Limits of $i t$-soft sets and their applications for rough sets ${ }^{\star}$

Xiaoliang Xie
(Mobile E-business Collaborative Innovation Center of Hunan Province, Hunan
University of Commerce, Changsha, Hunan 410205, P.R.China.)
Jiali He*
(Key Laboratory of Complex System Optimization and Big Data Processing in Department of Guangxi Education, Yulin Normal University, Yulin, Guangxi 537000, P.R.China)

Abstract

Soft set theory is a mathematical tool for dealing with uncertainty. This paper investigates limits of interval type of soft sets (for short, it-soft sets). The concept of $i t$-soft sets is first introduced. Then, limits of $i t$-soft sets are proposed and their properties are obtained. Next, point-wise continuity of $i t$-soft sets and continuous $i t$-soft sets are discussed. Finally, an application for rough sets is given.

Key words: Soft set; it-soft set; Limit; Continuity; Rough set.

1. Introduction

To solve complicated problems in economics, engineering, environmental science and social science, methods in classical mathematics are not always successful because of various types of uncertainties present in these problems. There are several theories: probability theory, fuzzy set theory [22],

[^0]rough set theory [18] and the interval mathematics which we can consider as mathematical tools for dealing with uncertainties. But all these theories have their own difficulties. For example, probability theory can deal only with stochastically stable phenomena (see [17]). To overcome these kinds of difficulties, Molodtsov [17] proposed a completely new approach, which is called soft set theory, for modeling uncertainty.

Presently, works on soft sets theory are progressing rapidly. Maji et al. $[14,15]$ further studied soft sets theory and used this theory to solve some decision making problems. Aktas et al. [1] defined soft groups. Jiang et al. [7] extended soft sets with description logics. Feng et al. [4] investigated the relationship among soft sets, rough sets and fuzzy sets. Ge et al. [8] discussed the relationship between soft sets and topological spaces. Li et al. [12] obtained the relationship among soft sets, soft rough sets and topologies. Li et al. [13] studied parameter reductions of soft coverings.

Rough set theory, proposed by Pawlak [18], is an important tool for dealing with fuzzyness and uncertainty of knowledge. After thirty years development, this theory has been successfully applied to machine learning, intelligent systems, inductive reasoning, pattern recognition, mereology, image processing, signal analysis, knowledge discovery, decision analysis, expert systems and many other fields [18, 19, 20, 21]. The basic structure of rough set theory is an approximation space. Based on it, lower and upper approximations can be induced. Through these rough approximations, knowledge hidden in information systems may be revealed and expressed in the form of decision rules [19, 20, 21]. Pawlak's rough set model is based on the completeness of available information, and ignores the incompleteness of available information and the possible existence of statistical information. This model for extracting rules in uncoordinate decision information systems often seems incapable. These have motivated many researchers to investigate probabilistic generalization of rough set theory and provide new rough set model for the study of uncertain information system.

Probabilistic rough set model is probabilistic generalization of rough set theory. In probabilistic rough set model, probabilistic rough approximations are dependent on parameters. Researching the infinite change trend or the limit state of these approximations accordance with parameters is helpful for the study of probabilistic rough sets.

It is well-known that calculus theory is the foundation of modern science. Limits of functions are its basic concepts, which play an important role in the process of development [10]. Since probabilistic rough approximations and
level sets of a fuzzy set are both it-soft sets (i.e., interval type of soft sets or soft sets whose parameter sets are the intervals in R), we may attempt to study the infinite change trend or the limit state of $i t$-soft sets. It is worth mentioning that there is no systematic research and summary for limits of $i t$-soft sets although the limit though of $i t$-soft sets has formed in [24, 25].

In general, most of uncertain mathematical theories can only deal with uncertainty problems of discreteness. If limit theory of $i t$-soft sets is established, then these theories may be used to solve uncertainty problems of continuity The purpose of this paper is to establish preliminarily limit theory of interval type soft set so that some uncertain mathematical theories such as rough set theory may be used to solve uncertainty problems of continuity.

The remaining part of this paper is organized as follows. In Section 2, we recall some basic concepts about limits of set sequences and rough sets. In Section 3, we introduce $i t$-soft sets and related notions. In Sections 4, we propose the concept of limits of $i t$-soft sets and obtain their properties. In Sections 5, we discuss the continuity of $i t$-soft sets including point-wise continuity of $i t$-soft sets and continuous it-soft sets. In Sections 6, we give an application for rough sets. Sections 7 summarizes this paper.

2. Preliminaries

In this section, we recall some basic concepts about limits of s-sequences, rough sets and $i t$-soft sets.

Throughout this paper, U denotes the universe which may be an infinite set, 2^{U} denotes the family of all subsets of U, E denotes a set of all possible parameters, R denotes the set of all real numbers, N denotes the set of all natural numbers and I denotes the interval in R.

2.1. Limits of set sequences

Definition 2.1 ([3, 9]). Let U be the universe. If for each $n \in N, E_{n} \in 2^{U}$, then $\left\{E_{n}\right\}$ is called a set sequence in U. Define

$$
\begin{aligned}
& \varlimsup_{n \rightarrow \infty} E_{n}=\left\{x \in U:\left\{n \in N: x \in E_{n}\right\} \text { is infinite }\right\}, \\
& \underline{\lim }_{n \rightarrow \infty} E_{n}=\left\{x \in U:\left\{n \in N: x \notin E_{n}\right\} \text { is finite }\right\} .
\end{aligned}
$$

If $\underline{\lim }_{n \rightarrow \infty} E_{n}=\varlimsup_{n \rightarrow \infty} E_{n}=E$, then $\left\{E_{n}: n \in N\right\}$ is called to has the limit E, which is denoted by $\lim _{n \rightarrow \infty} E_{n}$, i.e., $\lim _{n \rightarrow \infty} E_{n}=E$; If $\underline{\lim }_{n \rightarrow \infty} E_{n} \neq \varlimsup_{n \rightarrow \infty} E_{n}$, then $\left\{E_{n}: n \in N\right\}$ is called to has no the limit.

Obviously, $\underset{n \rightarrow \infty}{\underline{\lim }} E_{n} \subseteq \varlimsup_{n \rightarrow \infty} E_{n}$.
Proposition $2.2([3,9])$. Let $\left\{E_{n}: n \in N\right\}$ be a set sequence in U.
(1) $\varlimsup_{n \rightarrow \infty} E_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_{k}$.
(2) $\underline{l i m}_{n \rightarrow \infty} E_{n}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_{k}$.

Proposition 2.3 ([3, 9]). Let $\left\{E_{n}: n \in N\right\}$ be a set sequence in U.
(1) If $\left\{E_{n}\right\} \uparrow$, then $\lim _{n \rightarrow \infty} E_{n}=\bigcup_{n=1}^{\infty} E_{n}$.
(2) If $\left\{E_{n}\right\} \downarrow$, then $\lim _{n \rightarrow \infty} E_{n}=\bigcap_{n=1}^{n=1} E_{n}$.

2.2. Rough sets

Let R be an equivalence relation on the universe U. Then the pair (U, R) is called a Pawlak approximation space. Based on (U, R), one can define the following two rough approximations:

$$
\underline{R}(X)=\left\{x \in U:[x]_{R} \subseteq X\right\}, \bar{R}(X)=\left\{x \in U:[x]_{R} \cap X \neq \emptyset\right\} .
$$

Then $\underline{R}(X)$ and $\bar{R}(X)$ are called the Pawlak lower approximation and the Pawlak upper approximation of X, respectively.

The boundary region of X, defined by the difference between these rough approximations, that is $B n d_{R}(X)=\bar{R}(X)-\underline{R}(X)$.

A set is rough if its boundary region is not empty; otherwise, it is crisp. Thus, X is rough if $\underline{R}(X) \neq \bar{R}(X)$.

Definition 2.4 ([24, 25]). Let U be a finite universe. Then a function P : $2^{U} \rightarrow[0,1]$ is called a probability measure over U, if $P(U)=1$ and $P(A \cup$ $B)=P(A)+P(B)$ whenever $A \cap B=\emptyset$.

If P is a probability measure over $U, A, B \in 2^{U}$ and $P(B)>0$, then $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$ is called the conditional probability of the event A when the event B occurs.

Definition 2.5 ([24, 25]). Let U be a finite universe, R an equivalence relation over U and P a probability measure over U. Then the pair (U, R, P) is called a probabilistic approximate space. Based on (U, R, P), the lower and
upper approximation of X, are respectively denoted by $\underline{P I}_{\alpha}(X)$ and $\overline{P I}_{\beta}(X)$, are defined as follows:

$$
\underline{P I}_{\alpha}(X)=\{x \in U: P(X \mid[x]) \geq \alpha\}, \overline{P I}_{\beta}(X)=\{x \in U: P(X \mid[x])>\beta),
$$

where $0 \leq \beta<\alpha \leq 1$.
Theorem 2.6 ($[24,25])$. Let (U, R, P) be a probabilistic approximate space. Then the following properties hold.
(1) $\underline{P I}_{\alpha}(\emptyset)=\overline{P I}_{\alpha}(\emptyset)=\emptyset, \underline{P I}_{\alpha}(U)=\overline{P I}_{\alpha}(U)=U$.
(2) $\underline{P I}{ }_{\alpha}(X) \subseteq \overline{P I}_{\alpha}(X)$.
(3) $\underline{P I}_{\alpha}(U-X)=U-\overline{P I}_{1-\alpha}(X), \overline{P I}_{\alpha}(U-X)=U-\underline{P I}_{1-\alpha}(X)$.
(4) If $X \subseteq Y$, then $\underline{P I}(X) \subseteq \underline{P I}(Y), \overline{P I}_{\alpha}(X) \subseteq \overline{P I}_{\alpha}(Y)$.
(5) If $0<\alpha_{1}<\alpha_{2} \leq 1,0 \leq \beta_{1}<\beta_{2}<1$ then

$$
\underline{P I}_{\alpha_{2}}(X) \subseteq \underline{P I}_{\alpha_{1}}(X), \overline{P I}_{\beta_{2}}(X) \subseteq \overline{P I}_{\beta_{2}}(X) .
$$

Theorem $2.7([24,25])$. Let (U, R, P) be a probabilistic approximate space. Then for $0<\gamma<1, X \in 2^{U}$,
(1) $\lim _{\alpha \uparrow \gamma} \underline{P I}_{\alpha}(X)=\bigcap_{\alpha \in(0, \gamma)} \underline{P I}_{\alpha}(X)=\underline{P I}_{\gamma}(X)$,

$$
\lim _{\alpha \downarrow \gamma} \underline{P I}_{\alpha}(X)=\bigcup_{\alpha \in(\gamma, 1]} \underline{P I_{\alpha}}(X)=\overline{P I}_{\gamma}(X) ;
$$

(2) $\lim _{\alpha \uparrow \gamma} \overline{P I}_{\alpha}(X)=\bigcap_{\alpha \in[0, \gamma)} \overline{P I}_{\alpha}(X)=\underline{P I_{\gamma}}(X)$,

$$
\lim _{\alpha \downarrow \gamma} \overline{P I}_{\alpha}(X)=\bigcup_{\alpha \in(\gamma, 1)} \overline{P I}_{\alpha}(X)=\overline{P I}_{\gamma}(X) .
$$

Although the limit though of $i t$-soft sets has formed in Theorem 2.6, there is no systematic research and summary for limits of $i t$-soft sets. Thus, limit theory of interval type soft set deserves deeply study so that rough set theory can be used to solve uncertainty problems of continuity.

3. Soft sets

Definition 3.1 ([17]). Let $A \subseteq E$. A pair (f, A) is called a soft set over U, if f is a mapping given by $f: A \rightarrow 2^{U}$. We also denote (f, A) by f_{A}.

In other words, a soft set f_{A} over U is a parametrized family of subsets of the universe U. For $e \in A, f(e)$ may be considered as the set of e-approximate elements of the soft set f_{A}. Clearly, a soft set is not a set.

Definition 3.2 ([14]). Let f_{A} and g_{B} be two soft sets over U.
(1) f_{A} is called a soft subset of g_{B}, if $A \subseteq B$ and $f(e)=g(e)$ for each $e \in A$. We denote it by $f_{A} \widetilde{\subset} g_{B}$.
(2) f_{A} is called a soft super set of g_{B}, if $g_{B} \widetilde{\subset} f_{A}$. We denote it by $f_{A} \frown g_{B}$.

Definition 3.3 ([14]). Let f_{A} and g_{B} be two soft sets over U.
f_{A} and g_{B} are called soft equal, if $A \subseteq B$ and $f(e)=g(e)$ for each $e \in A$. We denote it by $f_{A}=g_{B}$.

Obviously, $f_{A}=g_{B}$ if and only if $f_{A} \widetilde{\subset} g_{B}$ and $f_{A} \widetilde{\supset} g_{B}$.
Definition 3.4 ([14]). Let f_{A} be a soft set over U.
(1) f_{A} is called null, if $f(e)=\emptyset$ for each $e \in A$. We denote it by $\widetilde{\emptyset}$.
(2) f_{A} is called absolute, if $f(e)=U$ for each $e \in A$. We denote it by \widetilde{U}.
(3) f_{A} is called constant, if there exists $X \in 2^{U}$ such that $f(e)=X$ for each $e \in A$. We denote it by \widetilde{X} or X_{A}.

Definition 3.5 ([14]). Let f_{A} and g_{B} be two soft sets over U.
(1) h_{C} is called the intersection of f_{A} and g_{B}, if $C=A \cap B$ and $h(e)=$ $f(e) \cap g(e)$ for each $e \in C$. We denote it by $f_{A} \widetilde{\cap} g_{B}=h_{C}$.
(2) h_{C} is called the union of f_{A} and g_{B}, if $C=A \cup B$ and

$$
h(e)= \begin{cases}f(e), & \text { if } e \in A-B, \\ g(e), & \text { if } e \in B-A, \\ f(e) \cup g(e), & \text { if } e \in A \cap B\end{cases}
$$

We denote it by $f_{A} \widetilde{\cup} g_{B}=h_{C}$.
(3) h_{C} is called the bi-intersection of f_{A} and g_{B}, if $C=A \times B$ and $h(a, b)=f(a) \cap g(b)$ for each $a \in A$ and $b \in B$. We denote it by $f_{A} \wedge g_{B}=$ h_{C}.
(4) h_{C} is called the bi-union of f_{A} and g_{B}, if $C=A \times B$ and $h(a, b)=$ $f(a) \cup g(b)$ for each $a \in A$ and $b \in B$. We denote it by $f_{A} \bigvee g_{B}=h_{C}$.

Definition 3.6 ([16]). The relative complement of a soft set f_{A} is denoted by $f^{c}{ }_{A}$ and is defined by $f^{c}{ }_{A}=\left(f^{c}, A\right)$, where $f^{c}: A \rightarrow 2^{U}$ is a mapping given by $f^{c}(e)=U-f(e)$ for each $e \in A$.

Definition 3.7 ([4]). Let f_{A} be a soft set over U.
(1) f_{A} is called full, if $\bigcup_{e \in A} f(e)=U$.
(2) f_{A} is called partition, if $\{f(e): e \in A\}$ forms a partition of U.

Definition 3.8 ([12]). Let f_{A} be a soft set over U.
(1) f_{A} is called topological, if $\{f(e): e \in A\}$ is a topology on U.
(2) f_{A} is called keeping intersection, if for any $a, b \in A$, there exists $c \in A$ such that $f(a) \cap f(b)=f(c)$.
(2) f_{A} is called keeping union, if for any $a, b \in A$, there exists $c \in A$ such that $f(a) \cup f(b)=f(c)$.
(3) f_{A} is called perfect, if $f: A \rightarrow 2^{U}$ is onto.
(4) f_{A} is called having no kernel, if $\cap\{f(e): e \in A\}=\emptyset$.

Definition 3.9. Let f_{A} be a soft set over U.
(1) f_{A} is called strong keeping intersection, if for each $B \subseteq A$, there exists $b \in A$ such that $\bigcap_{a \in A} f(a)=f(b)$.
(2) f_{A} is called strong keeping union, if for each $B \subseteq A$, there exists $b \in A$ such that $\bigcup_{a \in A} f(a)=f(b)$.

Obviously, f_{A} is strong keeping intersection $\Rightarrow f_{A}$ is keeping intersection, f_{A} is strong keeping union $\Rightarrow f_{A}$ is keep union.

Proposition 3.10 ([12]). Let f_{A} be a soft set over U. Then the following properties hold.
(1) If f_{A} is topological, then f_{A} is full, keeping intersection and strong keep union.
(2) f_{A} is perfect if and only if $\{f(e): e \in A\}$ is a discrete topology over U.
(3) If f_{A} is perfect, then f_{A} is topological.
(4) f_{A} is having no kernel if and only if $\left(f^{c}, A\right)$ is full.

Example 3.11. Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, A=[0,1)$. Define f_{A} as follows:

$$
f(e)= \begin{cases}\left\{x_{1}, x_{2}, x_{5}\right\}, & \text { if } \alpha \in\left[0, \frac{1}{4}\right), \\ \emptyset, & \text { if } \alpha \in\left[\frac{1}{4}, \frac{1}{2}\right), \\ \left\{x_{1}, x_{2}\right\}, & \text { if } \alpha \in\left[\frac{1}{2}, \frac{3}{4}\right), \\ U, & \text { if } \alpha \in\left[\frac{3}{4}, 1\right) .\end{cases}
$$

Then f_{A} is topological. But f_{A} is neither perfect nor partition.

Example 3.12. Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, A=[0,1)$. Define f_{A} as follows:

$$
f(e)= \begin{cases}\left\{x_{1}, x_{2}, x_{5}\right\}, & \text { if } \alpha \in\left[0, \frac{1}{4}\right), \\ \left\{x_{1}, x_{2}\right\}, & \text { if } \alpha \in\left[\frac{1}{4}, \frac{1}{2}\right), \\ \left\{x_{3}\right\}, & \text { if } \alpha \in\left[\frac{1}{2}, \frac{3}{4}\right), \\ \left\{x_{3}, x_{4}\right\}, & \text { if } \alpha \in\left[\frac{3}{4}, 1\right) .\end{cases}
$$

Note that $\left\{x_{1}, x_{2}, x_{5}\right\} \cap\left\{x_{3}\right\}=\emptyset \neq f(\alpha)(\forall \alpha \in I)$. Then f_{A} is not keeping intersection.

Example 3.13. Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, A=[0,1)$. Define f_{A} as follows:

$$
f(e)= \begin{cases}\left\{x_{1}\right\}, & \text { if } \alpha \in\left[0, \frac{1}{4}\right), \\ \left\{x_{1}, x_{4}\right\}, & \text { if } \alpha \in\left[\frac{1}{4}, \frac{1}{2},\right. \\ \left\{x_{1}, x_{3}, x_{4}\right\}, & \text { if } \alpha \in\left[\frac{1}{2}, \frac{3}{4}\right), \\ U, & \text { if } \alpha \in\left[\frac{3}{4}, 1\right) .\end{cases}
$$

Then f_{A} is full, keeping intersection and strong keeping union. But f_{A} is not topological.

Example 3.14. Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, A=[0,1)$. Define f_{A} as follows:

$$
f(e)= \begin{cases}\left\{x_{1}, x_{2}\right\}, & \text { if } \alpha \in\left[0, \frac{1}{4}\right), \\ \left\{x_{5}\right\}, & \text { if } \alpha \in\left[\frac{1}{4}, \frac{1}{2},\right. \\ \left\{x_{3}\right\}, & \text { if } \alpha \in\left[\frac{1}{2}, \frac{3}{4}\right), \\ \left\{x_{4}\right\}, & \text { if } \alpha \in\left[\frac{3}{4}, 1\right) .\end{cases}
$$

Then f_{A} is partition. But f_{A} is neither topological nor perfect.
Example 3.15. Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, A=[0,1)$. Define f_{A} as follows:

$$
f(e)= \begin{cases}\left\{x_{1}, x_{2}, x_{5}\right\}, & \text { if } \alpha \in\left[0, \frac{1}{4}\right), \\ \emptyset, & \text { if } \alpha \in\left[\frac{1}{4}, \frac{1}{2}\right), \\ \left\{x_{3}\right\}, & \text { if } \alpha \in\left[\frac{1}{2}, \frac{3}{4}\right), \\ \left\{x_{3}, x_{4}\right\}, & \text { if } \alpha \in\left[\frac{3}{4}, 1\right) .\end{cases}
$$

Then f_{A} is full and strong keeping intersection. But

$$
\left\{x_{1}, x_{2}, x_{5}\right\} \cup\left\{x_{3}\right\}=\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\} \neq f(\alpha)(\forall \alpha \in I) .
$$

Thus f_{A} is not keeping union.

Example 3.16. Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, A=[0,1)$. Define f_{A} as follows:

$$
f(e)= \begin{cases}\left\{x_{1}\right\}, & \text { if } \alpha \in\left[0, \frac{1}{4}\right), \\ \left\{x_{2}\right\}, & \text { if } \alpha \in\left[\frac{1}{4}, \frac{1}{2}\right), \\ \left\{x_{1}, x_{2}\right\}, & \text { if } \alpha \in\left[\frac{1}{2}, \frac{3}{4}\right), \\ U, & \text { if } \alpha \in\left[\frac{3}{4}, 1\right) .\end{cases}
$$

Then f_{A} is full and strong keeping union. But

$$
\left\{x_{1}\right\} \cap\left\{x_{2}\right\}=\emptyset \neq f(\alpha)(\forall \alpha \in I) .
$$

Thus f_{A} is not keeping intersection.
From Examples 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16, we have the following relationships:

f is full, keeping intersection and strong keeping union

f is full and keeping intersection f is full and strong keeping union

4. Limit theory of $i t$-soft sets

4.1. The concept of $i t$-soft sets

Definition 4.1. Let f_{A} be a soft set over U. If there exists the interval I in R such that $A=I$. Then f_{A} is called an it-soft set over U. Denote it with f_{I}.

It is worth mentioning that the $i t$-soft sets are different from interval soft sets in [23].

Definition 4.2. Let f_{I} be an it-soft set over U.
(1) If for any $e_{1}, e_{2} \in I, e_{1}<e_{2}$ implies $f\left(e_{1}\right) \subset f\left(e_{2}\right)\left(\right.$ resp., $f\left(e_{1}\right) \supset$ $\left.f\left(e_{2}\right)\right)$, then f_{I} is called strictly increasing (resp., strictly decreasing) on I.
(2) If for any $e_{1}, e_{2} \in I, e_{1}<e_{2}$ implies $f\left(e_{1}\right) \subseteq f\left(e_{2}\right)\left(\right.$ resp., $f\left(e_{1}\right) \supseteq$ $f\left(e_{2}\right)$), then f_{I} is called increasing (resp., decreasing) on I.

Definition 4.3. Let f_{I} be an it-soft set over U.
(1) If for any $e \in I, f(e) \subseteq f\left(e_{0}\right)\left(e_{0} \in I\right)$, then $f\left(e_{0}\right)$ is called the maximum value of f_{I}.
(2) If for any $e \in I, f(e) \supseteq f\left(e_{0}\right)\left(e_{0} \in I\right)$, then $f\left(e_{0}\right)$ is called the minimum value of f_{I}.

4.2. Limits of $i t$-soft sets

Let $e_{0} \in R, \delta>0$. Denote

$$
U\left(e_{0}, \delta\right)=\left\{e:\left|e-e_{0}\right|<\delta\right\}, U^{0}\left(e_{0}, \delta\right)=\left\{e: 0<\left|e-e_{0}\right|<\delta\right\} .
$$

Then $U\left(e_{0}, \delta\right)$ is called δ neighborhood of $e_{0}, U^{0}\left(e_{0}, \delta\right)$ is called δ neighborhood of e_{0} having no the heart, e_{0} is the center of the neighborhood, δ is the radius of the neighborhood.
$U^{+}\left(e_{0}, \delta\right)=\left[e_{0}, e_{0}+\delta\right)$ is called the δ right neighborhood of e_{0},
$U^{-}\left(e_{0}, \delta\right)=\left(e_{0}-\delta, e_{0}\right]$ is called the δ left neighborhood of e_{0}.
Obviously, $U\left(e_{0}, \delta\right)=\left(e_{0}-\delta, e_{0}+\delta\right)=U^{+}\left(e_{0}, \delta\right) \cup U^{-}\left(e_{0}, \delta\right)$.
Let f_{I} be an $i t$-soft set over U. For $e_{0} \in I, x \in U$, denote

$$
\begin{aligned}
{[x]_{f_{I}} } & =\left\{e \in I-\left\{e_{0}\right\}: x \in f(e)\right\}, \\
(x)_{f_{I}} & =\left\{e \in I-\left\{e_{0}\right\}: x \notin f(e)\right\} .
\end{aligned}
$$

Remark 4.4. (1) $[x]_{f_{I}} \cup(x)_{f_{I}}=I-\left\{e_{0}\right\}, \quad[x]_{f_{I}} \widetilde{\Omega}(x)_{f_{I}}=\emptyset$.
(2) $[x]_{f_{I}} \cap[x]_{g_{I}}=[x]_{f_{I} \tilde{\cap} g_{I}}, \quad[x]_{f_{I}} \cup[x]_{g_{I}}=[x]_{f_{I} \widetilde{\cup} g_{I}}$.
(3) $(x)_{f_{I}} \cap(x)_{g_{I}}=(x)_{f_{I} \cup_{g_{I}}}, \quad(x)_{f_{I}} \cup(x)_{g_{I}}=(x)_{f_{I} \tilde{\cap} g_{I}}$.
(4) $[x]_{f_{I}^{c}}=(x)_{f_{I}}, \quad(x)_{f_{I}^{c}}=[x]_{f_{I}}$.

Definition 4.5. Let f_{I} be an it-soft set over U. For $e_{0} \in I$, define
(1) $\varlimsup_{e \rightarrow e_{0}^{+}} f(e)=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)\right.$ is infinite $\}$, which is called the over-right limit of f_{I} as $e \rightarrow e_{0}$ (or the over limit of f_{I} as $e \rightarrow e_{0}^{+}$);
(2) $\underline{l i m}_{e \rightarrow e_{0}^{+}} f(e)=\left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)\right.$ is finite $\}$, which is called the under-right limit of f_{I} as $e \rightarrow e_{0}$ (or the under limit of f_{I} as $e \rightarrow$ e_{0}^{+}).
(3) $\varlimsup_{e \rightarrow e_{0}^{-}} f(e)=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{-}\left(e_{0}, \delta\right)\right.$ is infinite $\}$, which is called the over-left limit of f_{I} as $e \rightarrow e_{0}$ (or the over limit of f_{I} as $e \rightarrow e_{0}^{-}$).
(4) $\varliminf_{e \rightarrow e_{0}^{-}} f(e)=\left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U^{-}\left(e_{0}, \delta\right)\right.$ is finite $\}$, which is called the under-left limit of f_{I} as $e \rightarrow e_{0}$ (or the under limit of f_{I} as $e \rightarrow$ e_{0}^{-}).

Theorem 4.6. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) $\varlimsup_{e \rightarrow e_{0}^{+}} f(e)=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset\right\}$
$=\left\{x \in U: \forall n \in N,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \frac{1}{n}\right) \neq \emptyset\right\}$.
(2) ${\underset{e}{e \rightarrow e_{0}^{+}}} f(e)=\left\{x \in U: \exists \delta>0, \quad(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)=\emptyset\right\}$
$=\left\{x \in U: \exists n \in N,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \frac{1}{n}\right)=\emptyset\right\}$.
(3) $\varlimsup_{e \rightarrow e_{0}^{-}} f(e)=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{-}\left(e_{0}, \delta\right) \neq \emptyset\right\}$
$=\left\{x \in U: \forall n \in N,[x]_{f_{I}} \cap U^{-}\left(e_{0}, \frac{1}{n}\right) \neq \emptyset\right\}$.
(4) $\varliminf_{e \rightarrow e_{0}^{-}} f(e)=\left\{x \in U: \exists \delta>0, \quad(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)=\emptyset\right\}$

$$
=\left\{x \in U: \exists n \in N,(x)_{f_{I}} \cap U^{-}\left(e_{0}, \frac{1}{n}\right)=\emptyset\right\} .
$$

Proof. (1) Put

$$
\begin{aligned}
& S=\varlimsup_{e \rightarrow e_{0}^{+}} f(e), T=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset\right\}, \\
& L=\left\{x \in U: \forall n \in N,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \frac{1}{n}\right) \neq \emptyset\right\} .
\end{aligned}
$$

Obviously, $S \subseteq T \subseteq L$. We only need to prove $L \subseteq S$. Suppose $L \nsubseteq$ S. Then $L-S \neq \emptyset$. Pick $x \in L-S$. We have $x \notin S$. So $\exists \delta_{0}>0$, $[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta_{0}\right)$ is finite. Denote

$$
[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta_{0}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
$$

Put $e^{*}=\min \left\{e_{1}, e_{2}, \ldots, e_{n}\right\}, 0<\frac{1}{n_{0}}<e^{*}-e_{0}$. Then

$$
0<\frac{1}{n_{0}}<\delta_{0},[x]_{f_{I}} \cap U^{+}\left(e_{0}, \frac{1}{n_{0}}\right)=\emptyset .
$$

So $x \notin L$. But $x \in L$. This is a contradiction. Thus $L \subseteq S$.
(2) Put

$$
\begin{aligned}
& P=\varliminf_{e \rightarrow e_{0}^{+}} f(e), Q=\left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)=\emptyset\right\}, \\
& K=\left\{x \in U: \exists n \in N,(x)_{\left.f_{I} \cap U^{+}\left(e_{0}, \frac{1}{n}\right)=\emptyset\right\} .}\right.
\end{aligned}
$$

Obviously, $K \subseteq Q \subseteq P$. We only need to prove $P \subseteq K$. Suppose $P \nsubseteq K$. Then $P-K \neq \emptyset$. Pick $x \in P-K$. Then $x \notin K$.

Claim $\forall \delta,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)$ is infinite.
In fact, suppose that $\exists \delta>0,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)$ is finite. Put
$(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}, e^{*}=\min \left\{e_{1}, e_{2}, \ldots, e_{n}\right\}, 0<\frac{1}{n_{0}}<e^{*}-e_{0}$.
Then $0<\frac{1}{n_{0}}<\delta,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \frac{1}{n_{0}}\right)=\emptyset$. So $x \in K$, But $x \notin K$. This is a contradiction.

Since $\forall \delta>0,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)$ is infinite, we have $x \notin P$. But $x \in P$. This is a contradiction. Thus $P \subseteq K$.
(3) The proof is similar to (1).
(4) The proof is similar to (2).

Example 4.7. Consider Example 3.12, pick $e_{0}=\frac{1}{4}$, we have

$$
\begin{aligned}
& {\left[x_{1}\right]_{f}=\left[x_{2}\right]_{f}=\left[0, \frac{1}{4}\right) \cup\left[\frac{1}{4}, \frac{1}{2}\right),\left[x_{3}\right]_{f}=\left[\frac{1}{2}, 1\right),\left[x_{4}\right]_{f}=\left[\frac{3}{4}, 1\right),\left[x_{5}\right]_{f}=\left[0, \frac{1}{4}\right) .} \\
& \left(x_{1}\right)_{f}=\left(x_{2}\right)_{f}=\left[\frac{1}{2}, 1\right),\left(x_{3}\right)_{f}=\left[0, \frac{1}{4}\right) \cup\left[\frac{1}{4}, \frac{1}{2}\right),\left(x_{4}\right)_{f}=\left[0, \frac{1}{4}\right) \cup\left[\frac{1}{4}, \frac{3}{4}\right),\left(x_{5}\right)_{f}=\left(\frac{1}{4}, 1\right) .
\end{aligned}
$$

By Theorem 4.6,

$$
\begin{gathered}
\varlimsup_{e \rightarrow e_{0}^{+}} f(e)=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset\right\}=\left\{x_{1}, x_{2}\right\} ; \\
\varliminf_{e \rightarrow e_{0}^{+}}^{\lim } f(e)=\left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)=\emptyset\right\}=\left\{x_{1}, x_{2}\right\} ; \\
\varlimsup_{e \rightarrow e_{0}^{-}} f(e)=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{-}\left(e_{0}, \delta\right) \neq \emptyset\right\}=\left\{x_{1}, x_{2}, x_{5}\right\} ; \\
\varliminf_{e \rightarrow e_{0}^{-}}^{\lim } f(e)=\left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U^{-}\left(e_{0}, \delta\right)=\emptyset\right\}=\left\{x_{1}, x_{2}, x_{5}\right\} .
\end{gathered}
$$

Lemma 4.8. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) $\varlimsup_{e \rightarrow e_{0}^{+}} f(e)=\bigcap_{n=1}^{\infty} \bigcap_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcup_{\beta \in\left(e_{0}, e\right]} f(\beta)$.
(2) $\underset{e \rightarrow e_{0}^{+}}{\lim } f(e)=\bigcup_{n=1}^{\infty} \bigcup_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta)$.
(3) $\varlimsup_{e \rightarrow e_{0}^{-}} f(e)=\bigcap_{n=1}^{\infty} \bigcap_{e \in\left(e_{0}-\frac{1}{n}, e_{0}\right) \cap I} \bigcup_{\beta \in\left[e, e_{0}\right)} f(\beta)$.
(4) $\underset{e \rightarrow e_{0}^{-}}{\lim } f(e)=\bigcup_{n=1}^{\infty} \bigcup_{e \in\left(e_{0}-\frac{1}{n}, e_{0}\right) \cap I} \bigcap_{\beta \in\left[e, e_{0}\right)} f(\beta)$.

Proof. (1) Denote

$$
S=\varlimsup_{e \rightarrow e_{0}^{+}} f(e), \quad T=\bigcap_{n=1}^{\infty} \bigcap_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcup_{\beta \in\left(e_{0}, e\right]} f(\beta) .
$$

To prove $S=T$, it suffices to show that

$$
\begin{aligned}
& x \in S \Leftrightarrow \forall n \in N, \forall e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I, \exists \beta \in\left(e_{0}, e\right], x \in f(\beta) \\
& " \Rightarrow " . \text { Let } x \in S, \forall n \in N, \forall e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I . \text { Put } \delta=e-e_{0}
\end{aligned}
$$ Then $0<\delta<\frac{1}{n}$.

Since $x \in S$, by Theorem 4.6(1), we have $[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset$. Pick $\beta \in[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)$. Then $\beta \in[x]_{f_{I}}, \beta \in U^{+}\left(e_{0}, \delta\right)$.

This implies $x \in f(\beta), e_{0}<\beta<e_{0}+\delta=e$. Thus $\beta \in\left(e_{0}, e\right]$.
$" \Leftarrow " . \forall n \in N$, pick $e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I$.
By the condition, $\exists \beta \in\left(e_{0}, e\right], x \in f(\beta)$. Then $\beta \in U^{+}\left(e_{0}, \frac{1}{n}\right), \beta \in[x]_{f_{I}}$. Thus $\forall n \in N,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \frac{1}{n}\right) \neq \emptyset$.

By Theorem 4.6(1), $x \in S$.
(2) By (1) and Theorem 4.6(2),

$$
\begin{aligned}
& x \notin \underset{e \rightarrow e_{0}^{+}}{\lim } f(e) \\
& \Longleftrightarrow \forall n \in N,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \frac{1}{n}\right) \neq \emptyset \\
& \Longleftrightarrow \forall n \in N,\left\{e \in I-e_{0}: x \in U-f(e)\right\} \cap U^{+}\left(e_{0}, \frac{1}{n}\right) \neq \emptyset \\
& \Longleftrightarrow x \in \bigcap_{n=1}^{\infty} \bigcap_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcup_{\beta \in\left(e_{0}, e\right]}(U-f(\beta)) \\
& \Longleftrightarrow x \in U-\bigcup_{n=1}^{\infty} \bigcup_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta)
\end{aligned}
$$

$$
\Longleftrightarrow x \notin \bigcup_{n=1}^{\infty} \bigcup_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta) .
$$

(3) The proof is similar to (1).
(4) The proof is similar to (2).

Lemma 4.9. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) $\bigcap_{n=1}^{\infty} \bigcap_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcup_{\beta \in\left(e_{0}, e\right]} f(\beta)=\bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcup_{\beta \in\left(e_{0}, e\right]} f(\beta)$.
(2) $\bigcup_{n=1}^{\infty} \bigcup_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta)=\bigcup_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta)$.
(3) $\bigcap_{n=1}^{\infty} \bigcap_{e \in\left(e_{0}-\frac{1}{n}, e_{0}\right) \cap I} \bigcup_{\beta \in\left[e, e_{0}\right)} f(\beta)=\bigcap_{e \in\left(e_{0}-1, e_{0}\right) \cap I} \bigcup_{\beta \in\left[e, e_{0}\right)} f(\beta)$.
(4) $\bigcup_{n=1}^{\infty} \bigcup_{e \in\left(e_{0}-\frac{1}{n}, e_{0}\right) \cap I} \bigcap_{\beta \in\left[e, e_{0}\right)} f(\beta)=\bigcup_{e \in\left(e_{0}-1, e_{0}\right) \cap I} \bigcap_{\beta \in\left[e, e_{0}\right)} f(\beta)$.

Proof. (1) Put $E_{n}=\bigcap_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcup_{\beta \in\left(e_{0}, e\right]} f(\beta)$. Then $\left\{E_{n}\right\} \uparrow$. So $\bigcap_{n=1}^{\infty} E_{n}=E_{1}$.
Thus

$$
\bigcap_{n=1}^{\infty} \bigcap_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap \perp} \bigcup_{\beta \in\left(e_{0}, e\right]} f(\beta)=\bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcup_{\beta \in\left(e_{0}, e\right]} f(\beta) .
$$

(2) Put $F_{n}=\bigcup_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta)$. Then $\left\{F_{n}\right\} \downarrow$. So $\bigcup_{n=1}^{\infty} F_{n}=F_{1}$.

Thus

$$
\bigcup_{n=1}^{\infty} \bigcup_{e \in\left(e_{0}, e_{0}+\frac{1}{n}\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta)=\bigcup_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta) .
$$

(3) The proof is similar to (1).
(4) The proof is similar to (2).

Theorem 4.10. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) $\varlimsup_{e \rightarrow e_{0}^{+}} f(e)=\bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcup_{\beta \in\left(e_{0}, e\right]} f(\beta)$; If f_{I} increasing, then

$$
\varlimsup_{e \rightarrow e_{0}^{+}} f(e)=\bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} f(e) .
$$

(2) $\underset{e \rightarrow e_{0}^{+}}{\lim } f(e)=\bigcup_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta)$; If f_{I} decreasing, then

$$
\varliminf_{e \rightarrow e_{0}^{+}} f(e)=\bigcup_{e \in\left(e_{0}, e_{0}+1\right) \cap I} f(e) .
$$

(3) $\varlimsup_{e \rightarrow e_{0}^{-}} f(e)=\bigcap_{e \in\left(e_{0}-1, e_{0}\right) \cap I} \bigcup_{\beta \in\left[e, e_{0}\right)} f(\beta)$; If f_{I} decreasing, then

$$
\varlimsup_{e \rightarrow e_{0}^{-}} f(e)=\bigcap_{e \in\left(e_{0}-1, e_{0}\right) \cap I} f(e) .
$$

(4) $\underline{\lim }_{e \rightarrow e_{0}^{-}} f(e)=\bigcup_{e \in\left(e_{0}-1, e_{0}\right) \cap I} \bigcap_{\beta \in\left[e, e_{0}\right)} f(\beta)$; If f_{I} increasing, then

$$
\varliminf_{e \rightarrow e_{0}^{-}} f(e)=\bigcup_{e \in\left(e_{0}-1, e_{0}\right) \cap I} f(e) .
$$

Proof. This holds by Lemmas 4.8 and 4.9.
Definition 4.11. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) If $\underset{e \rightarrow e_{0}^{+}}{\lim } f(e)=\varlimsup_{e \rightarrow e_{0}^{+}} f(e)=S$, then f_{I} is called to has the limit S as $e \rightarrow e_{0}^{+}$(or has the right-limit S as $e \rightarrow e_{0}$), which is denoted by $\lim _{e \rightarrow e_{0}^{+}} f(e)$, i.e., $\lim _{e \rightarrow e_{0}^{+}} f(e)=S$;

If $\varliminf_{e \rightarrow e_{0}^{+}}^{\lim } f(e) \neq \varlimsup_{e \rightarrow e_{0}^{+}} f(e)$, then f_{I} is called to has no the limit as $e \rightarrow e_{0}^{+}$ (or has no the right-limit as $e \rightarrow e_{0}$).
(2) If $\underset{e \rightarrow e_{0}^{-}}{\lim } f(e)=\varlimsup_{e \rightarrow e_{0}^{-}} f(e)=S$, then f_{I} is called to has the limit S as $e \rightarrow e_{0}^{-}$(or has the left-limit S as $e \rightarrow e_{0}$), which is denoted by $\lim _{e \rightarrow e_{0}^{-}} f(e)$, i.e., $\lim _{e \rightarrow e_{0}^{-}} f(e)=S$;

If $\underset{e \rightarrow e_{0}^{+}}{\varliminf_{e}} f(e) \neq \varlimsup_{e \rightarrow e_{0}^{+}} f(e)$, then f_{I} is called to has no the limit as $e \rightarrow e_{0}^{+}$ (or has no the left-limit as $e \rightarrow e_{0}$).
(3) If $\lim _{e \rightarrow e_{0}^{-}} f(e)=\lim _{e \rightarrow e_{0}^{+}} f(e)=S$, then f_{I} is called to has the limit S as $e \rightarrow e_{0}$, which is denoted by $\lim _{e \rightarrow e_{0}} f(e)$, i.e., $\lim _{e \rightarrow e_{0}} f(e)=S$;

If $\left.\lim _{e \rightarrow e_{0}^{-}} f(e) \neq \lim _{e \rightarrow e_{0}^{+}} f(e)\right)$, then f_{I} is called to has no the limit as $e \rightarrow e_{0}$.

Definition 4.12. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) If $\varlimsup_{e \rightarrow e_{0}^{-}} f(e)=\varlimsup_{e \rightarrow e_{0}^{+}} f(e)=S$, then f_{I} is called to has the over-limit S as $e \rightarrow e_{0}$, which is denoted by $\varlimsup_{e \rightarrow e_{0}} f(e)$, i.e., $\varlimsup_{e \rightarrow e_{0}} f(e)=S$;

If $\varlimsup_{e \rightarrow e_{0}^{-}} f(e) \neq \varlimsup_{e \rightarrow e_{0}^{+}} f(e)$, then f_{I} is called to has no the over-limit as $e \rightarrow e_{0}^{+}$.
(2) If $\underset{e \rightarrow e_{0}^{-}}{\lim } f(e)=\varliminf_{e \rightarrow e_{0}^{+}}^{\lim } f(e)=S$, then f_{I} is called to has the under-limit S as $e \rightarrow e_{0}$, which is denoted by $\varliminf_{e \rightarrow e_{0}} f(e)$, i.e., $\varliminf_{e \rightarrow e_{0}} f(e)=S$;

If $\varliminf_{e \rightarrow e_{0}^{-}}^{\lim } f(e) \neq \varliminf_{e \rightarrow e_{0}^{+}}^{\lim } f(e)$, then f_{I} is called to has no the under-limit as $e \rightarrow e_{0}$.
 $e \rightarrow e_{0}$, which is denoted by $\lim _{e \rightarrow e_{0}} f(e)$, i.e., $\lim _{e \rightarrow e_{0}} f(e)=S$;

If ${\underset{e l}{e \rightarrow e_{0}}} f(e) \neq \varlimsup_{e \rightarrow e_{0}} f(e)$, then f_{I} is called to has no the limit as $e \rightarrow e_{0}$.
Remark 4.13. The limit in Definition 4.11(3) and the limit in Definition 4.12(3) is consistent.

Example 4.14. Let X_{I} be a constant it-soft set over U where $X \in 2^{U}$. Then for $e_{0} \in I, \lim _{e \rightarrow e_{0}} X(e)=X$.

Obviously, $[x]_{X_{I}}=\left\{\begin{array}{ll}I-\left\{e_{0}\right\}, & x \in X \\ \emptyset, & x \notin X\end{array},(x)_{X_{I}}= \begin{cases}I-\left\{e_{0}\right\}, & x \notin X \\ \emptyset, & x \in X\end{cases}\right.$
By Theorem 4.6,

$$
\begin{aligned}
& \varlimsup_{e \rightarrow e_{0}^{+}} X(e)=\left\{x \in U: \forall \delta>0,[x]_{\widetilde{A}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset\right\}, \\
& \varliminf_{e \rightarrow e_{0}^{+}} X(e)=\left\{x \in U: \exists \delta>0,(x)_{\widetilde{A}} \cap U^{+}\left(e_{0}, \delta\right)=\emptyset\right\} .
\end{aligned}
$$

Similarly, $\varlimsup_{e \rightarrow e_{0}^{-}} X(e)=X, \underset{e \rightarrow e_{0}^{-}}{\lim } X(e)=X$.
Thus $\lim _{e \rightarrow e_{0}} X(e)=X$.
Other types of limits of $i t$-soft sets are proposed by the following definition and these limits can be discussed in a similar way.

Definition 4.15. Let $(f,(-\infty,+\infty)$) be an it-soft set over U. Define

$$
\begin{aligned}
& \text { (1) } \varlimsup_{e \rightarrow+\infty} f(e)=\varlimsup_{e \rightarrow 0^{+}} f\left(\frac{1}{e}\right), \quad \varlimsup_{e \rightarrow-\infty} f(e)=\varlimsup_{e \rightarrow 0^{-}} f\left(\frac{1}{e}\right) \text {, } \\
& \varlimsup_{e \rightarrow \infty} f(e)=\varlimsup_{e \rightarrow 0} f\left(\frac{1}{e}\right) . \\
& \text { (2) } \underline{\lim }_{e \rightarrow+\infty} f(e)=\underline{\lim }_{e \rightarrow 0^{+}} f\left(\frac{1}{e}\right), \quad \underline{\lim }_{e \rightarrow-\infty} f(e)=\underline{\lim }_{e \rightarrow 0^{-}} f\left(\frac{1}{e}\right) \text {, } \\
& \varliminf_{e \rightarrow \infty} f(e)=\varliminf_{e \rightarrow 0} f\left(\frac{1}{e}\right) . \\
& \text { (3) } \quad \lim _{e \rightarrow+\infty} f(e)=\lim _{e \rightarrow 0^{+}} f\left(\frac{1}{e}\right), \quad \lim _{e \rightarrow-\infty} f(e)=\lim _{e \rightarrow 0^{-}} f\left(\frac{1}{e}\right) \text {, } \\
& \lim _{e \rightarrow \infty} f(e)=\lim _{e \rightarrow 0} f\left(\frac{1}{e}\right) .
\end{aligned}
$$

4.3. Properties of limits of $i t$-soft sets

Proposition 4.16. For the over-right limit, the following properties hold:
(1) If $f(e) \subseteq g(e)\left(\forall e \in\left(e_{0}, e_{0}+\delta_{0}\right)\right)$, then $\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \subseteq \varlimsup_{e \rightarrow e_{0}^{+}} g(e)$.
(2) $\varlimsup_{e \rightarrow e_{0}^{+}}(f(e) \cup g(e))=\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \cup \varlimsup_{e \rightarrow e_{0}^{+}} g(e)$.

(4) If $\varlimsup_{e \rightarrow e_{0}^{+}} f(e)=\triangle \subset B$, then $\exists \delta>0, \forall e \in\left(e_{0}, e_{0}+\delta\right), f(e) \subset B$.
(5) 1) $\varlimsup_{e \rightarrow e_{0}^{+}}(f(e) \times g(e)) \subseteq \varlimsup_{e \rightarrow e_{0}^{+}} f(e) \times \varlimsup_{e \rightarrow e_{0}^{+}} g(e)$;
2) $\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \times \varlimsup_{e \rightarrow e_{0}^{+}} g(e)=\bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcup_{\beta, \gamma \in\left(e_{0}, e\right]}(f(\beta) \times g(\gamma))$.

Proof. (1) Denote

$$
[x]_{f_{I}}=\left\{e \in I-\left\{e_{0}\right\}: x \in f(e)\right\},[x]_{g_{I}}=\left\{e \in I-\left\{e_{0}\right\}: x \in g(e)\right\} .
$$

$\forall x \in \varlimsup_{e \rightarrow e_{0}^{+}} f(e)$, by Theorem 4.6(1), $\forall \delta>0,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset$.
Pick $e_{\delta} \in[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)$. Then $x \in f\left(e_{\delta}\right), e_{\delta} \in U^{+}\left(e_{0}, \delta\right)$.

1) If $\delta \leq \delta_{0}$, then $e_{\delta} \in U^{+}\left(e_{0}, \delta_{0}\right)$. By the condition, $f\left(e_{\delta}\right) \subseteq g\left(e_{\delta}\right)$.

Then $x \in g\left(e_{\delta}\right)$. This implies $e_{\delta} \in(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)$. So $(X)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset$.
2) If $\delta>\delta_{0}$, then $U^{+}\left(e_{0}, \delta_{0}\right) \subseteq U^{+}\left(e_{0}, \delta\right)$. So $(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta_{0}\right) \subseteq(X)_{f_{I}} \cap$ $U^{+}\left(e_{0}, \delta\right)$. Since $e_{\delta_{0}} \in(X)_{f_{I}} \cap U^{+}\left(e_{0}, \delta_{0}\right)$, we have $(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset$.

By 1) and 2), $\forall \delta>0,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset . \quad$ By Theorem 4.6(1), $x \in \varlimsup_{e \rightarrow e_{0}^{+}} g(e)$.

Thus

$$
\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \subseteq \varlimsup_{e \rightarrow e_{0}^{+}} g(e) .
$$

(2) " \supseteq ". This holds by (1).

$$
\begin{aligned}
& " \subseteq " \text {. Suppose } \varlimsup_{e \rightarrow e_{0}^{+}}(f(e) \cup g(e)) \nsubseteq \varlimsup_{e \rightarrow e_{0}^{+}} f(e) \cup \varlimsup_{e \rightarrow e_{0}^{+}} g(e) \text {. Then } \\
& \varlimsup_{e \rightarrow e_{0}^{+}}(f(e) \cup g(e))-\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \cup \varlimsup_{e \rightarrow e_{0}^{+}} g(e) \neq \emptyset .
\end{aligned}
$$

Pick $x \in \varlimsup_{e \rightarrow e_{0}^{+}}(f(e) \cup g(e))-\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \cup \varlimsup_{e \rightarrow e_{0}^{+}} g(e)$. We have $x \in \varlimsup_{e \rightarrow e_{0}^{+}}(f(e) \cup g(e)), \quad x \notin \varlimsup_{e \rightarrow e_{0}^{+}} f(e)$ and $x \notin \varlimsup_{e \rightarrow e_{0}^{+}} g(e)$.
By Theorem 4.6, $\exists \delta_{1}, \delta_{2}>0,[x]_{f} \cap U^{+}\left(e_{0}, \delta_{1}\right)=\emptyset, \quad[x]_{g} \cap U^{+}\left(e_{0}, \delta_{2}\right)=\emptyset$.
Pick $\delta_{3}=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then $[x]_{f} \cap U^{+}\left(e_{0}, \delta_{3}\right)=\emptyset$ and $[x]_{g} \cap U^{+}\left(e_{0}, \delta_{3}\right)=\emptyset$. It follows
$\left([x]_{f} \cup[x]_{g_{I}}\right) \cap U^{+}\left(e_{0}, \delta_{3}\right)=\left([x]_{f} \cap U^{+}\left(e_{0}, \delta_{3}\right)\right) \cup\left([x]_{g} \cap U^{+}\left(e_{0}, \delta_{3}\right)\right)=\emptyset$.
By Remark 4.4, $[x]_{f \cup g} \cap U^{+}\left(e_{0}, \delta_{3}\right)=\emptyset$.
Thus
$x \notin \varlimsup_{e \rightarrow e_{0}^{+}}(f \cup g)(e)=\varlimsup_{e \rightarrow e_{0}^{+}}(f(e) \cup g(e))$. This is a contradiction.
(3) $\forall x \in \varlimsup_{e \rightarrow e_{0}^{+}}(U-f(e))$. Then $x \in \varlimsup_{e \rightarrow e_{0}^{+}} f^{c}(e)$. By Theorem 4.6, $\forall \delta>0$, $[x]_{f^{c}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset$. By Remark 4.4, $(x)_{f} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset$. Thus

$$
x \in U-\underset{e \rightarrow e_{0}^{+}}{\lim _{x}} f(e) .
$$

Conversely, the proof is similar.
(4) Suppose that $\forall \delta>0, \exists e \in\left(e_{0}, e_{0}+\delta\right), f(e) \nsubseteq B$ or $f(e)=B$.

1) If $f(e) \nsubseteq B$, then $f(e)-B \neq \emptyset$. Pick $x \in f(e)-B$.

We have

$$
x \in f(e), x \notin B, e \in[x]_{f_{I}} .
$$

Since $e \in\left(e_{0}, e_{0}+\delta\right)$. Then $[x]_{f_{I}} \cap\left(e_{0}, e_{0}+\delta\right) \neq \emptyset$. So $x \in \varlimsup_{e \rightarrow e_{0}^{+}} f(e)$.

Thus $x \in B$. This is a contradiction.
2) If $f(e)=B$, then $\triangle-B=\emptyset$. So $\exists x \in B, x \notin \triangle$.

Since $x \in f(e)$, we have $x \in[x]_{f_{I}},[x]_{f_{I}} \cap\left(e_{0}, e_{0}+\delta\right) \neq \emptyset$. So

$$
x \in \varlimsup_{e \rightarrow e_{0}^{+}} f(e)=\triangle .
$$

This is a contradiction.
(5) 1) Put

$$
H_{f \times g}(e)=\bigcup_{\beta \in\left(e_{0}, e\right]}(f(\beta) \times g(\beta))
$$

By Theorem 4.10(1),

$$
\begin{gathered}
\varlimsup_{e \rightarrow e_{0}^{+}}(f(e) \times g(e))=\bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} H_{f \times g}(e) . \\
\forall(x, y) \in \varlimsup_{e \rightarrow e_{0}^{+}}(f(e) \times g(e)) \text {, we have }(x, y) \in \bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} H_{f \times g}(e) \text {. Since } \\
H_{f \times g}(e)=\bigcup_{\beta \in\left(e_{0}, e\right]}(f(\beta) \times g(\beta)),
\end{gathered}
$$

we have $\forall e \in\left(e_{0}, e_{0}+1\right) \cap I, \exists \beta_{e} \in\left(e_{0}, e\right],(x, y) \in f\left(\beta_{e}\right) \times g\left(\beta_{e}\right)$. It follows $x \in f\left(\beta_{e}\right), y \in g\left(\beta_{e}\right)$. Then $x \in H_{f}(e)$ and $y \in H_{g}(e)$. So

$$
x \in \bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} H_{f}(e)=\varlimsup_{e \rightarrow e_{0}^{+}} f(e), \quad y \in \bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} H_{g}(e)=\varlimsup_{e \rightarrow e_{0}^{+}} g(e) .
$$

Thus $(x, y) \in \varlimsup_{e \rightarrow e_{0}^{+}} f(e) \times \varlimsup_{e \rightarrow e_{0}^{+}} g(e)$.
Thus

$$
\varlimsup_{e \rightarrow e_{0}^{+}}(f(e) \times g(e)) \subseteq \varlimsup_{e \rightarrow e_{0}^{+}} f(e) \times \varlimsup_{e \rightarrow e_{0}^{+}} g(e) .
$$

2) $\forall(x, y) \in \varlimsup_{e \rightarrow e_{0}^{+}} f(e) \times \varlimsup_{e \rightarrow e_{0}^{+}} g(e)$, we have

$$
x \in \varlimsup_{e \rightarrow e_{0}^{+}} f(e)=\bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcup_{\beta \in\left(e_{0}, e\right]} f(\beta), y \in \varlimsup_{e \rightarrow e_{0}^{+}} g(e)=\bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcup_{\beta \in\left(e_{0}, e\right]} g(\beta) .
$$

Then $\forall e \in\left(e_{0}, e_{0}+1\right) \cap I, \exists \beta_{e}, \gamma_{e} \in\left(e_{0}, e\right], x \in f\left(\beta_{e}\right), y \in g\left(\gamma_{e}\right)$. Then $(x, y) \in f\left(\beta_{e}\right) \times g\left(\gamma_{e}\right)$. So

$$
(x, y) \in \bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcup_{\beta, \gamma \in\left(e_{0}, e\right]}(f(\beta) \times g(\gamma)) .
$$

Conversely, the proof is similar.
Thus

$$
\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \times \varlimsup_{e \rightarrow e_{0}^{+}} g(e)=\bigcap_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcup_{\beta, \gamma \in\left(e_{0}, e\right]}(f(\beta) \times g(\gamma)) .
$$

Proposition 4.17. For the under-right limit, the following properties hold.
(1) If $f(e) \subseteq g(e)\left(\forall e \in\left(e_{0}, e_{0}+\delta_{0}\right)\right)$, then ${\underset{e}{\lim }}^{\operatorname{lof}} f(e) \subseteq \varliminf_{e \rightarrow e_{0}^{+}}^{\lim _{0}} g(e)$.
(2) $\underset{e \rightarrow e_{0}^{+}}{\lim }(f(e) \cap g(e))=\underline{e l m}_{e \rightarrow e_{0}^{+}} f(e) \cap \underset{e \rightarrow e_{0}^{+}}{\underline{l_{m}}} g(e)$.
(3) $\varliminf_{e \rightarrow e_{0}^{+}}^{\lim ^{\prime}}(U-f(e))=U-\varlimsup_{e \rightarrow e_{0}^{+}} f(e)$.
(4) If $\underset{e \rightarrow e_{0}^{+}}{\lim } f(e)=\triangle \supset A$, then $\exists \delta>0, \forall e \in\left(e_{0}, e_{0}+\delta\right), f(e) \supset A$.
(5) $\underline{e l i m}_{e \rightarrow e_{0}^{+}}^{\operatorname{lo}}(f(e) \times g(e))=\varliminf_{e \rightarrow e_{0}^{+}}^{\lim _{e \rightarrow e_{0}^{+}}} f(e) \times \varliminf_{e}^{\lim } g(e)$.

Proof. (1) The proof is similar to Proposition 4.16(1).
(2) " \subseteq ". This holds by (1).
" \supseteq ". Suppose $\underline{\lim }_{e \rightarrow e_{0}^{+}} f(e) \cap{\underline{e \rightarrow e_{0}^{+}}}_{\lim } g(e) \nsubseteq \underset{e \rightarrow e_{0}^{+}}{\lim }(f(e) \cap g(e))$. Then $\underline{e l m}_{e \rightarrow e_{0}^{+}}^{\lim } f(e) \cap$
$\varliminf_{e \rightarrow e_{0}^{+}}^{\lim } g(e)-\underset{e \rightarrow e_{0}^{+}}{\lim }(f(e) \cap g(e)) \neq \emptyset$. Pick $x \in \underset{e \rightarrow e_{0}^{+}}{\lim } f(e) \cap \underset{e \rightarrow e_{0}^{+}}{\underline{\lim }} g(e)-\underset{e \rightarrow e_{0}^{+}}{\lim }(f(e) \cap$ $g(e))$. We have

$$
x \in \varliminf_{e \rightarrow e_{0}^{+}}^{\lim } f(e), x \in \varliminf_{e \rightarrow e_{0}^{+}}^{\lim } g(e) \text { and } x \notin \varliminf_{e \rightarrow e_{0}^{+}}^{\lim }(f(e) \cap g(e)) .
$$

By Theorem 4.6,

$$
\exists \delta_{1}, \delta_{2}>0,(x)_{f} \cap U^{+}\left(e_{0}, \delta_{1}\right)=\emptyset,(x)_{g} \cap U^{+}\left(e_{0}, \delta_{2}\right)=\emptyset .
$$

Pick $\delta_{3}=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then $(x)_{f} \cap U^{+}\left(e_{0}, \delta_{3}\right)=\emptyset,(x)_{g} \cap U^{+}\left(e_{0}, \delta_{3}\right)=\emptyset$. It follows

$$
\left((x)_{f} \cup(x)_{g_{I}}\right) \cap U^{+}\left(e_{0}, \delta_{3}\right)=\left((x)_{f} \cap U^{+}\left(e_{0}, \delta_{3}\right)\right) \cup\left((x)_{g} \cap U^{+}\left(e_{0}, \delta_{3}\right)\right)=\emptyset .
$$

By Remark 4.4, $(x)_{f \cap g} \cap U^{+}\left(e_{0}, \delta_{3}\right)=\emptyset$.
Thus
$x \in \underset{e \rightarrow e_{0}^{+}}{\varliminf_{i m}}(f \cap g)(e)=\varliminf_{e \rightarrow e_{0}^{+}}^{\lim }(f(e) \cap g(e))$. This is a contradiction.
(3) $\forall x \in \underset{e \rightarrow e_{0}^{+}}{\lim }(U-f(e))$. Then $x \in \underset{e \rightarrow e_{0}^{+}}{\lim ^{c}(e) \text {. By Theorem 4.6, } \exists \delta>0 \text {, }}$
$(x)_{f^{c}} \cap U^{+}\left(e_{0}, \delta\right)=\emptyset$. By Remark 4.4, $[x]_{f} \cap U^{+}\left(e_{0}, \delta\right)=\emptyset$.
Thus $x \in U-\varlimsup_{e \rightarrow e_{0}^{+}} f(e)$.
Conversely, the proof is similar.
(4) By Proposition 4.16(3),

$$
\varlimsup_{e \rightarrow e_{0}^{+}}(U-f(e))=U-\varliminf_{e \rightarrow e_{0}^{+}} f(e) .
$$

Since $\underset{e \rightarrow e_{0}^{+}}{\lim ^{\prime}} f(e)=\triangle \supset A$, we have $\varlimsup_{e \rightarrow e_{0}^{+}}(U-f(e)) \subset U-A$.
By Proposition 4.16(4), $\exists \delta>0, \forall e \in\left(e_{0}, e_{0}+\delta\right), U-f(e) \subset U-A$.
Thus

$$
\exists \delta>0, \forall e \in\left(e_{0}, e_{0}+\delta\right), f(e) \supset A
$$

(5) $\forall(x, y) \in \underset{e \rightarrow e_{0}^{+}}{\lim }(f(e) \times g(e))$, by Theorem 4.10(2),

$$
(x, y) \in \bigcup_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]}(f(\beta) \times g(\beta)) .
$$

Then $\exists e \in\left(e_{0}, e_{0}+1\right) \cap I, \forall \beta \in\left(e_{0}, e\right],(x, y) \in f(\beta) \times g(\beta)$. It follows $x \in f(\beta), y \in g(\beta)$. Then

$$
x \in \bigcup_{e \in\left(e_{0}, e_{0}+1\right) \cap} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta), y \in \bigcup_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcap_{\beta \in\left(e_{0}, e\right]} g(\beta) .
$$

By Theorem 4.10(2), $x \in \underset{e \rightarrow e_{0}^{+}}{\lim } f(e), y \in \underset{e \rightarrow e_{0}^{+}}{\lim ^{\prime}} g(e)$. Thus $(x, y) \in \varliminf_{e \rightarrow e_{0}^{+}}^{\lim } f(e) \times$ $\varliminf_{e \rightarrow e_{0}^{+}} g(e)$.
$\forall(x, y) \in \varliminf_{e \rightarrow e_{0}^{+}}^{\lim } f(e) \times \varliminf_{e \rightarrow e_{0}^{+}}^{\lim } g(e)$, By Theorem 4.10(2),
$x \in \varliminf_{e \rightarrow e_{0}^{+}}^{\lim ^{+}} f(e)=\bigcup_{e \in\left(e_{0}, e_{0}+1\right) \cap} \bigcap_{\beta \in\left(e_{0}, e\right]} f(\beta), y \in \underset{e \rightarrow e_{0}^{+}}{\underline{\lim }} g(e)=\bigcup_{e \in\left(e_{0}, e_{0}+1\right) \cap} \bigcap_{\beta \in\left(e_{0}, e\right]} g(\beta)$.

Then $\exists e_{1}, e_{2} \in\left(e_{0}, e_{0}+1\right) \cap I, \forall \beta \in\left(e_{0}, e_{1}\right], \forall \gamma \in\left(e_{0}, e_{2}\right], x \in f(\beta)$, $y \in g(\gamma)$.

Put $e^{*}=\min \left\{e_{1}, e_{2}\right\}$. Then $e^{*} \in\left(e_{0}, e_{0}+1\right) \cap I,\left(e_{0}, e^{*}\right] \subseteq\left(e_{0}, e_{1}\right] \cap\left(e_{0}, e_{2}\right]$. Then $\forall \beta \in\left(e_{0}, e^{*}\right], x \in f(\beta), y \in g(\beta)$. It follows $(x, y) \in f(\beta) \times g(\beta)$. So

$$
(x, y) \in \bigcup_{e \in\left(e_{0}, e_{0}+1\right) \cap I} \bigcap_{\beta, \gamma \in\left(e_{0}, e\right]}(f(\beta) \times g(\beta))
$$

By Theorem $4.10(2),(x, y) \in \underset{e \rightarrow e_{0}^{+}}{\lim }(f(e) \times g(e))$.
Thus

$$
\underline{\lim _{e \rightarrow e_{0}^{+}}}(f(e) \times g(e))=\underline{\lim }_{e \rightarrow e_{0}^{+}} f(e) \times \underline{\lim }_{e \rightarrow e_{0}^{+}} g(e)
$$

Proposition 4.18. For the over-left limit, the following properties hold:
(1) If $f(e) \subseteq g(e)\left(\forall e \in\left(e_{0}-\delta_{0}, e_{0}\right)\right)$, then $\varlimsup_{e \rightarrow e_{0}^{-}} f(e) \subseteq \varlimsup_{e \rightarrow e_{0}^{-}} g(e)$.
(2) $\varlimsup_{e \rightarrow e_{0}^{-}}(f(e) \cup g(e))=\varlimsup_{e \rightarrow e_{0}^{-}} f(e) \cup \varlimsup_{e \rightarrow e_{0}^{-}} g(e)$.
(3) $\varlimsup_{e \rightarrow e_{0}^{-}}(U-f(e))=U-\varliminf_{e \rightarrow e_{0}^{-}} f(e)$.
(4) If $\varlimsup_{e \rightarrow e_{0}^{-}} f(e)=\triangle \subset B$, then $\exists \delta>0, \forall e \in\left(e_{0}-\delta, e_{0}\right), f(e) \subset B$.
(5) 1) $\varlimsup_{e \rightarrow e_{0}^{-}}(f(e) \times g(e)) \subseteq \varlimsup_{e \rightarrow e_{0}^{-}} f(e) \times \varlimsup_{e \rightarrow e_{0}^{-}} g(e)$.
2) $\varlimsup_{e \rightarrow e_{0}^{-}} f(e) \times \varlimsup_{e \rightarrow e_{0}^{-}} g(e)=\bigcap_{e \in\left(e_{0}-1, e_{0}\right) \cap I} \bigcup_{\beta, \gamma \in\left[e, e_{0}\right)}(f(\beta) \times g(\gamma))$.

Proof. The proof is similar to Proposition 4.16.
Proposition 4.19. For the under-left limit, the following properties hold:
(1) If $f(e) \subseteq g(e)\left(\forall e \in\left(e_{0}-\delta_{0}, e_{0}\right)\right)$, then $\underset{e \rightarrow e_{0}^{-}}{\underline{\lim }} f(e) \subseteq \underset{e \rightarrow e_{0}^{-}}{\lim } g(e)$.
(2) $\underset{e \rightarrow e_{0}^{-}}{\lim }(f(e) \cap g(e))=\underline{\lim }_{e \rightarrow e_{0}^{-}} f(e) \cap \underset{e \rightarrow e_{0}^{-}}{\lim } g(e)$.

(4) If $\underset{e \rightarrow e_{0}^{-}}{\lim } f(e)=\triangle \supset A$, then $\exists \delta>0, \forall e \in\left(e_{0}-\delta, e_{0}\right), f(e) \supset A$.
(5) $\underset{e \rightarrow e_{0}^{-}}{\underline{\lim }}(f(e) \times g(e))=\underline{e i m}_{e \rightarrow e_{0}^{-}}^{\operatorname{lo}} f(e) \times \underset{e \rightarrow e_{0}^{-}}{\underline{\lim }} g(e)$.

Proof. The proof is similar to Proposition 4.17.
Corollary 4.20. Let f_{I} be an it-soft set over U and $A \in 2^{U}$. For $e_{0} \in I$, (1) If $f(e) \subseteq A$ or $f(e) \subset A\left(\forall e \in\left(e_{0}, e_{0}+\delta_{0}\right)\right)$, then

$$
\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \subseteq A, \quad \underset{e \rightarrow e_{0}^{+}}{\lim } f(e) \subseteq A .
$$

(2) If $f(e) \subseteq A$ or $f(e) \subset A\left(\forall e \in\left(e_{0}-\delta_{0}, e_{0}\right)\right)$, then

$$
\varlimsup_{e \rightarrow e_{0}^{-}} f(e) \subseteq A, \underline{\lim }_{e \rightarrow e_{0}^{-}} f(e) \subseteq A .
$$

Proof. This holds by Propositions 4.16, 4.17, 4.18, 4.19.
Corollary 4.21. Let f_{I} be an it-soft set over U and $A \in 2^{U}$. For $e_{0} \in I$,
(1) If $f(e) \supseteq A$ or $f(e) \supset A\left(\forall e \in\left(e_{0}, e_{0}+\delta_{0}\right)\right)$, then

$$
\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \supseteq A, \underset{e \rightarrow e_{0}^{+}}{\lim } f(e) \supseteq A .
$$

(2) If $f(e) \supseteq A$ or $f(e) \supset A\left(\forall e \in\left(e_{0}-\delta_{0}, e_{0}\right)\right)$, then

$$
\varlimsup_{e \rightarrow e_{0}^{-}} f(e) \supseteq A, \quad \underset{e \rightarrow e_{0}^{-}}{\lim } f(e) \supseteq A .
$$

Proof. This holds by Propositions 4.16, 4.17, 4.18, 4.19.
Theorem 4.22. For the over limit, the following properties hold:
(1) If $f(e) \subseteq g(e)\left(\forall e \in U^{0}\left(e_{0}, \delta_{0}\right)\right)$, then $\lim _{e \rightarrow e_{0}} f(e) \subseteq \lim _{e \rightarrow e_{0}} g(e)$.
(2) $\varlimsup_{e \rightarrow e_{0}}(f(e) \cup g(e))=\varlimsup_{e \rightarrow e_{0}} f(e) \cup \varlimsup_{e \rightarrow e_{0}} g(e)$.
(3) $\varlimsup_{e \rightarrow e_{0}}(U-f(e))=U-\varliminf_{e \rightarrow e_{0}} f(e)$.
(4) If $\varlimsup_{e \rightarrow e_{0}} f(e)=\triangle \subset B$, then $\exists \delta>0, \forall e \in U^{0}\left(e_{0}, \delta\right), f(e) \subset B$.
(5) $\varlimsup_{e \rightarrow e_{0}}(f(e) \times g(e)) \subseteq \varlimsup_{e \rightarrow e_{0}} f(e) \times \varlimsup_{e \rightarrow e_{0}} g(e)$.

Proof. This holds by Propositions 4.16 and 4.18.
Theorem 4.23. For the under limit, the following properties hold:
(1) If $f(e) \subseteq g(e)\left(\forall e \in U^{0}\left(e_{0}, \delta_{0}\right)\right)$, then $\varliminf_{e \rightarrow e_{0}} f(e) \subseteq \varliminf_{e \rightarrow e_{0}} g(e)$.
(2) $\underline{\varliminf}_{e \rightarrow e_{0}}(f(e) \cap g(e))=\underline{\lim }_{e \rightarrow e_{0}} f(e) \cap \underline{\underline{l i m}}_{e \rightarrow e_{0}} g(e)$.
(3) $\varliminf_{e \rightarrow e_{0}}(U-f(e))=U-\varlimsup_{e \rightarrow e_{0}} f(e)$.
(4) If $\underline{\lim }_{e \rightarrow e_{0}} f(e)=\triangle \supset A$, then $\exists \delta>0, \forall e \in U^{0}\left(e_{0}, \delta\right), f(e) \supset A$.
(5) $\varliminf_{e \rightarrow e_{0}}(f(e) \times g(e))=\varliminf_{e \rightarrow e_{0}} f(e) \times \varliminf_{e \rightarrow e_{0}} g(e)$.

Proof. This holds by Propositions 4.17 and 4.19.
Lemma 4.24. Let f_{I} be an it-soft set over U. For $e_{0} \in I$, denote

$$
\begin{aligned}
& W=\left\{x \in U: \forall \delta>0, \quad[x]_{f_{I}} \cap U\left(e_{0}, \delta\right) \neq \emptyset\right\}, \\
& S=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset\right\}, \\
& T=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{-}\left(e_{0}, \delta\right) \neq \emptyset\right\} .
\end{aligned}
$$

Then

$$
W=S \cup T .
$$

Proof. Suppose $W \nsubseteq S \cup T$. Then $W-S \cup T \neq \emptyset$.
Pick $x \in W-S \cup T$. Then $x \notin S, x \notin T$. So $\exists \delta_{1}, \delta_{2}>0$,

$$
[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta_{1}\right)=\emptyset,[x]_{f_{I}} \cap U^{-}\left(e_{0}, \delta_{2}\right)=\emptyset .
$$

Put $\delta^{*}=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then $\delta^{*}>0,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta^{*}\right)=\emptyset,[x]_{f_{I}} \cap$ $U^{-}\left(e_{0}, \delta^{*}\right)=\emptyset$. It follows $[x]_{f_{I}} \cap U\left(e_{0}, \delta^{*}\right)=\emptyset$. Then $x \notin W$. This is a contradiction.

Thus $W \subseteq S \cup T$.
On the other hand, suppose $S \cup T \nsubseteq W$, we have $S \cup T-W \neq \emptyset$.
Pick $x \in S \cup T-W$. Then $x \notin W$. So $\exists \delta^{*}>0,[x]_{f_{I}} \cap U\left(e_{0}, \delta^{*}\right)=\emptyset$. This implies $[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta^{*}\right)=\emptyset,[x]_{f_{I}} \cap U^{-}\left(e_{0}, \delta^{*}\right)=\emptyset$. Then $x \notin S, x \notin T$. So $x \notin S \cup T$. This is a contradiction.

Thus $S \cup T \subseteq W$.
Hence $W=S \cup T \nsubseteq W$.

Theorem 4.25. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) $\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U\left(e_{0}, \delta\right)\right.$ is infinite $\}$
$=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U\left(e_{0}, \delta\right) \neq \emptyset\right\}$
$=\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \cup \varlimsup_{e \rightarrow e_{0}^{-}} f(e)$.
(2) $\left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U\left(e_{0}, \delta\right)\right.$ is finite $\}$
$=\left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)=\emptyset\right\}$
$=\varliminf_{e \rightarrow e_{0}^{+}}^{\lim } f(e) \cap \varliminf_{e \rightarrow e_{0}^{-}}^{\lim } f(e)$.

Proof. (1) Similar to the proof of Theorem 4.6(1), we have

$$
\begin{aligned}
& \left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \neq \emptyset\right\} \\
= & \left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \text { is infinite }\right\} .
\end{aligned}
$$

By Lemma 4.24,

$$
\begin{aligned}
& \left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U\left(e_{0}, \delta\right) \neq \emptyset\right\} \\
& =\varlimsup_{e \rightarrow e_{0}^{+}} f(e) \cup{\underset{e x}{\lim _{0}^{-}}}^{\operatorname{l}_{I}(e) .}
\end{aligned}
$$

(2) Similar to the proof of Theorem 4.6(2), we have

$$
\begin{aligned}
& \left\{x \in U: \exists \delta>0,(x)_{\left.f_{I} \cap U^{+}\left(e_{0}, \delta\right)=\emptyset\right\}}\right. \\
= & \left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right) \text { is finite }\right\} .
\end{aligned}
$$

By Proposition 4.16(3), $\varliminf_{e \rightarrow e_{0}^{+}}^{\lim } f(e)=U-\varlimsup_{e \rightarrow e_{0}^{+}}(U-f(e))$.
By Proposition 4.18(3), $\varliminf_{e \rightarrow e_{0}^{-}}^{\lim } f(e)=U-\varlimsup_{e \rightarrow e_{0}^{-}}(U-f(e))$.
By (1),

$$
\begin{aligned}
& \varliminf_{e \rightarrow e_{0}^{+}}^{\lim _{e}} f(e) \cap \varliminf_{e \rightarrow e_{0}^{-}}^{\lim ^{\prime}} f(e) \\
& =\left[U-\varlimsup_{e \rightarrow e_{0}^{+}}(U-f(e))\right] \cap\left[U-\overline{\lim _{e \rightarrow e_{0}^{-}}}(U-f(e))\right] \\
& =U-\left[\overline{\lim }_{e \rightarrow e_{0}^{+}}(U-f(e)) \cup \overline{\left.\lim _{e \rightarrow e_{0}^{-}}(U-f(e))\right]}\right. \\
& =U-\left\{x \in U: \forall \delta>0,(x)_{f_{I}} \cap U\left(e_{0}, \delta\right) \neq \emptyset\right\} \\
& =\left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U\left(e_{0}, \delta\right)=\emptyset\right\} .
\end{aligned}
$$

Theorem 4.26. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) $\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U\left(e_{0}, \delta\right)\right.$ is infinite $\}$

$$
=\left\{x \in U: \forall \delta>0,[x]_{f_{I}} \cap U\left(e_{0}, \delta\right) \neq \emptyset\right\}
$$

$$
=\varlimsup_{e \rightarrow e_{0}} f(e) .
$$

(2) $\left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)\right.$ is finite $\}$
$=\left\{x \in U: \exists \delta>0,(x)_{f_{I}} \cap U^{+}\left(e_{0}, \delta\right)=\emptyset\right\}$
$=\underline{l i m}_{e \rightarrow e_{0}} f(e)$.
Proof. This holds by Theorem 4.25.
Theorem 4.27. For the right limit, the following properties hold:
(1) If $f(e) \subseteq g(e)\left(\forall e \in\left(e_{0}, e_{0}+\delta_{0}\right)\right)$, then $\lim _{e \rightarrow e_{0}^{+}} f(e) \subseteq \lim _{e \rightarrow e_{0}^{+}} g(e)$.
(2) If $\lim _{e \rightarrow e_{0}^{+}} f(e)=\triangle, A \subset \triangle \subset B$, then $\exists \delta>0, \forall e \in\left(e_{0}, e_{0}+\delta\right)$, $A \subset f(e) \subset B$.
(3) $\lim _{e \rightarrow e_{0}^{+}}(f(e) \times g(e)) \subseteq \lim _{e \rightarrow e_{0}^{+}} f(e) \times \lim _{e \rightarrow e_{0}^{+}} g(e)$.

Proof. This holds by Propositions 4.16 and 4.17.
Theorem 4.28. For the left limit, the following properties hold:
(1) If $f(e) \subseteq g(e)\left(\forall e \in\left(e_{0}-\delta_{0}, e_{0}\right)\right)$, then $\lim _{e \rightarrow e_{0}^{-}} f(e) \subseteq \lim _{e \rightarrow e_{0}^{-}} g(e)$.
(2) If $\lim _{e \rightarrow e_{0}^{-}} f(e)=\triangle, A \subset \triangle \subset B$, then $\exists \delta>0, \forall e \in\left(e_{0}-\delta, e_{0}\right)$, $A \subset f(e) \subset B$.
(3) $\lim _{e \rightarrow e_{0}^{-}}(f(e) \times g(e)) \subseteq \lim _{e \rightarrow e_{0}^{-}} f(e) \times \lim _{e \rightarrow e_{0}^{-}} g(e)$.

Proof. This holds by Propositions 4.18 and 4.19.
Theorem 4.29. For the limit, the following properties hold:
(1) If $f(e) \subseteq g(e)\left(\forall e \in U^{0}\left(e_{0}, \delta_{0}\right)\right)$, then $\lim _{e \rightarrow e_{0}} f(e) \subseteq \lim _{e \rightarrow e_{0}} g(e)$.
(2) If $\lim _{e \rightarrow e_{0}^{-}} f(e)=\triangle, A \subset \triangle \subset B$, then $\exists \delta>0, \forall e \in U^{0}\left(e_{0}, \delta_{0}\right)$, $A \subset f(e) \subset B$.
(3) $\lim _{e \rightarrow e_{0}}(f(e) \times g(e)) \subseteq \lim _{e \rightarrow e_{0}} f(e) \times \lim _{e \rightarrow e_{0}} g(e)$.

Proof. This holds by Theorems 4.27 and 4.28 .

5. Continuity of $i t$-soft sets

5.1. Point-wise continuity of $i t$-soft sets

Definition 5.1. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) f_{I} is called over-right continuous at e_{0}, if $\varlimsup_{e \rightarrow e_{0}^{+}} f(e)=f\left(e_{0}\right)$.
(2) f_{I} is called under-right continuous at e_{0}, if $\underset{e \rightarrow e_{0}^{+}}{\lim } f(e)=f\left(e_{0}\right)$.
(3) f_{I} is called over-left continuous at e_{0}, if $\varlimsup_{e \rightarrow e_{0}^{-}} f(e)=f\left(e_{0}\right)$.
(4) f_{I} is called under-left continuous at e_{0}, if $\varliminf_{e \rightarrow e_{0}^{-}}^{\lim } f(e)=f\left(e_{0}\right)$.

Definition 5.2. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) f_{I} is called over-continuous at e_{0}, if f_{I} is both over-left and over-right continuous at e_{0}.
(2) f_{I} is called under-continuous at e_{0}, if f_{I} is both under-left and underright continuous at e_{0}.
(3) f_{I} is called continuous at e_{0}, if f_{I} is both over-continuous and undercontinuous at e_{0}.

Definition 5.3. Let f_{I} be an it-soft set over U. Then for $e_{0} \in I$,
(1) f_{I} is called right-continuous at e_{0}, if f_{I} is both over-right and underright continuous at e_{0}.
(2) f_{I} is called left-continuous at e_{0}, if f_{I} is both over-left and under-left continuous at e_{0}.
(3) f_{I} is called continuous at e_{0}, if f_{I} is both left-continuous and rightcontinuous at e_{0}.

Remark 5.4. The point-wise continuity in Definition 5.2(3) and the pointwise continuity in Definition 5.3(3) is consistent.

Denote

$$
\begin{gathered}
C^{o r}\left(e_{0}\right)=\left\{f_{I}: f_{I} \text { is over-right continuous at } e_{0}\right\}, \\
C^{u r}\left(e_{0}\right)=\left\{f_{I}: f_{I} \text { is under-right continuous at } e_{0}\right\}, \\
C^{o l}\left(e_{0}\right)=\left\{f_{I}: f_{I} \text { is over-left continuous at } e_{0}\right\}, \\
C^{u l}\left(e_{0}\right)=\left\{f_{I}: f_{I} \text { is under-left continuous at } e_{0}\right\} ;
\end{gathered}
$$

$C^{o}\left(e_{0}\right)=\left\{f_{I}: f_{I}\right.$ is over-continuous at $\left.e_{0}\right\}, C^{u}\left(e_{0}\right)=\left\{f_{I}: f_{I}\right.$ is under-continuous at $\left.e_{0}\right\} ;$
$C^{l}\left(e_{0}\right)=\left\{f_{I}: f_{I}\right.$ is left-continuous at $\left.e_{0}\right\}, C^{r}\left(e_{0}\right)=\left\{f_{I}: f_{I}\right.$ is right-continuous at $\left.e_{0}\right\} ;$

$$
C\left(e_{0}=\left\{f_{I}: f_{I} \text { is continuous at } e_{0}\right\} .\right.
$$

Proposition 5.5. (1) $C^{o}\left(e_{0}\right)=C^{o l}\left(e_{0}\right) \cap C^{o r}\left(e_{0}\right)$.
(2) $C^{u}\left(e_{0}\right)=C^{u l}\left(e_{0}\right) \cap C^{u r}\left(e_{0}\right)$.
(3) $C^{l}\left(e_{0}\right)=C^{o l}\left(e_{0}\right) \cap C^{u l}\left(e_{0}\right)$.
(4) $C^{r}\left(e_{0}\right)=C^{o r}\left(e_{0}\right) \cap C^{u r}\left(e_{0}\right)$.
(5) $C\left(e_{0}\right)=C^{o}\left(e_{0}\right) \cap C^{u}\left(e_{0}\right)=C^{l}\left(e_{0}\right) \cap C^{r}\left(e_{0}\right)$.

Proof. This is obvious.
Proposition 5.6. Let f_{I} and g_{I} be two it-soft sets over U. Then for $e_{0} \in I$,
(1) If $f_{I}, g_{I} \in C^{o r}\left(e_{0}\right)$, then $f_{I} \widetilde{\cup} g_{I} \in C^{o r}\left(e_{0}\right)$.
(2) If $f_{I} \in C^{o r}\left(e_{0}\right)$, then $f_{I}^{c} \in C^{u r}\left(e_{0}\right)$.

Proof. This holds by Proposition 4.16.

Proposition 5.7. Let f_{I} and g_{I} be two it-soft sets over U. Then for $e_{0} \in I$,
(1) If $f_{I}, g_{I} \in C^{u r}\left(e_{0}\right)$, then $f_{I} \widetilde{\cap} g_{I} \in C^{u r}\left(e_{0}\right)$.
(2) If $f_{I} \in C^{u r}\left(e_{0}\right)$, then $f_{I}^{c} \in C^{o r}\left(e_{0}\right)$.
(3) If $f_{I}, g_{I} \in C^{u r}\left(e_{0}\right)$, then $f_{I} \widetilde{\times} g_{I} \in C^{u r}\left(e_{0}\right)$.

Proof. This holds by Proposition 4.17.
Proposition 5.8. Let f_{I} and g_{I} be two it-soft sets over U. Then for $e_{0} \in I$,
(1) If $f_{I}, g_{I} \in C^{o l}\left(e_{0}\right)$, then $f_{I} \widetilde{\cup} g_{I} \in C^{o l}\left(e_{0}\right)$.
(2) If $f_{I} \in C^{o l}\left(e_{0}\right)$, then $f_{I}^{c} \in C^{u l}\left(e_{0}\right)$.

Proof. This holds by Proposition 4.18.
Proposition 5.9. Let f_{I} and g_{I} be two it-soft sets over U. Then for $e_{0} \in I$,
(1) If $f_{I}, g_{I} \in C^{u l}\left(e_{0}\right)$, then $f_{I} \widetilde{\cap} g_{I} \in C^{u l}\left(e_{0}\right)$.
(2) If $f_{I} \in C^{u l}\left(e_{0}\right)$, then $f_{I}^{c} \in C^{o l}\left(e_{0}\right)$.
(3) If $f_{I}, g_{I} \in C^{u l}\left(e_{0}\right)$, then $f_{I} \widetilde{\times} g_{I} \in C^{u l}\left(e_{0}\right)$.

Proof. This holds by Proposition 4.19.
Theorem 5.10. Let f_{I} and g_{I} be two it-soft sets over U. Then for $e_{0} \in I$,
(1) If $f_{I}, g_{I} \in C^{o}\left(e_{0}\right)$, then $f_{I} \widetilde{\cup} g_{I} \in C^{o}\left(e_{0}\right)$.
(2) If $f_{I} \in C^{o}\left(e_{0}\right)$, then $f_{I}^{c} \in C^{u}\left(e_{0}\right)$.

Proof. This holds by Propositions 5.6 and 5.8.
Theorem 5.11. Let f_{I} and g_{I} be two it-soft sets over U. Then for $e_{0} \in I$,
(1) If $f_{I}, g_{I} \in C^{u}\left(e_{0}\right)$, then $f_{I} \widetilde{\cap} g_{I} \in C^{u}\left(e_{0}\right)$.
(2) If $f_{I} \in C^{u}\left(e_{0}\right)$, then $f_{I}^{c} \in C^{o}\left(e_{0}\right)$.
(3) If $f_{I}, g_{I} \in C^{u}\left(e_{0}\right)$, then $f_{I} \widetilde{\times} g_{I} \in C^{u}\left(e_{0}\right)$.

Proof. This holds by Propositions 5.7 and 5.9.

5.2. Continuous it-soft sets

Definition 5.12. Let f_{I} be an it-soft set over U.
(1) f_{I} is called over-continuous, if $\forall e_{0} \in I, f_{I}$ is over-continuous at e_{0}.
(2) f_{I} is called under-continuous, if $\forall e_{0} \in I, f_{I}$ under-continuous at e_{0}.
(3) f_{I} is called left-continuous, if $\forall e_{0} \in I, f_{I}$ is left-continuous at e_{0}.
(4) f_{I} is called right-continuous, if $\forall e_{0} \in I$, f_{I} right-continuous at e_{0}.
(5) f_{I} is called continuous, if $\forall e_{0} \in I$, f_{I} continuous at e_{0}.

Denote

$$
\begin{gathered}
C^{o r}\left(e_{0}\right)=\left\{f_{I}: f_{I} \text { is over-right continuous }\right\}, \\
C^{u r}\left(e_{0}\right)=\left\{f_{I}: f_{I} \text { is under-right continuous }\right\}, \\
C^{o l}\left(e_{0}\right)=\left\{f_{I}: f_{I} \text { is over-left continuous }\right\}, \\
C^{u l}\left(e_{0}\right)=\left\{f_{I}: f_{I} \text { is under-left continuous }\right\} ;
\end{gathered}
$$

$C^{o}(I)=\left\{f_{I}: f_{I}\right.$ is over-continuous $\}, C^{u}(I)=\left\{f_{I}: f_{I}\right.$ is under-continuous $\} ;$
$C^{l}(I)=\left\{f_{I}: f_{I}\right.$ is left-continuous $\}, C^{r}(I)=\left\{f_{I}: f_{I}\right.$ is right-continuous $\} ;$

$$
C(I)=\left\{f_{I}: f_{I} \text { is continuous }\right\} .
$$

Proposition 5.13. (1) $C^{o}(I)=C^{o l}(I) \cap C^{o r}(I)$.
(2) $C^{u}(I)=C^{u l}(I) \cap C^{u r}(I)$.
(3) $C^{l}(I)=C^{o l}(I) \cap C^{u l}(I)$.
(4) $C^{r}(I)=C^{o r}(I) \cap C^{u r}(I)$.
(5) $C(I)=C^{o}(I) \cap C^{u}(I)=C^{l}(I) \cap C^{r}(I)$.

Proof. This is obvious.
Theorem 5.14. Let f_{I} and g_{J} be two it-soft sets over U.
(1) If $f_{I} \in C^{o}(I), g_{J} \in C^{o}(J)$, then $f_{I} \widetilde{\cup} g_{I} \in C^{o}(I \cup J)$.
(2) If $f_{I} \in C^{o}(I)$, then $f_{I}^{c} \in C^{u}(I)$.

Proof. This holds by Theorem 5.10.
Theorem 5.15. Let f_{I} and g_{J} be two it-soft sets over U.
(1) If $f_{I} \in C^{u}(I), g_{J} \in C^{u}(J)$ then $f_{I} \widetilde{\cap} g_{J} \in C^{u}(I \cap J)$.
(2) If $f_{I} \in C^{u}(I)$, then $f_{I}^{c} \in C^{o}(I)$.

Proof. This holds by Theorem 5.11.
Theorem 5.16. Let $(f,[a, b])$ be an it-soft set over U.
(1) If $(f,[a, b])$ is strong keeping union or increasing, then $(f,[a, b])$ has the maximum value.
(2) If $(f,[a, b])$ is strong keeping intersection or decreasing, then $(f,[a, b])$ has the minimum value.

Corollary 5.17. If $(f,[a, b])$ is a perfect it-soft set over U, then $(f,[a, b])$ has the maximum and minimum value.

Proof. This is obvious.
Lemma 5.18. Let $f_{I} \in C^{o}\left(e_{0}\right)$. If $\lim _{n \rightarrow \infty} e_{n}=e_{0}$, then $\varlimsup_{n \rightarrow \infty} f\left(e_{n}\right) \subseteq f\left(e_{0}\right)$.
Proof. Since $\varlimsup_{n \rightarrow \infty} f\left(e_{n}\right)=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} f\left(e_{k}\right)$,
we only need to prove that

$$
\text { if } \forall n \in N, \exists k \geq n, x \in f\left(e_{k}\right) \text {, then } x \in f\left(e_{0}\right) \text {. }
$$

$\forall \delta, \exists n \in N_{1}, \frac{1}{n_{1}}<\delta$. It follows $U\left(e_{0}, \frac{1}{n_{1}}\right) \subset U\left(e_{0}, \delta\right)$.
Since $\lim _{n \rightarrow \infty} e_{n}=e_{0}, \exists n \in N_{2}$, when $n>n_{2}$ we have $e_{n} \in U\left(e_{0}, \frac{1}{n_{1}}\right)$.
Put $n_{3}=n_{1}+n_{2}$. Then for $n_{3}, \exists k \geq n_{3}, x \in f\left(e_{k}\right)$. So $e_{k} \in[x]_{f_{I}}$. $k \geq n_{3}>n_{2}$ implies

$$
e_{k} \in U\left(e_{0}, \frac{1}{n_{1}}\right) \subset U\left(e_{0}, \delta\right) .
$$

Then $e_{k} \in[x]_{f_{I}} \cap U\left(e_{0}, \delta\right)$. So $\forall \delta, \quad[x]_{f_{I}} \cap U\left(e_{0}, \delta\right) \neq \emptyset$.
By Theorem 4.25, $x \in \varlimsup_{e \rightarrow e_{0}} f(e)$.
Since $f \in C^{o}\left(e_{0}\right)$, we have $f\left(e_{0}\right)=\varlimsup_{e \rightarrow e_{0}} f(e)$.
Hence $x \in f\left(e_{0}\right)$.
Theorem 5.19. Let $(f,[a, b]) \in C([a, b])$.
(1) Suppose $f(a) \subset f(b)$, then $\forall \mu: f(a) \subseteq \mu \subseteq f(b), \exists e_{0} \in[a, b]$, $f\left(e_{0}\right)=\mu$. Moreover, if $f(a) \subset \mu \subset f(b)$, then $\exists e_{0} \in(a, b), f\left(e_{0}\right)=\mu$.
(2) Suppose $f(b) \subset f(a)$, then $\forall \mu: f(b) \subseteq \mu \subseteq f(a), \exists e_{0} \in[a, b]$, $f\left(e_{0}\right)=\mu$. Moreover, if $f(b) \subset \mu \subset f(a)$, then $\exists e_{0} \in(a, b), f\left(e_{0}\right)=\mu$.
Proof. (1) It suffices to show that

$$
\text { if } f(a) \subset \mu \subset f(b), \text { then } \exists e_{0} \in(a, b), f\left(e_{0}\right)=\mu \text {. }
$$

Denote $E=\{e \in[a, b]: f(e) \supset \mu\}$. Put $e_{0}=\inf E$. Then

$$
\exists\left\{e_{n}: n \in N\right\} \subseteq E-\left\{e_{0}\right\}, \quad \lim _{n \rightarrow \infty} e_{n}=e_{0} .
$$

Since $\forall n \in N, f\left(e_{n}\right) \supset \mu$, we have $\varlimsup_{n \rightarrow \infty} f\left(e_{n}\right)=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} f\left(e_{k}\right) \supseteq \mu$. Since $f \in C^{o}\left(e_{0}\right)$, by Lemma 5.18,

$$
f\left(e_{0}\right) \supseteq \varlimsup_{n \rightarrow \infty} f\left(e_{n}\right) \supseteq \mu .
$$

Note that $f(a) \subset \mu$. Then $e_{0} \neq a$.
We assert $e_{0} \neq b$. Suppose $e_{0}=b$. Since
by Proposition 4.19(4), then

$$
\exists \delta, \forall e \in(b-\delta, b), f(e) \supset \mu .
$$

Put $e_{1} \in(b-\delta, b)$. Then $f\left(e_{1}\right) \supset \mu$. We have $e_{1} \in E$. This implies $e_{1} \geq e_{0}$. But $e_{1}<b=e_{0}$. This is a contradiction.

Thus $e_{0} \in(a, b)$.
We claim $f\left(e_{0}\right) \not \supset \mu$. Suppose $f\left(e_{0}\right) \supset \mu$. Since $f \in C^{u}\left(e_{0}\right)$, we have

$$
\mu \subset f\left(e_{0}\right)=\lim _{e \rightarrow e_{0}} f(e)=\underline{\lim }_{e \rightarrow e_{0}} f(e) .
$$

By Theorem 4.23(4),

$$
\exists \delta, \forall e \in U^{0}\left(e_{0}, \delta\right), f(e) \supset \mu
$$

Put $e_{1} \in\left(e_{0}-\delta, e_{0}\right)$. Then $f\left(e_{1}\right) \supset \mu$. We have $e_{1} \in E$. This implies $e_{1} \geq e_{0}$. This is a contradiction.

Note that $f\left(e_{0}\right) \supseteq \mu$. Thus $f\left(e_{0}\right)=\mu$.
(2) The proof is similar to (1).

6. An application for rough sets

Definition 6.1. Let (U, R, P) be a probabilistic approximate space. For $e \in$ $[0,1], X \in 2^{U}$, denote

$$
f_{X}(e)=\underline{P I}_{e}(X), \quad g_{X}(e)=\overline{P I}_{e}(X) .
$$

Then $\left(f_{X},[0,1]\right)$ and $\left(g_{X},[0,1]\right)$ are two it-soft sets over U, which are called the it-soft sets induced by the lower and upper approximations of X, respectively.

Theorem 6.2. Let (U, R, P) be a probabilistic approximate space. Then for $e_{0} \in(0,1), X \in 2^{U}$,
(1) 1) $\varlimsup_{e \rightarrow e_{0}^{+}} f_{X}(e)=\bigcap_{e \in\left(e_{0}, 1\right]} \bigcup_{\beta \in\left(e_{0}, e\right]} f_{X}(\beta)$;
2) $\varlimsup_{e \rightarrow e_{0}^{-}} f_{X}(e)=\bigcap_{e \in\left[0, e_{0}\right)} f_{X}(e)=f_{X}\left(e_{0}\right)$;
3) ${\underset{e \rightarrow t}{ }}_{\lim } f_{X}(e)=\bigcup_{e \in\left(e_{0}, 1\right]} f_{X}(e)=g_{X}\left(e_{0}\right)$;
4) $\underset{e \rightarrow e_{0}^{-}}{\lim } f_{X}(e)=\bigcup_{e \in\left[0, e_{0}\right)} \bigcap_{\beta \in\left[e, e_{0}\right)} f_{X}(\beta)$.
(2) 1) $\varlimsup_{e \rightarrow e_{0}^{+}} g_{X}(e)=\bigcap_{e \in\left(e_{0}, 1\right]} \bigcup_{\beta \in\left(e_{0}, e\right]} g_{X}(\beta)$;
2) $\varlimsup_{e \rightarrow e_{0}^{-}} g_{X}(e)=\bigcap_{e \in\left[0, e_{0}\right)} g_{X}(e)=f_{X}\left(e_{0}\right)$;
3) $\underset{e \rightarrow e_{0}^{+}}{\lim } g_{X}(e)=\bigcup_{e \in\left(e_{0}, 1\right]} g_{X}(e)=g_{X}\left(e_{0}\right)$;
4) $\underset{e \rightarrow e_{0}^{-}}{\lim } g_{X}(e)=\bigcup_{e \in\left[0, e_{0}\right)} \bigcap_{\beta \in\left[e, e_{0}\right)} g_{X}(\beta)$.
(3) 1) $f_{U-X}(e)=U-g_{X}(1-e)$,
2) $g_{U-X}(e)=U-f_{X}(1-e)$.

Proof. This holds by Theorems 2.6, 2.7 and 4.10.
Corollary 6.3. Let (U, R, P) be a probabilistic approximate space. Then for $X \in 2^{U}$,

$$
\left(f_{X},[0,1]\right) \in C^{o l}((0,1)),\left(g_{X},[0,1]\right) \in C^{u r}((0,1))
$$

Proof. This holds by Theorems 6.2.
Example 6.4. Let $U=\left\{x_{i}: 1 \leq i \leq 20\right\}, P(X)=\frac{|X|}{|U|}\left(X \in 2^{U}\right), U / R=$ $\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right\}$ where
$X_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, X_{2}=\left\{x_{6}, x_{7}, x_{8}\right\}, X_{3}=\left\{x_{9}, x_{10}, x_{11}, x_{12}\right\}$,
$X_{4}=\left\{x_{13}, x_{14}\right\}, X_{5}=\left\{x_{15}, x_{16}, x_{17}, x_{18}\right\}, X_{6}=\left\{x_{19}, x_{20}\right\}$.
Put

$$
X^{*}=\left\{x_{6}, x_{7}, x_{8}, x_{13}, x_{17}\right\} .
$$

By Example 4.9 in [24] or Example 8.1 in [25],

$$
f_{X^{*}}(0.5)=X_{2} \cup X_{4}, \quad g_{X^{*}}(0.5)=X_{2} .
$$

By Theorem 2.7,

$$
\underset{e \rightarrow 0.5^{+}}{\lim _{X^{*}}}(e)=g_{X^{*}}(0.5) \neq f_{X^{*}}(0.5) .
$$

By Theorem 2.7,

$$
\varlimsup_{e \rightarrow 0.5^{-}} g_{X^{*}}(e)=f_{X^{*}}\left(e_{0}\right) \neq g_{X^{*}}(0.5)
$$

Thus

$$
\left(f_{X^{*}},[0,1]\right) \notin C^{u r}(0.5),\left(g_{X^{*}},[0,1]\right) \notin C^{o l}(0.5)
$$

This example illustrates that

$$
\left(f_{X^{*}},[0,1]\right) \notin C^{u r}((0,1)), \quad\left(g_{X^{*}},[0,1]\right) \notin C^{o l}((0,1))
$$

Example 6.5. Let $U=\left\{x_{i}: 1 \leq i \leq 10\right\}, P(X)=\frac{|X|}{|U|}\left(X \in 2^{U}\right), U / R=$ $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ where
$X_{1}=\left\{x_{1}, x_{3}\right\}, X_{2}=\left\{x_{2}, x_{4}, x_{5}, x_{7}\right\}, X_{3}=\left\{x_{6}, x_{8}\right\}, X_{4}=\left\{x_{9}, x_{10}\right\}$.
(1) Put $X^{*}=\left\{x_{1}, x_{5}, x_{6}, x_{8}\right\}$. Then

$$
\begin{aligned}
& f_{X^{*}}(e)= \begin{cases}X_{1} \cup X_{2} \cup X_{3}, & \text { if } e \in\left(0, \frac{1}{4}\right] \\
X_{1} \cup X_{3}, & \text { if } e \in\left(\frac{1}{4}, \frac{1}{2}\right] \\
X_{3}, & \text { if } e \in\left(\frac{1}{2}, 1\right]\end{cases} \\
& g_{X^{*}}(e)= \begin{cases}X_{1} \cup X_{2} \cup X_{3}, & \text { if } e \in\left[0, \frac{1}{4}\right) \\
X_{1} \cup X_{3}, & \text { if } e \in\left[\frac{1}{4}, \frac{1}{2}\right) \\
X_{3}, & \text { if } e \in\left[\frac{1}{2}, 1\right)\end{cases}
\end{aligned}
$$

$$
\begin{array}{r}
\text { So } \varlimsup_{e \rightarrow 0.5^{+}} f_{X^{*}}(e)=\bigcap_{e \in(0.5,1]} \bigcup_{\beta \in(0.5, e]} f_{X^{*}}(\beta)=X_{3} \neq X_{1} \cup X_{3}=f_{X^{*}}(0.5) \text {, } \\
\underset{e \rightarrow 0.5^{-}}{\underline{\lim }} g_{X}(e)=\bigcup_{e \in[0,0.5)} \bigcap_{\beta \in[e, 0.5)} g_{X}(\beta)=X_{1} \cup X_{3} \neq X_{3}=g_{X^{*}}(0.5) .
\end{array}
$$

Thus

$$
\left(f_{X^{*}},[0,1]\right) \notin C^{o r}(0.5), \quad\left(g_{X^{*}},[0,1]\right) \notin C^{u l}(0.5)
$$

(2) Put $Y^{*}=\left\{x_{2}, x_{9}, x_{10}\right\}$. Then

$$
f_{Y^{*}}(e)= \begin{cases}X_{2} \cup X_{4}, & \text { if } e \in\left(0, \frac{1}{4}\right] \\ X_{4}, & \text { if } e \in\left(\frac{1}{4}, 1\right]\end{cases}
$$

So $\varliminf_{e \rightarrow 0.5^{-}} f_{Y^{*}}(e)=\bigcup_{e \in[0,0.5)} \bigcap_{\beta \in[e, 0.5)} f_{Y^{*}}(\beta)=X_{2} \cup X_{4} \neq X_{4}=f_{Y^{*}}(0.5)$. Thus

$$
\left(f_{Y^{*}},[0,1]\right) \notin C^{u l}(0.5) .
$$

(3) Put

$$
Z^{*}=U-Y^{*} .
$$

By Proposition 4.16(3) and Theorem 2.7,

$$
\begin{aligned}
\varlimsup_{e \rightarrow 0.5^{+}} g_{Z^{*}}(e) & =\varlimsup_{e \rightarrow 0.5^{+}}\left(U-f_{Y^{*}}(1-e)\right) \\
& =U-\lim _{e \rightarrow 0.5^{+}} f_{Y^{*}}(1-e) \\
& =U-\varliminf_{1-e \rightarrow 0.5^{-}}^{\lim } f_{Y^{*}}(1-e) .
\end{aligned}
$$

Note that $\underset{e \rightarrow 0.5^{-}}{\underline{\lim }} f_{Y^{*}}(e) \neq f_{Y^{*}}(0.5)$. Then by Theorem 2.7,

$$
\varlimsup_{e \rightarrow 0.5^{+}} g_{Z^{*}}(e) \neq U-f_{Y^{*}}(0.5)=g_{Z^{*}}(0.5)
$$

Thus

$$
\left(g_{Z^{*}},[0,1]\right) \notin C^{o r}(0.5)
$$

This example illustrates that

$$
\begin{aligned}
& \left(f_{X^{*}},[0,1]\right) \notin C^{o r}((0,1)), \quad\left(g_{X^{*}},[0,1]\right) \notin C^{u l}((0,1)) ; \\
& \left(f_{Y^{*}},[0,1]\right) \notin C^{u l}((0,1)) ; \quad\left(g_{Z^{*}},[0,1]\right) \notin C^{o r}((0,1)) .
\end{aligned}
$$

7. Conclusions

In this paper, limits of $i t$-soft sets have been proposed. Point-wise continuity of $i t$-soft sets and continuous $i t$-soft sets have been investigated. An application for rough sets has been given. These results will be helpful for the study of soft sets. In the future, we will further study applications of these limits in information science.

References

[1] H.Aktas, N.Cağman, Soft sets and soft groups, Information Sciences, 177(2007), 2726-2735.
[2] J.P.Aubin, H.Frankowska, Set-valued analysis, Birkhäuser, Berlin, 1990.
[3] M.Dai, W.Chen, G.Zhang, Real analysis and functional analysis, Chinese Scientific Publishers, Beijing, 2007.
[4] F.Feng, C.Li, B.Davvaz, M.Irfan Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Computing, 14(2010), 899911.
[5] B.Flagg, R.Kopperman, Continuity spaces: Reconciling domains and metric spaces, Theoretical Computer Science, 177(1997), 111-138.
[6] F.Feng, X.Liu, V.Leoreanu-Fotea, Y.Jun, Soft sets and soft rough sets, Information Sciences, 181(2011), 1125-1137.
[7] Y.Jiang, Y.Tang, Q.Chen, J.Wang, S.Tang, Extending soft sets with description logics, Computers and Mathematics with Applications, 59(2010), 2087-2096.
[8] X.Ge, Z.Li, Y.Ge, Topological spaces and soft sets, Journal of Computational Analysis and Applications, 13(2011), 881-885.
[9] P.R.Halmos, Measure theory, Van Nostrand, New York, 1950.
[10] A.N.Kolmogorov, S.V.Fomin, Introductory real analysis, Dover Publications, New York, 1975.
[11] E.Klein, A.C.Thompson, Theory of correspondences, John Wiley and Sons, New York, 1984.
[12] Z.Li, T.Xie, The relationship among soft sets, soft rough sets and topologies, Soft Computing, 18(2014), 717-728.
[13] Z.Li, N.Xie, G.Wen, Soft coverings and their parameter reductions, Applied Soft Computing, 31(2015), 48-60
[14] P.K.Maji, R.Biswas, A.R.Roy, Soft set theory, Computers and Mathematics with Applications, 45(2003), 555-562.
[15] P.K.Maji, A.R.Roy, An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44(2002), 1077-1083.
[16] P.Majumdar, S.K.Samanta, Similarity measure of soft sets, New Mathematics and Natural Computation, 4(2008), 1-12.
[17] D.Molodtsov, Soft set theory-first result, Computers and Mathematics with Applications, 37 (1999), 19-31.
[18] Z.Pawlak, Rough sets, International Journal of Computer and Information Science, 11(1982), 341-356.
[19] Z.Pawlak, Rough sets: Theoretical aspects of reasoning about data, Kluwer Academic Publishers, Boston, 1991.
[20] Z.Pawlak, A.Skowron, Rudiments of rough sets, Information Sciences, 177(2007), 3-27.
[21] Z.Pawlak, A.Skowron, Rough sets: some extensions, Information Sciences, 177(2007), 28-40.
[22] L.A.Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.
[23] X.Zhang, On interval soft sets with applications, International Journal of Computational Intelligence Systems, 7(1)(2014), 186-196.
[24] W.Zhang, G.Qiu, Uncertain decision making based on rough sets, Tsinghua University Publishers, Beijing, 2005.
[25] W.Zhang, W.Wu, J.Liang, D.Li, Rough set theory and methods, Chinese Scientific Publishers, Beijing, 2001.

[^0]: ${ }^{*}$ This work is supported by National Natural Science Foundation of China (11461005), Key Laboratory of Hunan Province for New Retail Virtual Reality Technology and Key Laboratory of Hunan Province for Mobile Business Intelligence.
 *Corresponding author: Jiali He
 Email addresses: 1941@hnuc.edu.cn (Xiaoliang Xie), 20110019@gxun.edu.cn (Jiali He)

