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Abstract

Soft set theory is a mathematical tool for dealing with uncertainty. This
paper investigates limits of interval type of soft sets (for short, it-soft sets).
The concept of it-soft sets is first introduced. Then, limits of it-soft sets are
proposed and their properties are obtained. Next, point-wise continuity of
it-soft sets and continuous it-soft sets are discussed. Finally, an application
for rough sets is given.
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1. Introduction

To solve complicated problems in economics, engineering, environmental
science and social science, methods in classical mathematics are not always
successful because of various types of uncertainties present in these prob-
lems. There are several theories: probability theory, fuzzy set theory [22],
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rough set theory [18] and the interval mathematics which we can consider
as mathematical tools for dealing with uncertainties. But all these theories
have their own difficulties. For example, probability theory can deal only
with stochastically stable phenomena (see [17]). To overcome these kinds
of difficulties, Molodtsov [17] proposed a completely new approach, which is
called soft set theory, for modeling uncertainty.

Presently, works on soft sets theory are progressing rapidly. Maji et al.
[14, 15] further studied soft sets theory and used this theory to solve some
decision making problems. Aktas et al. [1] defined soft groups. Jiang et al.
[7] extended soft sets with description logics. Feng et al. [4] investigated
the relationship among soft sets, rough sets and fuzzy sets. Ge et al. [8]
discussed the relationship between soft sets and topological spaces. Li et al.
[12] obtained the relationship among soft sets, soft rough sets and topologies.
Li et al. [13] studied parameter reductions of soft coverings.

Rough set theory, proposed by Pawlak [18], is an important tool for deal-
ing with fuzzyness and uncertainty of knowledge. After thirty years de-
velopment, this theory has been successfully applied to machine learning,
intelligent systems, inductive reasoning, pattern recognition, mereology, im-
age processing, signal analysis, knowledge discovery, decision analysis, expert
systems and many other fields [18, 19, 20, 21]. The basic structure of rough
set theory is an approximation space. Based on it, lower and upper approx-
imations can be induced. Through these rough approximations, knowledge
hidden in information systems may be revealed and expressed in the form of
decision rules [19, 20, 21]. Pawlak’s rough set model is based on the com-
pleteness of available information, and ignores the incompleteness of available
information and the possible existence of statistical information. This model
for extracting rules in uncoordinate decision information systems often seems
incapable. These have motivated many researchers to investigate probabilis-
tic generalization of rough set theory and provide new rough set model for
the study of uncertain information system.

Probabilistic rough set model is probabilistic generalization of rough set
theory. In probabilistic rough set model, probabilistic rough approximations
are dependent on parameters. Researching the infinite change trend or the
limit state of these approximations accordance with parameters is helpful for
the study of probabilistic rough sets.

It is well-known that calculus theory is the foundation of modern science.
Limits of functions are its basic concepts, which play an important role in the
process of development [10]. Since probabilistic rough approximations and
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level sets of a fuzzy set are both it-soft sets (i.e., interval type of soft sets
or soft sets whose parameter sets are the intervals in R), we may attempt to
study the infinite change trend or the limit state of it-soft sets. It is worth
mentioning that there is no systematic research and summary for limits of
it-soft sets although the limit though of it-soft sets has formed in [24, 25].

In general, most of uncertain mathematical theories can only deal with
uncertainty problems of discreteness. If limit theory of it-soft sets is es-
tablished, then these theories may be used to solve uncertainty problems of
continuity The purpose of this paper is to establish preliminarily limit theory
of interval type soft set so that some uncertain mathematical theories such
as rough set theory may be used to solve uncertainty problems of continuity.

The remaining part of this paper is organized as follows. In Section 2,
we recall some basic concepts about limits of set sequences and rough sets.
In Section 3, we introduce it-soft sets and related notions. In Sections 4,
we propose the concept of limits of it-soft sets and obtain their properties.
In Sections 5, we discuss the continuity of it-soft sets including point-wise
continuity of it-soft sets and continuous it-soft sets. In Sections 6, we give
an application for rough sets. Sections 7 summarizes this paper.

2. Preliminaries

In this section, we recall some basic concepts about limits of s-sequences,
rough sets and it-soft sets.

Throughout this paper, U denotes the universe which may be an infinite
set, 2U denotes the family of all subsets of U , E denotes a set of all possible
parameters, R denotes the set of all real numbers, N denotes the set of all
natural numbers and I denotes the interval in R.

2.1. Limits of set sequences
Definition 2.1 ([3, 9]). Let U be the universe. If for each n ∈ N, En ∈ 2U ,
then {En} is called a set sequence in U . Define

lim
n→∞

En = {x ∈ U : {n ∈ N : x ∈ En} is infinite},

lim
n→∞

En = {x ∈ U : {n ∈ N : x /∈ En} is finite}.

If lim
n→∞

En = lim
n→∞

En = E, then {En : n ∈ N} is called to has the limit E,

which is denoted by lim
n→∞

En, i.e., lim
n→∞

En = E; If lim
n→∞

En ̸= lim
n→∞

En, then

{En : n ∈ N} is called to has no the limit.
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Obviously, lim
n→∞

En ⊆ lim
n→∞

En.

Proposition 2.2 ([3, 9]). Let {En : n ∈ N} be a set sequence in U .

(1) lim
n→∞

En =
∞∩
n=1

∞∪
k=n

Ek.

(2) lim
n→∞

En =
∞∪
n=1

∞∩
k=n

Ek.

Proposition 2.3 ([3, 9]). Let {En : n ∈ N} be a set sequence in U .

(1) If {En} ↑, then lim
n→∞

En =
∞∪
n=1

En.

(2) If {En} ↓, then lim
n→∞

En =
∞∩
n=1

En.

2.2. Rough sets

Let R be an equivalence relation on the universe U . Then the pair (U,R)
is called a Pawlak approximation space. Based on (U,R), one can define the
following two rough approximations:

R(X) = {x ∈ U : [x]R ⊆ X}, R(X) = {x ∈ U : [x]R ∩X ̸= ∅}.

Then R(X) and R(X) are called the Pawlak lower approximation and the
Pawlak upper approximation of X, respectively.

The boundary region of X, defined by the difference between these rough
approximations, that is BndR(X) = R(X)−R(X).

A set is rough if its boundary region is not empty; otherwise, it is crisp.
Thus, X is rough if R(X) ̸= R(X).

Definition 2.4 ([24, 25]). Let U be a finite universe. Then a function P :
2U → [0, 1] is called a probability measure over U , if P (U) = 1 and P (A ∪
B) = P (A) + P (B) whenever A ∩B = ∅.

If P is a probability measure over U , A,B ∈ 2U and P (B) > 0, then

P (A|B) = P (A∩B)
P (B)

is called the conditional probability of the event A when
the event B occurs.

Definition 2.5 ([24, 25]). Let U be a finite universe, R an equivalence rela-
tion over U and P a probability measure over U . Then the pair (U,R, P ) is
called a probabilistic approximate space. Based on (U,R, P ), the lower and
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upper approximation of X, are respectively denoted by PIα(X) and PIβ(X),
are defined as follows:

PIα(X) = {x ∈ U : P (X|[x]) ≥ α}, P Iβ(X) = {x ∈ U : P (X|[x]) > β),

where 0 ≤ β < α ≤ 1.

Theorem 2.6 ([24, 25]). Let (U,R, P ) be a probabilistic approximate space.
Then the following properties hold.

(1) PIα(∅) = PIα(∅) = ∅, PIα(U) = PIα(U) = U .
(2) PIα(X) ⊆ PIα(X).
(3) PIα(U −X) = U − PI1−α(X), PIα(U −X) = U − PI1−α(X).
(4) If X ⊆ Y , then PIα(X) ⊆ PIα(Y ), PIα(X) ⊆ PIα(Y ).
(5) If 0 < α1 < α2 ≤ 1, 0 ≤ β1 < β2 < 1 then

PIα2
(X) ⊆ PIα1

(X), PIβ2(X) ⊆ PIβ2(X).

Theorem 2.7 ([24, 25]). Let (U,R, P ) be a probabilistic approximate space.
Then for 0 < γ < 1, X ∈ 2U ,

(1) lim
α↑γ

PIα(X) =
∩

α∈(0,γ)
PIα(X) = PIγ(X),

lim
α↓γ

PIα(X) =
∪

α∈(γ,1]
PIα(X) = PIγ(X);

(2) lim
α↑γ

PIα(X) =
∩

α∈[0,γ)
PIα(X) = PIγ(X),

lim
α↓γ

PIα(X) =
∪

α∈(γ,1)
PIα(X) = PIγ(X).

Although the limit though of it-soft sets has formed in Theorem 2.6, there
is no systematic research and summary for limits of it-soft sets. Thus, limit
theory of interval type soft set deserves deeply study so that rough set theory
can be used to solve uncertainty problems of continuity.

3. Soft sets

Definition 3.1 ([17]). Let A ⊆ E. A pair (f,A) is called a soft set over U ,
if f is a mapping given by f : A → 2U . We also denote (f, A) by fA.

In other words, a soft set fA over U is a parametrized family of subsets of
the universe U . For e ∈ A, f(e) may be considered as the set of e-approximate
elements of the soft set fA. Clearly, a soft set is not a set.
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Definition 3.2 ([14]). Let fA and gB be two soft sets over U .
(1) fA is called a soft subset of gB, if A ⊆ B and f(e) = g(e) for each

e ∈ A. We denote it by fA ⊂̃ gB.
(2) fA is called a soft super set of gB, if gB ⊂̃ fA. We denote it by

fA ⊃̃ gB.

Definition 3.3 ([14]). Let fA and gB be two soft sets over U .
fA and gB are called soft equal, if A ⊆ B and f(e) = g(e) for each e ∈ A.

We denote it by fA = gB.

Obviously, fA = gB if and only if fA ⊂̃ gB and fA ⊃̃ gB.

Definition 3.4 ([14]). Let fA be a soft set over U .

(1) fA is called null, if f(e) = ∅ for each e ∈ A. We denote it by ∅̃.
(2) fA is called absolute, if f(e) = U for each e ∈ A. We denote it by Ũ .
(3) fA is called constant, if there exists X ∈ 2U such that f(e) = X for

each e ∈ A. We denote it by X̃ or XA.

Definition 3.5 ([14]). Let fA and gB be two soft sets over U .
(1) hC is called the intersection of fA and gB, if C = A ∩ B and h(e) =

f(e) ∩ g(e) for each e ∈ C. We denote it by fA ∩̃ gB = hC.
(2) hC is called the union of fA and gB, if C = A ∪B and

h(e) =


f(e), if e ∈ A−B,

g(e), if e ∈ B − A,

f(e) ∪ g(e), if e ∈ A ∩B.

We denote it by fA ∪̃ gB = hC.
(3) hC is called the bi-intersection of fA and gB, if C = A × B and

h(a, b) = f(a) ∩ g(b) for each a ∈ A and b ∈ B. We denote it by fA
∧

gB =
hC.

(4) hC is called the bi-union of fA and gB, if C = A × B and h(a, b) =
f(a) ∪ g(b) for each a ∈ A and b ∈ B. We denote it by fA

∨
gB = hC.

Definition 3.6 ([16]). The relative complement of a soft set fA is denoted
by f c

A and is defined by f c
A = (f c, A), where f c : A → 2U is a mapping

given by f c(e) = U − f(e) for each e ∈ A.
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Definition 3.7 ([4]). Let fA be a soft set over U .
(1) fA is called full, if

∪
e∈A

f(e) = U .

(2) fA is called partition, if {f(e) : e ∈ A} forms a partition of U .

Definition 3.8 ([12]). Let fA be a soft set over U .
(1) fA is called topological, if {f(e) : e ∈ A} is a topology on U .
(2) fA is called keeping intersection, if for any a, b ∈ A, there exists c ∈ A

such that f(a) ∩ f(b) = f(c).
(2) fA is called keeping union, if for any a, b ∈ A, there exists c ∈ A such

that f(a) ∪ f(b) = f(c).
(3) fA is called perfect, if f : A → 2U is onto.
(4) fA is called having no kernel, if ∩{f(e) : e ∈ A} = ∅.

Definition 3.9. Let fA be a soft set over U .
(1) fA is called strong keeping intersection, if for each B ⊆ A, there exists

b ∈ A such that
∩
a∈A

f(a) = f(b).

(2) fA is called strong keeping union, if for each B ⊆ A, there exists b ∈ A
such that

∪
a∈A

f(a) = f(b).

Obviously, fA is strong keeping intersection ⇒ fA is keeping intersection,
fA is strong keeping union ⇒ fA is keep union.

Proposition 3.10 ([12]). Let fA be a soft set over U . Then the following
properties hold.

(1) If fA is topological, then fA is full, keeping intersection and strong
keep union.

(2) fA is perfect if and only if {f(e) : e ∈ A} is a discrete topology over
U .

(3) If fA is perfect, then fA is topological.
(4) fA is having no kernel if and only if (f c, A) is full.

Example 3.11. Let U = {x1, x2, x3, x4, x5}, A = [0, 1). Define fA as follows:

f(e) =


{x1, x2, x5}, if α ∈ [0, 1

4
),

∅, if α ∈ [1
4
, 1
2
),

{x1, x2}, if α ∈ [1
2
, 3
4
),

U, if α ∈ [3
4
, 1).

Then fA is topological. But fA is neither perfect nor partition.
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Example 3.12. Let U = {x1, x2, x3, x4, x5}, A = [0, 1). Define fA as follows:

f(e) =


{x1, x2, x5}, if α ∈ [0, 1

4
),

{x1, x2}, if α ∈ [1
4
, 1
2
),

{x3}, if α ∈ [1
2
, 3
4
),

{x3, x4}, if α ∈ [3
4
, 1).

Note that {x1, x2, x5} ∩ {x3} = ∅ ̸= f(α) (∀ α ∈ I). Then fA is not
keeping intersection.

Example 3.13. Let U = {x1, x2, x3, x4, x5}, A = [0, 1). Define fA as follows:

f(e) =


{x1}, if α ∈ [0, 1

4
),

{x1, x4}, if α ∈ [1
4
, 1
2
),

{x1, x3, x4}, if α ∈ [1
2
, 3
4
),

U, if α ∈ [3
4
, 1).

Then fA is full, keeping intersection and strong keeping union. But fA is not
topological.

Example 3.14. Let U = {x1, x2, x3, x4, x5}, A = [0, 1). Define fA as follows:

f(e) =


{x1, x2}, if α ∈ [0, 1

4
),

{x5}, if α ∈ [1
4
, 1
2
),

{x3}, if α ∈ [1
2
, 3
4
),

{x4}, if α ∈ [3
4
, 1).

Then fA is partition. But fA is neither topological nor perfect.

Example 3.15. Let U = {x1, x2, x3, x4, x5}, A = [0, 1). Define fA as follows:

f(e) =


{x1, x2, x5}, if α ∈ [0, 1

4
),

∅, if α ∈ [1
4
, 1
2
),

{x3}, if α ∈ [1
2
, 3
4
),

{x3, x4}, if α ∈ [3
4
, 1).

Then fA is full and strong keeping intersection. But

{x1, x2, x5} ∪ {x3} = {x1, x2, x3, x5} ≠ f(α) (∀ α ∈ I).

Thus fA is not keeping union.

8

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2018                   doi:10.20944/preprints201808.0010.v1

Peer-reviewed version available at Symmetry 2018, 10, 406; doi:10.3390/sym10090406

http://dx.doi.org/10.20944/preprints201808.0010.v1
http://dx.doi.org/10.3390/sym10090406


Example 3.16. Let U = {x1, x2, x3, x4, x5}, A = [0, 1). Define fA as follows:

f(e) =


{x1}, if α ∈ [0, 1

4
),

{x2}, if α ∈ [1
4
, 1
2
),

{x1, x2}, if α ∈ [1
2
, 3
4
),

U, if α ∈ [3
4
, 1).

Then fA is full and strong keeping union. But

{x1} ∩ {x2} = ∅ ̸= f(α) (∀ α ∈ I).

Thus fA is not keeping intersection.

From Examples 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16, we have the following
relationships:

f is full and  keeping intersection f  is full and strong keeping union

f is topological

f is full, keeping intersection and strong keeping union

fA is perfect

fA is partition

fA is topological

4. Limit theory of it-soft sets

4.1. The concept of it-soft sets

Definition 4.1. Let fA be a soft set over U . If there exists the interval I in
R such that A = I. Then fA is called an it-soft set over U . Denote it with
fI .

9

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2018                   doi:10.20944/preprints201808.0010.v1

Peer-reviewed version available at Symmetry 2018, 10, 406; doi:10.3390/sym10090406

http://dx.doi.org/10.20944/preprints201808.0010.v1
http://dx.doi.org/10.3390/sym10090406


It is worth mentioning that the it-soft sets are different from interval soft
sets in [23].

Definition 4.2. Let fI be an it-soft set over U .
(1) If for any e1, e2 ∈ I, e1 < e2 implies f(e1) ⊂ f(e2)(resp., f(e1) ⊃

f(e2)), then fI is called strictly increasing (resp., strictly decreasing) on I.
(2) If for any e1, e2 ∈ I, e1 < e2 implies f(e1) ⊆ f(e2)(resp., f(e1) ⊇

f(e2)), then fI is called increasing (resp., decreasing) on I.

Definition 4.3. Let fI be an it-soft set over U .
(1) If for any e ∈ I, f(e) ⊆ f(e0) (e0 ∈ I), then f(e0) is called the

maximum value of fI .
(2) If for any e ∈ I, f(e) ⊇ f(e0) (e0 ∈ I), then f(e0) is called the

minimum value of fI .

4.2. Limits of it-soft sets

Let e0 ∈ R, δ > 0. Denote

U(e0, δ) = {e : |e− e0| < δ}, U0(e0, δ) = {e : 0 < |e− e0| < δ}.

Then U(e0, δ) is called δ neighborhood of e0, U
0(e0, δ) is called δ neighbor-

hood of e0 having no the heart, e0 is the center of the neighborhood, δ is the
radius of the neighborhood.

U+(e0, δ) = [e0, e0 + δ) is called the δ right neighborhood of e0,
U−(e0, δ) = (e0 − δ, e0] is called the δ left neighborhood of e0.
Obviously, U(e0, δ) = (e0 − δ, e0 + δ) = U+(e0, δ) ∪ U−(e0, δ).
Let fI be an it-soft set over U . For e0 ∈ I, x ∈ U , denote

[x]fI = {e ∈ I − {e0} : x ∈ f(e)},

(x)fI = {e ∈ I − {e0} : x /∈ f(e)}.

Remark 4.4. (1) [x]fI ∪ (x)fI = I − {e0}, [x]fI ∩̃(x)fI = ∅.
(2) [x]fI ∩ [x]gI = [x]fI ∩̃gI , [x]fI ∪ [x]gI = [x]fI ∪̃gI .
(3) (x)fI ∩ (x)gI = (x)fI ∪̃gI , (x)fI ∪ (x)gI = (x)fI ∩̃gI .
(4) [x]fc

I
= (x)fI , (x)fc

I
= [x]fI .

Definition 4.5. Let fI be an it-soft set over U . For e0 ∈ I, define
(1) lim

e→e+0

f(e) = {x ∈ U : ∀ δ > 0, [x]fI ∩ U+(e0, δ) is infinite}, which is

called the over-right limit of fI as e → e0 (or the over limit of fI as e → e+0 );
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(2) lim
e→e+0

f(e) = {x ∈ U : ∃ δ > 0, (x)fI ∩ U+(e0, δ) is finite}, which is

called the under-right limit of fI as e → e0(or the under limit of fI as e →
e+0 ).

(3) lim
e→e−0

f(e) = {x ∈ U : ∀ δ > 0, [x]fI ∩ U−(e0, δ) is infinite}, which is

called the over-left limit of fI as e → e0(or the over limit of fI as e → e−0 ).
(4) lim

e→e−0

f(e) = {x ∈ U : ∃ δ > 0, (x)fI ∩ U−(e0, δ) is finite}, which is

called the under-left limit of fI as e → e0(or the under limit of fI as e →
e−0 ).

Theorem 4.6. Let fI be an it-soft set over U . Then for e0 ∈ I,
(1) lim

e→e+0

f(e) = {x ∈ U : ∀ δ > 0, [x]fI ∩ U+(e0, δ) ̸= ∅}

= {x ∈ U : ∀ n ∈ N, [x]fI ∩ U+(e0,
1
n
) ̸= ∅}.

(2) lim
e→e+0

f(e) = {x ∈ U : ∃ δ > 0, (x)fI ∩ U+(e0, δ) = ∅}

= {x ∈ U : ∃ n ∈ N, (x)fI ∩ U+(e0,
1
n
) = ∅}.

(3) lim
e→e−0

f(e) = {x ∈ U : ∀ δ > 0, [x]fI ∩ U−(e0, δ) ̸= ∅}

= {x ∈ U : ∀ n ∈ N, [x]fI ∩ U−(e0,
1
n
) ̸= ∅}.

(4) lim
e→e−0

f(e) = {x ∈ U : ∃ δ > 0, (x)fI ∩ U+(e0, δ) = ∅}

= {x ∈ U : ∃ n ∈ N, (x)fI ∩ U−(e0,
1
n
) = ∅}.

Proof. (1) Put
S = lim

e→e+0

f(e), T = {x ∈ U : ∀ δ > 0, [x]fI ∩U+(e0, δ) ̸= ∅},

L = {x ∈ U : ∀ n ∈ N, [x]fI ∩ U+(e0,
1
n
) ̸= ∅}.

Obviously, S ⊆ T ⊆ L. We only need to prove L ⊆ S. Suppose L *
S. Then L − S ̸= ∅. Pick x ∈ L − S. We have x ̸∈ S. So ∃ δ0 > 0,
[x]fI ∩ U+(e0, δ0) is finite. Denote

[x]fI ∩ U+(e0, δ0) = {e1, e2, . . . , en}.

Put e∗ = min{e1, e2, . . . , en}, 0 < 1
n0

< e∗ − e0. Then

0 <
1

n0

< δ0, [x]fI ∩ U+(e0,
1

n0

) = ∅.

So x ̸∈ L. But x ∈ L. This is a contradiction. Thus L ⊆ S.
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(2) Put
P = lim

e→e+0

f(e), Q = {x ∈ U : ∃ δ > 0, (x)fI ∩ U+(e0, δ) = ∅},

K = {x ∈ U : ∃ n ∈ N, (x)fI ∩ U+(e0,
1
n
) = ∅}.

Obviously, K ⊆ Q ⊆ P . We only need to prove P ⊆ K. Suppose P * K.
Then P −K ̸= ∅. Pick x ∈ P −K. Then x /∈ K.

Claim ∀ δ, (x)fI ∩ U+(e0, δ) is infinite.
In fact, suppose that ∃ δ > 0, (x)fI ∩ U+(e0, δ) is finite. Put

(x)fI∩U+(e0, δ) = {e1, e2, . . . , en}, e∗ = min{e1, e2, . . . , en}, 0 <
1

n0

< e∗−e0.

Then 0 < 1
n0

< δ, (x)fI ∩ U+(e0,
1
n0
) = ∅. So x ∈ K, But x ̸∈ K. This is a

contradiction.

Since ∀ δ > 0, (x)fI ∩ U+(e0, δ) is infinite, we have x ̸∈ P . But x ∈ P .
This is a contradiction. Thus P ⊆ K.

(3) The proof is similar to (1).
(4) The proof is similar to (2).

Example 4.7. Consider Example 3.12, pick e0 =
1
4
, we have

[x1]f = [x2]f = [0,
1

4
) ∪ [

1

4
,
1

2
), [x3]f = [

1

2
, 1), [x4]f = [

3

4
, 1), [x5]f = [0,

1

4
).

(x1)f = (x2)f = [
1

2
, 1), (x3)f = [0,

1

4
)∪[1

4
,
1

2
), (x4)f = [0,

1

4
)∪[1

4
,
3

4
), (x5)f = (

1

4
, 1).

By Theorem 4.6,

lim
e→e+0

f(e) = {x ∈ U : ∀ δ > 0, [x]fI ∩ U+(e0, δ) ̸= ∅} = {x1, x2};

lim
e→e+0

f(e) = {x ∈ U : ∃ δ > 0, (x)fI ∩ U+(e0, δ) = ∅} = {x1, x2};

lim
e→e−0

f(e) = {x ∈ U : ∀ δ > 0, [x]fI ∩ U−(e0, δ) ̸= ∅} = {x1, x2, x5};

lim
e→e−0

f(e) = {x ∈ U : ∃ δ > 0, (x)fI ∩ U−(e0, δ) = ∅} = {x1, x2, x5}.

12

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2018                   doi:10.20944/preprints201808.0010.v1

Peer-reviewed version available at Symmetry 2018, 10, 406; doi:10.3390/sym10090406

http://dx.doi.org/10.20944/preprints201808.0010.v1
http://dx.doi.org/10.3390/sym10090406


Lemma 4.8. Let fI be an it-soft set over U . Then for e0 ∈ I,

(1) lim
e→e+0

f(e) =
∞∩
n=1

∩
e∈(e0,e0+ 1

n
)∩I

∪
β∈(e0,e]

f(β).

(2) lim
e→e+0

f(e) =
∞∪
n=1

∪
e∈(e0,e0+ 1

n
)∩I

∩
β∈(e0,e]

f(β).

(3) lim
e→e−0

f(e) =
∞∩
n=1

∩
e∈(e0− 1

n
,e0)∩I

∪
β∈[e,e0)

f(β).

(4) lim
e→e−0

f(e) =
∞∪
n=1

∪
e∈(e0− 1

n
,e0)∩I

∩
β∈[e,e0)

f(β).

Proof. (1) Denote

S = lim
e→e+0

f(e), T =
∞∩
n=1

∩
e∈(e0,e0+ 1

n
)∩I

∪
β∈(e0,e]

f(β).

To prove S = T , it suffices to show that

x ∈ S ⇔ ∀ n ∈ N, ∀ e ∈ (e0, e0 +
1

n
) ∩ I, ∃ β ∈ (e0, e], x ∈ f(β).

“ ⇒ ”. Let x ∈ S, ∀ n ∈ N, ∀ e ∈ (e0, e0 +
1
n
) ∩ I. Put δ = e − e0.

Then 0 < δ < 1
n
.

Since x ∈ S, by Theorem 4.6(1), we have [x]fI ∩ U+(e0, δ) ̸= ∅. Pick
β ∈ [x]fI ∩ U+(e0, δ). Then β ∈ [x]fI , β ∈ U+(e0, δ).

This implies x ∈ f(β), e0 < β < e0 + δ = e. Thus β ∈ (e0, e].
“ ⇐ ”. ∀ n ∈ N , pick e ∈ (e0, e0 +

1
n
) ∩ I.

By the condition, ∃ β ∈ (e0, e], x ∈ f(β). Then β ∈ U+(e0,
1
n
), β ∈ [x]fI .

Thus ∀ n ∈ N , [x]fI ∩ U+(e0,
1
n
) ̸= ∅.

By Theorem 4.6(1), x ∈ S.
(2) By (1) and Theorem 4.6(2),

x /∈ lim
e→e+0

f(e)

⇐⇒ ∀ n ∈ N, (x)fI ∩ U+(e0,
1
n
) ̸= ∅

⇐⇒ ∀ n ∈ N, {e ∈ I − e0 : x ∈ U − f(e)} ∩ U+(e0,
1
n
) ̸= ∅

⇐⇒ x ∈
∞∩
n=1

∩
e∈(e0,e0+ 1

n
)∩I

∪
β∈(e0,e]

(U − f(β))

⇐⇒ x ∈ U −
∞∪
n=1

∪
e∈(e0,e0+ 1

n
)∩I

∩
β∈(e0,e]

f(β)

13
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⇐⇒ x /∈
∞∪
n=1

∪
e∈(e0,e0+ 1

n
)∩I

∩
β∈(e0,e]

f(β).

Hence lim
e→e+0

f(e) =
∞∪
n=1

∪
e∈(e0,e0+ 1

n
)∩I

∩
β∈(e0,e]

f(β).

(3) The proof is similar to (1).
(4) The proof is similar to (2).

Lemma 4.9. Let fI be an it-soft set over U . Then for e0 ∈ I,

(1)
∞∩
n=1

∩
e∈(e0,e0+ 1

n
)∩I

∪
β∈(e0,e]

f(β) =
∩

e∈(e0,e0+1)∩I

∪
β∈(e0,e]

f(β).

(2)
∞∪
n=1

∪
e∈(e0,e0+ 1

n
)∩I

∩
β∈(e0,e]

f(β) =
∪

e∈(e0,e0+1)∩I

∩
β∈(e0,e]

f(β).

(3)
∞∩
n=1

∩
e∈(e0− 1

n
,e0)∩I

∪
β∈[e,e0)

f(β) =
∩

e∈(e0−1,e0)∩I

∪
β∈[e,e0)

f(β).

(4)
∞∪
n=1

∪
e∈(e0− 1

n
,e0)∩I

∩
β∈[e,e0)

f(β) =
∪

e∈(e0−1,e0)∩I

∩
β∈[e,e0)

f(β).

Proof. (1) Put En =
∩

e∈(e0,e0+ 1
n
)∩I

∪
β∈(e0,e]

f(β). Then {En} ↑. So
∞∩
n=1

En = E1.

Thus
∞∩
n=1

∩
e∈(e0,e0+ 1

n
)∩I

∪
β∈(e0,e]

f(β) =
∩

e∈(e0,e0+1)∩I

∪
β∈(e0,e]

f(β).

(2) Put Fn =
∪

e∈(e0,e0+ 1
n
)∩I

∩
β∈(e0,e]

f(β). Then {Fn} ↓. So
∞∪
n=1

Fn = F1.

Thus
∞∪
n=1

∪
e∈(e0,e0+ 1

n
)∩I

∩
β∈(e0,e]

f(β) =
∪

e∈(e0,e0+1)∩I

∩
β∈(e0,e]

f(β).

(3) The proof is similar to (1).
(4) The proof is similar to (2).

Theorem 4.10. Let fI be an it-soft set over U . Then for e0 ∈ I,
(1) lim

e→e+0

f(e) =
∩

e∈(e0,e0+1)∩I

∪
β∈(e0,e]

f(β); If fI increasing, then

lim
e→e+0

f(e) =
∩

e∈(e0,e0+1)∩I

f(e).
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(2) lim
e→e+0

f(e) =
∪

e∈(e0,e0+1)∩I

∩
β∈(e0,e]

f(β); If fI decreasing, then

lim
e→e+0

f(e) =
∪

e∈(e0,e0+1)∩I

f(e).

(3) lim
e→e−0

f(e) =
∩

e∈(e0−1,e0)∩I

∪
β∈[e,e0)

f(β); If fI decreasing, then

lim
e→e−0

f(e) =
∩

e∈(e0−1,e0)∩I

f(e).

(4) lim
e→e−0

f(e) =
∪

e∈(e0−1,e0)∩I

∩
β∈[e,e0)

f(β); If fI increasing, then

lim
e→e−0

f(e) =
∪

e∈(e0−1,e0)∩I

f(e).

Proof. This holds by Lemmas 4.8 and 4.9.

Definition 4.11. Let fI be an it-soft set over U . Then for e0 ∈ I,
(1) If lim

e→e+0

f(e) = lim
e→e+0

f(e) = S, then fI is called to has the limit S as

e → e+0 (or has the right-limit S as e → e0), which is denoted by lim
e→e+0

f(e),

i.e., lim
e→e+0

f(e) = S;

If lim
e→e+0

f(e) ̸= lim
e→e+0

f(e), then fI is called to has no the limit as e → e+0

(or has no the right-limit as e → e0).
(2) If lim

e→e−0

f(e) = lim
e→e−0

f(e) = S, then fI is called to has the limit S as

e → e−0 (or has the left-limit S as e → e0), which is denoted by lim
e→e−0

f(e),

i.e., lim
e→e−0

f(e) = S;

If lim
e→e+0

f(e) ̸= lim
e→e+0

f(e), then fI is called to has no the limit as e → e+0

(or has no the left-limit as e → e0).
(3) If lim

e→e−0

f(e) = lim
e→e+0

f(e) = S, then fI is called to has the limit S as

e → e0, which is denoted by lim
e→e0

f(e), i.e., lim
e→e0

f(e) = S;

If lim
e→e−0

f(e) ̸= lim
e→e+0

f(e)), then fI is called to has no the limit as e → e0.

15
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Definition 4.12. Let fI be an it-soft set over U . Then for e0 ∈ I,
(1) If lim

e→e−0

f(e) = lim
e→e+0

f(e) = S, then fI is called to has the over-limit

S as e → e0, which is denoted by lim
e→e0

f(e), i.e., lim
e→e0

f(e) = S;

If lim
e→e−0

f(e) ̸= lim
e→e+0

f(e), then fI is called to has no the over-limit as

e → e+0 .
(2) If lim

e→e−0

f(e) = lim
e→e+0

f(e) = S, then fI is called to has the under-limit

S as e → e0, which is denoted by lim
e→e0

f(e), i.e., lim
e→e0

f(e) = S;

If lim
e→e−0

f(e) ̸= lim
e→e+0

f(e), then fI is called to has no the under-limit as

e → e0.
(3) If lim

e→e0

f(e) = lim
e→e0

f(e) = S, then fI is called to has the limit as

e → e0, which is denoted by lim
e→e0

f(e), i.e., lim
e→e0

f(e) = S;

If lim
e→e0

f(e) ̸= lim
e→e0

f(e), then fI is called to has no the limit as e → e0.

Remark 4.13. The limit in Definition 4.11(3) and the limit in Definition
4.12(3) is consistent.

Example 4.14. Let XI be a constant it-soft set over U where X ∈ 2U . Then
for e0 ∈ I, lim

e→e0
X(e) = X.

Obviously, [x]XI
=

{
I − {e0}, x ∈ X
∅, x /∈ X

, (x)XI
=

{
I − {e0}, x ̸∈ X
∅, x ∈ X

.

By Theorem 4.6,

lim
e→e+0

X(e) = {x ∈ U : ∀ δ > 0, [x]Ã ∩ U+(e0, δ) ̸= ∅},

lim
e→e+0

X(e) = {x ∈ U : ∃ δ > 0, (x)Ã ∩ U+(e0, δ) = ∅}.

Then lim
e→e+0

X(e) = X, lim
e→e+0

X(e) = X.

Similarly, lim
e→e−0

X(e) = X, lim
e→e−0

X(e) = X.

Thus lim
e→e0

X(e) = X.

Other types of limits of it-soft sets are proposed by the following definition
and these limits can be discussed in a similar way.
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Definition 4.15. Let (f, (−∞,+∞)) be an it-soft set over U . Define

(1) lim
e→+∞

f(e) = lim
e→0+

f(
1

e
), lim

e→−∞
f(e) = lim

e→0−
f(

1

e
),

lim
e→∞

f(e) = lim
e→0

f(
1

e
).

(2) lim
e→+∞

f(e) = lim
e→0+

f(
1

e
), lim

e→−∞
f(e) = lim

e→0−
f(

1

e
),

lim
e→∞

f(e) = lim
e→0

f(
1

e
).

(3) lim
e→+∞

f(e) = lim
e→0+

f(
1

e
), lim

e→−∞
f(e) = lim

e→0−
f(

1

e
),

lim
e→∞

f(e) = lim
e→0

f(
1

e
).

4.3. Properties of limits of it-soft sets

Proposition 4.16. For the over-right limit, the following properties hold:
(1) If f(e) ⊆ g(e)(∀ e ∈ (e0, e0 + δ0)), then lim

e→e+0

f(e) ⊆ lim
e→e+0

g(e).

(2) lim
e→e+0

(f(e) ∪ g(e)) = lim
e→e+0

f(e) ∪ lim
e→e+0

g(e).

(3) lim
e→e+0

(U − f(e)) = U − lim
e→e+0

f(e).

(4) If lim
e→e+0

f(e) = △ ⊂ B, then ∃ δ > 0,∀ e ∈ (e0, e0 + δ), f(e) ⊂ B.

(5) 1) lim
e→e+0

(f(e)× g(e)) ⊆ lim
e→e+0

f(e)× lim
e→e+0

g(e);

2) lim
e→e+0

f(e)× lim
e→e+0

g(e) =
∩

e∈(e0,e0+1)∩I

∪
β,γ∈(e0,e]

(f(β)× g(γ)).

Proof. (1) Denote

[x]fI = {e ∈ I − {e0} : x ∈ f(e)}, [x]gI = {e ∈ I − {e0} : x ∈ g(e)}.

∀ x ∈ lim
e→e+0

f(e), by Theorem 4.6(1), ∀ δ > 0, [x]fI ∩ U+(e0, δ) ̸= ∅.

Pick eδ ∈ [x]fI ∩ U+(e0, δ). Then x ∈ f(eδ), eδ ∈ U+(e0, δ).
1) If δ ≤ δ0, then eδ ∈ U+(e0, δ0). By the condition, f(eδ) ⊆ g(eδ).

Then x ∈ g(eδ). This implies eδ ∈ (x)fI ∩U+(e0, δ). So (X)fI ∩U+(e0, δ) ̸= ∅.
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2) If δ > δ0, then U+(e0, δ0) ⊆ U+(e0, δ). So (x)fI ∩U+(e0, δ0) ⊆ (X)fI ∩
U+(e0, δ). Since eδ0 ∈ (X)fI ∩ U+(e0, δ0), we have (x)fI ∩ U+(e0, δ) ̸= ∅.

By 1) and 2), ∀ δ > 0, (x)fI ∩ U+(e0, δ) ̸= ∅. By Theorem 4.6(1),
x ∈ lim

e→e+0

g(e).

Thus
lim
e→e+0

f(e) ⊆ lim
e→e+0

g(e).

(2) “ ⊇ ”. This holds by (1).
“ ⊆ ”. Suppose lim

e→e+0

(f(e) ∪ g(e)) ̸⊆ lim
e→e+0

f(e) ∪ lim
e→e+0

g(e). Then

lim
e→e+0

(f(e) ∪ g(e))− lim
e→e+0

f(e) ∪ lim
e→e+0

g(e) ̸= ∅.

Pick x ∈ lim
e→e+0

(f(e) ∪ g(e))− lim
e→e+0

f(e) ∪ lim
e→e+0

g(e). We have

x ∈ lim
e→e+0

(f(e) ∪ g(e)), x /∈ lim
e→e+0

f(e) and x /∈ lim
e→e+0

g(e).

By Theorem 4.6, ∃ δ1, δ2 > 0, [x]f ∩U+(e0, δ1) = ∅, [x]g∩U+(e0, δ2) = ∅.
Pick δ3=min{δ1, δ2}. Then [x]f ∩U+(e0, δ3) = ∅ and [x]g∩U+(e0, δ3) = ∅.

It follows

([x]f ∪ [x]gI ) ∩ U+(e0, δ3) = ([x]f ∩ U+(e0, δ3)) ∪ ([x]g ∩ U+(e0, δ3)) = ∅.

By Remark 4.4, [x]f∪g ∩ U+(e0, δ3) = ∅.
Thus
x /∈ lim

e→e+0

(f ∪ g)(e) = lim
e→e+0

(f(e) ∪ g(e)). This is a contradiction.

(3) ∀ x ∈ lim
e→e+0

(U−f(e)). Then x ∈ lim
e→e+0

f c(e). By Theorem 4.6, ∀ δ > 0,

[x]fc ∩ U+(e0, δ) ̸= ∅. By Remark 4.4, (x)f ∩ U+(e0, δ) ̸= ∅. Thus

x ∈ U − lim
e→e+0

f(e).

Conversely, the proof is similar.
(4) Suppose that ∀ δ > 0, ∃ e ∈ (e0, e0 + δ), f(e) * B or f(e) = B.
1) If f(e) * B, then f(e)−B ̸= ∅. Pick x ∈ f(e)−B.
We have

x ∈ f(e), x /∈ B, e ∈ [x]fI .

Since e ∈ (e0, e0 + δ). Then [x]fI ∩ (e0, e0 + δ) ̸= ∅. So x ∈ lim
e→e+0

f(e).
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Thus x ∈ B. This is a contradiction.
2) If f(e) = B, then △−B = ∅. So ∃ x ∈ B, x /∈ △.
Since x ∈ f(e), we have x ∈ [x]fI , [x]fI ∩ (e0, e0 + δ) ̸= ∅. So

x ∈ lim
e→e+0

f(e) = △.

This is a contradiction.
(5) 1) Put

Hf×g(e) =
∪

β∈(e0,e]

(f(β)× g(β)).

By Theorem 4.10(1),

lim
e→e+0

(f(e)× g(e)) =
∩

e∈(e0,e0+1)∩I

Hf×g(e).

∀ (x, y) ∈ lim
e→e+0

(f(e)× g(e)), we have (x, y) ∈
∩

e∈(e0,e0+1)∩I
Hf×g(e). Since

Hf×g(e) =
∪

β∈(e0,e]

(f(β)× g(β)),

we have ∀ e ∈ (e0, e0+1)∩ I, ∃ βe ∈ (e0, e], (x, y) ∈ f(βe)× g(βe). It follows
x ∈ f(βe), y ∈ g(βe). Then x ∈ Hf (e) and y ∈ Hg(e). So

x ∈
∩

e∈(e0,e0+1)∩I

Hf (e) = lim
e→e+0

f(e), y ∈
∩

e∈(e0,e0+1)∩I

Hg(e) = lim
e→e+0

g(e).

Thus (x, y) ∈ lim
e→e+0

f(e)× lim
e→e+0

g(e).

Thus
lim
e→e+0

(f(e)× g(e)) ⊆ lim
e→e+0

f(e)× lim
e→e+0

g(e).

2) ∀ (x, y) ∈ lim
e→e+0

f(e)× lim
e→e+0

g(e), we have

x ∈ lim
e→e+0

f(e) =
∩

e∈(e0,e0+1)∩I

∪
β∈(e0,e]

f(β), y ∈ lim
e→e+0

g(e) =
∩

e∈(e0,e0+1)∩I

∪
β∈(e0,e]

g(β).
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Then ∀ e ∈ (e0, e0 + 1) ∩ I, ∃ βe, γe ∈ (e0, e], x ∈ f(βe), y ∈ g(γe).
Then (x, y) ∈ f(βe)× g(γe). So

(x, y) ∈
∩

e∈(e0,e0+1)∩I

∪
β,γ∈(e0,e]

(f(β)× g(γ)).

Conversely, the proof is similar.
Thus

lim
e→e+0

f(e)× lim
e→e+0

g(e) =
∩

e∈(e0,e0+1)∩I

∪
β,γ∈(e0,e]

(f(β)× g(γ)).

Proposition 4.17. For the under-right limit, the following properties hold.
(1) If f(e) ⊆ g(e) (∀ e ∈ (e0, e0 + δ0)), then lim

e→e+0

f(e) ⊆ lim
e→e+0

g(e).

(2) lim
e→e+0

(f(e) ∩ g(e)) = lim
e→e+0

f(e) ∩ lim
e→e+0

g(e).

(3) lim
e→e+0

(U − f(e)) = U − lim
e→e+0

f(e).

(4) If lim
e→e+0

f(e) = △ ⊃ A, then ∃ δ > 0, ∀ e ∈ (e0, e0 + δ), f(e) ⊃ A.

(5) lim
e→e+0

(f(e)× g(e)) = lim
e→e+0

f(e)× lim
e→e+0

g(e).

Proof. (1) The proof is similar to Proposition 4.16(1).
(2) “ ⊆ ”. This holds by (1).
“ ⊇ ”. Suppose lim

e→e+0

f(e)∩ lim
e→e+0

g(e) ̸⊆ lim
e→e+0

(f(e)∩g(e)). Then lim
e→e+0

f(e)∩

lim
e→e+0

g(e)− lim
e→e+0

(f(e)∩g(e)) ̸= ∅. Pick x ∈ lim
e→e+0

f(e)∩ lim
e→e+0

g(e)− lim
e→e+0

(f(e)∩

g(e)). We have
x ∈ lim

e→e+0

f(e), x ∈ lim
e→e+0

g(e) and x /∈ lim
e→e+0

(f(e) ∩ g(e)).

By Theorem 4.6,

∃ δ1, δ2 > 0, (x)f ∩ U+(e0, δ1) = ∅, (x)g ∩ U+(e0, δ2) = ∅.

Pick δ3=min{δ1, δ2}. Then (x)f ∩ U+(e0, δ3) = ∅, (x)g ∩ U+(e0, δ3) = ∅.
It follows

((x)f ∪ (x)gI ) ∩ U+(e0, δ3) = ((x)f ∩ U+(e0, δ3)) ∪ ((x)g ∩ U+(e0, δ3)) = ∅.
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By Remark 4.4 , (x)f∩g ∩ U+(e0, δ3) = ∅.
Thus
x ∈ lim

e→e+0

(f ∩ g)(e) = lim
e→e+0

(f(e) ∩ g(e)). This is a contradiction.

(3) ∀ x ∈ lim
e→e+0

(U−f(e)). Then x ∈ lim
e→e+0

f c(e). By Theorem 4.6, ∃ δ > 0,

(x)fc ∩ U+(e0, δ) = ∅. By Remark 4.4, [x]f ∩ U+(e0, δ) = ∅.
Thus x ∈ U − lim

e→e+0

f(e).

Conversely, the proof is similar.
(4) By Proposition 4.16(3),

lim
e→e+0

(U − f(e)) = U − lim
e→e+0

f(e).

Since lim
e→e+0

f(e) = △ ⊃ A, we have lim
e→e+0

(U − f(e)) ⊂ U − A.

By Proposition 4.16(4), ∃ δ > 0, ∀ e ∈ (e0, e0 + δ), U − f(e) ⊂ U − A.
Thus

∃ δ > 0,∀ e ∈ (e0, e0 + δ), f(e) ⊃ A.

(5) ∀ (x, y) ∈ lim
e→e+0

(f(e)× g(e)), by Theorem 4.10(2),

(x, y) ∈
∪

e∈(e0,e0+1)∩I

∩
β∈(e0,e]

(f(β)× g(β)).

Then ∃ e ∈ (e0, e0 + 1) ∩ I, ∀ β ∈ (e0, e], (x, y) ∈ f(β)× g(β). It follows
x ∈ f(β), y ∈ g(β). Then

x ∈
∪

e∈(e0,e0+1)∩I

∩
β∈(e0,e]

f(β), y ∈
∪

e∈(e0,e0+1)∩I

∩
β∈(e0,e]

g(β).

By Theorem 4.10(2), x ∈ lim
e→e+0

f(e), y ∈ lim
e→e+0

g(e). Thus (x, y) ∈ lim
e→e+0

f(e)×

lim
e→e+0

g(e).

∀ (x, y) ∈ lim
e→e+0

f(e)× lim
e→e+0

g(e), By Theorem 4.10(2),

x ∈ lim
e→e+0

f(e) =
∪

e∈(e0,e0+1)∩I

∩
β∈(e0,e]

f(β), y ∈ lim
e→e+0

g(e) =
∪

e∈(e0,e0+1)∩I

∩
β∈(e0,e]

g(β).
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Then ∃ e1, e2 ∈ (e0, e0 + 1) ∩ I, ∀ β ∈ (e0, e1], ∀ γ ∈ (e0, e2], x ∈ f(β),
y ∈ g(γ).

Put e∗ = min{e1, e2}. Then e∗ ∈ (e0, e0+1)∩I, (e0, e∗] ⊆ (e0, e1]∩(e0, e2].
Then ∀ β ∈ (e0, e

∗], x ∈ f(β), y ∈ g(β). It follows (x, y) ∈ f(β)× g(β). So

(x, y) ∈
∪

e∈(e0,e0+1)∩I

∩
β,γ∈(e0,e]

(f(β)× g(β)).

By Theorem 4.10(2), (x, y) ∈ lim
e→e+0

(f(e)× g(e)).

Thus
lim
e→e+0

(f(e)× g(e)) = lim
e→e+0

f(e)× lim
e→e+0

g(e).

Proposition 4.18. For the over-left limit, the following properties hold:
(1) If f(e) ⊆ g(e) (∀ e ∈ (e0 − δ0, e0)), then lim

e→e−0

f(e) ⊆ lim
e→e−0

g(e).

(2) lim
e→e−0

(f(e) ∪ g(e)) = lim
e→e−0

f(e) ∪ lim
e→e−0

g(e).

(3) lim
e→e−0

(U − f(e)) = U − lim
e→e−0

f(e).

(4) If lim
e→e−0

f(e) = △ ⊂ B, then ∃ δ > 0, ∀ e ∈ (e0 − δ, e0), f(e) ⊂ B.

(5) 1) lim
e→e−0

(f(e)× g(e)) ⊆ lim
e→e−0

f(e)× lim
e→e−0

g(e).

2) lim
e→e−0

f(e)× lim
e→e−0

g(e) =
∩

e∈(e0−1,e0)∩I

∪
β,γ∈[e,e0)

(f(β)× g(γ)).

Proof. The proof is similar to Proposition 4.16.

Proposition 4.19. For the under-left limit, the following properties hold:
(1) If f(e) ⊆ g(e) (∀ e ∈ (e0 − δ0, e0)), then lim

e→e−0

f(e) ⊆ lim
e→e−0

g(e).

(2) lim
e→e−0

(f(e) ∩ g(e)) = lim
e→e−0

f(e) ∩ lim
e→e−0

g(e).

(3) lim
e→e−0

(U − f(e)) = U − lim
e→e−0

f(e).

(4) If lim
e→e−0

f(e) = △ ⊃ A, then ∃ δ > 0,∀ e ∈ (e0 − δ, e0), f(e) ⊃ A.

(5) lim
e→e−0

(f(e)× g(e)) = lim
e→e−0

f(e)× lim
e→e−0

g(e).
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Proof. The proof is similar to Proposition 4.17.

Corollary 4.20. Let fI be an it-soft set over U and A ∈ 2U . For e0 ∈ I,
(1) If f(e) ⊆ A or f(e) ⊂ A (∀ e ∈ (e0, e0 + δ0)), then

lim
e→e+0

f(e) ⊆ A, lim
e→e+0

f(e) ⊆ A.

(2) If f(e) ⊆ A or f(e) ⊂ A (∀ e ∈ (e0 − δ0, e0)), then

lim
e→e−0

f(e) ⊆ A, lim
e→e−0

f(e) ⊆ A.

Proof. This holds by Propositions 4.16, 4.17, 4.18, 4.19.

Corollary 4.21. Let fI be an it-soft set over U and A ∈ 2U . For e0 ∈ I,
(1) If f(e) ⊇ A or f(e) ⊃ A (∀ e ∈ (e0, e0 + δ0)), then

lim
e→e+0

f(e) ⊇ A, lim
e→e+0

f(e) ⊇ A.

(2) If f(e) ⊇ A or f(e) ⊃ A (∀ e ∈ (e0 − δ0, e0)), then

lim
e→e−0

f(e) ⊇ A, lim
e→e−0

f(e) ⊇ A.

Proof. This holds by Propositions 4.16, 4.17, 4.18, 4.19.

Theorem 4.22. For the over limit, the following properties hold:
(1) If f(e) ⊆ g(e) (∀ e ∈ U0(e0, δ0)), then lim

e→e0
f(e) ⊆ lim

e→e0
g(e).

(2) lim
e→e0

(f(e) ∪ g(e)) = lim
e→e0

f(e) ∪ lim
e→e0

g(e).

(3) lim
e→e0

(U − f(e)) = U − lim
e→e0

f(e).

(4) If lim
e→e0

f(e) = △ ⊂ B, then ∃ δ > 0,∀ e ∈ U0(e0, δ), f(e) ⊂ B.

(5) lim
e→e0

(f(e)× g(e)) ⊆ lim
e→e0

f(e)× lim
e→e0

g(e).

Proof. This holds by Propositions 4.16 and 4.18.

Theorem 4.23. For the under limit, the following properties hold:
(1) If f(e) ⊆ g(e) (∀ e ∈ U0(e0, δ0)), then lim

e→e0

f(e) ⊆ lim
e→e0

g(e).
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(2) lim
e→e0

(f(e) ∩ g(e)) = lim
e→e0

f(e) ∩ lim
e→e0

g(e).

(3) lim
e→e0

(U − f(e)) = U − lim
e→e0

f(e).

(4) If lim
e→e0

f(e) = △ ⊃ A, then ∃ δ > 0,∀ e ∈ U0(e0, δ), f(e) ⊃ A.

(5) lim
e→e0

(f(e)× g(e)) = lim
e→e0

f(e)× lim
e→e0

g(e).

Proof. This holds by Propositions 4.17 and 4.19.

Lemma 4.24. Let fI be an it-soft set over U . For e0 ∈ I, denote
W = {x ∈ U : ∀ δ > 0, [x]fI ∩ U(e0, δ) ̸= ∅},
S = {x ∈ U : ∀ δ > 0, [x]fI ∩ U+(e0, δ) ̸= ∅},
T = {x ∈ U : ∀ δ > 0, [x]fI ∩ U−(e0, δ) ̸= ∅}.

Then
W = S ∪ T.

Proof. Suppose W * S ∪ T . Then W − S ∪ T ̸= ∅.
Pick x ∈ W − S ∪ T . Then x ̸∈ S, x ̸∈ T . So ∃ δ1, δ2 > 0,

[x]fI ∩ U+(e0, δ1) = ∅, [x]fI ∩ U−(e0, δ2) = ∅.

Put δ∗ = min{δ1, δ2}. Then δ∗ > 0, [x]fI ∩ U+(e0, δ
∗) = ∅, [x]fI ∩

U−(e0, δ
∗) = ∅. It follows [x]fI ∩ U(e0, δ

∗) = ∅. Then x /∈ W . This is a
contradiction.

Thus W ⊆ S ∪ T .
On the other hand, suppose S ∪ T * W , we have S ∪ T −W ̸= ∅.
Pick x ∈ S∪T−W . Then x ̸∈ W . So ∃ δ∗ > 0, [x]fI ∩U(e0, δ

∗) = ∅. This
implies [x]fI ∩U+(e0, δ

∗) = ∅, [x]fI ∩U−(e0, δ
∗) = ∅. Then x ̸∈ S, x ̸∈ T . So

x ̸∈ S ∪ T . This is a contradiction.
Thus S ∪ T ⊆ W .
Hence W = S ∪ T * W .

Theorem 4.25. Let fI be an it-soft set over U . Then for e0 ∈ I,
(1) {x ∈ U : ∀ δ > 0, [x]fI ∩ U(e0, δ) is infinite}
= {x ∈ U : ∀ δ > 0, [x]fI ∩ U(e0, δ) ̸= ∅}
= lim

e→e+0

f(e) ∪ lim
e→e−0

f(e).

(2) {x ∈ U : ∃ δ > 0, (x)fI ∩ U(e0, δ) is finite}
= {x ∈ U : ∃ δ > 0, (x)fI ∩ U+(e0, δ) = ∅}
= lim

e→e+0

f(e) ∩ lim
e→e−0

f(e).

24

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2018                   doi:10.20944/preprints201808.0010.v1

Peer-reviewed version available at Symmetry 2018, 10, 406; doi:10.3390/sym10090406

http://dx.doi.org/10.20944/preprints201808.0010.v1
http://dx.doi.org/10.3390/sym10090406


Proof. (1) Similar to the proof of Theorem 4.6(1), we have
{x ∈ U : ∀ δ > 0, [x]fI ∩ U+(e0, δ) ̸= ∅}

= {x ∈ U : ∀ δ > 0, [x]fI ∩ U+(e0, δ) is infinite}.
By Lemma 4.24,

{x ∈ U : ∀ δ > 0, [x]fI ∩ U(e0, δ) ̸= ∅}
= lim

e→e+0

f(e) ∪ lim
e→e−0

f(e).

(2) Similar to the proof of Theorem 4.6(2), we have
{x ∈ U : ∃ δ > 0, (x)fI ∩ U+(e0, δ) = ∅}

= {x ∈ U : ∃ δ > 0, (x)fI ∩ U+(e0, δ) is finite}.
By Proposition 4.16(3), lim

e→e+0

f(e) = U − lim
e→e+0

(U − f(e)).

By Proposition 4.18(3), lim
e→e−0

f(e) = U − lim
e→e−0

(U − f(e)).

By (1),
lim
e→e+0

f(e) ∩ lim
e→e−0

f(e)

= [U − lim
e→e+0

(U − f(e))] ∩ [U − lim
e→e−0

(U − f(e))]

= U − [ lim
e→e+0

(U − f(e)) ∪ lim
e→e−0

(U − f(e))]

= U − {x ∈ U : ∀ δ > 0, (x)fI ∩ U(e0, δ) ̸= ∅}
= {x ∈ U : ∃ δ > 0, (x)fI ∩ U(e0, δ) = ∅}.

Theorem 4.26. Let fI be an it-soft set over U . Then for e0 ∈ I,
(1) {x ∈ U : ∀ δ > 0, [x]fI ∩ U(e0, δ) is infinite}
= {x ∈ U : ∀ δ > 0, [x]fI ∩ U(e0, δ) ̸= ∅}
= lim

e→e0
f(e).

(2) {x ∈ U : ∃ δ > 0, (x)fI ∩ U+(e0, δ) is finite}
= {x ∈ U : ∃ δ > 0, (x)fI ∩ U+(e0, δ) = ∅}
= lim

e→e0

f(e).

Proof. This holds by Theorem 4.25.

Theorem 4.27. For the right limit, the following properties hold:
(1) If f(e) ⊆ g(e) (∀ e ∈ (e0, e0 + δ0)), then lim

e→e+0

f(e) ⊆ lim
e→e+0

g(e).

(2) If lim
e→e+0

f(e) = △, A ⊂ △ ⊂ B, then ∃ δ > 0,∀ e ∈ (e0, e0 + δ),

A ⊂ f(e) ⊂ B.
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(3) lim
e→e+0

(f(e)× g(e)) ⊆ lim
e→e+0

f(e)× lim
e→e+0

g(e).

Proof. This holds by Propositions 4.16 and 4.17.

Theorem 4.28. For the left limit, the following properties hold:
(1) If f(e) ⊆ g(e) (∀ e ∈ (e0 − δ0, e0)), then lim

e→e−0

f(e) ⊆ lim
e→e−0

g(e).

(2) If lim
e→e−0

f(e) = △, A ⊂ △ ⊂ B, then ∃ δ > 0,∀ e ∈ (e0 − δ, e0),

A ⊂ f(e) ⊂ B.
(3) lim

e→e−0

(f(e)× g(e)) ⊆ lim
e→e−0

f(e)× lim
e→e−0

g(e).

Proof. This holds by Propositions 4.18 and 4.19.

Theorem 4.29. For the limit, the following properties hold:
(1) If f(e) ⊆ g(e) (∀ e ∈ U0(e0, δ0)), then lim

e→e0
f(e) ⊆ lim

e→e0
g(e).

(2) If lim
e→e−0

f(e) = △, A ⊂ △ ⊂ B, then ∃ δ > 0,∀ e ∈ U0(e0, δ0),

A ⊂ f(e) ⊂ B.
(3) lim

e→e0
(f(e)× g(e)) ⊆ lim

e→e0
f(e)× lim

e→e0
g(e).

Proof. This holds by Theorems 4.27 and 4.28.

5. Continuity of it-soft sets

5.1. Point-wise continuity of it-soft sets

Definition 5.1. Let fI be an it-soft set over U . Then for e0 ∈ I,
(1) fI is called over-right continuous at e0, if lim

e→e+0

f(e) = f(e0).

(2) fI is called under-right continuous at e0, if lim
e→e+0

f(e) = f(e0).

(3) fI is called over-left continuous at e0, if lim
e→e−0

f(e) = f(e0).

(4) fI is called under-left continuous at e0, if lim
e→e−0

f(e) = f(e0).

Definition 5.2. Let fI be an it-soft set over U . Then for e0 ∈ I,
(1) fI is called over-continuous at e0, if fI is both over-left and over-right

continuous at e0.
(2) fI is called under-continuous at e0, if fI is both under-left and under-

right continuous at e0.
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(3) fI is called continuous at e0, if fI is both over-continuous and under-
continuous at e0.

Definition 5.3. Let fI be an it-soft set over U . Then for e0 ∈ I,
(1) fI is called right-continuous at e0, if fI is both over-right and under-

right continuous at e0.
(2) fI is called left-continuous at e0, if fI is both over-left and under-left

continuous at e0.
(3) fI is called continuous at e0, if fI is both left-continuous and right-

continuous at e0.

Remark 5.4. The point-wise continuity in Definition 5.2(3) and the point-
wise continuity in Definition 5.3(3) is consistent.

Denote

Cor(e0) = {fI : fI is over-right continuous at e0},

Cur(e0) = {fI : fI is under-right continuous at e0},

Col(e0) = {fI : fI is over-left continuous at e0},

Cul(e0) = {fI : fI is under-left continuous at e0};

Co(e0) = {fI : fI is over-continuous at e0}, Cu(e0) = {fI : fI is under-continuous at e0};

C l(e0) = {fI : fI is left-continuous at e0}, Cr(e0) = {fI : fI is right-continuous at e0};

C(e0 = {fI : fI is continuous at e0}.

Proposition 5.5. (1) Co(e0) = Col(e0) ∩ Cor(e0).
(2) Cu(e0) = Cul(e0) ∩ Cur(e0).
(3) C l(e0) = Col(e0) ∩ Cul(e0).
(4) Cr(e0) = Cor(e0) ∩ Cur(e0).
(5) C(e0) = Co(e0) ∩ Cu(e0) = C l(e0) ∩ Cr(e0).

Proof. This is obvious.

Proposition 5.6. Let fI and gI be two it-soft sets over U . Then for e0 ∈ I,
(1) If fI , gI ∈ Cor(e0), then fI ∪̃ gI ∈ Cor(e0).
(2) If fI ∈ Cor(e0), then f c

I ∈ Cur(e0).

Proof. This holds by Proposition 4.16.
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Proposition 5.7. Let fI and gI be two it-soft sets over U . Then for e0 ∈ I,
(1) If fI , gI ∈ Cur(e0), then fI ∩̃ gI ∈ Cur(e0).
(2) If fI ∈ Cur(e0), then f c

I ∈ Cor(e0).
(3) If fI , gI ∈ Cur(e0), then fI ×̃ gI ∈ Cur(e0).

Proof. This holds by Proposition 4.17.

Proposition 5.8. Let fI and gI be two it-soft sets over U . Then for e0 ∈ I,
(1) If fI , gI ∈ Col(e0), then fI ∪̃ gI ∈ Col(e0).
(2) If fI ∈ Col(e0), then f c

I ∈ Cul(e0).

Proof. This holds by Proposition 4.18.

Proposition 5.9. Let fI and gI be two it-soft sets over U . Then for e0 ∈ I,
(1) If fI , gI ∈ Cul(e0), then fI ∩̃ gI ∈ Cul(e0).
(2) If fI ∈ Cul(e0), then f c

I ∈ Col(e0).
(3) If fI , gI ∈ Cul(e0), then fI ×̃ gI ∈ Cul(e0).

Proof. This holds by Proposition 4.19.

Theorem 5.10. Let fI and gI be two it-soft sets over U . Then for e0 ∈ I,
(1) If fI , gI ∈ Co(e0), then fI ∪̃ gI ∈ Co(e0).
(2) If fI ∈ Co(e0), then f c

I ∈ Cu(e0).

Proof. This holds by Propositions 5.6 and 5.8.

Theorem 5.11. Let fI and gI be two it-soft sets over U . Then for e0 ∈ I,
(1) If fI , gI ∈ Cu(e0), then fI ∩̃ gI ∈ Cu(e0).
(2) If fI ∈ Cu(e0), then f c

I ∈ Co(e0).
(3) If fI , gI ∈ Cu(e0), then fI ×̃ gI ∈ Cu(e0).

Proof. This holds by Propositions 5.7 and 5.9.

5.2. Continuous it-soft sets

Definition 5.12. Let fI be an it-soft set over U .
(1) fI is called over-continuous, if ∀ e0 ∈ I, fI is over-continuous at e0.
(2) fI is called under-continuous, if ∀ e0 ∈ I, fI under-continuous at e0.
(3) fI is called left-continuous, if ∀ e0 ∈ I, fI is left-continuous at e0.
(4) fI is called right-continuous, if ∀ e0 ∈ I, fI right-continuous at e0.
(5) fI is called continuous, if ∀ e0 ∈ I, fI continuous at e0.
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Denote
Cor(e0) = {fI : fI is over-right continuous},

Cur(e0) = {fI : fI is under-right continuous},

Col(e0) = {fI : fI is over-left continuous},

Cul(e0) = {fI : fI is under-left continuous};

Co(I) = {fI : fI is over-continuous}, Cu(I) = {fI : fI is under-continuous};

C l(I) = {fI : fI is left-continuous}, Cr(I) = {fI : fI is right-continuous };

C(I) = {fI : fI is continuous}.

Proposition 5.13. (1) Co(I) = Col(I) ∩ Cor(I).
(2) Cu(I) = Cul(I) ∩ Cur(I).
(3) C l(I) = Col(I) ∩ Cul(I).
(4) Cr(I) = Cor(I) ∩ Cur(I).
(5) C(I) = Co(I) ∩ Cu(I) = C l(I) ∩ Cr(I).

Proof. This is obvious.

Theorem 5.14. Let fI and gJ be two it-soft sets over U .
(1) If fI ∈ Co(I), gJ ∈ Co(J), then fI ∪̃ gI ∈ Co(I ∪ J).
(2) If fI ∈ Co(I), then f c

I ∈ Cu(I).

Proof. This holds by Theorem 5.10.

Theorem 5.15. Let fI and gJ be two it-soft sets over U .
(1) If fI ∈ Cu(I), gJ ∈ Cu(J) then fI ∩̃ gJ ∈ Cu(I ∩ J).
(2) If fI ∈ Cu(I), then f c

I ∈ Co(I).

Proof. This holds by Theorem 5.11.

Theorem 5.16. Let (f, [a, b]) be an it-soft set over U .
(1) If (f, [a, b]) is strong keeping union or increasing, then (f, [a, b]) has

the maximum value.
(2) If (f, [a, b]) is strong keeping intersection or decreasing, then (f, [a, b])

has the minimum value.

Corollary 5.17. If (f, [a, b]) is a perfect it-soft set over U , then (f, [a, b])
has the maximum and minimum value.

29

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2018                   doi:10.20944/preprints201808.0010.v1

Peer-reviewed version available at Symmetry 2018, 10, 406; doi:10.3390/sym10090406

http://dx.doi.org/10.20944/preprints201808.0010.v1
http://dx.doi.org/10.3390/sym10090406


Proof. This is obvious.

Lemma 5.18. Let fI ∈ Co(e0). If lim
n→∞

en = e0, then lim
n→∞

f(en) ⊆ f(e0).

Proof. Since lim
n→∞

f(en) =
∞∩
n=1

∞∪
k=n

f(ek),

we only need to prove that

if ∀ n ∈ N, ∃ k ≥ n, x ∈ f(ek), then x ∈ f(e0).

∀ δ, ∃ n ∈ N1,
1
n1

< δ. It follows U(e0,
1
n1
) ⊂ U(e0, δ).

Since lim
n→∞

en = e0, ∃ n ∈ N2, when n > n2 we have en ∈ U(e0,
1
n1
).

Put n3 = n1 + n2. Then for n3, ∃ k ≥ n3, x ∈ f(ek). So ek ∈ [x]fI .
k ≥ n3 > n2 implies

ek ∈ U(e0,
1

n1

) ⊂ U(e0, δ).

Then ek ∈ [x]fI ∩ U(e0, δ). So ∀ δ, [x]fI ∩ U(e0, δ) ̸= ∅.
By Theorem 4.25, x ∈ lim

e→e0
f(e).

Since f ∈ Co(e0), we have f(e0) = lim
e→e0

f(e).

Hence x ∈ f(e0).

Theorem 5.19. Let (f, [a, b]) ∈ C([a, b]).
(1) Suppose f(a) ⊂ f(b), then ∀ µ : f(a) ⊆ µ ⊆ f(b), ∃ e0 ∈ [a, b],

f(e0) = µ. Moreover, if f(a) ⊂ µ ⊂ f(b), then ∃ e0 ∈ (a, b), f(e0) = µ.
(2) Suppose f(b) ⊂ f(a), then ∀ µ : f(b) ⊆ µ ⊆ f(a), ∃ e0 ∈ [a, b],

f(e0) = µ. Moreover, if f(b) ⊂ µ ⊂ f(a), then ∃ e0 ∈ (a, b), f(e0) = µ.

Proof. (1) It suffices to show that

if f(a) ⊂ µ ⊂ f(b), then ∃ e0 ∈ (a, b), f(e0) = µ.

Denote E = {e ∈ [a, b] : f(e) ⊃ µ}. Put e0 = inf E. Then

∃ {en : n ∈ N} ⊆ E − {e0}, lim
n→∞

en = e0.

Since ∀ n ∈ N, f(en) ⊃ µ, we have lim
n→∞

f(en) =
∞∩
n=1

∞∪
k=n

f(ek) ⊇ µ. Since

f ∈ Co(e0), by Lemma 5.18,

f(e0) ⊇ lim
n→∞

f(en) ⊇ µ.
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Note that f(a) ⊂ µ. Then e0 ̸= a.
We assert e0 ̸= b. Suppose e0 = b. Since

µ ⊂ f(b) = lim
e→b−

f(e) = lim
e→b−

f(e),

by Proposition 4.19(4), then

∃ δ, ∀ e ∈ (b− δ, b), f(e) ⊃ µ.

Put e1 ∈ (b − δ, b). Then f(e1) ⊃ µ. We have e1 ∈ E. This implies
e1 ≥ e0. But e1 < b = e0. This is a contradiction.

Thus e0 ∈ (a, b).
We claim f(e0) ̸⊃ µ. Suppose f(e0) ⊃ µ. Since f ∈ Cu(e0), we have

µ ⊂ f(e0) = lim
e→e0

f(e) = lim
e→e0

f(e).

By Theorem 4.23(4),

∃ δ, ∀ e ∈ U0(e0, δ), f(e) ⊃ µ.

Put e1 ∈ (e0 − δ, e0). Then f(e1) ⊃ µ. We have e1 ∈ E. This implies
e1 ≥ e0. This is a contradiction.

Note that f(e0) ⊇ µ. Thus f(e0) = µ.
(2) The proof is similar to (1).

6. An application for rough sets

Definition 6.1. Let (U,R, P ) be a probabilistic approximate space. For e ∈
[0, 1], X ∈ 2U , denote

fX(e) = PIe(X), gX(e) = PIe(X).

Then (fX , [0, 1]) and (gX , [0, 1]) are two it-soft sets over U , which are called
the it-soft sets induced by the lower and upper approximations of X, respec-
tively.
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Theorem 6.2. Let (U,R, P ) be a probabilistic approximate space. Then for
e0 ∈ (0, 1), X ∈ 2U ,

(1) 1) lim
e→e+0

fX(e) =
∩

e∈(e0,1]

∪
β∈(e0,e]

fX(β);

2) lim
e→e−0

fX(e) =
∩

e∈[0,e0)
fX(e) = fX(e0);

3) lim
e→e+0

fX(e) =
∪

e∈(e0,1]
fX(e) = gX(e0);

4) lim
e→e−0

fX(e) =
∪

e∈[0,e0)

∩
β∈[e,e0)

fX(β).

(2) 1) lim
e→e+0

gX(e) =
∩

e∈(e0,1]

∪
β∈(e0,e]

gX(β);

2) lim
e→e−0

gX(e) =
∩

e∈[0,e0)
gX(e) = fX(e0);

3) lim
e→e+0

gX(e) =
∪

e∈(e0,1]
gX(e) = gX(e0);

4) lim
e→e−0

gX(e) =
∪

e∈[0,e0)

∩
β∈[e,e0)

gX(β).

(3) 1) fU−X(e) = U − gX(1− e),
2) gU−X(e) = U − fX(1− e).

Proof. This holds by Theorems 2.6, 2.7 and 4.10.

Corollary 6.3. Let (U,R, P ) be a probabilistic approximate space. Then for
X ∈ 2U ,

(fX , [0, 1]) ∈ Col((0, 1)), (gX , [0, 1]) ∈ Cur((0, 1)).

Proof. This holds by Theorems 6.2.

Example 6.4. Let U = {xi : 1 ≤ i ≤ 20}, P (X) = |X|
|U | (X ∈ 2U), U/R =

{X1, X2, X3, X4, X5, X6} where

X1 = {x1, x2, x3, x4, x5}, X2 = {x6, x7, x8}, X3 = {x9, x10, x11, x12},
X4 = {x13, x14}, X5 = {x15, x16, x17, x18}, X6 = {x19, x20}.
Put

X∗ = {x6, x7, x8, x13, x17}.

By Example 4.9 in [24] or Example 8.1 in [25],

fX∗(0.5) = X2 ∪X4, gX∗(0.5) = X2.
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By Theorem 2.7,

lim
e→0.5+

fX∗(e) = gX∗(0.5) ̸= fX∗(0.5).

By Theorem 2.7,

lim
e→0.5−

gX∗(e) = fX∗(e0) ̸= gX∗(0.5).

Thus
(fX∗ , [0, 1]) ̸∈ Cur(0.5), (gX∗ , [0, 1]) ̸∈ Col(0.5).

This example illustrates that

(fX∗ , [0, 1]) ̸∈ Cur((0, 1)), (gX∗ , [0, 1]) ̸∈ Col((0, 1)).

Example 6.5. Let U = {xi : 1 ≤ i ≤ 10}, P (X) = |X|
|U | (X ∈ 2U), U/R =

{X1, X2, X3, X4} where

X1 = {x1, x3}, X2 = {x2, x4, x5, x7}, X3 = {x6, x8}, X4 = {x9, x10}.
(1) Put X∗ = {x1, x5, x6, x8}. Then

fX∗(e) =


X1 ∪X2 ∪X3, if e ∈ (0, 1

4
],

X1 ∪X3, if e ∈ (1
4
, 1
2
],

X3, if e ∈ (1
2
, 1];

gX∗(e) =


X1 ∪X2 ∪X3, if e ∈ [0, 1

4
),

X1 ∪X3, if e ∈ [1
4
, 1
2
),

X3, if e ∈ [1
2
, 1).

So lim
e→0.5+

fX∗(e) =
∩

e∈(0.5,1]

∪
β∈(0.5,e]

fX∗(β) = X3 ̸= X1 ∪X3 = fX∗(0.5),

lim
e→0.5−

gX(e) =
∪

e∈[0,0.5)

∩
β∈[e,0.5)

gX(β) = X1 ∪X3 ̸= X3 = gX∗(0.5).

Thus
(fX∗ , [0, 1]) ̸∈ Cor(0.5), (gX∗ , [0, 1]) ̸∈ Cul(0.5).

(2) Put Y ∗ = {x2, x9, x10}. Then

fY ∗(e) =

{
X2 ∪X4, if e ∈ (0, 1

4
],

X4, if e ∈ (1
4
, 1].
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So lim
e→0.5−

fY ∗(e) =
∪

e∈[0,0.5)

∩
β∈[e,0.5)

fY ∗(β) = X2 ∪X4 ̸= X4 = fY ∗(0.5).

Thus
(fY ∗ , [0, 1]) ̸∈ Cul(0.5).

(3) Put
Z∗ = U − Y ∗.

By Proposition 4.16(3) and Theorem 2.7,

lim
e→0.5+

gZ∗(e) = lim
e→0.5+

(U − fY ∗(1− e))

= U − lim
e→0.5+

fY ∗(1− e)

= U − lim
1−e→0.5−

fY ∗(1− e).

Note that lim
e→0.5−

fY ∗(e) ̸= fY ∗(0.5). Then by Theorem 2.7,

lim
e→0.5+

gZ∗(e) ̸= U − fY ∗(0.5) = gZ∗(0.5).

Thus
(gZ∗ , [0, 1]) ̸∈ Cor(0.5).

This example illustrates that

(fX∗ , [0, 1]) ̸∈ Cor((0, 1)), (gX∗ , [0, 1]) ̸∈ Cul((0, 1));

(fY ∗ , [0, 1]) ̸∈ Cul((0, 1)); (gZ∗ , [0, 1]) ̸∈ Cor((0, 1)).

7. Conclusions

In this paper, limits of it-soft sets have been proposed. Point-wise con-
tinuity of it-soft sets and continuous it-soft sets have been investigated. An
application for rough sets has been given. These results will be helpful for
the study of soft sets. In the future, we will further study applications of
these limits in information science.
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