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Abstract: Protein-DNA interactions are critical for the successful functioning of all natural systems. 
The key role in these interactions is played by processes of protein search for specific sites on DNA. 
Although it has been studied for many years, only recently microscopic aspects of these processes 
became more clear. In this work, we present a review on current theoretical understanding of the 
molecular mechanisms of the protein target search. A comprehensive discrete-state stochastic method 
to explain the dynamics of the protein search phenomena is introduced and explained. Our theoretical 
approach utilizes a first-passage analysis and it takes into account the most relevant physical-chemical 
processes. It is able to describe many fascinating features of the protein search, including unusually 
high effective association rates, high selectivity and specificity, and the robustness in the presence of 
crowders and sequence heterogeneity.10

1. Introduction11

Dynamical nature of underlying processes is what distinguishes the living systems from other12

processes. [1,2]. Biological processes constantly involve time-dependent fluxes of energy and materials,13

which makes them strongly deviating from equilibrium as long as organisms are alive. This implies14

that the concepts of equilibrium thermodynamics have limited applications for biological systems,15

while the role of methods that study the dynamical transformations is much more important [3]. In this16

review, we present our theoretical views on dynamic aspects of the protein-DNA interactions, which17

dominate in biological systems. Our approach is based on explicit calculations of dynamic properties18

via a first-passage probabilities analysis. The first-passage ideas have been already widely utilized in19

studies of various complex processes in Chemistry, Physics and Biology [4,5]. We employ these ideas20

in developing a discrete-state stochastic framework for analyzing the dynamics of protein search for21

specific targets on DNA.22

It is known that the beginning of most biological processes is associated with specific protein23

molecules binding to specific target sequences on DNA because these events initiate the cascades of24

corresponding biochemical and biophysical processes [1–3]. For example, to activate or to repress a25

gene the corresponding transcription factor proteins must bind first to the gene promoter’s region26

[1,2]. This fundamental aspect of protein-DNA interactions has been studied extensively by various27

experimental and theoretical methods [6–38]. A special attention was devoted to understanding the28

dynamics of the protein search for specific targets on DNA. Many ideas have been proposed and29

critically discussed, but only recently a clear molecular picture of the underlying processes started to30

emerge [11,12,17].31

Large amount of experimental observations on protein search phenomena, which mostly come32

from the single-molecule measurements, suggests that it is a complex dynamic phenomenon which33

combines three-dimensional (in the bulk solution) and one-dimensional (on the DNA chain) motions34
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[9–12,16]. But the most paradoxical observation is that, although the protein molecules spend most of35

the search time (≥90-99%) on the DNA chain where they diffuse very slowly, they still can find the36

targets very fast, in some cases much faster than the bulk diffusion would allow [10–12]. For example,37

the measured association rate for lac-repressor was ∼ 1010M−1s−1 (two orders of magnitude faster38

than the diffusion limit!) [6], and many other experimentally determined protein-DNA association39

rates were also astonishingly high in comparison to typical biological binding rates. This is known as a40

facilitated diffusion. Several theoretical ideas on the origin of the facilitated diffusion, including lowering41

of dimensionality, electrostatic effects, correlations between 3D and 1D motions, conformational42

transitions, bending fluctuations, and hydrodynamics effects have been explored and discussed43

[10–12]. However, theoretical analysis shows that none of these mechanisms can fully explain the44

facilitated diffusion in the protein search [17]. To understand the dynamic aspects of protein-DNA45

interactions, we developed a discrete-state stochastic framework to take into account the most relevant46

physical-chemical processes in the system. The application of the first-passage probabilities method47

allows us also to explicitly evaluate the dynamic properties and to clarify dynamic aspects of the48

protein-DNA interactions.49

It is important to note that although there are still different opinions on the theoretical foundations50

of the protein search phenomena, in this work we mostly present our views on these problems, which,51

of course, are subjective. In addition, there are many theoretical advances in our understanding of the52

protein search dynamics, but we will concentrate only on few of them in order to explain better the53

underlying molecular processes. Furthermore, there is a huge number of investigations on the protein54

target search phenomena. Our goal is not to cover all studies and all existing views but to present a55

clear theoretical picture of these processes as we understand it now.56

2. Simplest Discrete-State Stochastic Model of the Protein Target Search57

Experiments clearly indicate that during the search the protein molecule is alternating between58

freely diffusing behavior in the solution around the DNA chain and non-specific associations to59

DNA, which also include scanning the DNA chain [10–12]. The process is completed when the60

protein molecule reaches the specific target sequence on DNA for the first time. Stimulated by this61

observations, we start with a simplest minimal model of the protein search as presented in Figure 1. It62

is important to note that, in contrast to other theoretical approaches [10,11,15,32], this method is based63

on a discrete-state stochastic description of the system. This is a more realistic view of early stages of64

protein-DNA interactions because of intrinsically discrete nature of molecular interactions in these65

systems.66

In this simple model, we consider a single protein molecule and a single DNA molecule with a
single target site: see Figure 1. The DNA chain is viewed as having L discrete binding sites, and one of
them at the position m is considered to be the target for the protein molecule. Because the diffusion of
the proteins in the bulk is usually fast, all solutions states for the protein are combined into one state
that we label as a state 0 (Figure 1). It is assumed that from the bulk solution the protein molecule
can bind with equal probability to any site on DNA, and the total association rate to DNA is equal
to kon, while the dissociation rate from DNA is ko f f . The non-specifically bound proteins can diffuse
without bias along the DNA contour in any direction with a rate u (see Figure 1). Since the search
process ends as soon as the protein molecule arrives to the specific site for the first time, we introduce
a function Fn(t), which is defined as a probability density function of reaching the site m (the target
site) for the first time at time t if at t = 0 the protein started in the state n (n = 0 is the bulk solution,
and n = 1, ..., L are the protein-DNA bound states). This function is also known as a first-passage
probability density function [4,5]. To compute these first-passage probabilities, we utilize backward
master equations that describe the temporal evolution of these quantities [4,5,17],

dFn(t)
dt

= u [Fn+1(t) + Fn−1(t)] + ko f f F0(t)− (2u + ko f f )Fn(t), (1)
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Figure 1. A schematic view of a minimal discrete-state stochastic model of the protein search for targets
om DNA. The DNA chain has L− 1 non-specific binding sites and one specific target site. A protein
molecule can diffuse along the DNA segment with a rate u in both directions. It can also associate to
DNA from the bulk solution (labeled as state 0) with a rate kon or it can dissociate back to the solution
with a rate ko f f . The search is finished when the protein binds to the target site at the position m for the
first time.

for 2 ≤ n ≤ L− 1, while at the boundaries (n = 1 or n = L) we have

dF1(t)
dt

= uF2(t) + ko f f F0(t)− (u + ko f f )F1(t), (2)

and
dFL(t)

dt
= uFL−1(t) + ko f f F0(t)− (u + ko f f )FL(t). (3)

For the state n = 0, the backward master equation is different,

dF0(t)
dt

=
kon

L

L

∑
n=1

Fn(t)− konFn(t). (4)

Here we used the fact that the rate to bind to any site on DNA is kon/L, so that the total association rate67

is equal to kon. In addition, the initial conditions require that Fm(t) = δ(t) and Fn 6=m(t = 0) = 0. This68

means that if the protein molecule starts at the target site m the search is immediately accomplished.69

It is important to explain the physical meaning of the backward master equations because they70

differ from classical forward master equations widely employed in Chemical Kinetics. It can be easily71

seen that all trajectories that start at the state n and finish at the target site m can be divided into several72

groups. For example, for 2 ≤ n ≤ L− 1 all trajectories starting at n can be divided into three groups:73

1) passing via the state n− 1, 2) passing via the state n + 1 or 3) passing via the state 0 in the next time74

step. The fractions of those trajectories are given by u/(2u + ko f f ), u/(2u + ko f f ) and ko f f /(2u + ko f f ),75

respectively. Equation (1) describes this partition of the trajectories in the time-dependent manner76

because the first-passage probability flux to the target is determined by these trajectories. Thus, the77

backward master equations reflect the temporal evolution of the first-passage probabilities.78

The most convenient way to analyze the dynamics in the system is to use Laplace representations
of the first-passage probability functions, F̃n(s) ≡

∫ ∞
0 e−stFn(t)dt. Then Equations (1),(2), (3) and (4)

can be written as simpler algebraic expressions:

(s + 2u + ko f f )F̃n(s) = u
[ ˜Fn+1(s) + ˜Fn−1(s)

]
+ ko f f F̃0(s); (5)

(s + u + ko f f )F̃1(s) = uF̃2(s) + ko f f F̃0(s); (6)

(s + u + ko f f )F̃L(s) = u ˜FL−1(s) + ko f f F̃0(s); (7)
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(s + kon)F̃0(s) =
kon

L

L

∑
n=1

F̃n(s). (8)

In addition, from the initial conditions we have F̃m(s) = 1. These equations are solved assuming that
the general form of the solution is F̃n(s) = Ayn + B, where the unknown coefficients A, y and B are
determined from the initial and boundary conditions [17]. One could argue that the target site m
divides the DNA molecule into two homogeneous segments (1 ≤ n ≤ m and m ≤ n ≤ L), which can
be considered separately. It was shown [17] that this approach leads to explicit expressions for the
first-passage probability functions. Specifically, one obtains

F̃0(s) =
kon(ko f f + s)S1(s)

Ls(ko f f + kon + s) + ko f f konS1(s)
, (9)

with an auxiliary function S1(s) defined as

S1(s) =
y(1 + y)(y−L − yL)

(1− y)(y1−m + ym)(ym−L + y1+L−m)
; (10)

and with the parameters y and B given by

y =
s + 2u + ko f f −

√
(s + 2u + ko f f )2 − 4u2

2u
; (11)

B =
ko f f F̃0(s)
(ko f f + s)

. (12)

Explicit expressions for the first-passage probabilities provide a full dynamic description of the
protein search processes and any relevant quantities can be easily computed. For example, the mean
search time from the bulk solution, which is inversely proportional to the chemical association rate for
the specific target site, can be found from[17],

T0 ≡ −
∂F̃0(s)

∂s

∣∣∣∣
s=0

=
1

kon

L
S1(0)

+
1

ko f f

L− S1(0)
S1(0)

. (13)

This result has a very clear physical meaning. Here the parameter S1(0) describes the average number79

of distinct sites that the protein molecule scans during each visit to DNA while searching for the80

single specific site. Then, on average, to find the target the protein must make L/S1(0) visits to DNA81

because during every association S1(0) DNA sites are checked. Each visit, on average, lasts 1/kon while82

the protein scans for the target diffusing along the DNA chain. The protein also makes L/S1(0)− 183

dissociations back into the solution. The number of dissociation events is smaller by one than the84

number of association events because the last binding to DNA leads to finding the specific site.85

The results of our calculations for the mean search times are presented in Figure 2. Our main86

finding here is that there are three dynamic search regimes depending on the values of kinetic87

parameters. It is convenient to introduce here a scanning length λ =
√

u/ko f f , which gives the88

average distance that the protein molecule travels on DNA during each search cycle. This quantity89

is related to the parameter S1(0), but it is not the same because the protein might visit the same sites90

several times. If the protein molecule has a strong affinity to bind non-specifically to the DNA molecule91

(small ko f f , λ > L), then there will be only one searching cycle. After binding to DNA the protein will92

not dissociate until it finds the target. In this case, the mean search time scales as ∼ L2 because the93

DNA-bound protein does a simple unbiased random walk. We call this dynamic phase a random-walk94

regime. Because of the redundancy of the random walk the search in this regime should be generally95

slow: many sites are repeatedly visited. In the opposite limit of weak attractions between DNA and96
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Figure 2. Mean search times as a function of the scanning length parameter λ =
√

u/ko f f . The

parameters utilized in calculations are: L = 103 bp, u = kon = 105 s−1, and m = L/2. The transition
rate ko f f is varied to change λ.

protein molecules (large ko f f , λ < 1), the protein can bind to DNA but it cannot slide because it quickly97

dissociates back into the solution. The protein on average makes L searching cycles (T0 ∼ L). This98

dynamic regime is called a jumping regime. The search in this regime is generally fast as long as the99

associations are also fast. The most interesting behavior is observed for the intermediate interactions,100

which we label as a sliding regime. Here the scanning length λ is larger than one but smaller than101

the length of DNA L, and the number of searching cycles is also proportional to L. But in this regime102

the system can reach the most optimal dynamic behavior with the smallest search times. This search103

facilitation is achieved due to the fact that the fluxes to the target are coming now from both the bulk104

solution and from the DNA chain. This is one of the main mechanisms of the facilitated diffusion of105

proteins during the target search, but other processes like inter-segment transfer might also contribute106

significantly in the facilitated diffusion [27].107

3. The Effect of Multiple Targets and Traps108

The advantage of the discrete-state stochastic framework with the first-passage analysis presented109

above is that it can be extended and generalized to more realistic biological situations. This allows us110

to investigate important questions related to the mechanisms of the protein target search on DNA. Let111

us present several specific examples, although many more results have been obtained.[17–29] We start112

with the problem of how the presence of multiple target sites or multiple semi-specific trap sites affect113

the dynamics of the protein search.114

It is known that in eukaryotic cells multiple target sites are available on the accessible DNA
fragments [1–3,40]. The protein search is accomplished in these systems when the protein molecules
finds for the first time any of the target sites. It has been argued that the mean search time in this
system might not decrease proportionally to the number of targets as one would naively expect from
simple-minded applications of chemical kinetics [18]. This is due to the complex mechanism of the
protein search that involves both 3D and 1D motions [18]. Applying our discrete-state stochastic
framework to this problem, we consider a model with multiple targets at arbitrary locations as
presented in Figure 3. To describe the search dynamics in this system, we again introduce the
first-passage probability function Fn(t) of finding any of the targets at time t if the process started at
t = 0 at the site n. Targets are dividing the DNA chain into several homogeneous segments, and this
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Figure 3. A schematic view of the discrete-state stochastic model of the protein search with multiple
specific sites. Targets are located at the sites m1 and m2.

allows us to solve the corresponding backward master equations as explained in Section 2. This leads
to the following explicit expression for the mean search time for any number of targets [18],

T0 =
1

kon

L
Si(0)

+
1

ko f f

L− Si(0)
Si(0)

, (14)

with a function Si(0) describing the average number of distinct sites scanned by the protein on DNA
with i targets. This formula is a generalization of Equation (13) when there is only one target (i = 1).
Specific expressions for Si(0) for various numbers of randomly distributed targets have been obtained
[18]. For example, for i = 2 it was shown that

S2(s) =
(1 + y)

[
2(1− y2L+m1−m2) + (1− ym2−m1)(y2m1−1 + y1+2(L−m2))

]
(1− y)(1 + y2m1−1)(1 + y1+2(L−m2))(1 + ym2−m1)

, (15)

where the parameter y is given in Equation 11.115

To understand the effect of multiple targets on the protein search dynamics, we analyze the results116

of explicit calculations for mean search times as presented in Figure 4. It is found that the presence of117

multiple targets does not affect the overall dynamic phase diagram as compared with the single-target118

case: three search regimes are again observed depending on the size of the scanning length, the target119

size and the size of the DNA segment. Generally, the search is faster in the multiple-target systems.120

However, surprisingly, increasing the number of specific sites might not always accelerate the search.121

To quantify this effect, we introduced an acceleration parameter, an = T0(1)/T0(n), where T0(n) is the122

mean search for the system with n targets. This ratio gives a numerical value of how faster the search123

is in the presence of n targets in comparison with the single-target system. It is illustrated in Figure124

5. One can see that there is a range of parameters when the search dynamics in the system with two125

targets can be slower than the dynamics in the system with one target. This happens in the effectively126

1D search regime (random-walk dynamic phase) when the single target is located in the middle of the127

DNA chain, while two targets are close to each other and located near one of the ends of the DNA128

segment. In this case, for the protein molecule the two targets are viewed as effectively a single target129

site (with the size equal to two target sites) because they are so close to each other. But it is faster to130

find the target located in the middle of the chain than the target positioned near the ends.[17] This is131

the main reason why having multiple targets does not always lead to decrease in the search times.132

Thus, our theoretical analysis predicts that the degree of acceleration due to the presence of multiple133

targets depends on the nature of the dynamic search phase and on the location of the specific sites with134

respect to each other and with respect to the middle point of DNA [18].135

Another important factor that might affect the protein search dynamics is the existence of so-called136

semi-specific sites, or decoys, on DNA. These sites have a chemical composition very similar to the137
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Figure 4. Dynamic phase diagrams for the protein search on DNA with one target at the position m,
with two targets at the positions m1 and m2 and with the target and the trap at the positions m1 and
m2, respectively. Parameters used for calculations are: kon = u = 105 s−1 and L = 10000. a) m = L/2,
m1 = L/4 and m2 = 3L/4; b) m = L/4, m1 = L/4 and m2 = L/2; and c) m = L/2, m1 = L/2 and
m2 = L. Adapted with permission from Ref. [19].
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Figure 5. Ratio of the mean search times as a function of the normalized distance between the targets
for single-target and two-target systems (l is the distance between between targets, L is the DNA
length). The single target is in the middle of the chain. In the two-target system, one of the specific sites
is fixed at the end and the position of the second one is varied. The parameters used in calculations are:
u = kon = 106 s−1; ko f f = 10−4 s−1; and L = 10000. Adapted with permission from Ref. [18].

specific targets with differences in only one or few nucleotides. The protein molecule can be trapped138

in these sites, and this should influence the search for real targets. To analyze this effect, we can extend139

the simplest model to include the possibility of traps, assuming that associations to these semi-specific140

sites are effectively irreversible [19]. This assumption is reasonable because the search times in many141

systems are relatively short and the experimental observations also limited in time. Thus the bindings142

to decoys can be viewed as effectively irreversible. The first-passage analysis can be applied here, but143

we have to notice that only a fraction of trajectories will reach the correct target site. Then the main144

quantity of our calculations, the first-passage probability function Fn(t), is now a conditional probability145

for the protein molecules not captured by the trap to find the target site.146

Let us consider a system consisting of a single target at the site m1 and a single trap at the site m2

on the DNA molecule with L sites [19]. The scheme presented in Figure 3 is also a correct representation
of this system with the correction that instead of the second target there is a trap in the site m2, and
the successful search corresponds to the protein molecule finding the specific site m1. Following our
theoretical method, the corresponding backward master equations can be solved and they yield the
Laplace transform of the first-passage probability function to find the target if the protein starts from
the bulk solution [19],

F̃0(s) =
kon(ko f f + s)S0(s)

Ls(ko f f + kon + s) + ko f f konS2(s)
, (16)

with

S0(s) =
(1 + y)(1− ym1+m2−1)

(1− y)(1 + y2m1−1)(1 + ym1−m2)
, (17)

and the parameters y and S2 given in Equations (11) and (15), respectively. This allows us to evaluate147

all dynamic properties in the system and to test the effect of traps.148

The probability to reach the target (i.e., the fraction of the successful trajectories) is now given by
a so-called splitting probability function [4,5],

Π ≡ ˜F0(s = 0) =
S0(0)
S2(0)

. (18)
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Figure 6. Probability to reach the target as a function of the scanning length for different distributions
of the target and trap sites. Parameters used for calculations are: kon = u = 105 s−1, L = 10000 and
ko f f is changing. Symbols are from Monte Carlo computer simulations. Adapted with permission from
Ref. [19]

The mean search time, which is the conditional mean first-passage time to reach the target, can be
estimated by averaging over the successful trajectories, producing

T0 ≡ −

∂F̃0(s)
∂s

∣∣∣∣
s=0

Π
=

1
kon

L
S2(0)

+
1

ko f f

L− S2(0)
S2(0)

+ Π
∂

∂s

[
S2(s)
S0(s)

] ∣∣∣∣
s=0

. (19)

Let us analyze this expression. On the left side, the division by the splitting probability emphasizes the149

fact that this is the conditional mean search time. It is also interesting to note that the first two terms150

on the right side of the equation is exactly the mean search time for the system with two targets and no151

traps (at the sites m1 and m2) as we discussed above [18], while the third term is a correction which152

accounts for the fact that the site at m2 is actually the trap. The main reason for this is the observation153

that the sites m1 and m2 are special locations where all trajectories are end up in both systems, with two154

targets and with the target and the trap. For the two-target case the mean search times are averaged155

over all trajectories to both sites, while for the target and the trap system the mean search times are156

obtained only by considering the trajectories finishing at the target [19].157

The results of calculations for the dynamic properties of the protein search in the presence of158

traps are presented in Figures 4 and 6. Again, three dynamic search phases are observed, but adding159

the trap generally facilitates the search dynamics, which is a counter-intuitive result: see Figure 4.160

However, this acceleration (in comparison with the single-target system) is always associated with161

lowering of the probability of reaching the specific target, as shown in Figure 6. This means that162

the protein molecules might reach the target faster in the presence of the traps, but the fraction of163

such events is decreasing. In addition, the search dynamics is sensitive to the nature of the dynamic164

phase. The strongest effect due to the presence of the trap is observed in the effective 1D random-walk165

regime (because it has only one searching cycle) where the locations of the target and the trap strongly166

influence the search. In other dynamic regimes, the effect is smaller.167

4. Sequence heterogeneity168

Real DNA molecules are heterogeneous polymers consisting of several types of subunits. This169

means that the interactions between protein and DNA molecules depend on the DNA sequence at the170

location where they meet. It is reasonable to expect that this sequence dependence in the interaction171
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Figure 7. A simplified view on the protein search on DNA with two different types of subunits, A
and B. a) A general scheme; b) DNA is viewed as a symmetric block copolymer with the target in the
middle of the chain; c) DNA is viewed as alternating copolymer with different compositions of the
subunits flanking the target in the middle of the chain. Adapted with permission from Ref. [20]

strength should affect the protein search dynamics because the diffusion rate for the non-specifically172

bound proteins will be position-dependent [3,11,41]. Similarly, association and dissociation rates173

should also depend on the location of the protein molecule on DNA. In addition, recent theoretical174

investigations suggested that different DNA sequence symmetries might lead to additional effective175

interactions between protein and DNA molecules [43–46]. The discrete-state stochastic framework with176

the first-passage analysis is a convenient tool to investigate the effect of DNA sequence heterogeneity177

and symmetry on the protein search dynamics [20].178

Our goal here is clarify the molecular origin of how the sequence heterogeneity influences the179

protein target search. We assume here a simplified picture of DNA, in which each monomer can be180

one of two chemical species, A or B, as presented in Figure 7 [20]. When the protein is bound to the181

subunit A (B), it interacts with energy εA (εB), and the difference between interaction energies is given182

by a parameter ε = εA − εB ≥ 0. This means that the protein attracts stronger to the B sites than to183

the A sites. The protein molecule can diffuse along DNA with a rate uA ≡ u or uB = ue−ε, where ε is184

measured in kBT units. This reflects the assumption that if the protein interacts stronger with the DNA185

at given location then it will move out of this site slower. In addition, we assume that, independently186

of the chemical nature of the neighboring sites, sliding out of the sites A is characterized by the rate187

uA, while the diffusion out of the sites B is given by uB. From the bulk solution the protein might188

associate to any site A or B on DNA with the corresponding rates kA
on = kon or kB

on = kone−θε. Note189

that for convenience the on-rates defined here as the rates per unit site, in contrast to our definitions190

in the previous sections. Similarly, the dissociations from the DNA chain are described by the rates191

kA
o f f = ko f f and kB

o f f = ko f f e(θ−1)ε. Here, the parameter 0 ≤ θ ≤ 1 specifies how the protein-DNA192

interaction energy is distributed between the association and dissociation transitions [20]. The physical193

meaning of this parameter is that the protein molecule tends to bind faster and to dissociate slower194

from the stronger attracting sites B, as compared with the weaker attracting A sites. The parameter θ195

accounts for these effects.196
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Figure 8. The ratio of the mean search times for the alternating DNA sequences and for the block
copolymer DNA sequences as a function of the scanning length λ =

√
u/ko f f . Three different chemical

compositions near the target (T) are distinguished, namely, ATA, ATB, BTB. The transition rates are
u = 105 s−1 and kon = 0.1 s−1. The DNA length is L = 1000, the loading parameter is θ = 0.5, and
the energy difference of interactions for the protein with A and B sites is ε = 5 kBT. Adapted with
permission from Ref. [20].

To quantify the role of sequence heterogeneity, we consider the DNA molecule with a fixed197

chemical composition (the fractions of A and B monomers are the same), but with different198

arrangements of subunits. Two limiting cases are specifically analyzed. One of them views the199

DNA molecule as two homogeneous segments of only A and only B subunits separated by the target200

in the middle of the chain (Figure 7). Another one is the DNA chain with the alternating A and B sites.201

The block copolymer has two homogeneous sequence segments, while the alternating polymers are202

more heterogeneous. It is important to note that in both cases, the overall interaction between the203

protein and DNA is the same (because the overall chemical composition in both cases is identical), and204

thus our analysis probes only the effect of the heterogeneity and symmetry in the subunit positions, in205

contrast to other theoretical treatments [42].206

Applying again the first-passage approach and solving the corresponding equations leads to the
explicit expressions for mean search times for all situations shown in Figure 7 [20]. For example, for
the block copolymer DNA sequences, we obtain

T0 =
ko f f + kon [(L/2− PA) + eε(L/2− PB)]

konko f f (1 + PA + eθεPB)
, (20)

where

Pi =
x1−L/2

i − x1+L/2
i

(1− xi)(x1+L/2
i + xL/2

i )
, (21)

xi =
2ui + k(i)o f f −

√
(2ui + k(i)o f f )

2 − 4u2
i

2ui
, (22)

for i = A or B. The expressions for the mean search time for alternating sequences are quite bulky and207

can be found in Ref. [20].208

The results of our calculations are presented in Figure 8, where the ratio of the mean search times209

for the block copolymer and alternating sequences are plotted. The analysis of this figure produces210

several interesting observations. First, we see that three dynamic search regimes are also found in this211

system and the effect of sequence heterogeneity on protein search dynamics depends on the nature of212
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the dynamic phase. In the jumping regime when the protein does not slide along the DNA contour213

(λ < 1), the symmetry of the sequence does not play any role. This is because in this case the process is214

taking place only via associations and dissociations (3D search), and the structure of the DNA chain is215

not important. The situation is different for the intermediate sliding regime (3D+1D search, 1 < λ < L)216

where in most cases, the search on alternating sequences is faster. This can be explained by noticing217

that the search time in this dynamic phase is proportional to L/λ, which gives the average number218

of cycles before the protein can find the target. In the block copolymer sequence, the protein mostly219

comes to the target from the B segment because of stronger interactions with these sites, i.e, it comes220

from one side of the DNA molecule. In the alternating sequences, the protein can reach the target221

from both sides of DNA, and this lowers the overall search time. It can be shown analytically that the222

scanning length on the alternating segment is larger than the scanning length for the B segment, i.e.,223

λAB > λB [20]. Then the search is faster for the alternating sequences because L/λAB < L/λB, i.e., the224

number of searching cycles is lower for the alternating sequences, which helps to find the target faster.225

The only deviation from this picture is found for ATA sequences, which corresponds to having two226

A sites around the target site, where for the small range of parameters the search is slower than in227

the block copolymer sequence. This effect can be explained by the fact that the protein does not sit228

at A sites for the long time and it moves quickly away, effectively increasing the barrier to enter the229

target via DNA [20]. Thus, our theory predicts that the composition of the DNA flanking sites around230

the target sequences might affect the dynamics of reaching them. It is interesting to note that recent231

experiments are consistent with our theoretical predictions [47].232

In the random-walk regime (1D search, λ > L), the effect of the sequence heterogeneity is233

even stronger. The protein molecule finds the specific binding site up to 2 times faster for more234

heterogeneous alternating DNA sequences. To understand this behavior, we note that in this case the235

mean first-passage time to reach the target is a sum of residence times on the DNA sites since the protein236

will not dissociate until the target is located so that all trajectories to the target are one-dimensional.237

Because the target is in the middle of the chain, the mean time to reach the target from the block238

copolymer sequence can be approximated as T0 ' (L/4)τB, where τB is the average residence time239

on any site B. The protein prefers to start the search at any position on the B segment with equal240

probability, i.e., the distance to the target varies from 0 to L/2. Then, the average starting position of241

the protein is L/4 sites away from the target. For the alternating sequences, the average distance to242

the target is approximately the same (L/4), but the chemical composition of intermediate sites on the243

path to the target is different, yielding, T0 ' (L/8)τA + (L/8)τB (τA is the residence time on A sites).244

The protein spends much less time on A subunits, and this leads to faster search for the alternating245

DNA sequences. For τA � τB, this also explains the factor of 2 in the search speed. In this case, the B246

subunits can be viewed as effective traps that slow down the search dynamics. Thus, our theoretical247

calculations make surprising predictions that the sequence heterogeneity almost always lead to faster248

protein search for targets on DNA despite the fact that it lowers the effective protein-DNA binding249

affinity [43–46]. And the stronger the contribution of the 1D search modes, the more relevant will be250

the effect of sequence heterogeneity.251

5. The Effect of Crowding on DNA in the Protein Target Search252

Living cells are typically crowded with a large number of molecules, and many of them are253

attached to the DNA chains [1,2]. This should prevent the fast protein search for targets on DNA, and254

earlier theoretical studies supported this prediction [49]. However, surprisingly, experiments show255

that crowding on DNA does not affect much the effectiveness of the protein target search [33,34], and256

this was also found in MD simulations [48]. By applying the discrete-state stochastic approach, we257

were able to clarify the role of the crowding on DNA in the protein target search.258

To analyze this problem, the model illustrated in Figure 9 is considered. There is a single DNA259

molecule with L + 1 binding sites, and one of them is the target (at the site m). On the DNA chain there260

is also a crowding particle that can diffuse with a rate uob, but it cannot leave DNA. A single protein261

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 July 2018                   doi:10.20944/preprints201807.0606.v1

Peer-reviewed version available at Molecules 2018, 23, 2106; doi:10.3390/molecules23092106

http://dx.doi.org/10.20944/preprints201807.0606.v1
http://dx.doi.org/10.3390/molecules23092106


13 of 17

protein

target

protein

obsta
cle

DNA

u
u

kon
koff u

u
L

m

1

2

state 0state i ob

ob

Figure 9. A schematic view of the protein target search in the presence of a moving obstacle on DNA.
The crowding particle cannot dissociate from DNA, while the protein molecule can dissociate into the
solution, labeled as state 0, and return back to the DNA chain.

molecule starts from the solution (state 0) and it can bind to any site on DNA that is not occupied by262

the crowder with a rate kon (rate per site). The bound protein molecule can diffuse with a rate u, and263

there is an exclusion interaction between the protein and the crowder. Finally, the protein molecule264

can dissociate from DNA to the bulk solution with a rate ko f f : see Figure 9.265

Investigating the model with the mobile crowding particle on DNA first using Monte Carlo
computer simulations, it is found that there are three search regimes depending on the main length
scales in the system. This is shown in Figure 10 for the mean search times to find the target as a
function the scanning length λ. We can understand the complex dynamics in this system using the
following arguments. If the diffusion rate of the crowder is much smaller than other rates (uob � u,
kon and ko f f ), then the protein molecule will find the target before the crowding particle can move
away from its original location. But we already explicitly solved the problem of the protein target
search with static obstacles using the same discrete-state stochastic approach with the first-passage
analysis [23]. Then the mean search time in the system with movable crowder can be approximated as
the average over all possible static locations of the crowding particle [21], yielding

〈T0〉 '
1
L

(
m−1

∑
lob=1

Tob(lob) +
L−m

∑
lob=1

Tob(lob)

)
, (23)

where

Tob =
ko f f + kon(L− Sob(0))

konko f f Sob(0)
, (24)

is the mean search time with the static obstacle located at a distance lob from the target. An auxiliary
function Sob is given by [23]

Sob(s) =
y(y−m − ym)

(1− y)(ym + y1+m)
+

y(1− y2lob−2)

(1− y)(1 + y2lob−1)
(25)

with the parameter y specified in Equation 11.266

This simple approximate theory works quite well in the dynamic regimes where 3D pathways267

are important for the search (λ < L). However, theoretical arguments fail in the random-walk regime268

where 1D dynamics dominate the search. These results are expected. The protein molecule that collides269

with the crowding particle on DNA in dynamic regimes with 3D pathways will have the opportunity270

to dissociate into the bulk solution and to avoid the blocking effect. But in the random-walk regime271

(1D search) there is no such opportunity, and the search times will definitely increase. Computer272

simulations also indicate that the search times in this regime depend on the diffusivity of the crowding273

particle. The search is faster for more mobile crowders: see Figure 10.274
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Figure 10. Mean search times to find the target in the system with a mobile crowder on DNA. The
DNA chain has L = 1000 sites, and the target is in the middle of the chain, m = L/2. Parameters used
for calculations are kon = 0.1 s−1, u = 105 s−1 and variable uob. Solid curves correspond to analytical
results for DNA without obstacles and for DNA with a static obstacle, which are averaged over all
initial positions of the crowder. Symbols correspond to Monte Carlo computer simulations. Dashed
lines describe the approximate theory, as explained in the text. Adapted with permission from Ref.
[21].

The dynamics in the random-walk regime can be explained using the following arguments. The
overall search can be viewed as consisting of two terms,

〈Tob
0 〉 ' T0 + 〈Tbl〉, (26)

where T0 is the search in the random-walk regime without any crowders, and it is given in Equation
13. The second term is the average time it takes for the crowder to diffuse away and clear the path
for the protein to reach the target without interference [21]. It was shown that this blocking time Tbl
depends on the location of the target and the diffusion rate of the crowding particle uob [21],

〈Tbl〉 =
m4 + (L−m)4

16uob(L2 + m2 −mL)
. (27)

This simple theoretical arguments show excellent agreement with Monte Carlo computer275

simulations: see dashed lines in Figure 10. But more importantly, they provide a clear molecular picture276

on the role of the crowding on DNA in the protein target search. If the protein search is dominated by277

1D pathways and the mobility of the crowder is low the search dynamics will be significantly slowed278

down. But if the search involves mostly 3D pathways and the crowder is mobile the mean search279

times will not be affected much. It seems that real biological systems operate in 3D+1D regime, and280

crowding particles diffuse with the rates comparable to the searching proteins (u ∼ uob) [3]. Then one281

might conclude that the effect of the crowders on DNA should be minimal. This fully agrees with282

experimental observations and with results from MD simulations [34,48].283

6. Conclusions and Future Directions284

Although protein search for targets on DNA is a very complex phenomenon that involves multiple285

biochemical and biophysical processes, significant advances in our understanding of the underlying286

molecular mechanisms have been achieved in recent years. A major role in this success is due287

to analysis of the systems using the discrete-state stochastic framework supplemented by explicit288

calculations via the first-passage probabilities method. In this review, we presented and explained this289

theoretical approach by considering the protein target search in various systems. It is important to290
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emphasize that the main advantage of our theoretical approach is the ability to obtain analytical results291

that clarify the physics of the underlying processes. In addition, the method can be easily extended292

in many directions, as shown in this work, as well as in other cases which we did not discuss in this293

work, such as the role of conformational transitions [24] and the effect of DNA loop formation in the294

protein target search [23]. Furthermore, our theoretical calculations using this theoretical framework295

were successful in explaining the experimental observations on homology search by RecA protein296

filaments [25] and the dynamics of CRISPR genome interrogation [29].297

Several important dynamic features of the protein search for targets on DNA have been identified298

from theoretical analysis. It is found that the dynamic phase diagram of the protein target search299

always shows thee dynamic regimes, which are determined by the three relevant length scales in the300

system: the size of DNA, the average scanning length of the non-specifically bound proteins, and301

the size of the target sequence. Depending on the dynamic phase, the search is dominated by the 3D302

motions (jumping regime), 1D motions (random-walk regime) or a combination of 3D and 1D motions303

in the sliding regime. The analysis shows that the most optimal search dynamics can be achieved304

in the dynamic regime when the protein molecules explore both 1D and 3D pathways during the305

search. In this case, the protein can reach the target by sliding from the DNA chain or by directly306

binding from the solutions. Theoretical calculations also indicate that the presence of several target307

sites influences the search dynamics differently depending on the locations of the targets on DNA308

and distances between them. Surprising observations are found in the system with semi-specific sites,309

which are viewed as effective traps. It is shown that the search dynamics can be faster in this case,310

but it comes with the price of lowering the yield of the protein molecules reaching the target. We also311

investigated the effect of sequence heterogeneity and symmetry in the protein search dynamics. Our312

calculations indicate that the search is faster for more heterogeneous sequences, and the chemical313

composition around the target is also an important factor in this process. Furthermore, our method314

allowed us to probe the effect of crowding on DNA in the protein target search. It is shown that it315

depends on the dynamic phase and on the mobility of the crowding particles. The crowders influence316

the protein search stronger when 1D pathways dominate and when the diffusivity of the crowding317

particle is small enough so that the protein will be frequently blocked during the process. Increasing318

the mobility of the crowders and/or increasing the contribution of 3D search pathways lowers the319

effect of the crowding. These theoretical arguments fully agree with experimental observations and320

MD computer simulations.321

Despite tremendous progress in theoretical understanding of the protein target search phenomena,322

there are many questions remain on the molecular mechanisms of these processes. It is still unclear323

what is the nature of protein-DNA interactions in the regions surrounding the target sequences. Is the324

effective potential created by these interactions drives the protein molecule to the target like a funnel325

or is it completely random? How large is the size of the flanking segments that affect the finding of the326

target? What is the role of DNA topology in the protein target search? This is especially important327

for proteins that have several binding sites for DNA which can form DNA loops and other complex328

structures. Another interesting question is the role of various DNA and protein conformations in these329

processes. It is clear that further progress in understanding protein target search phenomena depends330

on combining theoretical, computational and experimental methods.331
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