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1 Abstract: Protein-DNA interactions are critical for the successful functioning of all natural systems.
= The key role in these interactions is played by processes of protein search for specific sites on DNA.
s Although it has been studied for many years, only recently microscopic aspects of these processes
. became more clear. In this work, we present a review on current theoretical understanding of the
s molecular mechanisms of the protein target search. A comprehensive discrete-state stochastic method
s toexplain the dynamics of the protein search phenomena is introduced and explained. Our theoretical
»  approach utilizes a first-passage analysis and it takes into account the most relevant physical-chemical
s processes. It is able to describe many fascinating features of the protein search, including unusually
»  high effective association rates, high selectivity and specificity, and the robustness in the presence of
10 crowders and sequence heterogeneity.

1 1. Introduction

-

12 Dynamical nature of underlying processes is what distinguishes the living systems from other
1z processes. [1,2]. Biological processes constantly involve time-dependent fluxes of energy and materials,
12 which makes them strongly deviating from equilibrium as long as organisms are alive. This implies
15 that the concepts of equilibrium thermodynamics have limited applications for biological systems,
16 while the role of methods that study the dynamical transformations is much more important [3]. In this
17 review, we present our theoretical views on dynamic aspects of the protein-DNA interactions, which
1 dominate in biological systems. Our approach is based on explicit calculations of dynamic properties
1o via a first-passage probabilities analysis. The first-passage ideas have been already widely utilized in
20 studies of various complex processes in Chemistry, Physics and Biology [4,5]. We employ these ideas
=z in developing a discrete-state stochastic framework for analyzing the dynamics of protein search for
22 specific targets on DNA.

2 It is known that the beginning of most biological processes is associated with specific protein
2« molecules binding to specific target sequences on DNA because these events initiate the cascades of
= corresponding biochemical and biophysical processes [1-3]. For example, to activate or to repress a
26 gene the corresponding transcription factor proteins must bind first to the gene promoter’s region
2z [1,2]. This fundamental aspect of protein-DNA interactions has been studied extensively by various
2s  experimental and theoretical methods [6-38]. A special attention was devoted to understanding the
20 dynamics of the protein search for specific targets on DNA. Many ideas have been proposed and
30 critically discussed, but only recently a clear molecular picture of the underlying processes started to
s emerge [11,12,17].

32 Large amount of experimental observations on protein search phenomena, which mostly come
33 from the single-molecule measurements, suggests that it is a complex dynamic phenomenon which
sa combines three-dimensional (in the bulk solution) and one-dimensional (on the DNA chain) motions
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s [9-12,16]. But the most paradoxical observation is that, although the protein molecules spend most of
36 the search time (>90-99%) on the DNA chain where they diffuse very slowly, they still can find the
sz targets very fast, in some cases much faster than the bulk diffusion would allow [10-12]. For example,
ss the measured association rate for lac-repressor was ~ 101°M~1s~1 (two orders of magnitude faster
3o than the diffusion limit!) [6], and many other experimentally determined protein-DNA association
20 rates were also astonishingly high in comparison to typical biological binding rates. This is known as a
a1 facilitated diffusion. Several theoretical ideas on the origin of the facilitated diffusion, including lowering
.2 of dimensionality, electrostatic effects, correlations between 3D and 1D motions, conformational
«s transitions, bending fluctuations, and hydrodynamics effects have been explored and discussed
4 [10-12]. However, theoretical analysis shows that none of these mechanisms can fully explain the
« facilitated diffusion in the protein search [17]. To understand the dynamic aspects of protein-DNA
s interactions, we developed a discrete-state stochastic framework to take into account the most relevant
«z physical-chemical processes in the system. The application of the first-passage probabilities method
« allows us also to explicitly evaluate the dynamic properties and to clarify dynamic aspects of the
4 protein-DNA interactions.

50 It is important to note that although there are still different opinions on the theoretical foundations
s of the protein search phenomena, in this work we mostly present our views on these problems, which,
s of course, are subjective. In addition, there are many theoretical advances in our understanding of the
ss protein search dynamics, but we will concentrate only on few of them in order to explain better the
s« underlying molecular processes. Furthermore, there is a huge number of investigations on the protein
ss target search phenomena. Our goal is not to cover all studies and all existing views but to present a
ss clear theoretical picture of these processes as we understand it now.

sz 2. Simplest Discrete-State Stochastic Model of the Protein Target Search

58 Experiments clearly indicate that during the search the protein molecule is alternating between
ss freely diffusing behavior in the solution around the DNA chain and non-specific associations to
so DNA, which also include scanning the DNA chain [10-12]. The process is completed when the
e1 protein molecule reaches the specific target sequence on DNA for the first time. Stimulated by this
ez Observations, we start with a simplest minimal model of the protein search as presented in Figure 1. It
es is important to note that, in contrast to other theoretical approaches [10,11,15,32], this method is based
s« on a discrete-state stochastic description of the system. This is a more realistic view of early stages of
es protein-DNA interactions because of intrinsically discrete nature of molecular interactions in these
e systems.

In this simple model, we consider a single protein molecule and a single DNA molecule with a
single target site: see Figure 1. The DNA chain is viewed as having L discrete binding sites, and one of
them at the position m is considered to be the target for the protein molecule. Because the diffusion of
the proteins in the bulk is usually fast, all solutions states for the protein are combined into one state
that we label as a state 0 (Figure 1). It is assumed that from the bulk solution the protein molecule
can bind with equal probability to any site on DNA, and the total association rate to DNA is equal
to kon, while the dissociation rate from DNA is k,¢s. The non-specifically bound proteins can diffuse
without bias along the DNA contour in any direction with a rate u (see Figure 1). Since the search
process ends as soon as the protein molecule arrives to the specific site for the first time, we introduce
a function F,(t), which is defined as a probability density function of reaching the site m (the target
site) for the first time at time ¢ if at t = 0 the protein started in the state n (n = 0 is the bulk solution,
and n = 1,..., L are the protein-DNA bound states). This function is also known as a first-passage
probability density function [4,5]. To compute these first-passage probabilities, we utilize backward
master equations that describe the temporal evolution of these quantities [4,5,17],

dFy(t)
dt

= [Fay1(t) + Fao1(8)] + koprFo(t) — (2u +kops) Fu(t), @
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Figure 1. A schematic view of a minimal discrete-state stochastic model of the protein search for targets
om DNA. The DNA chain has L — 1 non-specific binding sites and one specific target site. A protein
molecule can diffuse along the DNA segment with a rate u in both directions. It can also associate to
DNA from the bulk solution (labeled as state 0) with a rate ko, or it can dissociate back to the solution
with a rate k, 7. The search is finished when the protein binds to the target site at the position m for the
first time.

for 2 < n < L — 1, while at the boundaries (n = 1 or n = L) we have

dF;Et) = uFy(t) + kogfFo(t) — (u+kop) Fi(t), @
and o
Eth(t) =uF 1(t) +koeFo(t) — (u+ ko) FL(E). @)

For the state n = 0, the backward master equation is different,

dFy(t)

k L
i = LR kRt @

ez Here we used the fact that the rate to bind to any site on DNA is ko, / L, so that the total association rate
es is equal to koy. In addition, the initial conditions require that F,(t) = d(t) and F,,,,,(t = 0) = 0. This
e means that if the protein molecule starts at the target site m the search is immediately accomplished.
70 It is important to explain the physical meaning of the backward master equations because they
= differ from classical forward master equations widely employed in Chemical Kinetics. It can be easily
72 seen that all trajectories that start at the state n and finish at the target site m can be divided into several
7s  groups. For example, for 2 < n < L — 1 all trajectories starting at n can be divided into three groups:
7a 1) passing via the state n — 1, 2) passing via the state n + 1 or 3) passing via the state 0 in the next time
75 step. The fractions of those trajectories are given by u/ (2u +kors), u/ (2u +kogr) and kors/ (2u + ko ff),
7 respectively. Equation (1) describes this partition of the trajectories in the time-dependent manner
7z because the first-passage probability flux to the target is determined by these trajectories. Thus, the
7e  backward master equations reflect the temporal evolution of the first-passage probabilities.
The most convenient way to analyze the dynamics in the system is to use Laplace representations
of the first-passage probability functions, F,(s) = [; e *'F,(t)dt. Then Equations (1),(2), (3) and (4)
can be written as simpler algebraic expressmns.

(s+2u+ koff)F/n_\(E) =u [ans) + Fni\ll(s)} + kofng\(;); ®)

(5 + 1+ Kog)Fi(s) = uFa(s) + kogFols); ©)

(5+ 1+ kogg) FL(S) = uFy_1(5) + kofsFo(s); @)
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N kon L
(s + kon)Fo(s) = T 2 8)

In addition, from the initial conditions we have F, (s) = 1. These equations are solved assuming that
the general form of the solution is F;E) = Ay" + B, where the unknown coefficients A, y and B are
determined from the initial and boundary conditions [17]. One could argue that the target site m
divides the DNA molecule into two homogeneous segments (1 < n < mand m < n < L), which can
be considered separately. It was shown [17] that this approach leads to explicit expressions for the
first-passage probability functions. Specifically, one obtains

— kon(koff +5)S
FO(S) _ 071( ff S) 1(5) , (9)
LS(koff + kon +8) + koffkonsl (s)
with an auxiliary function S1(s) defined as
ya+y) "t —yh)
S = ; 10
)= gy Ly 1
and with the parameters y and B given by
s+2u+ koff - \/(S +2u + koff)z — 4u?
y= 5 ; (11)
_ kogrRo(s) 12)
 (kops+s)

Explicit expressions for the first-passage probabilities provide a full dynamic description of the
protein search processes and any relevant quantities can be easily computed. For example, the mean
search time from the bulk solution, which is inversely proportional to the chemical association rate for
the specific target site, can be found from[17],

CORG)| 1 L 1 L—5(0)

T = +—
0 3 |y KkonS1(0) " kopr S1(0)

(13)

This result has a very clear physical meaning. Here the parameter S1(0) describes the average number
of distinct sites that the protein molecule scans during each visit to DNA while searching for the
single specific site. Then, on average, to find the target the protein must make L/S;(0) visits to DNA
because during every association S1(0) DNA sites are checked. Each visit, on average, lasts 1/k,, while
the protein scans for the target diffusing along the DNA chain. The protein also makes L/S1(0) — 1
dissociations back into the solution. The number of dissociation events is smaller by one than the
number of association events because the last binding to DNA leads to finding the specific site.

The results of our calculations for the mean search times are presented in Figure 2. Our main
finding here is that there are three dynamic search regimes depending on the values of kinetic
parameters. It is convenient to introduce here a scanning length A = /u/k,ss, which gives the
average distance that the protein molecule travels on DNA during each search cycle. This quantity
is related to the parameter S;(0), but it is not the same because the protein might visit the same sites
several times. If the protein molecule has a strong affinity to bind non-specifically to the DNA molecule
(small k,rr, A > L), then there will be only one searching cycle. After binding to DNA the protein will
not dissociate until it finds the target. In this case, the mean search time scales as ~ L2 because the
DNA-bound protein does a simple unbiased random walk. We call this dynamic phase a random-walk
regime. Because of the redundancy of the random walk the search in this regime should be generally
slow: many sites are repeatedly visited. In the opposite limit of weak attractions between DNA and

d0i:10.20944/preprints201807.0606.v1
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Figure 2. Mean search times as a function of the scanning length parameter A =  /u/k,¢r. The

parameters utilized in calculations are: L = 103 bp, u = kon = 10° s~1 and m = L/2. The transition
rate k, s is varied to change A.

o7 protein molecules (large k,rr, A < 1), the protein can bind to DNA but it cannot slide because it quickly
s dissociates back into the solution. The protein on average makes L searching cycles (Tp ~ L). This
9o dynamic regime is called a jumping regime. The search in this regime is generally fast as long as the
100 associations are also fast. The most interesting behavior is observed for the intermediate interactions,
11 which we label as a sliding regime. Here the scanning length A is larger than one but smaller than
102 the length of DNA L, and the number of searching cycles is also proportional to L. But in this regime
103 the system can reach the most optimal dynamic behavior with the smallest search times. This search
10s facilitation is achieved due to the fact that the fluxes to the target are coming now from both the bulk
15 solution and from the DNA chain. This is one of the main mechanisms of the facilitated diffusion of
106 proteins during the target search, but other processes like inter-segment transfer might also contribute
w07 significantly in the facilitated diffusion [27].

18 3. The Effect of Multiple Targets and Traps

109 The advantage of the discrete-state stochastic framework with the first-passage analysis presented
uo above is that it can be extended and generalized to more realistic biological situations. This allows us
m  to investigate important questions related to the mechanisms of the protein target search on DNA. Let
12 US present several specific examples, although many more results have been obtained.[17-29] We start
13 with the problem of how the presence of multiple target sites or multiple semi-specific trap sites affect
ua the dynamics of the protein search.

It is known that in eukaryotic cells multiple target sites are available on the accessible DNA
fragments [1-3,40]. The protein search is accomplished in these systems when the protein molecules
finds for the first time any of the target sites. It has been argued that the mean search time in this
system might not decrease proportionally to the number of targets as one would naively expect from
simple-minded applications of chemical kinetics [18]. This is due to the complex mechanism of the
protein search that involves both 3D and 1D motions [18]. Applying our discrete-state stochastic
framework to this problem, we consider a model with multiple targets at arbitrary locations as
presented in Figure 3. To describe the search dynamics in this system, we again introduce the
first-passage probability function F, (t) of finding any of the targets at time ¢ if the process started at
t = 0 at the site n. Targets are dividing the DNA chain into several homogeneous segments, and this
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Figure 3. A schematic view of the discrete-state stochastic model of the protein search with multiple
specific sites. Targets are located at the sites 77 and 1.

allows us to solve the corresponding backward master equations as explained in Section 2. This leads
to the following explicit expression for the mean search time for any number of targets [18],

L 1 L—5;(0)

1
To=—grv+——=
O kon Si(0) " kopr Si(0)

(14)

with a function S;(0) describing the average number of distinct sites scanned by the protein on DNA
with 7 targets. This formula is a generalization of Equation (13) when there is only one target (i = 1).
Specific expressions for S;(0) for various numbers of randomly distributed targets have been obtained
[18]. For example, for i = 2 it was shown that

(1+4+y) [2(1 — yALm—my) (] gma ) (y2m =1 y1+2(L—m2))}

20 = (1= )y (1 y ) (T ) "

us  where the parameter y is given in Equation 11.

116 To understand the effect of multiple targets on the protein search dynamics, we analyze the results
1z of explicit calculations for mean search times as presented in Figure 4. It is found that the presence of
ue  multiple targets does not affect the overall dynamic phase diagram as compared with the single-target
us case: three search regimes are again observed depending on the size of the scanning length, the target
120 size and the size of the DNA segment. Generally, the search is faster in the multiple-target systems.
11 However, surprisingly, increasing the number of specific sites might not always accelerate the search.
122 To quantify this effect, we introduced an acceleration parameter, a,, = Ty(1)/Tp(n), where Ty(n) is the
123 mean search for the system with n targets. This ratio gives a numerical value of how faster the search
124 s in the presence of n targets in comparison with the single-target system. It is illustrated in Figure
125 5. One can see that there is a range of parameters when the search dynamics in the system with two
126 targets can be slower than the dynamics in the system with one target. This happens in the effectively
12z 1D search regime (random-walk dynamic phase) when the single target is located in the middle of the
122 DNA chain, while two targets are close to each other and located near one of the ends of the DNA
120 segment. In this case, for the protein molecule the two targets are viewed as effectively a single target
130 site (with the size equal to two target sites) because they are so close to each other. But it is faster to
131 find the target located in the middle of the chain than the target positioned near the ends.[17] This is
132 the main reason why having multiple targets does not always lead to decrease in the search times.
133 Thus, our theoretical analysis predicts that the degree of acceleration due to the presence of multiple
13s  targets depends on the nature of the dynamic search phase and on the location of the specific sites with
135 respect to each other and with respect to the middle point of DNA [18].

136 Another important factor that might affect the protein search dynamics is the existence of so-called
137 semi-specific sites, or decoys, on DNA. These sites have a chemical composition very similar to the
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Figure 4. Dynamic phase diagrams for the protein search on DNA with one target at the position m,

with two targets at the positions m1; and m; and with the target and the trap at the positions m; and

my, respectively. Parameters used for calculations are: k,; = u = 10° s~ 1 and L = 10000. aym=1L1/2,
my =L/4and my =3L/4;b)ym = L/4, my =L/4dandmy = L/2;andc)m = L/2, m; = L/2 and
my = L. Adapted with permission from Ref. [19].
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Figure 5. Ratio of the mean search times as a function of the normalized distance between the targets

for single-target and two-target systems (I is the distance between between targets, L is the DNA

length). The single target is in the middle of the chain. In the two-target system, one of the specific sites

is fixed at the end and the position of the second one is varied. The parameters used in calculations are:

U =koy = 100s71; koff =10"*s"1; and L = 10000. Adapted with permission from Ref. [18].

s specific targets with differences in only one or few nucleotides. The protein molecule can be trapped
130 in these sites, and this should influence the search for real targets. To analyze this effect, we can extend
10 the simplest model to include the possibility of traps, assuming that associations to these semi-specific
a1 sites are effectively irreversible [19]. This assumption is reasonable because the search times in many
12 systems are relatively short and the experimental observations also limited in time. Thus the bindings
13 to decoys can be viewed as effectively irreversible. The first-passage analysis can be applied here, but
14e  'We have to notice that only a fraction of trajectories will reach the correct target site. Then the main
1s  quantity of our calculations, the first-passage probability function Fy (), is now a conditional probability
s for the protein molecules not captured by the trap to find the target site.

Let us consider a system consisting of a single target at the site 71 and a single trap at the site mp
on the DNA molecule with L sites [19]. The scheme presented in Figure 3 is also a correct representation
of this system with the correction that instead of the second target there is a trap in the site 1, and
the successful search corresponds to the protein molecule finding the specific site ;. Following our
theoretical method, the corresponding backward master equations can be solved and they yield the
Laplace transform of the first-passage probability function to find the target if the protein starts from

the bulk solution [19],
0 N Ls(koff+kon +S) +k0ffkon52(s)’
with
1+ 1— my+my—1

(1—y)(1+y?m-1) (1 +ym-m)’
147 and the parameters y and S; given in Equations (11) and (15), respectively. This allows us to evaluate
s all dynamic properties in the system and to test the effect of traps.
The probability to reach the target (i.e., the fraction of the successful trajectories) is now given by
a so-called splitting probability function [4,5],

I1= Fy(s = 0)

(18)
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Figure 6. Probability to reach the target as a function of the scanning length for different distributions
of the target and trap sites. Parameters used for calculations are: ko, = u = 10° s~ 1, L = 10000 and
ko sy is changing. Symbols are from Monte Carlo computer simulations. Adapted with permission from
Ref. [19]

The mean search time, which is the conditional mean first-passage time to reach the target, can be
estimated by averaging over the successful trajectories, producing

9Fy(s)
9s 1 L 1 L—5,(0) 9 [Sa(s)
IT kon SZ(O) kof 52(0) ds SO(S)

(19)

5=0

1s0  Let us analyze this expression. On the left side, the division by the splitting probability emphasizes the
10 fact that this is the conditional mean search time. It is also interesting to note that the first two terms
151 on the right side of the equation is exactly the mean search time for the system with two targets and no
152 traps (at the sites m; and my) as we discussed above [18], while the third term is a correction which
153 accounts for the fact that the site at m; is actually the trap. The main reason for this is the observation
1ss  that the sites m; and m; are special locations where all trajectories are end up in both systems, with two
155 targets and with the target and the trap. For the two-target case the mean search times are averaged
s over all trajectories to both sites, while for the target and the trap system the mean search times are
157 Obtained only by considering the trajectories finishing at the target [19].

158 The results of calculations for the dynamic properties of the protein search in the presence of
10 traps are presented in Figures 4 and 6. Again, three dynamic search phases are observed, but adding
10 the trap generally facilitates the search dynamics, which is a counter-intuitive result: see Figure 4.
11 However, this acceleration (in comparison with the single-target system) is always associated with
12 lowering of the probability of reaching the specific target, as shown in Figure 6. This means that
163 the protein molecules might reach the target faster in the presence of the traps, but the fraction of
1ee  such events is decreasing. In addition, the search dynamics is sensitive to the nature of the dynamic
1es phase. The strongest effect due to the presence of the trap is observed in the effective 1D random-walk
16 regime (because it has only one searching cycle) where the locations of the target and the trap strongly
167 influence the search. In other dynamic regimes, the effect is smaller.

1es 4. Sequence heterogeneity

169 Real DNA molecules are heterogeneous polymers consisting of several types of subunits. This
170 means that the interactions between protein and DNA molecules depend on the DNA sequence at the
11 location where they meet. It is reasonable to expect that this sequence dependence in the interaction
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Figure 7. A simplified view on the protein search on DNA with two different types of subunits, A
and B. a) A general scheme; b) DNA is viewed as a symmetric block copolymer with the target in the
middle of the chain; ¢) DNA is viewed as alternating copolymer with different compositions of the
subunits flanking the target in the middle of the chain. Adapted with permission from Ref. [20]

172 strength should affect the protein search dynamics because the diffusion rate for the non-specifically
173 bound proteins will be position-dependent [3,11,41]. Similarly, association and dissociation rates
17a  should also depend on the location of the protein molecule on DNA. In addition, recent theoretical
175 investigations suggested that different DNA sequence symmetries might lead to additional effective
176 interactions between protein and DNA molecules [43-46]. The discrete-state stochastic framework with
177 the first-passage analysis is a convenient tool to investigate the effect of DNA sequence heterogeneity
17s and symmetry on the protein search dynamics [20].

170 Our goal here is clarify the molecular origin of how the sequence heterogeneity influences the
180 protein target search. We assume here a simplified picture of DNA, in which each monomer can be
1e1 one of two chemical species, A or B, as presented in Figure 7 [20]. When the protein is bound to the
12 subunit A (B), it interacts with energy € 4 (ep), and the difference between interaction energies is given
183 by a parameter ¢ = ¢4 — eg > 0. This means that the protein attracts stronger to the B sites than to
12a the A sites. The protein molecule can diffuse along DNA with a rate u4 = u or ugp = ue™¢, where ¢ is
s measured in kT units. This reflects the assumption that if the protein interacts stronger with the DNA
16 at given location then it will move out of this site slower. In addition, we assume that, independently
1z Of the chemical nature of the neighboring sites, sliding out of the sites A is characterized by the rate
s U4, while the diffusion out of the sites B is given by up. From the bulk solution the protein might
10 associate to any site A or B on DNA with the corresponding rates k4, = ko, or kB, = k,,e~%. Note
100 that for convenience the on-rates defined here as the rates per unit site, in contrast to our definitions
101 in the previous sections. Similarly, the dissociations from the DNA chain are described by the rates
w2 k2L ;= koff and koBf ;= koffe(e_l)g. Here, the parameter 0 < 6 < 1 specifies how the protein-DNA
103 interaction energy is distributed between the association and dissociation transitions [20]. The physical
1a meaning of this parameter is that the protein molecule tends to bind faster and to dissociate slower
105 from the stronger attracting sites B, as compared with the weaker attracting A sites. The parameter ¢
16 accounts for these effects.
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Figure 8. The ratio of the mean search times for the alternating DNA sequences and for the block
copolymer DNA sequences as a function of the scanning length A =, /u/k,¢¢. Three different chemical
compositions near the target (T) are distinguished, namely, ATA, ATB, BTB. The transition rates are
u =10°s7! and ky;, = 0.1571. The DNA length is L = 1000, the loading parameter is § = 0.5, and
the energy difference of interactions for the protein with A and B sites is ¢ = 5 kgT. Adapted with
permission from Ref. [20].

197 To quantify the role of sequence heterogeneity, we consider the DNA molecule with a fixed
e chemical composition (the fractions of A and B monomers are the same), but with different
100 arrangements of subunits. Two limiting cases are specifically analyzed. One of them views the
20 DNA molecule as two homogeneous segments of only A and only B subunits separated by the target
201 in the middle of the chain (Figure 7). Another one is the DNA chain with the alternating A and B sites.
202 The block copolymer has two homogeneous sequence segments, while the alternating polymers are
203 more heterogeneous. It is important to note that in both cases, the overall interaction between the
20s  protein and DNA is the same (because the overall chemical composition in both cases is identical), and
20s thus our analysis probes only the effect of the heterogeneity and symmetry in the subunit positions, in
200 contrast to other theoretical treatments [42].
Applying again the first-passage approach and solving the corresponding equations leads to the
explicit expressions for mean search times for all situations shown in Figure 7 [20]. For example, for
the block copolymer DNA sequences, we obtain

T koff+kgn [(L/Z—PA)+€£(L/2—PB)]
0 =

’ 20
konkoff(l + Py + €9€PB) (20)

where 1-L/2 . 14+L/2
b = & 11?2 NG (21)
(1—9(1-)(xiJr + xt9)

i

2+ )y [ k) 2 0

21/!1' ’
207 fori = A or B. The expressions for the mean search time for alternating sequences are quite bulky and
20 can be found in Ref. [20].

200 The results of our calculations are presented in Figure 8, where the ratio of the mean search times
20 for the block copolymer and alternating sequences are plotted. The analysis of this figure produces

Xj = (22)

2 several interesting observations. First, we see that three dynamic search regimes are also found in this
22 system and the effect of sequence heterogeneity on protein search dynamics depends on the nature of
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213 the dynamic phase. In the jumping regime when the protein does not slide along the DNA contour
z2s (A < 1), the symmetry of the sequence does not play any role. This is because in this case the process is
=5 taking place only via associations and dissociations (3D search), and the structure of the DNA chain is
26 not important. The situation is different for the intermediate sliding regime (3D+1D search, 1 < A < L)
21z where in most cases, the search on alternating sequences is faster. This can be explained by noticing
zus  that the search time in this dynamic phase is proportional to L/A, which gives the average number
210 Of cycles before the protein can find the target. In the block copolymer sequence, the protein mostly
220 comes to the target from the B segment because of stronger interactions with these sites, i.e, it comes
22 from one side of the DNA molecule. In the alternating sequences, the protein can reach the target
222 from both sides of DNA, and this lowers the overall search time. It can be shown analytically that the
223 scanning length on the alternating segment is larger than the scanning length for the B segment, i.e.,
222 Aygp > Ap [20]. Then the search is faster for the alternating sequences because L/A4p < L/Ap, i.e., the
225 number of searching cycles is lower for the alternating sequences, which helps to find the target faster.
22¢ The only deviation from this picture is found for ATA sequences, which corresponds to having two
227 A sites around the target site, where for the small range of parameters the search is slower than in
226 the block copolymer sequence. This effect can be explained by the fact that the protein does not sit
220 at A sites for the long time and it moves quickly away, effectively increasing the barrier to enter the
230 target via DNA [20]. Thus, our theory predicts that the composition of the DNA flanking sites around
21 the target sequences might affect the dynamics of reaching them. It is interesting to note that recent
232 experiments are consistent with our theoretical predictions [47].

233 In the random-walk regime (1D search, A > L), the effect of the sequence heterogeneity is
23s  even stronger. The protein molecule finds the specific binding site up to 2 times faster for more
235 heterogeneous alternating DNA sequences. To understand this behavior, we note that in this case the
=3¢  mean first-passage time to reach the target is a sum of residence times on the DNA sites since the protein
237 will not dissociate until the target is located so that all trajectories to the target are one-dimensional.
238 Because the target is in the middle of the chain, the mean time to reach the target from the block
23s  copolymer sequence can be approximated as Ty ~ (L/4)tp, where T3 is the average residence time
20 on any site B. The protein prefers to start the search at any position on the B segment with equal
21 probability, i.e., the distance to the target varies from 0 to L/2. Then, the average starting position of
2a2  the protein is L/4 sites away from the target. For the alternating sequences, the average distance to
2a3  the target is approximately the same (L/4), but the chemical composition of intermediate sites on the
2aa path to the target is different, yielding, Ty ~ (L/8)t4 + (L/8)7p (T4 is the residence time on A sites).
2as  The protein spends much less time on A subunits, and this leads to faster search for the alternating
226 DNA sequences. For 74 < 1p, this also explains the factor of 2 in the search speed. In this case, the B
2ez  subunits can be viewed as effective traps that slow down the search dynamics. Thus, our theoretical
a8 calculations make surprising predictions that the sequence heterogeneity almost always lead to faster
2e0  protein search for targets on DNA despite the fact that it lowers the effective protein-DNA binding
20 affinity [43—46]. And the stronger the contribution of the 1D search modes, the more relevant will be
=1 the effect of sequence heterogeneity.

22 5. The Effect of Crowding on DNA in the Protein Target Search

253 Living cells are typically crowded with a large number of molecules, and many of them are
=sa  attached to the DNA chains [1,2]. This should prevent the fast protein search for targets on DNA, and
25 earlier theoretical studies supported this prediction [49]. However, surprisingly, experiments show
26 that crowding on DNA does not affect much the effectiveness of the protein target search [33,34], and
sz this was also found in MD simulations [48]. By applying the discrete-state stochastic approach, we
2 were able to clarify the role of the crowding on DNA in the protein target search.

280 To analyze this problem, the model illustrated in Figure 9 is considered. There is a single DNA
260 molecule with L + 1 binding sites, and one of them is the target (at the site 7). On the DNA chain there
2e1  is also a crowding particle that can diffuse with a rate u,,, but it cannot leave DNA. A single protein
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Figure 9. A schematic view of the protein target search in the presence of a moving obstacle on DNA.
The crowding particle cannot dissociate from DNA, while the protein molecule can dissociate into the
solution, labeled as state 0, and return back to the DNA chain.

22 molecule starts from the solution (state 0) and it can bind to any site on DNA that is not occupied by
263 the crowder with a rate k, (rate per site). The bound protein molecule can diffuse with a rate u, and
2es there is an exclusion interaction between the protein and the crowder. Finally, the protein molecule
26 can dissociate from DNA to the bulk solution with a rate k,¢f: see Figure 9.

Investigating the model with the mobile crowding particle on DNA first using Monte Carlo
computer simulations, it is found that there are three search regimes depending on the main length
scales in the system. This is shown in Figure 10 for the mean search times to find the target as a
function the scanning length A. We can understand the complex dynamics in this system using the
following arguments. If the diffusion rate of the crowder is much smaller than other rates (u,, < u,
kon and k), then the protein molecule will find the target before the crowding particle can move
away from its original location. But we already explicitly solved the problem of the protein target
search with static obstacles using the same discrete-state stochastic approach with the first-passage
analysis [23]. Then the mean search time in the system with movable crowder can be approximated as
the average over all possible static locations of the crowding particle [21], yielding

m—1 L—m
<TO> = % ( 2 Tob(lob) + Z Toh(lob)> ’ (23)

lyp=1 lop=1
where
- koff + kon(L - Soh(o))
" konkosSos(0)
is the mean search time with the static obstacle located at a distance I,;, from the target. An auxiliary
function S, is given by [23]

(24)

210b72)

_ yym =y y( -y
Sob(s) = (1 —y)(y" + y'tm) + (1—y)(1 4y~ 1)

26 With the parameter y specified in Equation 11.

267 This simple approximate theory works quite well in the dynamic regimes where 3D pathways
26s  are important for the search (A < L). However, theoretical arguments fail in the random-walk regime
200 Where 1D dynamics dominate the search. These results are expected. The protein molecule that collides
220 with the crowding particle on DNA in dynamic regimes with 3D pathways will have the opportunity
2 to dissociate into the bulk solution and to avoid the blocking effect. But in the random-walk regime
2z (1D search) there is no such opportunity, and the search times will definitely increase. Computer
2rs  simulations also indicate that the search times in this regime depend on the diffusivity of the crowding
zza  particle. The search is faster for more mobile crowders: see Figure 10.

(25)
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Figure 10. Mean search times to find the target in the system with a mobile crowder on DNA. The
DNA chain has L = 1000 sites, and the target is in the middle of the chain, m = L/2. Parameters used
for calculations are k,,, = 0.1 571, u = 10° s~! and variable u,p. Solid curves correspond to analytical
results for DNA without obstacles and for DNA with a static obstacle, which are averaged over all
initial positions of the crowder. Symbols correspond to Monte Carlo computer simulations. Dashed
lines describe the approximate theory, as explained in the text. Adapted with permission from Ref.
[21].

The dynamics in the random-walk regime can be explained using the following arguments. The
overall search can be viewed as consisting of two terms,

(T§Y) =~ Ty + (Ty), (26)

where Tj is the search in the random-walk regime without any crowders, and it is given in Equation
13. The second term is the average time it takes for the crowder to diffuse away and clear the path
for the protein to reach the target without interference [21]. It was shown that this blocking time Tj,
depends on the location of the target and the diffusion rate of the crowding particle u,;, [21],

mt 4
+ (L —m)
T . 27
(Tor) = 16140, (L2 + m2 — mL) @7
275 This simple theoretical arguments show excellent agreement with Monte Carlo computer

276 simulations: see dashed lines in Figure 10. But more importantly, they provide a clear molecular picture
2z on the role of the crowding on DNA in the protein target search. If the protein search is dominated by
z7e 1D pathways and the mobility of the crowder is low the search dynamics will be significantly slowed
2rs down. But if the search involves mostly 3D pathways and the crowder is mobile the mean search
200 times will not be affected much. It seems that real biological systems operate in 3D+1D regime, and
21 crowding particles diffuse with the rates comparable to the searching proteins (1 ~ 1) [3]. Then one
22 might conclude that the effect of the crowders on DNA should be minimal. This fully agrees with
203 experimental observations and with results from MD simulations [34,48].

2sa 6. Conclusions and Future Directions

285 Although protein search for targets on DNA is a very complex phenomenon that involves multiple
2es biochemical and biophysical processes, significant advances in our understanding of the underlying
27 molecular mechanisms have been achieved in recent years. A major role in this success is due
2es  to analysis of the systems using the discrete-state stochastic framework supplemented by explicit
280 calculations via the first-passage probabilities method. In this review, we presented and explained this
200 theoretical approach by considering the protein target search in various systems. It is important to
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201 emphasize that the main advantage of our theoretical approach is the ability to obtain analytical results
202 that clarify the physics of the underlying processes. In addition, the method can be easily extended
203 in many directions, as shown in this work, as well as in other cases which we did not discuss in this
20a  work, such as the role of conformational transitions [24] and the effect of DNA loop formation in the
205 protein target search [23]. Furthermore, our theoretical calculations using this theoretical framework
206 Were successful in explaining the experimental observations on homology search by RecA protein
207 filaments [25] and the dynamics of CRISPR genome interrogation [29].

208 Several important dynamic features of the protein search for targets on DNA have been identified
200 from theoretical analysis. It is found that the dynamic phase diagram of the protein target search
300 always shows thee dynamic regimes, which are determined by the three relevant length scales in the
s1  system: the size of DNA, the average scanning length of the non-specifically bound proteins, and
;02 the size of the target sequence. Depending on the dynamic phase, the search is dominated by the 3D
s motions (jumping regime), 1D motions (random-walk regime) or a combination of 3D and 1D motions
s0¢ in the sliding regime. The analysis shows that the most optimal search dynamics can be achieved
s0s in the dynamic regime when the protein molecules explore both 1D and 3D pathways during the
s0s search. In this case, the protein can reach the target by sliding from the DNA chain or by directly
;07 binding from the solutions. Theoretical calculations also indicate that the presence of several target
s0s  sites influences the search dynamics differently depending on the locations of the targets on DNA
;00 and distances between them. Surprising observations are found in the system with semi-specific sites,
a0 which are viewed as effective traps. It is shown that the search dynamics can be faster in this case,
su  but it comes with the price of lowering the yield of the protein molecules reaching the target. We also
sz investigated the effect of sequence heterogeneity and symmetry in the protein search dynamics. Our
a3 calculations indicate that the search is faster for more heterogeneous sequences, and the chemical
a4 composition around the target is also an important factor in this process. Furthermore, our method
a5 allowed us to probe the effect of crowding on DNA in the protein target search. It is shown that it
aie  depends on the dynamic phase and on the mobility of the crowding particles. The crowders influence
a7 the protein search stronger when 1D pathways dominate and when the diffusivity of the crowding
se  particle is small enough so that the protein will be frequently blocked during the process. Increasing
a0 the mobility of the crowders and/or increasing the contribution of 3D search pathways lowers the
a20 effect of the crowding. These theoretical arguments fully agree with experimental observations and
sz MD computer simulations.

322 Despite tremendous progress in theoretical understanding of the protein target search phenomena,
s2s  there are many questions remain on the molecular mechanisms of these processes. It is still unclear
s22  what is the nature of protein-DNA interactions in the regions surrounding the target sequences. Is the
225 effective potential created by these interactions drives the protein molecule to the target like a funnel
;26 Or is it completely random? How large is the size of the flanking segments that affect the finding of the
;27 target? What is the role of DNA topology in the protein target search? This is especially important
s2¢  for proteins that have several binding sites for DNA which can form DNA loops and other complex
;20 structures. Another interesting question is the role of various DNA and protein conformations in these
30 processes. It is clear that further progress in understanding protein target search phenomena depends
s1  on combining theoretical, computational and experimental methods.
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