sets over U.

(1) he is called the intersection of fa and gg, if C = AN B and h(e) =
f(e)Ng(e) for each e € C. We denote it by fa N gg = he.

(2) he is called the union of fa and gp, if C = AU B and

f(e), if e€ A— B,
h(e) = < g(e), if e€ B—A,
fleyUgle), if e€c ANB.

We denote it by fa U g = he.

(3) he is called the bi-intersection of fa and g, if C = A X B and
h(a,b) = f(a) N g(b) for each a € A and b € B. We denote it by fa \ g5 =
he.

(4) he is called the bi-union of fa and gg, if C = A x B and h(a,b) =
fla)Ug(b) for each a € A and b € B. We denote it by fa\l g = hc.

Definition 3.6 ([16]). The relative complement of a soft set fa is denoted
by f¢4 and is defined by f<, = (f¢, A), where f¢: A — 2Y is a mapping
given by f¢(e) =U — f(e) for each e € A.
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Definition 3.7 ([4]). Let fa be a soft set over U.
(1) fa is called full, if |J f(e) ="U.

ecA
(2) fa is called partition, if {f(e) : e € A} forms a partition of U.

Definition 3.8 ([12]). Let fa be a soft set over U.

(1) fa is called topological, if {f(e) : e € A} is a topology on U.

(2) fa is called keeping intersection, if for any a, b € A, there exists c € A
such that f(a) N f(b) = f(c).

(2) fa is called keeping union, if for any a, b € A, there ezists ¢ € A such
that f(a) U f(b) = f(c).

(3) fa is called perfect, if f: A — 2Y is onto.

(4) fa is called having no kernel, if N{f(e):e € A} =0.

Definition 3.9. Let fa be a soft set over U.

(1) fa is called strong keeping intersection, if for each B C A, there exists
be A such that () f(a) = f(b).
acA

(2) fa is called strong keeping union, if for each B C A, there exists b € A
such that |J f(a) = f(b).
acA

Obviously, f4 is strong keeping intersection = f, is keeping intersection,
fa is strong keeping union = f4 is keep union.

Proposition 3.10 ([12]). Let fa be a soft set over U. Then the following
properties hold.

(1) If fa is topological, then fa is full, keeping intersection and strong
keep union.

(2) fa is perfect if and only if {f(e): e € A} is a discrete topology over
U.

(3) If fa is perfect, then fa is topological.

(4) fa is having no kernel if and only if (f¢, A) is full.

Example 3.11. Let U = {xy, x9, 23, 24,25}, A =[0,1). Define fa as follows:

{z1, 22,25}, if a€]0,1),

o, if a€lg )
fle)= {z1, 22}, if ae [%: %),
U, if a€l31).

Then f4 is topological. But f4 is neither perfect nor partition.

7
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Example 3.12. Let U = {x1, 29,3, 74,25}, A =[0,1). Define fa as follows:

{x1>x27'x5}7 /Lf Q€ [07 gll)a

_ {IIJIQ}ﬂ Zf o€ E; %)7
MOV @ faci
{3, 24}, if a€31).

Note that {x1, 2,25} N {z3} = 0 # f(a) (V «
keeping intersection.

Example 3.13. Let U = {xy, x9, 23,24, 25}, A =1[0,1). Define fa as follows:

M

I). Then f4 is not

{xl}v Z.f o€ [07 i)’

_ {xlax4}a ’Lf OS [Tlp %)?
f(e) {Il,ﬂfg,$4}, ’Lf o c [%, %),
U, if a€l31).

Then f4 is full, keeping intersection and strong keeping union. But f4 is not
topological.

Example 3.14. Let U = {xy, 29, 23,24, 25}, A =1[0,1). Define fa as follows:

)

{z1,22}, if a€]0, }1),

e) = {.735}, Zf o€ [}17%)7
TO= ), daclly)
{ZE4}, Zf o€ [%7 1)'

Then fa is partition. But f4 is neither topological nor perfect.

Example 3.15. Let U = {xy, x9, 23,24, 25}, A =1[0,1). Define fa as follows:

{z1, 22,25}, if a€]0,3),

_ )0 if aclis),
A W if acll?),
{173,56'4}, Zf AS [%, ].)

Then fa is full and strong keeping intersection. But

{1, 20, 25} U{zs} = {21, 29, 23,25} # fla) (V a€1).

Thus f4 is not keeping union.
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Example 3.16. Let U = {xy, 29, x3, 4,25}, A =[0,1). Define fa as follows:
{a1}, if a€l0,}),
f(e) _ {.%2}, Zf (OAS [zlp %)7
{xth}a Zf ac [%7 %)7
U, if a€[31).

Then f4 is full and strong keeping union. But
{zi} {22} =0 # f(a) (Vael).

Thus fa is not keeping intersection.

From Examples 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16, we have the following
relationships:

f'is topological

1

f is full, keeping intersection and strong keeping union

7 N\

fis full and keeping intersection ) f is full and strong keeping union

fa is perfect
fa is topological

=
RN

4. Limit theory of it-soft sets

fa is partition

4.1. The concept of it-soft sets

Definition 4.1. Let f4 be a soft set over U. If there exists the interval I in
R such that A = 1. Then fa is called an it-soft set over U. Denote it with
e

Ne}
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It is worth mentioning that the it-soft sets are different from interval soft
sets in [23].

Definition 4.2. Let f; be an it-soft set over U.
(1) If for any e1,es € I,e1 < ey implies f(e1) C f(e2)(resp., f(er) D

f(ea)), then fr is called strictly increasing (resp., strictly decreasing) on I.
(2) If for any e1,es € I,e1 < eq implies f(e1) C f(ez)(resp., f(er) 2
f(e2)), then fr is called increasing (resp., decreasing) on I.

Definition 4.3. Let f; be an it-soft set over U.

(1) If for any e € I, f(e) C f(eo) (eo € I), then f(ey) is called the
maximum value of fr.

(2) If for any e € I, f(e) 2 f(ey) (eo € I), then f(egy) is called the

manimum value of fr.

4.2. Limits of it-soft sets
Let eg € R, § > 0. Denote

Uley,8) = {e:|e —eo| <6}, Uep,8) ={e:0 < |e—eo| < I}

Then Uleg,d) is called § neighborhood of eg, U%(eg, §) is called d neighbor-
hood of e having no the heart, e, is the center of the neighborhood, § is the
radius of the neighborhood.

U (eq,0) = [eo, €0 + 9) is called the d right neighborhood of e,

U~ (eg,9) = (eg — 6, 0] is called the ¢ left neighborhood of ey.

Obviously, Ul(eg, d) = (eg — d,e9 + ) = U (eg, ) UU (eq, d).

Let f; be an it-soft set over U. For ¢y € I, x € U, denote

2] ={e e I —{eo} : w € fle)},

(@) ={e el —{e}:z ¢ fle)}

Remark 4.4. (1) [x], U (2)y, =1 —{eo}, [z]f,N(x)s, = 0.
(2) [x]fl N [x]gl = [:E]ffﬁgp [z]fl U [x]gl = [x]fIGgI'
(3) (@), N (@), = (%) 00, (@), U (2)g, = (%) 720, -
(4) [zl = (@)gy, (@)g = [y,

Definition 4.5. Let fr be an it-soft set over U. For eq € I, define
(1) lim fle)={xeU:V >0, [z]f, NU"(ep,0) is infinite}, which is

6—)60
called the over-right limit of f; as e — ey (or the over limit of fr as e — eJ);

10
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(2) im f(e) ={z € U:35>0, (x)f, NU (e, ) is finite}, which is

€—>€3—
called the under-right limit of fr as e — eg(or the under limit of fr as e —
+
e )- o
(3) lim f(e) ={z €U :V >0, [z], NU (eq,0) is infinite}, which is
e—req

called the over-left limit of f1 as e — eg(or the over limit of fr as e — e ).

(4) lim f(e) ={z e U:36>0, (x);, NU (e, 9) is finite}, which is
e—eq

called the under-left limit of fr as e — eg(or the under limit of f; as e —

e )-
Theorem 4.6. Let f; be an it-soft set over U. Then for eq € I,
(1) lim f(e) ={zx € U:V >0, ], NU*(eo,0) # 0}

o ={zxeU:VneN, [z, NU (e, +)#0}.
(2) lim f(e)={xeU:36>0, (), NU(e,8) =0}

o ={zeU:3neN, (x), U (e, +) =0}
(3) lim f(e)={x €U :V6>0, [x]f, NU (e, ) # 0}

o ={zeU:VneN, [z], NU (e, L) #0}.
(4) lim f(e)={z€U:36>0, (), NUT(eg,d) =10

e—)eo

—

={zeU:3neN, (), NU (e, =) =0}.
Proof. (1) Put
S = li_m+f(e)7 T={zxeU:Yd>0, [z], NU (e, d) # 0},

6*}60
L={zeU:VYneN, [z, NU"(e,L)#0}.
Obviously, S € T' C L. We only need to prove L C S. Suppose L ¢
S. Then L — S # 0. Pick x € L —S. We have x ¢ S. So 3 9y > 0,
(2], N U (e, do) is finite. Denote

[z];, N U™ (e0,00) = {€1,€2,...,€n}.
Put e* = min{ey, es,...,e,}, 0 < nio < e* —eg. Then
0< 2 <6, 2], N U (e0, —) = 0.
no no
Sox & L. But x € L. This is a contradiction. Thus L C S.

11
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(2) Put
P=lm f(e), Q={x€U:36>0, (x);, NU(en,d) = 0},
e—ved
K={zeU:3neN, (z);, NU (e, +)=0}.
Obviously, K C @ C P. We only need to prove P C K. Suppose P ¢ K.
Then P — K # 0. Pick x € P— K. Then x ¢ K.

Claim V0, (z)f, NUT(ep,d) is infinite.
In fact, suppose that 3 6 > 0, (z)f, N U (e, ) is finite. Put

(z),NU (eg, ) = {e1,€9,...,€,}, € =min{ey,e,...,e,}, 0< - < €' —ey.
0

Then 0 < n—lo <6, () ﬂU*(eo,nLO) =(. Sox € K, But z ¢ K. This is a
contradiction.

Since V' § > 0, (x)f, N U™ (ep,d) is infinite, we have x ¢ P. But = € P.
This is a contradiction. Thus P C K.

(3) The proof is similar to (1).

(4) The proof is similar to (2). O

Example 4.7. Consider Example 3.12, pick eq = ;11, we have

feady = fealy = 0, D UL 3 Loy = (301 Loy = (3,1, Loy = [0, 7).

1 1. .11 1. .13 1

(«Tl)f - (x2)f - [57 1)7 (m3)f - [07 Z)U[Zv 5)7 (x4>f - [07 Z)U[Z7 1)7 (x5)f - (ZJ 1)'

By Theorem 4.6,

li_m+f(e) ={xeU:V§>0, [z];, NU (e, 0) # 0} = {1, 12};

6—)80

lim f(e)={z€U:36>0, (x);, NU (eg,0) =0} = {x1,22};

lim f(e)={z € U:¥§>0, [z];, NU (e,0) # 0} = {a1, 22,25}
lim f(e)={x€U:30>0, (x);, NU (e9,0) =0} = {x1, 22,25}

12
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Lemma 4.8. Let fI be an it-soft set over U. Then for ey € I,

(1) lim f(e) = NN U 7).

e_wo n=1 6€(eo,eo+%)ﬂl B€E(eo,e]

(2) lm fle)=U U ARACIE
e—veq n=1 e€(eo,e0+1)NT BE(o,e]

(3) m fle)=N N U £8).
e—eg n=1 ee(eo—%,eo)ﬂl BEle,e0)

(4) lim fle)=U U N /).
ey nZ1 ee(eq- 1 eq)nt Belesco)

Proof. (1) Denote

S_hmf,Tﬂ N U r®

He
¢ n=1eg(eg,e0++ )ﬂ] B€(eo,e]

To prove S =T, it suffices to show that
1
xreS & VneN, Vee(eo,eo—i-ﬁ)ﬂf, 3B € (e, €], x € f(B).

“= 7 Letz e S, VneN, Vec€ (ege+=)NI Putd=e—e.
Then 0 < 6 < L.

Since x € S, by Theorem 4.6(1), we have [z];, N UT(eg, 6) # 0. Pick
g€ [x]f, NUT(ep,d). Then g € [z]s,, 5 € Ut(ep,9).

This implies x € f(5), eg < f < eg+ 9 =e. Thus € (eq, €.

“<=7.VneN,pick ec(e,e0+1)N1.

By the condition, 3 € (eg, €], z € f(3). Then 8 € U*(eo,2),8 € [z]y,.
Thus V n € N, [z]s, N U (ep, L) # 0.

By Theorem 4.6(1), z € S.

(2) By (1) and Theorem 4.6(2),

v ¢ lim fle)

6—)60

< VneN, (), NU (e, =) #0
= VneN{ecl—c:zecU—fle)}NU"(eo, %) #0

—=se N U W0-®)

n=1 ee(eo,ngr%)ﬂI BE(eo,e]

<:>er—@ U N f(B)

n=1 ee(eo,eoJr%)ﬂI BE(eoye]
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—urd¢ U N f(8).
n=1 86(607604'%)0] ﬁe(e()?e}

Hence lim f(e)= U U N /).
e%eg' n=1 ee(eo,eo-&-%)ﬂl BE(eo,e]
(3) The proof is similar to (1).
(4) The proof is similar to (2). O

Lemma 4.9. Let f; be an it-soft set over U. Then for ey € I,

w N N U 5= N U 7).

n=1e€(eg,e0+2)NI BE(0,€] e€(eg,e0+1)NI BE(eo,e]
(2) U U n re= U N f3).
n=1 ee(eg,eoJr%)ﬁI BE(eose] e€(eg,e0+1)NI BE(eo,e]
3) N N U re=nN U ).
n=1 ee(eofiyeo)ﬁl ﬂe[e,eo) eE(eo—l,eo)ﬁI 66[6,60)
(4) U U n re= U N f3).
n=1 66(60*%,60)(7[ BEle,e0) e€(eo—1,e0)NI BE[e,en)
Proof. (1) Put E,, = N U f(B). Then {E,} 1. So N E, = E,.
e€(en,e0+2)NI BE(en.e] n=1
ThusOO
N N U = nN U f8).
n=1 ee(eo,eo—&-%)ml BE(eo,e] e€(eo,e0+1)NI BE(eo,e]
(2) Put F, = U N f(B). Then {F,} . So U F, = F}.
e€(en,e0+2)NI BE(eoe] n=1
Tglous
U U n = U N fB).
n=1 ee(eo,eo—&-%)ﬂl BE(eo,e] e€(en,e0+1)NI BE(eo,e]
(3) The proof is similar to (1).
(4) The proof is similar to (2). O

Theorem 4.10. Let f; be an it-soft set over U. Then for eg € I,
(1) 1im+ fle) = N U f(B); If fr increasing, then

e—egq e€(eg,e0+1)NI BE(eo,e]

i fe)= () /.

7% e€(ep,e0+1)NI

14
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(2) lim f(e)= U (N f(B); If f1 decreasing, then

e—)@é‘ e€(eg,e0+1)NI BE(eo,e]
lim fe)= [J  fle)
e—vey e€(eo,eo+1)NI
(3) lim f(e) = N U f(B); If fr decreasing, then
e—eq e€(eo—1,e0)NI BEe,e0)

I fe)= () fl.

e
7% e€(ep—1,e0)NI

(4) Im f(e)= U N f(B); If fi increasing, then

e—ey e€(ep—1,e0)NI BEe,e0)
lim fle)= [  fle)
e—reg e€(eg—1,e0)NI
Proof. This holds by Lemmas 4.8 and 4.9. [

Definition 4.11. Let f; be an it-soft set over U. Then for ey € 1,
(1) If lim f(e) = lim+ fle) =S, then fr is called to has the limit S as
+

e—eg €€
e — eg (or has the right-limit S as e — eg), which is denoted by lim f(e),

e%eo
i.e., lim f(e) =25;
6—)83—
If lim f(e) # rm+ f(e), then fr is called to has no the limit as e — e}
e—ed e=eg

(or has no the right-limit as e — eg).
(2) If lim f(e) = lim f(e) =S, then f; is called to has the limit S as

e—eq e—eq

e — ey (or has the left-limit S as e — eg), which is denoted by lim f(e),

e—eq
i.e., lim f(e) =9;
e—req
If lim f(e) # h_m+ f(e), then fr is called to has no the limit as e — eg
e%eg €€

(or has no the left-limit as e — ¢p).
(3) If lim f(e) = lirr# fle) =S, then fr is called to has the limit S as

e—)eo e—)eo
e — eg, which is denoted by lim f(e), i.e., lim f(e) = S5;
e—eq e—eQ

If lim f(e) # lim f(e)), then fr is called to has no the limit as e — ey.

6—)60 6—)60
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Definition 4.12. Let f; be an it-soft set over U. Then for ey € 1,
(1) If lim f(e) = lim fle) = S, then fr is called to has the over-limit

e—>eO €—>€0

S as e — ey, which is denoted by lim f(e), i.e., lim f(e) = S;
e—eq e—reQ

If Tim f(e) # Frrif(e), then fr is called to has no the over-limit as

e*)eo 64)60
e—eg.
(2) If lim f(e) = lim f(e) =S, then f; is called to has the under-limit
e—req e—)ear
S as e — e, which is denoted by lim f(e), i.e., lim f(e) = S;
e—eq e—eQ
If lim f(e) # lim f(e), then f; is called to has no the under-limit as
e—eq e—ed
e — 60._) ’ e L
(3) If lim f(e) = lim f(e) = S, then f; is called to has the limit as
e—ep €e—eo

e — ey, which is denoted by lim f(e), i.e., lim f(e) = S;
e—ep e—eQ
If im f(e) # lim f(e), then fr is called to has no the limit as e — ey.
e—reQ

e—ep

Remark 4.13. The limit in Definition 4.11(3) and the limit in Definition
4.12(3) is consistent.

Example 4.14. Let X; be a constant it-soft set over U where X € 2V. Then
foreg eI, lim X(e) = X.
e—eQ

I—{e}, z€eX {I—{eo}, g€ X

ObViOUSly, [x]XI = { @ T ¢ X (x>XI = @ re X

By Theorem 4.6,
li_m+X(e) ={zeU:V§>0, [z];NU" (e, d) # 0},

6*)60

lim X(e) ={zxe€U:36>0, () ;NU(ey,d) = 0}.

e—ed
Then lim X(e) = X, lim X(e) = X.
e—el +
0 e—>60
Similarly, lim X(e) = X, lim X(e) = X.
e—eqy e—ey
Thus lim X(e) = X.
e—eQ

Other types of limits of ¢t-soft sets are proposed by the following definition
and these limits can be discussed in a similar way.
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Definition 4.15. Let (f,(—o00,+00)) be an it-soft set over U. Define

(1) lim fle) = hmf() lim f(e) = hmf()

e—+00 e—0t e——00 e—0~

mf(@)—hmf( -)-

e—00 e—0
() lm fle)= lm f(1), lm f(e) = lm f(5),
e—+00 e—0t € e——00 e—0—- €

lim f(e) = lim f(= )

e—00 e—0
(3) lim f(e)= lim f( ), lim f(e) = elgg{f( );
Ji )=l (),

4.3. Properties of limits of it-soft sets

Proposition 4.16. For the over-right limit, the following properties hold:
(1) If f(e) C g(e)(V e € (e, €0+ d0)), then hm fle) C hm g(e).

O WO = T OU T,

) T (U~ 1) =0~ mn f(e).

(4) If fim fle)=A C B, etz(eaonﬂ d>0,Vec (e, e0+0), fe) CB.
(5) 1)66151 (f(e) x g(e)) - elff f(e) x elgleﬂ gle);

Proof. (1) Denote

[z]y, ={e €l —{e}:z € f(e)}, [z]y, ={e €l —{e}:z€g(e)}
Ve hm f(e), by Theorem 4.6(1), V 6 > 0, [z]s, N U*(eg,d) # 0.

6—)60

Pick e5 € [x]r, NU*(ep,d). Then x € f(es), es € U (e, ).
1) If 0 < dp, then es € UT(eg,dp). By the condition, f(es) C g(es).
Then x € g(es). This implies e5 € (x), NUT (eg,d). So (X)s,NUT(eg, d) # 0.
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2) If 0 > 0, then U™ (e, do) € U™ (eg,d). So (z)f, NUT (e, 00) C (X)g, N
U™ (eo, ). Since e5, € (X) s, N U™ (e, dg), we have (z)g, N U (eg,d) # 0.
By 1) and 2), ¥ 0 > 0, ()5, N U"(e,d) # 0. By Theorem 4.6(1),

T € hm g(e).
6*)60
Thus . .
lim f(e) C lim g(e).
e—ed e—ed

(2) “27”. This holds by (1).
“C” Suppose lim (f( YUg(e)) £ hm fle)u hm g(e). Then

6—)60 e— 60 6—)60

i (f(e) Ug(e)) — T f(e) U T g(e) # 0.

6—)80 e—r 60 8—)60

Pick z € lim (f( JUg(e)) — lim fle)u hm g(e). We have

6—)60 6—)60

r € lim (f(e)Ug(e)), x¢ hm f(e) and x ¢ hm gle).

By Theorem 4.6, 3 1, 65 > 0, [x]fﬂU+(eo,51) =0, [z],NnU"(ep,02)
Pick §3= m1n{51,52} Then [x];NU™ (e, 03) = 0 and [z],NU*(eq, I3)
It follows

0.
0.

([z]; U [2]g,) N U™ (€0, 03) = ([2]; N U™ (€0, 03)) U ([x], N U™ (eo, d3)) = 0.

By Remark 4.4, [z] 0, N U™ (€9, 03) = 0.
Thus
r ¢ lim (f Ug)(e) = lim (f(e) Ug(e)). This is a contradiction.

6—)60 6—>€O

(3)Vx € lim (U f(e)). Thenz € hm f¢(e). By Theorem 4.6,V § > 0,

6*)60 6*}60

[z] e N U (eg,9) # 0. By Remark 4.4, (), N U™ (ep,d) # 0. Thus

reU— lim f(e).

+
6*)60

Conversely, the proof is similar.
()Supposethatv5>0 Je € (eg,e0+0), fle ,Q_Borf
1) If f(e) € B, then f(e) — B # 0. Pick x € f(e) —
We have
x e f(e) ¢ B,ec [ ]f[

Since e € (eg, e + ). Then [z]s, N (e, 9+ ) # 0. So x € hm f(e).

6—}80
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Thus z € B. This is a contradiction.
2)If f(e) = B,then A—B=1{. So3x € B,x ¢ A.
Since x € f(e), we have x € [z]s,, [z]s, N (€0, €0 + ) # 0. So

z € lim f(e) = A.
e—ved

This is a contradiction.
(5) 1) Put

Hygle)= | (f(B) x g(B)).

B€E(eo,e]

By Theorem 4.10(1),

lim (f(e) x g(e)) = m Hyxg(e).

+
N
7% e€(eo,e0+1)NI

Y (z,y) € lim (f(e) x g(e)), we have (z,y) € N Hyy4(e). Since

e—veg e€(eo,e0+1)NI

Hpxgle) = | (f(8) x 9(8)).

we have V e € (eg,eo+1)NI, 3 5. € (eg, €], (x,y) € f(ﬂe) X g(Be). It follows
z € f(Be), y € g(Be). Then x € Hy(e) and y € Hy(e). S

ve () Hile)=Tm fle), ye (]  Hyle)= Tim g(e).

e€(ep,e0+1)NI e—ve] e€(ep,e0+1)NI e—}ea'
Thus (z,y) € hm f(e) x lim g(e).
e—ved e—ed
Thus o o
T (/(e) x g(e)) € T f(e) x T g(e).
e—eg e—eq eveg
2) ¥V (z,y) € lim f(e) x lim g(e), we have
6—)63 8—>€O
relm fle)= () |J f8), ye limgle)= ﬂ 9(B).
€7 e€(eo,e0+1)NI BE(eo,€] ereg. e€(ep,e0+1)NI BE(eo,e]
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Then V e € (eg,e0 +1) NI, 3 Be,ve € (eo,e], € f(Be), v € g(7e)
Then (z,y) € f(Be) X g(7e)- So

(@) e ) U ) xg().

e€(eo,e0+1)NI B,7€(eo,e]

Conversely, the proof is similar.
Thus

i f(e) x Tm g(e)= [ U ®) xg().
e—reg ¢ e€(eo,e0+1)NI B,vE(eo €]

]

Proposition 4.17. For the under-right limit, the following properties hold.
(1) If f(e) S g(e) (V e € (€0, €0 + o)), then lim f(e) € lim g(e).

@ W (©nge) - SO0 gl

®) T (U~ f(e) = U~ T f(0).

(4) ]]_”)1+1_m fle)=AD A, then 36> 0, V e € (eo,e0+0), fle) D A
5) Q@z(e) <(e)) = i f(e) x I gle).

Proof. (1) The proof is similar to Proposition 4.16(1).
(2) “ C 7. This holds by (1).
“2 7. Suppose lim f(e)Nlim g(e) € lim (f(e)Ng(e)). Then lim f(e)N

e—ed e—ed e—ed e—ed
lim g(e) — lim (f(e)Ng(e)) # 0. Pick x € lim f(e)N lim g(e)— lim (f(e)N
e—ed e—ed e—ed e—ed e—ed

g(e)). We have
z € lim f(e), v € lim g(e) and 2 ¢ lim (f(e) Ng(e)).

+
64)60

By Theorem 4.6,

+ +
64)60 6*)60

3 51,(52 > 0, (I)f N U+<€0,(51) = @, (Q?)g N U+(€0,(52) = @

Pick d3=min{dy, d2}. Then (x); N U™ (eg,d3) = 0, (z), N U™ (eg,d3) = 0.
It follows

((2); U (2)g,) N U (e0,03) = ((x)s N U (€0, 3)) U (()g N U (€0, d3)) = 0.
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By Remark 4.4 , (2)ng N U™ (eg, d3) = 0.

Thus
x € lim (fNg)(e) = lim (f(e) Ng(e)). This is a contradiction.
e—ed e—ed
(3)Vax € lim (U— f(e)). Then z € lim f°(e). By Theorem 4.6, 3§ > 0,

+ +
6—)60 6—)60

(2)se N U™ (e0,6) = . By Remark 4.4, [2]; N U™ (eg, d) = 0.
Thus x € U — hm f(e).

6*)60
Conversely, the proof is similar.
(4) By Proposition 4.16(3),

lim (U — f(e)) = U — lim f(e).

6%60 eﬁeoJr

Since lim f(e) = A D A, we have hm(U f(e)) cU — A.

e—)eg e—>eO
By Proposition 4.16(4), 36 > 0,V e € (eg,e0+6), U — f(e) C U — A.

Thus
35>0,Vec€ (e,e+9), fle) DA

(5) V (z,y) € lim (f(e) x g(e)), by Theorem 4.10(2),

+
6*}60

@wye U ) (B xgB).

e€(eo,e0+1)NI BE(eo,€]

Then J e € (eg, e+ 1) NI,V B € (en, €], (x,y) € f(B) x g(B). It follows
v € f(B), y € g(B)- Then

ce U N1s@ve U Ny

e€(eg,e0+1)NI BE(eo,e] e€(eo,e0+1)NI BE(eo,e]

By Theorem 4.10(2), z € lim f(e),y € lim g(e). Thus (z,y) € lim f(e)x

e—)eSr e—)ear E_WSF
lim g(e).
64)63
V (z,y) € lim f(e) x lim g(e), By Theorem 4.10(2),
64)60+ 6*}63’
velm fle)=  |J () fB), yelmgle)= [J 9(8).
evey e€(eo,e0+1)NI BE(eo €] eveg e€(eo,e0+1)NI BE(eo,e]
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Then 3 ej,es € (eg,0+ 1) NI,V B € (eg,e1], Vv € (en,e2], = € f(B),

y€g(7).
Put e* = min{ey, eo}. Then e* € (eg, e9+1)N1, (eg, e*] C (eo, e1]N (e, €2).
Then V 3 € (eg, e*], x € f(B), y € g(B). Tt follows (z,y) € f(B) x g(B). So

() e | () (F(8) x g(8)).

e€(eo,e0+1)NI B,vE(eo,€]

By Theorem 4.10(2), (z,y) € lim (f(e) x g(e)).

+
e—>eo

lim (f(e) x g(e)) = lim f(e) x lim g(e).

+ + +
64}60 6*)60 64)60

Thus

Proposition 4.18. For the over-left limit, the following properties hold:
(1) If f(e) S g(e) (V e € (eo — do, €0)), then lim f(e) C lim g(e).

€—>€0 e—>60

(2) lim (f(e)Ug(e)) = lim f(e)U lim g(e).

6—)60 6—)60 8—>€O

(3) Tim (U — f(e)) = U — lLim f(e).

e—eq e—eg

(4) If im f(e)= A C B, then3 8§ >0,V e € (eg — d,¢0), f(e) C B.

6—)60

(5) 1) Tim (f(e) x g(e)) € Tim f(e) x lim g(e).

64)60 6*)60 64)60

2) Iim f(e) x lim g(e) = () U (f(8) xg9(v)).

e—ey e—eg e€(eo—1,e0)NI B,v€ee0)
Proof. The proof is similar to Proposition 4.16. m

Proposition 4.19. For the under-left limit, the following properties hold:
(1) If f(e) S g(e) (V e € (eo — do, €0)), then lim f(e) C lim g(e).

©) Im (fe) N gle) = lim F(0) N lm ge).

) lin (U~ () = U — T f(e).

(4) ?eﬂ_m fle)=ADA, et;; 35>0,Veec(e—0d,e), fle) DA.
(5) lim (7(e) x 9(e)) = L f(c)  lim g(c).
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Proof. The proof is similar to Proposition 4.17. O

Corollary 4.20. Let f; be an it-soft set over U and A € 2V. Forey € I,
(1) If f(e) C A or f(e) C A (Veé€ (eeo+dp)), then

lm f(e) C A, lim f(e) C A

e—¢g e%eé’

(2) If f(e) C A or f(e) C A (Vec€ (e —doep)), then

Tm f(e) C A, lim f(e) C A.

e—req e—eg
Proof. This holds by Propositions 4.16, 4.17, 4.18, 4.19. ]

Corollary 4.21. Let f; be an it-soft set over U and A € 2V. Forey € I,
(1) If f(e) D A or f(e) DA (Ve€ (e, €9+ dp)), then

lm f(e) 2 A, lim f(e) D A

e—€y e—}ea'

(2) If f(e) D A or f(e) DA (Vee (e —do,e0)), then

Tm f(e) DA, lim f(e) 2 A.

e—req e—eq
Proof. This holds by Propositions 4.16, 4.17, 4.18, 4.19. m

Theorem 4.22. For the over limit, the following properties hold:
(1) If f(e) € gle) (¥ e € UP(eq, b)), then T f(e) C Tan g(c).
e—eQ e—eQ

lim (f(e) U g(e)) = lim f(e) U lim g(e).

€e—€o e—eq

(2)
(3)
(4) If lim f(e) = A C B, then 36 >0,V e € U%ey,0), f(e) C B.
(5)

e—eQ
lim (f(e) x g(e)) € lim f(e) x lim g(e).
0 e—en e—rep
Proof. This holds by Propositions 4.16 and 4.18. [
Theorem 4.23. For the under limit, the following properties hold:
(1) If f(e) Cgle) (Ve e Ueg,d)), then lim f(e) C lim g(e).

e—eQ e—eQ
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(2) im (/) N g(e)) = lim J(e) 1 lim g(e)
®) i (U~ f(e) = U - T JGe).
(4) If lim f(e) = A D A, then 36 >0,V e € U%ep,d), f(e) D A.
(5) i (F(e) % g(e)) = limn (e) x lin g(e).
Proof. Thios holds by Propositioons 4.17 anii 4.19. [

Lemma 4.24. Let f; be an it-soft set over U . For eg € I, denote
W={xeU:Vd>0, [z]f, NU(ey,0) # 0},
S={zeU:V§>0, [z NU"(ey,d) # 0},
T={xeU:Yd>0, [z], NU (e,0) # 0}.

Then

W=SuUT.

Proof. Suppose W ¢ SUT. Then W — SUT # 0.
Pick x e W —SUT. Thenx €S, © €7T. So 3 1,09 > 0,

[x]fl N U+(607 51) = (D’ [x]fz N U_<60a 52) = 0.

Put §* = min{d,d2}. Then §* > 0, [z];, N UT(eo,0%) = 0, [x]y,
U~ (e, 6*) = 0. It follows [z]f, N U(ep,0*) = 0. Then x ¢ W. This is a
contradiction.

Thus W C SUT.

On the other hand, suppose SUT ¢ W, we have SUT — W # 0.

Pick x € SUT—W. Thenx € W. So36* > 0, [x];,NU(ep, 6*) = 0. This
implies [z];, NU (e, 6*) =0, [z]f, NU (€9, 6*) = 0. Thenx € S, x ¢ T. So
x ¢ SUT. This is a contradiction.

Thus SUT C W.

Hence W =SUT ¢ W.

Theorem 4.25. Let f; be an it-soft set over U. Then for ey € I,
(1) {x€U:V >0, [z];, NU(e,0) is infinite}
—{$€U V>0, [z], NU(eo,d) # 0}
= lim f(e)U lim f(e).

(2) E;eé U -3 5626(6 (z)f, NU(eg, ) is finite}
— (e eU:36>0, ()N UHeo,0) = 0)
= lim f(e) N lim f(e).

+ —
6—)60 6—)60
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Proof. (1) Similar to the proof of Theorem 4.6(1), we have
{xeU:Vd>0, [z], NU (e, ) # 0}
={zeU:Y6d>0, [z];, NUT (e, 9) is infinite}.
By Lemma 4.24,
{xeU:Vd>0, [z]f, NUlep, ) # 0}
~ m f(e)U T f(©)

6%80 6%60
(2) Similar to the proof of Theorem 4.6(2), we have
{x€eU:36>0, (), NU(ep,0) = 0}
={zeU:36>0, (x);, NU(eo,0) is finite}.
By Proposition 4.16(3), lim f(e) = U — lim (U — f(e)).
e—ved e—rey

By Proposition 4.18(3), h_m_ fle)=U — lim (U — f(e)).

By (1>’ e—>eO 0
lim f(e) 0 lim f(c)
~ U= T (U = f(e)] U ~ T (U = (o))
= U = [T (U = f(e)) U Tin (U = f(e))

=U—-{zeU:V§>0, ()5, NU(ep,0) # 0}
={zeU:36>0, (), NU(ep,d) = 0}.

O
Theorem 4.26. Let f; be an it-soft set over U. Then for ey € I,
(1) {x€U:¥Y >0, [z, NU(e,0) is infinite}
={zcU:V >0, [z];, NU(eo,d) # 0}
= lim f(e).
e—eQ
2){xe€U:36>0, (), NUT(eg,0) is finite}
={zeU:36>0, (), NUT(ep,0) =0}
= lim f(e).
e—eQ
Proof. This holds by Theorem 4.25. O
Theorem 4.27. For the right limit, the following properties hold:
(1) If f(e) Cg(e) (Ve € (eg,e0+ o)), then lirQr f(e) C lim+ g(e).
6*}60 6*}60
(2) If linr{rf(e) =N, AC A C B, then 36 > 0,V e € (ey,eq+ 0),
6*)60
AcC f(e) C B.
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(3) lim (f(e) x g(e)) € lim f(e) x lim g(e).

e—)ea' e—>63_ 8—)63—
Proof. This holds by Propositions 4.16 and 4.17. m

Theorem 4.28. For the left limit, the following properties hold:
(1) If f(e) Cgle) (Ve (eo—do,e0)), then lim f(e) C lim g(e).

e—req e—req
(2) If lim f(e) = A, AC A C B, then 36 > 0,V e € (e —d,ep),
e—req
AC f(e) C B.
(3) lim (f(e) x g(e)) € lim f(e) x lim g(e).
e—eq e—ey e—eg
Proof. This holds by Propositions 4.18 and 4.19. O

Theorem 4.29. For the limit, the following properties hold:
(1) IF £(e) € 9(e) (¥ ¢ € Uco,0)), then lin f(e) € Tin g(c).
e—eqg e—eq
(2) If lim f(e) = A, A C A C B, then 36 > 0,Y e € U%eg,dy),

6*)60

AC f(e) C B.
(3) lim (f(e) x g(€)) € lim f(e) x lim g(e).

e—eQ

Proof. This holds by Theorems 4.27 and 4.28. ]

5. Continuity of ¢t-soft sets

5.1. Point-wise continuity of it-soft sets

Definition 5.1. Let f; be an it-soft set over U. Then for ey € I,

(1) fr is called over-right continuous at eq, if h_m+ f(e) = f(eo)-
€—>60

(2) fr is called under-right continuous at eq, if lim f(e) = f(eo)-

e—>60+
(3) f1 is called over-left continuous at eq, if lim f(e) = f(ep).
e—eq
(4) fr is called under-left continuous at eg, if lim f(e) = f(eg).
e—eq

Definition 5.2. Let f; be an it-soft set over U. Then for ey € I,

(1) fr is called over-continuous at ey, if f1 is both over-left and over-right
continuous at eg.

(2) fr is called under-continuous at ey, if fr is both under-left and under-
right continuous at €.
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(3) fr is called continuous at eq, if fr is both over-continuous and under-
continuous at €.

Definition 5.3. Let f; be an it-soft set over U. Then for ey € I,

(1) fr is called right-continuous at eq, if fr is both over-right and under-
right continuous at €.

(2) fr is called left-continuous at e, if fr is both over-left and under-left
continuous at eg.

(3) fr is called continuous at ey, if fr is both left-continuous and right-
continuous at eg.

Remark 5.4. The point-wise continuity in Definition 5.2(3) and the point-
wise continuity in Definition 5.3(3) is consistent.

Denote
C(eg) = {fr : fr is over-right continuous at ey},

C""(eo) = {fr : fr is under-right continuous at ey},
C%(eo) = {fr : fr is over-left continuous at ey},
C"(eq) = {fr : fr is under-left continuous at eg};
C?(eg) = {fr : fr is over-continuous at eg}, C“(eg) = {fr: fr is under-continuous at eg};
C'(eo) = {fr : fr is left-continuous at ey}, C"(eo) = {fr : fr is right-continuous at eg};

C(eo = {fr: fr is continuous at eg}.
Proposition 5.5. (1) C°(ey) = C(eq) N C(ep).
(2) C’“(eo) = CUl(e()) N C“r(eo).
(3) CZ<€0) = COl(Go) N CUZ<€0).
(4) OT<€0) = COT(B()) N C”“"(eo).
(5) 0(60) = 00(60) N C’“(eo) = Cl(e()) N CT(G()).

Proof. This is obvious. O]

Proposition 5.6. Let f; and gr be two it-soft sets over U. Then for ey € I,
(1) If fr.g1 € C(eo), then fr U gr € C(eo).
(2) If fr € C”(eo), then ff € C*"(eo).

Proof. This holds by Proposition 4.16. O
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Proposition 5.7. Let f; and g; be two it-soft sets over U. Then for eq € I,
(1) [f f[,g[ € C’“"(eo), then f[ N gr € C“r(eo).
(2) If fr € C""(eo), then fi € C"(eo).
(3) If f1,9r € C*(eq), then f1 x gr € C"(ey).

Proof. This holds by Proposition 4.17. O]

Proposition 5.8. Let f; and g; be two it-soft sets over U. Then for eq € I,
(1) If fr, 91 € C%(eq), then fr U g; € C%(eq).
(2) If f1 € C¥(ey), then f; € C(eq).

Proof. This holds by Proposition 4.18. ]

Proposition 5.9. Let f; and g; be two it-soft sets over U. Then for eq € I,
(1) If fr, 91 € C*(en), then fr N gr € C*(eo).
(2) If f1 € C*(eo), then ff € C%(eo).
(3) If f1,91 € C"(eq), then fr x gr € C%(ep).

Proof. This holds by Proposition 4.19. O

Theorem 5.10. Let f; and g; be two it-soft sets over U. Then for ey € I,
(1) If f1,91 € C%(eq), then fr U gr € C%(e).
(2) If f1 € C°(co), then f§ € C¥(eq).

Proof. This holds by Propositions 5.6 and 5.8. [

Theorem 5.11. Let f; and g; be two it-soft sets over U. Then for eq € I,
(1) If fr.g1 € C"(eo), then fr N gr € C*(ey).
(2) If f1 € C*(eo), then ff € C°(e).
(3) ]f f;,g; € Ou(€0), then f[ X gr € C’”(eo).

Proof. This holds by Propositions 5.7 and 5.9. [

5.2. Continuous it-soft sets

Definition 5.12. Let f; be an it-soft set over U.

(1) fr is called over-continuous, if V eq € I, fr is over-continuous at e.
(2) fr is called under-continuous, if ¥ eq € I, f; under-continuous at e.
(3) f1 is called left-continuous, if ¥ ey € I, fr is left-continuous at eq.
(4) fr is called right-continuous, if V eq € I, fr right-continuous at e.
(5) fr is called continuous, if ¥V ey € I, fr continuous at eg.
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Denote
C(eo) = {fr: f1 is over-right continuous},

C""(eg) = {fr: fr is under-right continuous},
C%(eo) = {fr : fr is over-left continuous},
C"(eg) = {fr : fr is under-left continuous};

C°(I) = {fr: fr is over-continuous}, C*(I) = {f; : fr is under-continuous};
C'(I) = {fr : fr is left-continuous}, C"(I) = {f; : fr is right-continuous };
C(I) =A{fr: fris continuous}.

Proposition 5.13. (1) C°(I) = C°l(I)nC ().
(2) C*(1) = cr(I)ync(I).
'(I) = C°l(I) N C*(I).

(3) C
(4) C"(]) = C”’"( )N (I).
(5) C(I) = Co(I)n C*(I) = CHI) N C"(I).

Proof. This is obvious. ]

Theorem 5.14. Let f; and g be two it-soft sets over U.
(1) [ffl € CO(I>7 975 € CO(J)7 then fI O gr € CO([U J)
(2) If f1 € C°(I), then ff € C*(I).

Proof. This holds by Theorem 5.10. O
Theorem 5.15. Let f; and g; be two it-soft sets over U.

(1) ]ff[ S OU(I), gy € CU(J) then f] ﬁ gy € C“(Iﬂ J)
(2) If fr € C*(I), then f; € C°(I).

Proof. This holds by Theorem 5.11. O

Theorem 5.16. Let (f,[a,b]) be an it-soft set over U.

(1) If (f,[a,b]) is strong keeping union or increasing, then (f,la,b]) has
the maximum value.

(2) If (f, |a, b)) is strong keeping intersection or decreasing, then (f,[a,b])
has the minimum value.

Corollary 5.17. If (f,[a,b]) is a perfect it-soft set over U, then (f,][a,b])
has the maximum and minimum value.
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Proof. This is obvious. O
Lemma 5.18. Let f; € C°(ey). If lim e, = ey, then lim f(e,) C f(eo).
n—00 n—00

Proof. Since m flen) = U flex),

we only need to prove that
if YVne N, 3k>n, v € f(ex), then z € f(eo).

Vo, In e Ny, n—<(5 ItfollowsU(eo,n)CU(eo,(S)

Since lim e, = ep, 3 n € Ny, when n > ny we have e,, € U(eg, = ).
n—o00 n1

Put n3 = n; + na. Then for ng, I3k > ns, x € f(er). So e € [z]y,.
k > n3 > no implies

1
e € U(GQ, n—l) C U(Go,(s).

Then e, € [z]f, N U(eo,é) SoVé, [x]y, NU(eo,0) # 0.

By Theorem 4.25, z € lim f(e).

Since f € C°(eg), we have f(eg) = lim f(e).

Hence z € f(ey). O

Theorem 5.19. Let (f,[a,b]) € C([a,b]).

(1) Suppose f(a) C f(b), then V p = f(a) € p C f(b), 3 & € [a,b],
f(eo) = p. Moreover, if f(a) C p C f(b), then 3 ey € (a,b

(2) Suppose f(b) C f(a), then ¥ pu : f(b) C p C f(a), I e € la,b],
f(eo) = . Moreover, if f(b) C u C f(a), then 3 ey 6 (a,b), fleg) = .

Proof. (1) It suffices to show that
if fla) CpC f(b), then 3 ey € (a,b), f(ey) = p.
Denote E = {e € [a,b] : f(e) D u}. Put e = inf E. Then
d{e,:ne N} C E—{e}, nglgoen:eg.

Since V n € N, f(e,) D u, we have lim f(e,) = () U f(ex) 2 p. Since
n—oo n=1k=n
f € C°ep), by Lemma 5.18,

fleo) 2 Tim f(en) 2 p.

n—o0
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Note that f(a) C p. Then ey # a.
We assert ey # b. Suppose eg = b. Since

pC f(b) = lim fle) = lim f(e),

e—b—

by Proposition 4.19(4), then
39, Vee (b—0,b), f(e) D p.

Put e; € (b —4,b). Then f(e;) D pu. We have e; € E. This implies
e1 > eg. But ey < b = ¢ey. This is a contradiction.
Thus e € (a,b).
We claim f(eg) 2 p. Suppose f(eg) D p. Since f € C%(eg), we have
i C Jleo) = Jim (e) = I f(e).

e—eQ

By Theorem 4.23(4),
365, VeeU%e,d), fle) D pu.

Put e; € (eg — d,ep9). Then f(e;) D p. We have e; € E. This implies
e1 > eg. This is a contradiction.

Note that f(eg) 2 p. Thus f(eg) = p.

(2) The proof is similar to (1).

6. An application for rough sets

Definition 6.1. Let (U, R, P) be a probabilistic approximate space. For e €
0,1], X €2Y, denote

fx(e) = PL(X), gx(e) = PIL.(X).

Then (fx,[0,1]) and (gx,[0,1]) are two it-soft sets over U, which are called
the it-soft sets induced by the lower and upper approximations of X, respec-
tively.
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Theorem 6.2. Let (U, R, P) be a probabilistic approximate space. Then for
eo € (0,1), X €2Y,

(DD Im fxe)= N U fx(B);

e—reg e€(eo,1] BE(eo,€]

2) Iim fx(e) = [ﬂ )fX(ﬁ’) = fx(eo);
e—eq e€(0,eq

3) 11m+ fx(e) = U N fx(e) = gx(eo);

Domf©= U N )
H_eo e€[0,e0) BEe,e0)

(2) 1) 11m+ gx(e)= [ U 9x(8);

e—eq e€(eo,1] BE(eo,e]

2) lim gx(e) = | )gx(e) = fx(eo);
e—eg e€|0,eo

3) lim gx(e) = (U }gx(e) = gx(eo);
e—ed e€(eg,1

0) 1 gx(0) )

(3) 1) fox(e) = U - gx(1 - o),
2) gu—x(e) =U — fx(1—e).

Proof. This holds by Theorems 2.6, 2.7 and 4.10. O
Corollary 6.3. Let (U, R, P) be a probabilistic approximate space. Then for
X €2Y,

(fX7 [07 1]) S COZ<<07 1))7 (gXa [07 1]) € Cur<<0’ 1))
Proof. This holds by Theorems 6.2. [

Example 6.4. Let U = {; : 1 <i < 20}, P(X) = {51 (X € 2V), U/R =
{X17X27X37X47X57X6} where
X1 = {xhx%x?),l‘%%}, Xy = {%71‘77@“8}, X3 = {I9,$1o7$11,$12},
Xy = {3313,31314}; X5 = {3715,3316,3317736’18}; X = {9131971’20}-
Put
X* = {x67x77'r87x137x17}-

By Ezample 4.9 in [24] or Example 8.1 in [25],

fx+(0.5) = Xo U Xy, gx-(0.5) = Xo.
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By Theorem 2.7,

lim fx-(e) = gx-(0.5) # fx+(0.5).

e—0.51

By Theorem 2.7,

lim gx-(e) = fx-(eo) # gx-(0.5).

e—0.5—

Thus
(fx+,[0,1]) € C*(0.5), (gx-,[0,1]) & C*(0.5).

This example illustrates that
(fx+,[0,1]) & C*"((0,1)), (9x-,(0,1]) & C((0,1)).

Example 6.5. Let U = {; : 1 <i <10}, P(X) = {7} (X € 2V), U/R =
{Xl,X27X37X4} where

X1 = {3017%3}7 Xy = {962,3347%5,557}; X3 = {9[?67%8}7 Xy = {1’9,9610}-
(1) Put X* = {x1,x5,x6,xs}. Then

(X UX,UXs, if e€ (0,3,
fx(e) = ¢ X1 U X, if e (i3,
\X37 Zf €c (%7 1]7
(X1UX,UXs, if e€0,d),
gx-(e) = { X1 U X, if e€l}3)
| X, if e€l3,1).
So lim fx-(e) = () U fx-(8) = X3 # X1 UX;5 = fx-(0.5),
e—0.5% e€(0.5,1] BE(0.5,¢]
lim gx(e)= U N gx(B) = X1 U X3 # X3 = gx-(0.5).
e—0.5~ e€[0,0.5) B€(e,0.5)

Thus
(fx+,10,1]) & C(0.5), (gx-,[0,1]) & C*(0.5).
(2) Put Y* = {xg,x9,210}. Then

XU Xy, if ec(0,4],
fr-le) = {X4, if ee(,1].
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So h_m fy* (6) = U ﬂ fy* (5) = Xg U X4 7& X4 = fy* (05)

e—0.5~ e€[0,0.5) B€[e,0.5)
Thus
(.fY*a [07 ]-]) g CUZ(OE))
(3) Put

Z7r=U-Y".
By Proposition 4.16(3) and Theorem 2.7,

T gre(e) = T (U~ fre(1-0))
= U~— lim fy«(1—e¢)
e—0.51
1—e—0.5—

Note that lim fy«(e) # fy«(0.5). Then by Theorem 2.7,

e—0.5~

lim gz-(e) # U — fy+(0.5) = gz-(0.5).

e—0.5T

Thus
(92+,10,1]) & C"(0.5).

This example illustrates that
(fX*7 [0) 1]) ¢ COT((OJ 1))’ (gX*7 [0’ 1]) g Cul((ov 1>>;
(fy+,[0,1]) & C*((0,1)); (gz+,[0,1]) & C((0,1)).

7. Conclusions

In this paper, limits of #t-soft sets have been proposed. Point-wise con-
tinuity of #t-soft sets and continuous it-soft sets have been investigated. An
application for rough sets has been given. These results will be helpful for
the study of soft sets. In the future, we will further study applications of
these limits in information science.
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