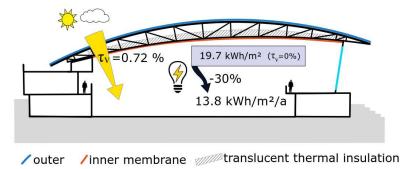
Article

Daylight Performance of a Translucent Textile Membrane Roof with Thermal Insulation

Daniel Gürlich *, Amando Reber, Andreas Biesinger and Ursula Eicker


University of Applied Sciences Stuttgart, Research Centre for Sustainable Energy Technologies zafh.net Schellingstr. 24, 70174 Stuttgart, Germany; 71ream1msp@hft-stuttgart.de (A.R.); andreas.biesinger@hft-stuttgart.de (A.B.); ursula.eicker@hft-stuttgart.de (U.E.)

* Correspondence: daniel.guerlich@posteo.de

Abstract: Daylight usage in buildings improves visual comfort and lowers the final energy demand for artificial lighting. The question that always occurs is how much conservation can be achieved? New or rare materials and constructions have a lack of information about their application. Therefore, the current investigation quantifies the daylight and energy performance of a rare multilayer textile membrane roof. A translucent, thermal insulation with a glass fibre fleece between the two roof membranes combines daylight usage and heating demand reduction. A sports hall built in 2017 is used as a case study building with 2300 m² membrane roof surface. The optical properties of the roof construction are measured with a total visual light transmittance τ_v of 0.72 % for a clean surface. A climate-based annual daylight modelling delivers daylight indicators for different construction scenarios. The results show that in comparison to only one glass facade, the additional translucent and thermally insulated membrane roof construction increases the annual daylight autonomy (DA₇₀₀) from 0 % to 1.5 % and the continuous DA₇₀₀ from 15% to 38 %. In the roof-covered areas of the sport field, this results in a 30 % reduction of the electricity demand for artificial lighting from 19.7 to 13.8 kWhel/m²/a, when a dimming control is used. The study also found out, that the influence of the soiling of one layer decreases its light transmittance by a factor 0.81. Two soiled layers lower τ_v by a factor 0.66 to 0.47 %. This increases the electricity demand for lighting by only 12 %. The results should be very valuable as a comparison and benchmark for planners and future buildings of a similar type.

Keywords: translucent textile membrane roof, climate-based daylight modelling, daylight performance, energy conservation, translucent thermal insulation, multi-layer membrane

Graphical abstract

Content

Introduction	2
Energy consumption in sport buildings	3
Lighting systems and conservations	3

Peer-reviewed version available at Buildings 2018, 8, 118; doi:10.3390/buildings8090118

Materials	4
Lighting control	4
Membrane roofs	5
Materials and Methods	5
Case study building	6
Optical measurements	7
Simulation	8
3D Model	8
Daylight and artificial lighting	8
Daylight Metrics	10
Results	10
Daylight	12
Electricity Consumption	12
Discussion and Conclusions	15
Appendix A	16
Nomenclature	18
References	19

Introduction

The construction and materials of a building have a huge influence on its physical interaction with the environment and the required technical effort to reach the required indoor acoustics, air quality, visual and thermal comfort states. Passive functional components show less life cycle financial and environmental cost and need less maintenance than active systems. The drawback of less control of passive components can be compensated with adequate planning, sizing and backup systems.

In this context, the passive daylight usage in buildings improves visual comfort and lowers the energy demand for artificial lighting. But how much conservation can actually be achieved? New or rare materials and constructions often lack information about their application. Therefore, the current work investigates the daylight performance of a multi-layer textile membrane roof with 2300 m² on top of a sports hall (Figure 1).

As the authors of this study found only few articles about energy data related to sport buildings in general and especially none on the visual influence of membrane constructions, the literature review mainly refers to office buildings and other translucent materials. Other researchers like Haase et al 2011 [1] made the same observation about membrane constructions. With the term "membranes", we refer to textile membranes with a woven fabric in distinction to foils. Some sport buildings with multi-layer membrane roofs have been built in the last years, but with very few available public information. There are for example the "Odate Jukai Dome Park" in Japan, the "Kurklinik Masserberg" in Germany (no translucency) and the "Dedmon Athletic Center in Radford" in USA (see later Table 1).

(a) glass façade on the north-east side

(b) attachment with wooden façade

Figure 1. Photographs of the case study building from (a) north and (b) west.

Concerning energy performance, the electricity consumption to supply indoor illuminance needs has a relevant part in the total energy consumption of buildings. A report [2] based on simulations from the institute for housing and environment in Germany relates 34 % of the primary energy (PE) demand QPE in a standard office building to artificial lighting (al). This corresponds to an electricity demand for artificial lighting (Qel,al) of 27.6 kWhel/m²tfa for low efficiency lamps (5.4 Wel/m²/100 Lux) or 35% of the total electrical energy demand Qel,tot. The target indoor illuminance in that report is assumed to be 300 lx. This amount can be decreased by 87 % to 3.4 kWhel/m²tfa using high-efficient fluorescent lamps (2.5 Wel/m²/100 Lux), a daylight sensitive lighting control and a strategy allowing different illuminance levels in the room and individual working space lights. Than, the workstations are illuminated with 500 lx and all other areas with 220 lx. The PE / Qel demand for artificial lighting in such a high efficiency building is then 15 % / 23 % of the annual energy demand. In the commercial building sector of the U.S.A in the years 2003/2012, artificial lighting accounts for 21/10 % of the measured total site energy consumption and 38/17 % of the Qel,tot consumption [3]. A Swiss monitoring study in 128 office buildings reports 25 % share in the Qel,tot consumption in the years 2005-2007. The report confirms the U.S.A. trend of the high exploitation of efficiency potentials in lighting technology.

Energy consumption in sport buildings

The authors of the current article found very little information about the detailed composition of the energy consumption of sport buildings. As lighting is the focus of this article, heating energy like from Beusker et al [4] is not of interest. Two studies from 2009 and 2005 report monitoring values of the arithmetic mean for the total electricity consumption $Q_{el,tot}$ in German "dry" sport halls of 32 kWh_{el}/m²/a (sample size 1365 [5]) and 50 kWh_{el}/m²/a (sample size 90 [6]). A UK report from 2001 [7] states as typical mean $Q_{el,tot}$ for a local dry sports centre 105 kWh_{el}/m²/a.

Lighting systems and conservations

When speaking about "savings" or "conservations", a crucial but often ambiguously mentioned issue is the reference or base case that any scenario relates to. In addition, the real consumption is highly sensitive to boundary conditions like neighbouring buildings, availability of solar radiation, target illuminance, geometries, user behaviour, equipment specifications or correct sizing. Hence, there is a high variation between different buildings and comparisons should be taken with care. Consequently electric energy savings for lighting determined via measurements or calculation show a very large range of variation between 11 and 94 % [8]. Some correlations try to cover all the relevant influences and offer methods to estimate energy savings like Krarti et al [9] and Ihm et al [10]. Lowry [8] criticizes that savings caused by automatic controls are overestimated in many cases because of choosing a non-adequate reference scenario with an insufficient user behaviour profile for manual on/off control. He also suggests as a key performance indicator to focus on absolute energy metrics instead of percentage savings. The authors of the current article strongly support these suggested methods and try to give absolute energy values and clear reference scenarios.

4 of 21

Besides the environmental and financial costs of the energy demand for artificial lighting, also visual comfort and health aspects are in favour of natural daylight [11,12]. In sunlit situations, the natural daylight often has to be blocked to prohibit glare and overheating. Beside transparent windows with shelfs and reflecting blinds [13], other constructions exist like translucent wall materials or waveguide systems especially to transport daylight also to façade distant spaces.

Materials

Translucent materials can help to reduce glare risk with an increased indoor daylight availability. But glare stays still a relevant risk. Matusiak [14] investigated the human glare sensing in the high latitudes of Norway with experiments. Her results are that a completely translucent aerogel façade in direct sunlight orientation with a light transmittance $\tau_{\rm v}$ of 29 % still causes intolerable glare in sunlit periods.

A numerical study from Pagliolico et al [15] in Turin applied partly translucent interior walls with glass splinters in the concrete (τ_v 29 %). The target of the photosensitive dimming control was 500 lx. Compared to opaque interior walls the Q_{el,al} decreases from 11.3 to 10.0 kWh_{el}/m²/a in rooms with adjacent south oriented outside wall (with movable blinds) and from 6.3 to 5.0 kWh_{el}/m²/a for North orientation.

In New York, a multipurpose, 7-storeys building with a translucent marble envelope has been investigated by Rosso et all [16]. A Colour Rendering Index (CRI) of 86 is measured. Simulations under an indefinite control reveal a decrease in the $Q_{el,al}$ from 18 to 16 kWh_{el}/m²/a (11 % savings) for a translucent marble façade (τ_v 7 %) compared to an opaque one. Furthermore, the high solar reflectance of 58 % for the marble reduces the demand of energy for cooling by 10 %, when compared to more traditional cement-based façades with solar reflectance of 30 %. The target illuminances ranged from 150 to 300 lx.

A translucent wall with silica aerogel and PCM material has been investigated experimentally and numerically in a laboratory by Souayfane et al [17]. They focus on the thermal behaviour.

Ahuja et al [18] evaluated the monetary savings in energy consumption for heating, cooling and lighting of an interesting translucent concrete wall system in Berkeley. Unfortunately the reference was not a realistic scenario with a standard window wall but a completely opaque room. The insulated concrete panels were fabricated with embedded optical fibres with different fibre ratios for light transmission. The fibres penetrated all the wall layers namely concrete, Extruded Polystyrene (XPS) insulation and the final drywall. With a probabilistic manual on/off switching behaviour of the occupants they find an optimum financial cost reduction of 18 % related to a complete opaque room.

Optical fibres also can be combined with solar concentrators for a building daylighting system (waveguides). They can deliver sunlight deep into the interior rooms of a building [19,20]. This technology allows to supply rooms without outside connection with natural daylight. To distribute the collected light it can be used conventional light fittings. But the operating distance of such systems is limited. With increasing length of the optical fibres the wavelength between 720 and 780nm in the visible wavelength range will be lost. That causes a blue shift which leads to optically uncomfortableness[21].

Lighting control

As with all automation systems, also for the lighting control system the control strategy and control parameters influence the result tremendously. Different control types are:

- Manually operated on/off (not automatized)
- Time scheduled on/off
- Occupancy sensitive on/off
- Daylight sensitive with (i) dimming or (ii) stepped

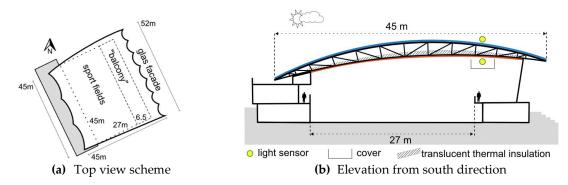
Hybrids between these types are possible. A daylight sensitive control can reduce the Qelal by 75 % with a simple time schedule as a reference[22]. Comparing dimming and stepped daylight sensitive controls, dimming is only advantageous from an energetic point of view for low sunlit locations or room geometries[22,23]. Then the part load can be effectively used and only few time periods with

the (unwanted) minimum residual load of dimming lightings occur. On the other hand, dimming appears more appealing for human sensation because of the more continuous changings.

Field experiments measuring illuminance in an atrium office building in Hong Kong indicate electricity savings for dimming control compared to opaque walls of 59 to 75 % [24]. Roisin et al [25] investigate the potential energy savings in a virtual office room with occupancy or daylight sensitive control in three European cities (Stockholm, Brussels and Athens). The reference has the same geometry but a different control with time scheduled on/off: 45 to 61% of the electric energy can be saved with dimming and 11% with occupancy on/off control. The façade orientation played a minor role in the order of 4 percentage points in the worst case of Stockholm. A field study [26] in a 51-story office building in New York revealed a 20 % reduction of Qel,al for dimming control relative to an occupancy based control.

Going in more detail is out of the scope of the current article. In the case study building a dimming control is realized as described in chapter "Materials and Methods" subchapter "Building".

Table 1. Optical properties of other multilayer membrane roofs


Site	Light transmittance τ_v	U-value [W/m²/K]
Odate Jukai Dome Park [27]	8 %	no insulation
ZAE Würzburg Technikum [28]	3 %	1
University Sport centre Radford [29]	3.5 %	0.47
Olympia swimming hall Munich [29]	1.5 %	0.42

Membrane roofs

A sophisticated collection of realized membrane buildings can be found in a report by Haase et al [1] in German language. They measure a light transmittance τ of 3.7 % for a single layer of a PVC coated Polyester (PES) tensile membrane and 1.1 % for a double layer with air gap. An overview of some example buildings with membrane roofs and their properties gives Table 1. The multipurpose hall "Odate Jukai Dome Park" (Japan) with two layers of PTFE coated glass fibre textile shows a light transmittance of 8 % [27]. Insulated and translucent multilayer constructions are also realised: The "ZAE Würzburg Technikum" building (Germany) with 10 cm translucent glass fibre insulation shows a U-value of 1 W/m²K and a τ of 3 % [28]. The University Sport centre Radford (Virginia, USA) with an aerogel insulation and glass fibre membrane shows a τ of 3.5% and a U-value of 0.47 W/m²/K [29]. The Olympia swimming hall Munich (Germany) with a 7 cm PES fleece insulation has a U-value of 0.42 W/m²/K and a τ of 1.5 %[29].

Materials and Methods

In this section, we present first the case study building's properties and geometry and in the following the optical measurements. The annual daylight simulations with the different scenarios are described last. They yield the key performance indicators of daylight use and electricity consumption.

Figure 2. (a) Scheme of the top view. (b) Elevation from south direction of the complete building. The sensor positions of the short time measurements of the illuminance are indicated.

Case study building

The community gym "Julius-Hirsch-Sportzentrum" is located 288 m above sea level at 49.482 latitude and 10.988 longitude the German municipality of Fürth [30]. The sport arena is intended to host one indoor soccer/hand ball/basketball match or three small spaces for school sports.

The building has a glass façade on the north-east side with the so called indoor "balcony", a 45 m x 27 m indoor field, changing rooms below the balcony and in the integrated attachment with the wooden façade. Figure 1 shows photos from the outside and a schematic top view is presented in Figure 2 a). The rooms are arranged throughout the basement and ground floor while the sport field is located at the subterranean level of the basement as shown in Figure 2 b). The membrane roof spans the field and partly the secondary rooms. From an architectural point of view, the shape of the roof reminds of a sprinter on the starting block while the white membrane represents sportswear [31]. The light weight impression of the building appears adequate to the dynamic activities inside [31].

The overall heat transfer coefficient (U-value) is 0.23 W/m²/K for the opaque and 1.6 W/m²/K for transparent envelope components (from the certificate EnEV 2007, more details in Table A1. The total primary energy demand according to EnEV 2009 is calculated as 129 kWh/m². Further description about hygrothermal simulations of the roof construction and general information about the project can be found in Cremers et al 2016 [32]. Details about the roof construction follow in the next subsection.

Figure 3. (a) Side view scheme of the roof layer construction. (b) Photography of the membrane interspace. A monitoring platform for other measurements is visible on the two ropes on the right-hand side of the image.

Roof construction

The scheme of the layer construction of the roof can be found in Figure 3 a). It consists of an outer membrane (OM) as weather protection, a 0.5 to 2.5 m air space, a thin cover foil as humidity barrier, a thermal insulation, a small 4 cm air gap and the inner membrane (IM). The OM is walkable. A photography of the membrane interspace is shown in Figure 3 b. A maintenance gangplank on the right side, the underside of the outer membrane at the top part of the image and the cover foil at the

bottom part can be seen. The relevant properties of the roof construction and the glass of the façade are presented in Table 2. Most information was taken from the company data sheets. The total transmittance was measured as described later in the subchapter "Optical Measurements".

Table 2. Material properties of the building's non-opaque components

Component	product	Property	Value
Glass façade	Insulated triple glazing	Light transmittance τ_{v}	60 %
Outer membrane	Précontraint 1202 T2 2399 high translucency type, Serge Ferrari S.A.S	Fabric material/ Top bottom coating	Polyester/ PVC
		Top/bottom varnish	Polyvinylidenfluorid (PVDF)
		Light transmittance 1 τ_{v}	18 %
		Light transmittance τ_v	16 %
		Light transmittance ³ τ_v	25 %
Cover foil	Hostaphan® RUF, Mitsubishi polyester film GmbH	Material	Polyethylenterephthalat (PET)
Thermal insulation roof	TIMax GL-PlusF Wacotech GmbH & Co.KG	Material	Glass wool
		Thermal conductivity	c.a. 0,1 W/m/K
		Thickness	40 cm
		U-value	0.25 W/m ² /K
Inner membrane	Précontraint 1002 S2 3399, high translucency type,	Fabric material/ Top bottom coating	Polyester/ PVC
	Serge Ferrari S.A.S	Top/ bottom varnish	PVDF
		Solar transmittance ² Ts	19 %
		Light transmittance 2 τ_v	16 %
Total roof		Tisk (managettages)	ca. 0.72 % ⁴ clean
construction		Light transmittance ¹ τ _v	$0.47~\%$ 1 soiled

¹ measured value ² EN 410 ³ NFP 38511 (French standard with partly diffuse incident light) ⁴ extrapolation

Lighting system

The lighting installations in the main hall have an electrical power of 10.4~kW in total and a luminous flux of 1830~k lm. This refers to light groups 1 to 4 in the simulation. They are listed in Table 3. The dynamic dimming control design aims to an illuminance on the ground of 700~k. Three levels of 300, 500 and 700~k can be set manually to override the automatic.

Table 3. Technical data of the lighting inside the main hall.

Properties of one	light element	A _{hall} : area of the sport fields and platform
94 W electri	city consumption apice	refers to the foot print area of the main hall
16500 lm lumino	ous flux apice	1507 m ²
1,6 m length	apice	Design illuminance on the floor: 700 lx
111 pieces in	total	
6,9 W/m ²	electrical power/ A _{hall}	(10,4 kW total)
1215 lm /m ²	luminous flux/ A _{hall}	(1832 klm total)

Optical measurements

To calculate the (visual) light transmittance τ_v (DIN EN 410:2011-04), measurements of the (visual) illuminance E_v based on EN 14500:2008 are carried out. A spectrometer "GL Spectis 1.0 Touch" from "GL Optic Lichtmesstechnik GmbH" is used as measuring equipment. The spatial positions of the sensor are 5 cm under the inner membrane ($E_{v,IM}$) and vertically directly above the

position on top of the outer membrane. $E_{\nu,OM}$ equals the ambient conditions in the membrane plane Figure 2 b). A cover protects the bottom measurement under the IM from insolation through the glass façade. Multiple measurements are recorded (**Table 4**) and lead to a (visual) light transmittance τ_{ν} of 0.47 % with soiling on top of the OM as well as on the cover foil. The roof construction was at the time of the measurement two years old.

Table 4. Measurement of the illuminance for the (visual) light transmittance τ_v .

	$G_{ m glob,OM}$	$G_{ m glob,IM}$	$E_{v,\text{OM}}$	$E_{v,\mathrm{IM}}$	τ_{tot}	τ_{v}	$CCT_{v,OM}$	$CCT_{v,IM}$
	$[W/m^2]$	$[W/m^2]$	[lux]	[lux]	[%]	[%]	[K]	[K]
08.05. 10:38	431	2.52	89 100	416	0.58	0.47	5 720	7 560
08.05. 10:39	432	2.55	89 300	420	0.59	0.47	5 730	7 570
08.05. 10:39	432	2.57	89 100	425	0.60	0.48	5 730	7 550
08.05. 10:40	432	2.56	89 100	422	0.59	0.47	5 720	7 560
average		·			0.59	0.47	5 725	7 560

With the same measuring device the illuminance above and below the OM are recorded on two different positions: around a cleaned area of 1 m² and around a soiled area untouched for two years. Therewith, the transmittance τ_v of only the clean OM was calculated to 18 % and the soiled OM to 14.6%. Hence, a decrease of the transmittance through one layer by a factor 0.81 is caused by the soiling. As also the in between layer of the cover foil gets soiled by dust and pollen. We estimate the clean transmittance from the complete roof construction to 0.72 % (0.47 % divided by 0.81² = 0.656). Additionally the daylight factor was measured with 0.83 %. The daylight factor represents the percentage of the outdoor light measured in illuminance [lx] under overcast skies that is available indoors on the horizontal plane in the occupant area.

Simulation

3D Model

The geometry of the sports hall is simplified for the simulation and built in SketchUp Pro 2018. The hall itself is shown as a hall floor and a platform behind a single glass front, which consists of joined single windows. Adjacent rooms and the supporting structure are not mapped for the light simulation process. The roof is designed as a translucent membrane roof. Table A3 in the appendix presents the material definition file of DIVA for the translucent component.

To define the other material properties the following parameters are assumed or taken from datasheets and experiments:

- Floor: sports hall flooring with a reflection of 20 %
- Wall: interior wall with a reflection of 50 %
- Ceiling: High reflectance ceiling with a reflection of 70 %
- Window: Two-windows insulating glass with a transmission of 70 %
- Membrane: The layer structure of the real object is modelled in the software as one component. A diffuse reflection of 69 % and a total diffuse transmission of τ_v Roof in Table 5 are assumed. Direct reflection and transmission are set to 0. See Table A3 in the appendix for the material config file.

Daylight and artificial lighting

The geometric model is built as a 3d model in SketchUp Pro 2018 and exported to Rhino 5. A screenshot of the 3d model can be found in Figure 4 (a). The simulations are performed in Diva 4.0.2.24, which is a plugin for Rhino to simulate daylighting and artificial lighting.

The material properties of the roof construction for the simulations are determined via experiments (see respective subchapter "Optical measurements"). An annual daylight simulation in Rhino 5 with

Diva calculates the lighting parameters Daylight Availability (DA), Continuous Daylight Autonomy (CDA) and Useful Daylight Illuminance (UDI) as well as the electricity consumption of the artificial lighting. It runs in one hour time step resolution.

Table 5. Overview of the values of the varied scenario parameters for light groups 2–4.

Parameter:	Envelope	Target lux	Control	τ _v Roof [%]
	 Opaque 	• 300 (3.4 kWel)	 Manual On/off 	• 0.48
	 Façade only 	• 500 (5.6 kW _{el})	dimming	• 0.74
	 Roof only 	• 700 (7.9 kW _{el})		• 3
	• Façade+roof			

The approach of the varied parameters for the different scenarios is shown in Table 5. Properties of the building envelope, the target indoor illuminance, the lighting control and the transmittance of the roof component are varied. The 18 investigated variants are shown with all varied parameters in Table 6. There are two main groups of similar scenarios with target illuminance values of 300 (N° 1–7) and 700 lx (N° 8–14) respectively. As a step in between two 500 lx variants are also calculated (N° 17–18). In addition, two scenarios with increased and decreased transmittance are taken into account (N° 15–16). According to the German standard DIN V 18599-10:2016-10 a sports hall should have a minimum target illuminance of 300 lux. In reality artificial light is often used with higher target values so that scenarios with 500 and 700 lux are also tested. 700 lx is the realized situation in the case study building. Except scenario N° 15+16 the transmittance of the roof represents the clean surface case. N° 15 corresponds to the soiled surfaces and N° 16 to other materials with higher transmission. The user in lighting control mode "on/off" (o/o) switches the light statistically off, when an indoor illuminance of 300 lx is exceeded. It is more than a time fixed schedule. This mimics a human operated situation. Dimming adapts the light power daylight sensitive to the target value. The target values also determine the installed lighting power (Table 5).

Table 6. All parameters of the 18 simulation scenarios in detail.

N°	Name	τ _v Roof [%]	Target lux	Control	Envelope	Comment
1	Opaque 300	0.72	300	$o/o = dim.^{1}$	Opaque	Opaque building
2	Reference300	0.72	300	On/off	Façade	Conventional building
3		0.72	300	On/off	Roof	
4		0.72	300	On/off	Façade+Roof	Control mode comparison
5		0.72	300	Dimming	Façade	
6		0.72	300	Dimming	Roof	
7		0.72	300	Dimming	Façade+Roof	Real built geometry
8	Opaque 700	0.72	700	$o/o = dim.^{1}$	Opaque	Opaque building
9	Reference700	0.72	700	On/off	Façade	Conventional building
10		0.72	700	On/off	Roof	
11		0.72	700	On/off	Façade+Roof	Control mode comparison
12		0.72	700	Dimming	Façade	
13		0.72	700	Dimming	Roof	
14	Real Building	0.72	700	Dimming	Façade+Roof	Real built situation, clean
15	$Lower \tau_v Roof$	0.47	700	Dimming	Façade+Roof	Real built situation, soiled
16	Higher τ _v Roof	3	700	Dimming	Façade+Roof	Sensitivity case high τ _v
17	Reference500	0.72	500	On/off	Façade	Medium Lux set point
18		0.72	500	Dimming	Façade+Roof	Medium Lux set point

 $^{\rm 1}{\rm In}$ an interior space without daylight, dimming and on/off control behave same

The lighting controls are defined in a grid of 1x1 meters and illuminance is evaluated in 1 m height. The sports hall is divided into 4 light groups for the control as shown in Figure 4 (b). The balcony at the glass façade is defined as group 1 with an installed lighting power of 2 538 W for the

700 lx target. The sections of the sports hall are defined as group 2, 3 and 4 with a lighting power of 2 632 W each. In total there is an installed lighting power of 10,434 W. For the simulation a ballast lost factor of 28 % and a standby-power of 8.4 W per LG meaning in total 25.2 W are assumed. The occupancy profile is 8-18:00 on every day of the year (Fig. A 1). The weather file is located in the city Stuttgart in central Europe (Coordinates 48°47′N 9°11′E) with an annual global horizontal irradiation 1093 kWh/m²/a.

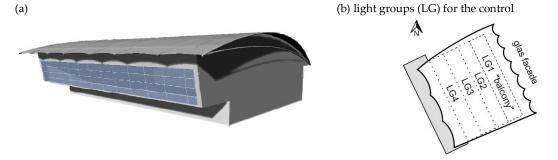


Figure 4. (a) 3d model in SketchUp, view from north. (b) Group definition of lighting sections.

Daylight Metrics

The Daylight Factor first proposed in the UK in the early 1900 is the ratio of internal illuminance to external horizontal illuminance under an overcast sky defined by the CIE luminance distribution[33].

In 1989, the Daylight Autonomy (DA) parameter was proposed by the "Association Suisse des Electriciens" and further developed by Reinhart from 2001 to 2004 [34]. It was the first dynamic approach for daylighting indoor evaluation. The DA_{xyz} represents the percentage of hours during a period (i.e. year or the occupation times over one year) when the natural indoor illuminance value in an area overcomes a predefined threshold xyz indicated in the indices. It does not provide information about illuminance values below the defined threshold.

Rogers 2006 [35] developed a modification of the DA called the continuous Daylight Autonomy (cDA $_{xyz}$). With respect to the DA definition, it additionally counts partial values below the specified illumination level threshold xyz. A timely situation with CDA of 50% is not unique. It could mean that half of the time the illuminance threshold was completely reached and the other half of the time it was completely dark. It could also mean that all the time the threshold was reached only half.

The Useful Daylight Illuminances (UDI), proposed by Mardaljevic and Nabil in 2005, is also a dynamic daylight performance measure that is based on work plane illuminances [34]. It also represents the percentage of hours during a period when the natural indoor illuminance values lie in certain borders. Namely below $100 \, \text{lx}$, between 100--2000 and above $2000 \, \text{lx}$ (UDI $_{<100}$, UDI $_{100\text{--}2000}$ and UDI $_{>2000}$). As its name suggests, it aims to determine when daylight levels are 'useful' for the occupant, that is, neither too dark ($<100 \, \text{lx}$) nor too bright ($>2000 \, \text{lx}$) [34]. The upper threshold is meant to detect times when an oversupply of daylight might lead to visual and/or thermal discomfort[34]. The UDI $_{>2000}$ is equivalent to a DA $_{2000}$.

Results

The results of the simulations are presented using daylight indicators and energy demand analysis. The results hold for the case study building geometry investigated in this study which has a speciality with an indoor "balcony" at the side of the glass façade (light group 1). The presented results concerning energy are related to the light groups 2–4 located at the sport field. They are

shaded from the "balcony" and more far away from the glass façade than fields in other buildings directly adjacent to a transparent façade.

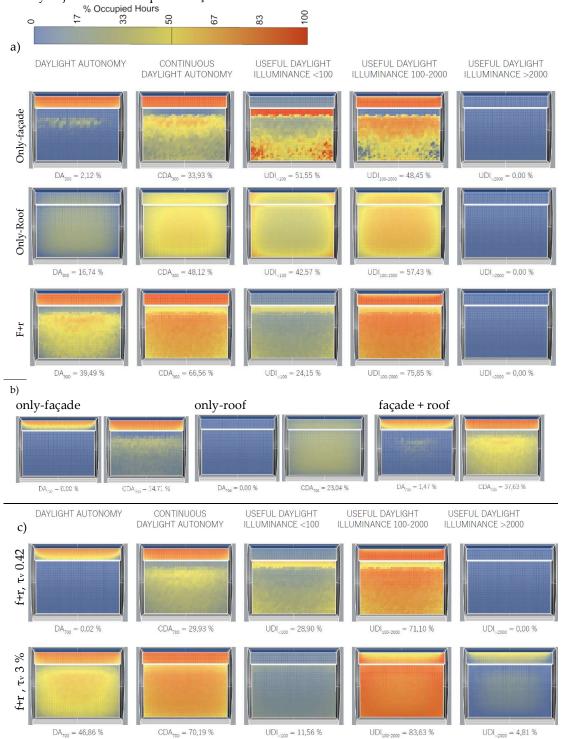


Figure 5. Spacial distribution of annual daylight indicators for scenarios with target illuminance (a) 300 lx N°1-7 (b) 700 lx N°8-14 and (c) varied transmittance τ_v N°15+16. The scenarios N°17+18 can be found in Fig. A 2.

12 of 21

Daylight

Daylight indicators in the current study are the daylight autonomy (DA), the continuous daylight autonomy (CDA) and the useful daylight illuminance (UDI) with certain thresholds. The results of their spatial distribution are shown in Figure 5 a-c. The light group 1 (LG1, Figure 4 (b)) adjacent to the window on the so called "indoor balcony" is also included here. LG 1 is excluded for the energy demand analyses of lightening the field in the following section. Only the sport field is placed in focus to be more comparable to other sport buildings. The DA is calculated with a hard threshold and therefore applicable for switch on/off situations. The CDA is applied for dimming systems, as it weightings the differences to the threshold.

The DAxxx with the respective thresholds 300, 500 and 700 lx increases of course with more light transmitting components. The single translucent roof shows a higher daylight usage (DA300 17 %, CDA300 48 %) compared to the single transparent façade (DA300 2%, CDA300 34 %). The spatial distribution in the façade-only cases is highly asymmetrical towards the transparent façade (Figure 5a). Especially the shaded edge under the "balcony" exhibits very dark areas. The façade+roof cases deliver a more homogeneous daylight supply over the field especially concerning the CDA. The corner below the balcony remains the darkest area. Very homogeneous illuminance distributions achieve the roof-only envelope scenarios. But the DA700 and CDA700 of 0 and 23 % are smaller than the facade+roof cases with 1.5 and 38 % (Figure 5b).

Increasing / decreasing the roof transmittance from 0.72 to 3/0.47 % changes the CDA in the 700 lx cases from the mentioned 38 to 70/30 % (Figure 5c). The DA considerably changes from 1.5 to 47/0 %. The large transmittance of 3 % (scenario N°16) gives tremendous benefit for the daylight performance as also seen later in the electricity demand.

The balcony area has the highest daylight performance in the cases with glass façade as it is adjacent to the window. The UDI >2000 indicates the risk of glare. This is harmless for all scenarios except N°16. A shading system for the façade would be recommendable in that case. Even in the centre regions of the field some signs of glare risk can be seen in Figure 5c. Going to such large transmittance values in a roof would require a closer investigation of glare and shading measures.

Table 7. Summary of annual daylight indicators for all scenarios.

	D	Axxx/CDAxxx	[%]
	300 lx	500 lx	700 lx
Opaque, τ _v 0.72 %	0.00 /0.00		0.00 / 0.00
Façade-only	2.12 /33.93	0.07 /20.57	0.00 / 14.71
Roof-only	16.74 /48.12		0.00 / 23.04
Facade + Roof	39.49 /66.56	13.60 /50.12	1.47 / 37.63
Facade + Roof, τ _v 0.47 %			0.02 / 29.93
Facade + Roof, τ _v 3 %			46.86/70.19

Electricity Consumption

For the energy consumption of any automated system the control behaviour is crucial. To interpret and transfer the results in this work to other situations, an understanding of the two used control modes is essential. As an example for the operation of the control modes, two visualisations of the transient behaviour are shown in Figure 6. The users in "o/o" mode switch off the lighting with a certain probability if illuminance values above 300 lx occur. The dimming always dims the lighting following a photo sensor and the target illuminance value. Hence, the dimming mode in Figure 6 (b) shows many times with partly operated light in grey colour.

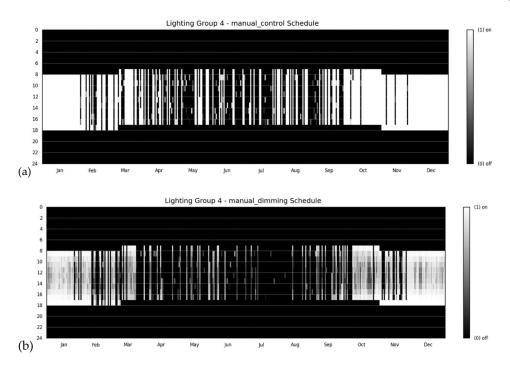


Figure 6. Operation of the control modes as an example (a) on/off (o/o) in scenario N°4 and (b) dimming in N°16.

The results of the absolute electricity demand for artificial lighting ($Q_{\text{el,al}}$) in all scenarios are presented in **Figure 7**. All absolute values of $Q_{\text{el,al}}$ including the LG1 at the balcony can be found in the appendix in **Table A2**. The relative savings are shown in **Table 8** and in absolute values in **Table A4**. The table contains much information. The column scenario N° is related to the scenario N° in the rows. The Unit is [%]. Negative values are savings. For the detailed scenario N° parameter settings see Table 6. The header here in **Table 8** indicates a short description of the scenario settings. Relations of a scenario with itself are highlighted with grey. Blue cells are referred to in the text. As an example for the reading of the table, the blue cell in the very bottom of the column with the scenario N° 14 means that variant N°14 saves 10 % electrical energy for AL compared to the case N° 11 indicated at the very left of the row. Going in that row to the left until column with N°4 means that N°4 compared to N°11 saves 57 %.

First, the absolute energy demand in the same geometry (i.e. "facade") increases with increasing the target illuminance values from 300 over 500 to 700 lx. Comparing the different control modes "dimming" and "on/off", "dimming" reduces the demand in all daylight variants. In the scenarios "façade+roof" which equal the case study building's geometry this sums up to -24/-10% for a target illuminance of 300/700 lx (**Table 8** line "N° 4/11" blue cells). Higher target illuminances in this setting lead to less relative savings. This is because of the higher demand combined with only little higher natural daylight using potential. The absolute savings increase slightly from 1.9 to 2.0 MWh/a.

It becomes obvious in **Figure 7** that the highest daylight impact on lowering the $Q_{el,al}$ over all different target illuminances can be generated by using a translucent membrane roof in combination with a transparent facade. In the cases of 300/700 lx the membrane added to the transparent façade cases reduces the $Q_{el,al}$ drastically by 42/32% when relating the dimming control cases to the conventional building reference cases "façade-only" with on/off control (**Table 8** line "N° 2/9" blue cells). This comparison holds for a modern new building compared to a conventional one. The influence of only the translucent roof reveals when comparing N° 7 to 5 (300 lx) and N° 14 to 12 (700 lx). Then 38 % (3.8 MWh/a) and 30 % (7.2 MWh/a) can be saved, respectively. The 30 % are the main result of the article and highlighted with the blue cell and white text in **Table 8**.

The influence of lowering (soiling) and increasing the transmittance of the roof is investigated with N° 15 and 16 compared to 14. The soiling of the OM after two years (N°15) which reduces the

light transmittance τ_v from 0.72 % to 0.47 % increases the $Q_{\text{el,al}}$ by 12 %. A roof with τ_v = 3 % lowers it by 41 % (**Table 8** line "N°14" blue cells). By chance, the $Q_{\text{el,al}}$ in case N°15 with low τ_v ("700 dim 0.47" in **Figure 7**) almost equals the case N°11 with o/o control and clean τ_v of 0.72 % ("700 dim" façade+roof **Figure 7**).

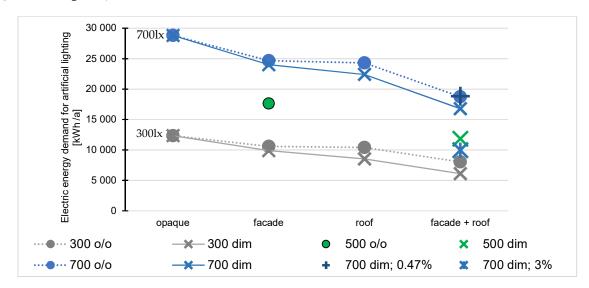


Figure 7. Electrical energy demand for artificial lighting.

The area of the sport field supplied by light groups 2–4 ads up to 1215 m². This results in an annual area specific demand of 13.8 kWhel/m²/a for scenario N°14 (the realised membrane case study building) compared to the reference conventional building case N° 9 with 20.3 kWhel/m²/a (only transparent façade, manual on/off control). That envelope case with the dimming control (N°12) demands 19.7 kWhel/m²/a. The realized envelope situation with o/o control (N°11) causes 15.4 kWhel/m²/a.

Table 8. Relative electrical energy savings for AL: The column scenario N° is related to the scenario N° in the rows. The Unit is [%]. Negative values are savings. For detailed scenario N° parameter settings see Table 6. The header here indicates a short description of the scenario settings. For example, the blue cell in the very bottom of the column with the scenario N° 14 means that variant N° 14 saves 10 % electrical energy for AL compared to the case N° 11 indicated at the very left of the row. For another example, going in that row from the blue cell to the left until column with N° 4 on the top means that N° 4 compared to N° 11 saves 57 %. Grey cells are relations of a scenario with itself.

[%]			;	300 lx				700 lx					τ low high		500) lx		
			o/o			dim				o/o			dim		dim		o/o	dim
	op.	f.	r.	f+r	f.	r.	f+r	op.	f.	r.	f+r	f.	r.	f+r	f+r	f+r	f.	f+r
N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	-14	-16	-35	-20	-31	-51	133	100	97	52	94	81	36	52	-19	43	-4
8	-57	-63	-64	-72	-66	-70	-79	0	-14	-16	-35	-17	-22	-42	-35	-65	-39	-59
2	17	0	-2	-24	-6	-19	-42	172	133	130	77	127	112	59	78	-6	67	12
9	-50	-57	-58	-67	-60	-65	-75	17	0	-2	-24	-3	-9	-32	-24	-60	-29	-52
5	25	7	5	-19	0	-14	-38	191	150	146	89	143	127	70	90	1	78	20
12	-49	-56	-57	-67	-59	-64	-75	20	3	1	-22	0	-7	-30	-22	-59	-27	-51
14	-26	-37	-38	-52	-41	-49	-64	72	47	45	12	43	34	0	12	-41	5	-30
17	-30	-40	-41	-54	-44	-52	-65	63	40	38	6	36	27	-5	7	-44	0	-33
4	54	32	30	0	23	6	-24	259	207	203	133	199	179	109	134	24	119	47
11	-34	-44	-44	-57	-47	-54	-67	54	32	30	0	28	20	-10	0	-47	-6	-37

15 of 21

Discussion and Conclusions

A limitation of the current work is the occupancy profile used. It was assumed 8:00 to 18:00 365 days a year. The transfer of the saving potential in relative numbers on other buildings with more night-time use may be critical. The absolute numbers scaled with the illuminated field area and occupancy days over the whole year could be more accurate.

The so called "indoor balcony" decreases the daylight usage of the analysed sport field in the current situation. Other fields adjacent to a glass façade would perform more promising. In that sense the geometrical situation of the current study is conservative for the daylight performance. As opposed to this, the assumed occupancy schedule (8:00 to 18:00) lies strongly inside the daylight times. Hence, this boundary condition is favourable for the daylight performance.

Keep in mind that the (absolute or area specific) energy values indicated in the text always refer only to the sport field and not to the total building area or the indoor balcony.

Transferable findings are:

- Combining a translucent roof with a transparent North façade performs best for lightening the field with a low electricity demand for artificial lighting of 13.8 kWhel/m²/a under 700 lx target illuminance. Comparing these values to reported total building electricity consumptions from 32 [5], 50 [6] to 105 kWhel/m²/a [7] for dry sports centres appears to be a very low value. Especially for the field area where the highest lighting load occurs.
- Adding this membrane roof even with the relatively low τ_v of 0.72 % to a glass façade decreases the artificial lighting by 30 %.
- A high roof transmittance τ_v of 3 % delivers great daylight autonomy of 47 % and a CDA of 70 % resulting in only 8.2 kWhel/m²/a. But the risk of glare starts to get an issue around that value of τ_v especially close to the glass facade.
- Soiling decreases the hybrid construction's daylight performance (façade+roof), but not so much as expected. Lowering the τ_v from 0.72 to 0.46 % increases the electricity demand from 13.8 to 15.5 kWhel/m²/a, probably because of the support of the glass façade. In a situation with roof-only daylight this could be worse. This scenario was not included yet and could be a focus of another study.
- To completely exploit daylight potentials, dimming control is recommended. It decreases
 electricity consumption by 10/24 % for target illuminances 700/300 lx compared to a manual
 user on/off behavior. This percentage is lower than results from other articles because of the
 reference in this study, which is not a simple time schedule. In fact, the o/o control imitates
 human user behavior with switching off the light very often.

Even though the electricity savings and the illuminance distribution of a roof-only translucent envelope may be better than the combination façade+roof, a transparent glass façade has a positive effect on the visual comfort feeling of the persons inside. Hence a combi system could lead to an optimum configuration. A future study could use a more general setting with an occupancy profile with more night time use and a more common geometry without an indoor balcony.

Acknowledgments: The current work is embedded in the research project with acronym SoFt funded by the German Federal Ministry for Economic Affairs and Energy. Code: 03ET1163A. Project partners: ZAE Bayern, FAB Architekten, Wacker Ingenieure, F.I.B.U.S.

Thanks to Mister Swen Brodkorb from [36] for the supply with construction plans and to David Offtermatt and Hannes Marx for fruitful discussions about DIVA.

Supported by:

Funds for covering the costs to publish in open access are provided by the Research Centre for Sustainable Energy Technologies zafh.net.

on the basis of a decision by the German Bundestag

Author Contributions: Conceptualization, Daniel Gürlich and Andreas Biesinger; Data curation, Daniel Gürlich and Andreas Biesinger; Formal analysis, Daniel Gürlich and Amando Reber; Funding acquisition, Andreas Biesinger and Ursula Eicker; Investigation, Daniel Gürlich, Amando Reber and Andreas Biesinger; Methodology, Daniel Gürlich and Andreas Biesinger; Project administration, Andreas Biesinger; Software,

Amando Reber; Visualization, Daniel Gürlich; Writing – original draft, Daniel Gürlich; Writing – review & editing, Daniel Gürlich, Amando Reber, Andreas Biesinger and Ursula Eicker.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Appendix A

Table A1. Building parameters and indicators for the calculated energy demand following the German Energy Saving Ordinance "EnEV 2009, Energieeinsparverordnung".

$A_{NGF} = 4 \ 221 \ m^2$
178 kWh/m²a
$Q_P = 129 \text{ kWh/m}^2 \text{a}$
$0.23 \text{ W/m}^2\text{K}$
1.60 W/m ² K

¹ heating with wood

Table A2. Absolut electricity demand for AL and daylight indicators of all scenarios.

5	1	, ,					
Scenario Name		Energy Consumption [kWh]					
Scenario (Name	LG1	LG2	LG3	LG4	LG2 - LG4		
01_t0.72_300lx_opaque	3971	4117	4117	4117	12351		
02_t0.72_300lx_facade_onoff	1362	4026	3194	3359	10578		
03_t0.72_300lx_roof_onoff	3271	3457	3266	3695	10418		
04_t0.72_300lx_facade+roof_onoff	1339	3039	2404	2590	8033		
05_t0.72_300lx_facade_dim	803	4017	2827	3047	9891		
06_t0.72_300lx_roof_dim	2748	2881	2542	3109	8532		
07_t0.72_300lx_facade+roof_dim	762	2441	1719	1949	6109		
08_t0.72_700lx_opaque	9264	9607	9607	9607	28820		
09_t0.72_700lx_facade_onoff	3176	9394	7452	7836	24682		
10_t0.72_700lx_roof_onoff	7630	8067	7621	8620	24309		
11_t0.72_700lx_facade+roof_onoff	3124	7092	5610	6042	18744		
12_t0.72_700lx_facade_dim	2533	9385	7085	7525	23996		
13_t0.72_700lx_roof_dim	7107	7491	6887	8035	22413		
14_t0.72_700lx_facade+roof_dim	2404	6494	4898	5396	16788		
15_t0.47_700lx_facade+roof_dim	2541	7214	5236	6379	18829		
16_t3.00_700lx_facade+roof_dim	1619	3647	2620	3687	9954		
17_t0.72_500lx_facade_onoff	2269	6710	5323	5597	17630		
18_t0.72_500lx_facade+roof_dim	1536	4467	3504	3860	11831		

DA/CDA

	300 lx	500 lx	700 lx
01_t0.72_300lx_opaque 0,0	00%/0,00%	-	
02_t0.72_300lx_facade_onoff 2,1	2%/33,93%		
03_t0.72_300lx_roof_onoff 16,7	74%/48,12%		
04_t0.72_300lx_facade+roof_onoff 39,4	19%/66,56%		
05_t0.72_300lx_facade_dim 2,1	2%/33,93%		
06_t0.72_300lx_roof_dim 16,7	74%/48,12%		

17 of 21

07_t0.72_300lx_facade+roof_dim	39,49%/66,56%
08_t0.72_700lx_opaque	0,00%/0,00%
09_t0.72_700lx_facade_onoff	0,00%/14,71%
10_t0.72_700lx_roof_onoff	0,00%/23,04%
11_t0.72_700lx_facade+roof_onoff	1,47%/37,63%
12_t0.72_700lx_facade_dim	0,00%/14,71%
13_t0.72_700lx_roof_dim	0,00%/23,04%
14_t0.72_700lx_facade+roof_dim	1,47%/37,63%
15_t0.47_700lx_facade+roof_dim	0,02%/29,93%
16_t3.00_700lx_facade+roof_dim	46,86%/70,19%
17_t0.72_500lx_facade_onoff	0,07%/20,57%
18_t0.72_500lx_facade+roof_dim	13,60%/50,12%

Table A3. Material configuration file of DIVA

```
# material name: Precontaint

# material color: 178,178,178

# material type: translucent panel

# author: Amando Reber

# comment: This is a membrane with a reflectivity of 69% and a transmission of 0.72%.

# Specular transmittance and specular reflection is set to 0.

# void trans Precontaint

0

0

7 0.6972 0.6972 0.6972 0 0 0.0103 0
```

Table A4. **Absolute electrical energy savings for AL completive to Table 8**: Absolute differences of the column scenario related to the row scenario N° [MWh/a] (negative values are savings)

	300 lx					700 lx					τlow	high	500 l	ĸ				
			o/o			dim				o/o			dim		dim		o/o	dim
	op.	f.	r.	f+r	f.	r.	f+r	op.	f.	r.	f+r	f.	r.	f+r	f+r	f+r	f.	f+r
N°	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0.0	-1.8	-1.9	-4.3	-2.5	-3.8	-6.2	16.5	12.3	12.0	6.4	11.6	10.1	4.4	6.5	-2.4	5.3	-0.5
8	-16.5	-18.2	-18.4	-20.8	-18.9	-20.3	-22.7	0.0	-4.1	-4.5	-10.1	-4.8	-6.4	-12.0	-10.0	-18.9	-11.2	-17.0
2	1.8	0.0	-0.2	-2.5	-0.7	-2.0	-4.5	18.2	14.1	13.7	8.2	13.4	11.8	6.2	8.3	-0.6	7.1	1.3
																		-
9	-12.3	-14.1	-14.3	-16.6	-14.8	-16.1	-18.6	4.1	0.0	-0.4	-5.9	-0.7	-2.3	-7.9	-5.9	-14.7	-7.1	12.9
5	2.5	0.7	0.5	-1.9	0.0	-1.4	-3.8	18.9	14.8	14.4	8.9	14.1	12.5	6.9	8.9	0.1	7.7	1.9
						•												-
12	-11.6	-13.4	-13.6	-16.0	-14.1	-15.5	-17.9	4.8	0.7	0.3	-5.3	0.0	-1.6	-7.2	-5.2	-14.0	-6.4	12.2
14	-4.4	-6.2	-6.4	-8.8	-6.9	-8.3	-10.7	12.0	7.9	7.5	2.0	7.2	5.6	0.0	2.0	-6.8	0.8	-5.0
17	-5.3	-7.1	-7.2	-9.6	-7.7	-9.1	-11.5	11.2	7.1	6.7	1.1	6.4	4.8	-0.8	1.2	-7.7	0.0	-5.8
4	4.3	2.5	2.4	0.0	1.9	0.5	-1.9	20.8	16.6	16.3	10.7	16.0	14.4	8.8	10.8	1.9	9.6	3.8
11	-6.4	-8.2	-8.3	-10.7	-8.9	-10.2	-12.6	10.1	5.9	5.6	0.0	5.3	3.7	-2.0	0.1	-8.8	-1.1	-6.9

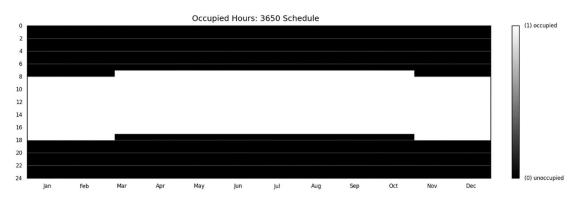


Fig. A 1 Occupancy profile

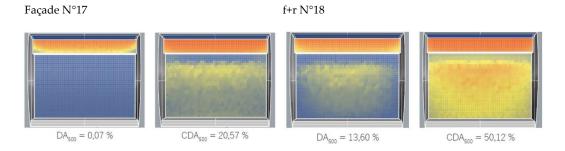


Fig. A 2 Spacial distribution of annual daylight indicators for scenarios with target illuminance 500 lx $N^{\circ}17\text{+}18$

Nomenclature

Abbreviations		comment
al	Artificial lighting	
el	electrical	
tfa	Total floor area	With construction
tot	Total	
V	visual	
PE	Primary Energy	
PES	Polyester	
PTFE	Polytetrafluoroethylene	
PVC	Polyvinyl chloride	
IM	Inner Membrane	
MI	Membrane Interspace	
OM	Outer Membrane	
IV	Interior Volume	
DA	Daylight Availability	
CDA	Continuous Daylight Autonomy	
UDI	Useful Daylight Illuminance	

Symbols			
Q	Energy	[kWh]	
Qel,tot	Total el. demand	[kWh]	
$Q_{\mathrm{el,al}}$	El. demand for artificial lighting	[kWh]	
$ au_{ m v}$	Light transmittance	[%]	
$E_{\rm v}$	(visual) illuminance	[lx]	
$G_{ m glob}$	Global irradiance	$[W/m^2]$	

References

- 1. Haase, W.; Klaus, T.; Knubben, E.; Mielert, F.; Neuhäuser, S.; Schmid, F.; Sobek, W. Adaptive mehrlagige textile Gebäudehüllen Mit Anl. 1. Recherchebericht: Beispiele zur konstruktiven Ausführung mehrlagiger gedämmter Membranbauwerken Simulationstool für mehrlagige Aufbauten; Fraunhofer IRB Verlag, 2011; ISBN 9783816786061.
- 2. Knissel, J. Energieeffiziente Büro- und Verwaltungsgebäude; IWU: Darmstadt, 1999;
- 3. EIA Commercial Buildings Energy Consumption Survey (CBECS 2012) Available online: https://www.eia.gov/consumption/commercial/reports/2012/lighting/ (accessed on May 4, 2018).
- Beusker, E.; Stoy, C.; Pollalis, S. N. Estimation model and benchmarks for heating energy consumption of schools and sport facilities in Germany. *Build. Environ.* 2012, 49, 324–335, doi:10.1016/j.buildenv.2011.08.006.
- Zeine, C.; Gebhardt, M.; Bockting, B.; Mantai, A.; Ping, J. Verbrauchskennwerte 2005: Energie- und Wasserverbrauchskennwerte in der Bundesrepublik Deutschland Available online: http://kw2003.de/index.php?option=com_kennwerte (accessed on May 11, 2018).
- 6. Karopka, L.; Klöffel, A.; Therburg, I.; Kopetzky, D. R.; Weber, D. T.; Kunkel, S.; Schettler-Köhler, H.-P.; Vilz, A. *Benchmarks für die Energieeffizienz von Nichtwohngebäuden: Vergleichswerte für Energieausweise*; Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS) and Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR): Bonn, 2009;
- 7. CIBSE ENERGY CONSUMPTION GUIDE 78: Energy Use in Sports and Recreation Buildings; 2001;
- 8. Lowry, G. Energy saving claims for lighting controls in commercial buildings. *Energy Build.* **2016**, 133, 489–497, doi:10.1016/j.enbuild.2016.10.003.
- 9. Krarti, M.; Erickson, P. M.; Hillman, T. C. A simplified method to estimate energy savings of artificial lighting use from daylighting. *Build. Environ.* **2005**, *40*, 747–754, doi:10.1016/j.buildenv.2004.08.007.
- 10. Ihm, P.; Nemri, A.; Krarti, M. Estimation of lighting energy savings from daylighting. *Build. Environ.* **2009**, 44, 509–514, doi:10.1016/j.buildenv.2008.04.016.
- 11. Marks, F. M. Letter to the Editors: Lighting for Different Healthcare Settings. *HERD Heal. Environ. Res. Des. J.* **2013**, *6*, 166–168, doi:10.1177/193758671300600314.
- 12. Plympton, P.; Conway, S.; Epstein, K. *Daylighting in Schools: Improving Student Performance and Health at a Price Schools Can Afford*; Madison, Wisconsin, 2000;
- 13. Kontadakis, A.; Tsangrassoulis, A.; Doulos, L.; Zerefos, S. A Review of Light Shelf Designs for Daylit Environments. *Sustainability* **2017**, *10*, *71*, doi:10.3390/su10010071.
- 14. Matusiak, B. S. ScienceDirect Glare from a translucent fac ß ade , evaluation with an experimental method. *Sol. Energy* **2013**, *97*, 230–237, doi:10.1016/j.solener.2013.08.009.
- 15. Pagliolico, S. L.; Lo, V. R. M.; Torta, A.; Giraud, M.; Canonico, F.; Ligi, L. A preliminary study on light transmittance properties of translucent concrete panels with coarse waste glass inclusions. *Energy Procedia* **2015**, *78*, 1811–1816, doi:10.1016/j.egypro.2015.11.317.

- Rosso, F.; Pisello, A. L.; Cotana, F.; Ferrero, M. Cool, Translucent Natural Envelope: Thermal-optics Characteristics Experimental Assessment and Thermal-energy and Day Lighting Analysis. *Energy Procedia* 2017, 111, 578–587, doi:10.1016/j.egypro.2017.03.220.
- 17. Souayfane, F.; Henry, P.; Fardoun, F. Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime. *Appl. Energy* **2018**, 217, 390–408, doi:10.1016/j.apenergy.2018.02.119.
- 18. Ahuja, A.; Mosalam, K. M. Evaluating energy consumption saving from translucent concrete building envelope. *Energy Build.* **2017**, *153*, 448–460, doi:10.1016/j.enbuild.2017.06.062.
- 19. Vu, N. H.; Shin, S. A large scale daylighting system based on a stepped thickness waveguide. *Energies* **2016**, *9*, 1–15, doi:10.3390/en9020071.
- Ullah, I.; Whang, A. Development of Optical Fiber-Based Daylighting System and Its Comparison. *Energies* 2015, 8, 7185–7201, doi:10.3390/en8077185.
- 21. Genswein, M.; Eicker, U. Ressourceneffizientes Gebäude für die Welt von Übermorgen: Forschungsprojekt REG II; Stuttgart, 2016;
- Shishegar, N.; Boubekri, M. Quantifying electrical energy savings in offices through installing daylight responsive control systems in hot climates. *Energy Build*. 2017, 153, 87–98, doi:10.1016/j.enbuild.2017.07.078.
- 23. Li, D. H. W.; Cheung, A. C. K.; Chow, S. K. H.; Lee, E. W. M. Study of daylight data and lighting energy savings for atrium corridors with lighting dimming controls. *Energy Build.* **2014**, *72*, 457–464, doi:10.1016/j.enbuild.2013.12.027.
- 24. Chow, S. K. H.; Li, D. H. W.; Lee, E. W. M.; Lam, J. C. Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls. *Appl. Energy* **2013**, *112*, 1016–1024, doi:10.1016/j.apenergy.2012.12.033.
- 25. Roisin, B.; Bodart, M.; Deneyer, A.; D'Herdt, P. Lighting energy savings in offices using different control systems and their real consumption. *Energy Build.* **2008**, *40*, 514–523, doi:10.1016/j.enbuild.2007.04.006.
- Fernandes, L. L.; Lee, E. S.; DiBartolomeo, D. L.; McNeil, A. Monitored lighting energy savings from dimmable lighting controls in The New York Times Headquarters Building. *Energy Build.* 2014, 68, 498– 514, doi:10.1016/j.enbuild.2013.10.009.
- 27. 06/1998 DETAIL. 1998, p. 957 ff.
- 28. Lang, W.; Rampp, T.; Ebert, H.-P. The Energy Efficiency Center of the Center for Applied Energy Research Würzburg. In 30th INTERNATIONAL PLEA CONFERENCECONFERENCE; CEPT University: Ahmedabad, 2014.
- 29. Lienhard, J.; Knippers, J.; Cremers, J.; Gabler, M. *Atlas Kunststoff + Membranen*; DETAIL Kon.; DE GRUYTER: München, 2010; ISBN 9783955530037.
- FürthWiki e. V. Verein für freies Wissen und Stadtgeschichte; Julius-Hirsch-Sportzentrum Available online: https://www.fuerthwiki.de/wiki/index.php/Julius-Hirsch-Sportzentrum (accessed on Apr 19, 2018).
- 31. Fab_architekten achitect competition Available online: http://www.fab-architekten.de/fuerth.html (accessed on Apr 19, 2018).
- 32. Cremers, J.; Palla, N.; Buck, D.; Beck, A.; Biesinger, A.; Brodkorb, S. Analysis of a Translucent Insulated Triple-layer Membrane Roof for a Sport Centre in Germany. *Procedia Eng.* **2016**, *155*, 38–46, doi:10.1016/j.proeng.2016.08.005.
- 33. Mardaljevic, J.; Heschong, L.; Lee, E. Daylight metrics and energy savings. *Light. Res. Technol.* **2009**, 41, 261–283, doi:10.1177/1477153509339703.

21 of 21

- 34. Reinhart, C. F.; Mardaljevic, J.; Rogers, Z. Dynamic daylight performance metrics for sustainable building design. *LEUKOS J. Illum. Eng. Soc. North Am.* **2006**, 3, 7–31, doi:10.1582/LEUKOS.2006.03.01.001.
- 35. Rogers, Z.; Goldman, D. Daylighting metric development using daylight autonomy calculations in the sensor placement optimization tool. *Boulder, Color. Archit. Energy Corp.* **2006**, 1–52.
- 36. fab_architekten, Industriestraße 35, 68169 Mannheim, http://www.fab-architekten.de/.