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Abstract
The data assimilation method to improve sea fog forecast over the Yellow Sea is usually three-
dimensional variational assimilation (3DVAR), whereas ensemble Kalman filter (EnKF) has not yet
been applied on this weather phenomenon. In this paper, two sea fog cases over the Yellow sea, one
spread widely and the other spread narrowly along the coastal area, are studied in detail by a series of
numerical experiments with 3DVAR and EnKF based on the Grid-point Statistical Interpolation
(GSI) system and the Weather Research and Forecasting (WRF) model.  The results show that the
assimilation effect of EnKF outperforms that of 3DVAR: for the widespread-fog case, the probability
of detection and equitable threat scores of the forecasted sea fog area get improved respectively by
~57.9% and ~55.5%; the sea fog of the other case completely mis-forecasted by 3DVAR is produced

successfully by EnKF. These improvements of EnKF relative to 3DVAR are benefited from its
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flow-dependent background error, resulting in more realistic depiction of sea surface wind for the
widespread-fog case and better moisture distribution for the other case in the initial conditions.

More importantly, the correlation between temperature and humidity in the background error of
EnKF plays a vital role in the response of moisture to the assimilation of temperature, which leads to
a great improvement on the initial moisture conditions for sea fog forecast.

Keywords: sea fog; data assimilation; 3DVAR; EnKF

1. Introduction

Sea fog usually refers to the fog that occurs over the ocean or a coastal region (Wang, 1985;
Korac¢in and Dorman, 2017). It causes atmospheric horizontal visibility less than 1 km and even to
tens of meters, which has a serious effect on harbor activities and marine transport. Among the seas
of China, the Yellow Sea experiences a high frequency of sea fog (Gao et.al, 2007; Zhang et al.,
2009).  Numerical modeling is already becoming the major approach to both investigating
formation mechanism and developing forecast method for the Yellow Sea fog (Wang et al., 2014; Fu
et al., 2016).

Previous studies have revealed that the sea fog simulation is extremely sensitive to the errors of
initial conditions (Nicholls 1984; Findlater et al. 1989; Ballard et al. 1991; Lewis et al., 2003;
Koracin et al., 2001, 2005a, b; Fu et al., 2006; Gao et al., 2007, 2010).  Therefore, it is very
necessary to provide better initial conditions for sea fog simulation as possible as we can via data
assimilation. The sea fog simulation result can be improved to some extent by assimilating a lot of
kinds of observations using the three-dimensional variational data assimilation (3DVAR) method

based on the Weather Research and Forecasting (WRF) model. These assimilated observations
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include routine measurements along coast of the Yellow Sea (Gao et al., 2010), sea surface wind data
aboard QuikSCAT (Quick Scatterometer; Liu et al., 2011), satellite radiance (Li et al., 2012),
Doppler radar radial velocity (Wang and Gao, 2016) as well as temperature and moisture profiles
derived from satellites (Wang et al., 2017). Due to a lack of routine observations over sea, a new
method was proposed by Wang et al. (2014) to assimilate satellite-derived humidity from the
observed sea fog over the Yellow Sea, which improves the sea fog nowcasting skill with the increase
of equitable threat scores (ETS) ranging from 15% to 20%.

However, due to the employment of static background error covariances, there is a weakness in
the 3DVAR method that the above studies feature essentially. The NMC (National Meteorological
Center) method (Parrish and Derber, 1992) is generally used to generate this background error
covariances using forecast differences. As pointed out by Bouttier (1994), the NMC method is
suitable only for estimation of climatological covariances. Because forecast differences are usually
calculated over a reasonably long period of time (e.g., half or a month of forecast differences), the
variation of the background error in different synoptic situation from one case to the next is
neglected.

The Yellow Sea fog usually forms when water vapor condenses within marine atmospheric
boundary layer (Gao et al., 2007) under an appropriate synoptic system (Yang and Gao, 2015).
Atmospheric flow near sea surface determined by the synoptic system perhaps play an important role
in reasonably spreading observed information during the entire assimilation period (i.e., flow-
dependent). The limitations of static background error covariances make 3DVAR unable to
manifest this flow-dependent feature. The data assimilation (DA) methods, such as Hybrid-3DVAR

(Hamill and Snyder, 2000; Wang et al., 2008a, b), 4DVAR (Talagrand and Courtier, 1987; Courtier
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and Talagrand, 1987) and EnKF (Ensemble Kalman Filter; Evensen, 1994), can provide flow-
dependent background error covariances, and they have been widely employed in simulations of
hurricane and typhoon that have strong flow structure (Yuan et al., 2010; Wang et al., 2011; Poterjoy
etal., 2014; Shen et al., 2016; Lu et al., 2016).  Although sea fog has become a severe marine
weather and its influences on marine activities might compete with tropical cyclones (Gultepe et al.,
2007), application of these advanced flow-dependent DA methods to sea fog numerical modeling are
not yet seen.

The National Centers for Environmental Prediction (NCEP) developed an efficient tool—the
Grid-point Statistical Interpolation (GSI)/EnKF system that includes built-in 3DVAR and EnKF
(Shao et al., 2016), which provides a strong research approach for DA study in sea fog numerical
modeling. The goal of the present study is to explore and compare the assimilation effects of
3DVAR and EnKF in sea fog forecast based on the GSI/EnKF system with the WRF model.

This paper is organized as follows. Section 2 briefly describes the methods of 3DVAR and
EnKF. Section 3 shows how sea fog data assimilation and forecast experiments are conducted,
including data, study cases, model configurations, design of DA schemes and numerical experiments.
In Section 4, results and analysis are presented, and comparison of DA effects between 3DVAR and
EnKF are addressed in detail. Finally, summary and conclusions are given in section 5.

2. Data assimilation algorithms
2.1 3DVAR

Letx, x°, x* and y be the model state at the beginning of the assimilation window, a

background or prior estimate of x, analysis of x and observation, respectively. The cost function for

3DVAR can be defined by
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J&) =y +]o = % [(x* —x®) B~ (x* —x°) + (y - Hx) ™R (y —Hx®)| (1)
where H is the observation operator matrix which transforms data from model space to observation
space, R is the observation error covariance matrix, and B is the background error covariance matrix.
By using the increment formulation (Courtier et al., 1994), the analysis increment and observation
innovation are respectively defined as §x = x® —xP and d =y — HxP. Thus, Eq. 1 can be
rewritten

J(x) = %[SXTB_18X + (H6x — d)TR™1(H&6x — d)] (2)
The 3DVAR procedure in the GSI/EnKF system calculates x* by minimizing Eq. 2 with iterative
solution method (Shao et al., 2016).

H and R can be priorly determined, while B needs to be calculated by statistics. The NMC

method is used here to generate B as follows

T

1

B > (2 — X (i - )T 3
n t=1

where x?P and x?*M are respectively 12 h and 24 h model forecasts at the time of t, and Ty is the
time period for statistics, which is usually 15-30 days. The WRF model has N (~107) degrees of
freedom, thus directly solving the inversion of B (i.e., B™1) requires ~O(1014) times of
calculations, which is technically impossible. However, B is usually diagonalized by control
variable transform, which uses length scale coefficients to store the correlations between different
grids and regression coefficients to store the correlations between different variables. Note that
these coefficients are regional averaged for decreasing the computational cost and B is therefore
static and nearly homogeneous and isotropic.

2.2 EnKF

The background error covariance that is represented by the matrix PP in EnKF, is calculated
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using ensemble forecast members. Each ensemble member and Kalman gain matrix are
respectively updated by
x? = xP + K(y; — HxP) 4)
K = PPHT(R + HPPHT)~* (5)
where R and H are the same as in Eq. 1, xP is the i ensemble member (let m be their total number,

b

so that i=1, 2, ..., m), x{ is the i updated member, and y; is the i'" perturbed observation for x;.

To avoid calculating the large matrix P°, EnKF usually proximately calculates PPHT and HPPHT as

m

1 - -
PPHT~—— 1Z(x}’ — XP)(Hx? — Hx®)T 6)
i=1
m
1 - -
HPbHszZ(Hxib — HxP)(Hx? — Hx?)T )
i=1

Whitaker and Hamill (2002) found that the introduction of observation perturbation to update
ensemble members leads to an underestimate of the analysis error, and they proposed the EnSRF
(Ensemble Square Root Filter) method to rectify this underestimation. The EnSRF method is
adopted by GSI/EnKF system, and it is chosen to use in this paper.

EnKF sequentially assimilates each observation, and treats the analysis updated by one
observation as the background for the next assimilation. ~ As a result, y, R and HPH" become to be
scalers, and PPHT is reduced to a vector. It brings the benefits that not only avoids matrix inversion
but also no need to simplify background error covariances (e.g., diagonalizing), which results in
intact correlations between physical variables. Since PPH is updated along with assimilating
observations, it means the background error covariances may vary substantially depending on the

flow of the day (i.e., so-called flow-dependent).
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3. Numerical experiments
3.1 Data

The synoptic charts were from KMA (Korea Meteorological Administration), and the observed
fog area were retrieved empirically from the infrared, albedo and visible cloud imageries of MTSAT
(the Multifunctional Transport Satellite; http://weather.is.kochi-u.ac.jp/sat/ GAME) using the method
by Wang et al. (2014).

The initial and lateral boundary conditions for the WRF simulation later were derived from the
NCEP Final Analysis (FNL; 1° X 1°, 6 hourly; https://rda.ucar.edu/datasets/ds083.2), and the sea
surface temperature (SST) data were extracted from daily NEAR-GOOS (North-East Asian Regional
Global Ocean Observing System) dataset (http://ds.data.jma.go.jp/gmd/goos/data). Observations
for data assimilation include radiosonde and surface measurements, satellite-retrieved sea surface
winds, and radiation brightness temperatures from AMSU-A/B (Advanced Microwave Sounding
Unit A/B), HIRS-3/4 (High Resolution Infrared Radiation Sounder 3/4) and MHS (Microwave
Humidity Sounder) carried by satellites (https://rda.ucar.edu/datasets/ds735.0).

Besides radiosonde and surface measurements mentioned above, CCMP (the Cross Calibrated
Multi-Platform) global surface wind data (http://www.remss.com/measurements/ccmp) and NCEP
ship observations in prepBUFR format (https://rda.ucar.edu/datasets/ds337.0) were used for
evaluation.

3.2 Sea fog cases

Two typical advection sea fog cases over the Yellow Sea, one spread widely over the Yellow

Sea and the other spread narrowly along the Shandong Peninsula coast (Fig. 1), were chosen for

study in detail. They happened on 10 Apr 2009 and 02 Apr 2014 (hereafter C-09 and C-14),
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respectively.  Although both the two cases were dominated by a high-pressure system (Figs. 1a and
Ic), they have obvious differences. In the case C-09, the widespread fog area was formed as warm
moist air moved onto a cold sea area (see the SST in Fig. 2a) due to easterly winds in the south of the
high (Fig. 1a). But in the case C-14, weak southerly winds near the center of the high (Fig. 1¢)
carried warm air from the western Yellow Sea and its neighboring land area northward onto the cool
coastal area (see the SST in Fig. 2b) along Shandong Peninsula, resulting in sea fog formation. It is
judged from cloud color that the fog patch of the case C-09 is deeper than that of the case C-14 (cf.
Fig. 1b and Fig.1d), which might indicate that moisture in the latter is not as enough as the former.

Perhaps it is due to their obvious difference between the prevailing flows mentioned above.

Yellow
Sea Korea
China

Island

o

-
East China.Sea ",

PR ey
.y - o .

= .f‘fa; o

141G % -
e 0
l .

Shandong
Peninsula

Yellow
Sea

Figure 1. Synoptic surface charts from KMA (left) and MTSAT visible satellite images(right). Upper
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panels are the case C-09 at t at 0000 UTC 10 Apr 2009, and lower panels are for the case C-14 at
0300 UTC 02 Apr 2014.

3.3 Model configuration
The Advanced Research core of the WRF (ARW, version 3.8.1; Skamarock et al., 2008) was
employed in this study. According to the work of Lu et al. (2014) and Wang et al. (2014), a
combination of the planetary boundary layer (PBL) and microphysics schemes YSU-LIN was
chosen. The details of model configurations, including domains, horizontal and vertical resolutions,
and other physical schemes, are listed in Table 1.

Both sea fog cases used 2 domains (D1 and D2)

and applied two-way nesting (Fig. 2).

Table 1. WRF configuration.

Model option

Specification

C-09 C-14

Central point

Domains Grid number
and

Grids Horizontal resolution

Vertical grid
Time step
PBL scheme
Cumulus scheme
Microphysics scheme
Long-shortwave radiation
Land surface model

(34.2°N, 124.1 °E)
D1:166 x 190; D2:
120 x 120

30 km for D1, 10
km for D2

(35.0°N, 122.0 °E)
D1: 60 x 60; D2: 151 x 151

30 km for D1, 6 km for D2

44 7'
Adaptive time step (60—120s for D1)
YSU scheme (Hong et al., 2006)
Kain-Fritsch scheme (Kain and Fritsch, 1990)
Lin (Perdue) scheme (Lin et al., 1983)
RRTMG scheme (Iacono et al., 2008)
Noah (Chen and Dudhia, 2001)

*1n=1.0000, 0.9975, 0.9925, 0.9850, 0.9775, 0.9700, 0.9540, 0.9340, 0.9090, 0.8800, 0.8506,

0.8212, 0.7918, 0.7625, 0.7084, 0.6573, 0.6090, 0.5634, 0.5204, 0.4798, 0.4415, 0.4055, 0.3716,

0.3397, 0.3097, 0.2815, 0.2551, 0.2303, 0.2071, 0.1854, 0.1651, 0.1461, 0.1284, 0.1118, 0.0965,

0.0822, 0.0689, 0.0566, 0.0452, 0.0346, 0.0249, 0.0159, 0.0076, and 0.0000.
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Figure 2. WRF Domains for the cases: (a) C-09 and (b) C-14. Colors show SST within the D2
domains, and the red and black dots respectively locate radiosonde stations and ship measurement
sites. The sea area surrounded by thick dashed lines and coastlines in D2 of (a) is used for evaluating

forecasted sea surface winds later.

3.4 Design of DA schemes and experiments

Three DA schemes were designed for comparing the data assimilation effects between 3DVAR
and EnKF. Figure 3 shows a schematic illustration of these schemes. DA-1 and DA-3 schemes
are cycling WRF-3DVAR scheme and cycling WRF-EnKF, respectively; DA-2 is cycling WRF-
3DVAR with multi-backgrounds from the WRF ensemble forecast, and its backgrounds at the
beginning of the DA window are the same as DA-3.  Among the schemes, B and P represent the
background error covariances for 3DVAR and EnKF, respectively, and obs stands for observations;
Each assimilation cycle is connected by the WRF integration (i.e., wrf.exe in Fig. 3), and the final

assimilation analysis x* or X2 are the initial conditions (ICs) for the next WRF forecast.
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Figure 3. Flowcharts for data assimilation schemes: (a) DA-1, (b) DA-2 and (c¢) DA-3. See details in

the text.

The initial (t =t in Fig. 3) ensembles for DA-2 and DA-3 were created by a random perturbation
method (Barker et al., 2004; Wang et al., 2008a, b). In this study, ensemble member was set 40
(i.e., m=40 in Fig. 3). The major difference between 3DVAR and EnKF is the background error
covariances, which will cause different assimilation results. However, another factor will also
contribute to the assimilation results. It is the ensemble forecast of DA-3 in the DA window, which
can lead to the difference of initial conditions even if the update steps are the same. Thus, the
purpose of DA-2 scheme is to isolate the contribution of ensemble forecast relative to DA-1.

11
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Six sea fog forecast experiments were conducted (Table 2), in which Exp-A1-Exp-A3 were
designed for the case C-09 and the others were the case C-14. Table 2 summarizes the DA schemes
and assimilated observations for each experiment. The forecast staring points were 1200 UTC 09
Apr 2009 and 00UTC 02 Apr 2014 for the cases C-09 and C-14, respectively. Cycling
3DVAR/EnKF assimilations were performed in the DA window before the starting points. For the
case C-09, the DA window was 12 h with a 6-h cycle interval and the forecast length was 24 h.  The
case C-14 had a 12-h forecast period with 12-h DA window and 3-h cycle interval. The WRF was
initialized every 12 h and run 24 h for a period of 15 days centered at the staring day of the case
forecast. The WREF results were then used to generate a new static background error covariance
matrix (i.e., B in Fig. 3) by the NMC method (Parrish and Derber, 1992). The background error
uses regression coefficients to correlate wind speed, temperature and pressure, while relative
humidity is independent. Note that the flow-dependent background error covariance matrix for
EnKF (i.e., P in Fig. 3), in which any two analysis variables are codependent, was statistically

calculated based on the ensemble of x and updated in every cycle.

Table 2. Design of experiments.

Experiment Case Assimilation scheme Assimilated observation type
Exp-Al DA-1 Radiosonde and surface
Exp-A2 C-09 DA-2 measurements, AMSU-A/B,
Exp-A3 DA-3 HIRS-3/4, MHS
Exp-B1 DA-1 .

Exp-B2 C-14 DA Radiosonde and surface
measurements
Exp-B3 DA-3
4. Results

4.1 Methods for sea fog diagnostics and evaluation

Fog area is the most concerned aspect in the sea fog forecasting. However, it is impossible to
12
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determine sea fog area by limited observations from ships and buoys over the Yellow Sea. The
method that is used by Wang et al. (2014) is employed here to retrieve the sea fog area (hereafter
termed ‘‘observed sea fog’”) using the MTSAT data.

Sea fog area diagnosed from the model results (hereafter termed ‘‘forecasted sea fog’’) is
diagnosed by forecasted liquid water content (LWC). The region with LWC at the lowest model
level = 0.016 g/kg and the fog-top height < 400 m is defined as forecasted sea fog (Wang et al.,
2014; Yang and Gao, 2016; Zhou and Du, 2010). The value 0.016 g/kg for LWC is equivalent to 1
km horizontal visibility calculated using the formula by Stoelinga and Thomas (1999). The fog-top
height is the height of the most upper vertical level where the LWC is more than 0.016 g/kg in the
marine PBL.

Forecasted sea fog is compared hourly with observed sea fog by the statistical scores, including
the probability of detection (POD), false alarm ratio (FAR), Bias, and equitable threat score (ETS)
(e.g., Doswell and Flueck, 1989; Wang et al., 2014; Zhou and Du, 2010). The domain D2 (see Fig.

2) is taken as the verification area, and the scores are defined by

H
POD = (®)
FAR = =2 )
F
Bias = = = 222 (10)
o 1-FAR
H-R
ETS = rromnr (1

where F, O, and H, respectively, refer to the numbers of forecast points, observed points, and correctly
forecast points with fog occurrence (i.e., binary value is 1); R=F(O/N) is a random hit penalty, and N

is the total number of points in the verification area.

13
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4.2 Evaluation of assimilation effect
4.2.1 Verification of sea fog area

Forecasted sea fog of the cases C-09 and C-14 are shown in Fig. 4 and Fig. 5, respectively.
Panels in the top row in both Fig. 4 and Fig. 5 illustrate the observed sea fog, and panels in the other
rows give the forecasted sea fog. By through visually comparing the forecasted sea fog with the
observed sea fog, it is clearly seen that the forecast experiments (i.e., Exp-A3 and Exp-B3) with DA-

3 scheme perform best (e.g., cf. Figs. 4t, o, j with Fig. 4e; cf. Figs. 5r, h, m with Figs. 5c¢).
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Figure 4. Comparison between the forecasted and observed sea fog areas for the case C-09. Panels in
the top row are the observed fog patches, and panels in the other rows from up to down are the

forecasted fog patches for Exp-Al, Exp-A2 and Exp-A3, respectively.
14
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Figure 5. As in Figure4, but for Exp-B1, Exp-B2 and Exp-B3 of the case C-14.

Particularly, Exp-B1 that uses DA-1 scheme completely fails to capture the forecasted sea fog
(Figs. 5f-j), whereas Exp-B3 successfully forecasts the sea fog evolution.

Instead of using eyeball comparison, a quantitative evaluation was conducted using of statistical
scores defined above. Table 3 outlines the temporally-averaged statistical scores. Compared to
Exp-Al, Exp-A3 show obvious improvements, in which POD, FAR, Bias, and ETS are all positive
and the ETS gets improved by 55.5%. Similarly, compared to Exp-B1, all scores of Exp-B3 except

15
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for FAR have significant improvements especially with an ETS gain of 8320.0%. However, the

experiments Exp-A2 and Exp-B2 have the opposite improvement performance: the former negative,

the latter positive.

Table 3. Statistical results of the experiments. The improvements (%) in Exp-A2 and Exp-A3

relative to Exp-Al are in parentheses and set in boldface, as well as Exp-B2 and Exp-B3 relative

to Exp-Bl1.
Experiment Scores
POD FAR Bias ETS
Exp-Al 0.178 0.276 0.246 0.128
Exp-A2 0.139 (-21.9) 0.251 (3.5) 0.186 (-8.0) 0.102 (-20.3)
Exp-A3 0.281 (57.9) 0.274 (0.3) 0.387 (18.7) 0.199 (55.5)
Exp-B1 0.006 0.173 0.007 0.005
Exp-B2 0.175 (2816.7)  0.027 (17.7) 0.179 (17.3) 0.152 (2940.0)
Exp-B3 0.605(9983.3) 0.304 (-15.8) 0.869 (86.8) 0.421 (8320.0)

As shown in Fig.3 and Table.2, Exp-A2/B2 and Exp-A1/B1 have different the background at

the beginning of the DA windows with the same DA scheme, while Exp-A2/B2 and Exp-A3/B3 have

the same background but with different DA scheme.

According to the above results of sea fog area

verification, it suggests that Exp-A3/B3 perform much better than Exp-A1/B1 and Exp-A2/B2

mainly due to the DA-3 scheme.

4.2.2 Validation by measurements

Sea fog over the Yellow sea usually forms and develops under a high-pressure weather system

with stable marine PBL and suitable moisture condition (Gao et al., 2010; Yang and Gao, 2016).

The radiosonde, surface and ship measurements were taken to validate the analysis fields (i.e., ICs).

The agreement between the initial analysis and the radiosonde observations (see their sites in Fig. 2)
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were firstly evaluated, focusing on bias and root-mean-square error (RMSE). Figure 6 shows the
average vertical profiles of height, temperature, and moisture (represented by the water vapor mixing

ratio) over all radiosonde observations.
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Figure 6. Vertical profiles of the RMSEs (solid lines) and biases (dashed lines) between the initial
analysis and the radiosonde observations of geopotential height (left), temperature (middle), and

mixing ratio (right). The upper and lower panels are for the cases C-09 and C-14, respectively.

For the geopotential height profiles (Figs. 6a, d), Exp-A3/B3 has much smaller bias and RMSE
than Exp-A1/B1, indicating that strength of the high-pressure system in Exp-A3/B3 much more fits
the reality. For instance, the average height biases below 950 hPa of Exp-A1/A3 and Exp-B1/B3 are
respectively 41.27/15.60 m and -16.35/11.29 m, while the average height RMSEs of Exp-A1/A3 and
Exp-B1/B3 are respectively 45.21/17.73 m and 24.36/12.08 m. Additionally, sea level pressure
(SLP) distribution and its RMSE and bias were verified by surface measurements. Figure 7

presents the result for the case C-19, and the result of the case C-14 is quite similar and not shown
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here. It is clearly seen that Exp-A1l and Exp-A2 have almost the same RMSE and bias, however
Exp-A3 greatly decreases its RMSE and bias (Figs. 7b, ¢). Compared with the isobars on KMA
surface chart (Fig. 7a), it is also found that the SLP distribution of Exp-A3 is much closer to the
observed fact than Exp-A and Exp-B (cf. Figs. 7d-f and Fig. 7a). For example, the 1022.5 hPa
contour in Exp-A3 is more consistent with that on the chart than either of Exp-Al and Exp-A2. At
the same time, the improved SLP promotes better sea surface wind (SSW). The forecasted SSW in
the region, which is indicated by dashed lines in Fig. 2a , are verified by CCMP wind product. The
RMSEs of wind speed (direction) for Exp-Al, Exp-A2 and Exp-A3 are 1.30 m/s (25.74°), 1.17m/s

(25.03°) and 1.14 m/s (23.70°), respectively.
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Figure 7. Evaluation result of SLP in the initial analysis for the Case C-09. Top panels respectively
show (a) KMA surface synoptic chart, (b) RMSE and (c¢) bias of SLP by using surface

measurements. Bottom panels illustrate SLP of (d) Exp-Al, (e) Exp-A2 and (f) Exp-A3, respectively.
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As well as the profiles of geopotential height, Figure 6 contains the profiles of temperature and
mixing ratio. For the case C-09, the profiles of mixing ratio bias and RMSE for Exp-A3 have best-
performing values below 950 hPa (about 600 m; Fig. 6¢), as well for temperature (Fig. 6b). The
average mixing ratio bias and RMSE below 950 hPa of Exp-A1/A3 are 0.19/0.13 g/kg and 1.28/1.09
g/kg, respectively. Although the profiles of temperature and mixing ratio for Exp-B3 get worse
than Exp-B1 and Exp-B2 above 1000 hPa (near 1300 m; Figs. 6e, f), there exist dramatical
improvements below 1000 hPa. Especially at the 1010 hPa level, the RMSE of temperature drops
from 1.4 K to 0.3 K, and the RSME of mixing ratio decreases from 0.90 g/kg to 0.55 g/kg.

It is worth mentioning that the layers within the marine PBL where temperature and moisture are
improved in Exp-A3 and Exp-B3 have obviously different depths: the former about 600 m, while the
latter near 130 m. Remind that the fog patch of the case C-09 is deeper than that of the case C-14,
which has been suggested previously in the end of Section 3.2. It seems that the two things might
be related.

Furthermore, the forecasted moisture over sea is validated using ship measurements (locations
marked by black dots in Fig. 2) during the forecast time. The result is shown in Fig. 8. For the
case C-09 (Fig. 8a), the mixing ratio forecasted by Exp-A3 performs better than Exp-A1l and Exp-A2
at S1-4, and performs worse than Exp-A1l and Exp-A2 at S7. Exp-Al and Exp-A3 have almost the
same mixing ratio biases at S5 and S8. The RMSEs of Exp-A1-A3 are 0.59, 0.56 and 0.51 g/kg,
respectively. For the case C-14 (Fig. 8b), biases are larger, and Exp-B3 overwhelms both Exp-B1
and Exp-B2 for most observation locations. The RMSEs of Exp-B1-B3 are 2.03, 2.04 and 1.74
g/kg, respectively. The validation result indicates that DA-3 produces a better moisture structure
over sea.
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Figure 8. Biases between the forecasted and observed mixing ratio for the cases (a) C-09 and (b) C-
14. Numbers in parentheses are the mixing ratio of ship measurements. The improvements (%) of Exp-
A3 relative to Exp-Al and are in parentheses below horizontal coordinates, as well as Exp-B3 relative

to Exp-B1.

4.3 Investigation of assimilation effects
4.3.1 Feature of initial condition differences

Results of the evaluation on assimilation effect demonstrate that the DA-3 scheme outperforms
the other DA schemes evidently. The two sea fog cases, one spread widely over the Yellow Sea and
the other spread narrowly along the Shandong Peninsula coast, can both obtain obvious forecast
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improvement by using EnKF other than 3DVAR. Next, we will discuss the issue on how 3DVAR
and EnKF work for the improvement and how they differ in the assimilation process for the two sea
fog cases.

Differences between the initial conditions of different experiments are investigated. Figure 9
shows the initial condition difference near sea surface of Exp-A2 minus Exp-Al, and Exp-A3 minus
Exp-Al for the case C-09. It is similar in Fig. 10 but for the case C-14. It is clear there are rather
small differences when the DA-2 scheme is used instead of the DA-1 scheme (see the upper panels
in both Fig. 9 and Fig. 10). However, when the DA scheme is changed from DA-1 to DA-3, the

differences are significant (see the bottom panels in both Fig. 9 and Fig. 10).
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Figure 9. Initial differences of temperature (left) and mixing ratio (middle) at 1000 hPa, SLP and 10-
m wind (right) between Exp-A2 and Exp-Al (upper), Exp-A3 and Exp-Al (lower), respectively. The

dashed frame indicates the significant zone, and the closed thick solid line denotes the forecasted sea
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fog at 1200 UTC 10 Apr 2009.

For the areas that overlap or neighbor where sea fogs occur (sea fog areas are denoted by the
closed thick solid lines in Fig. 9 and Fig. 10), the differences become obviously larger. The values
of temperature, mixing ratio, wind speed and SLP that these differences can reach are about 1.0 K,
0.6 g/kg, 3.0 m/s and 4 hPa, respectively. For instance, the area marked with a dashed frame has
large differences of mixing ratio and wind, which locates northeast to the fog area (Figs. 9e, f);
however, the area covering over forecasted sea fog in the case C-14, there are distinguished large
differences of temperature (Fig. 10d), mixing ratio (Fig. 10e) and SLP (Fig. 10f). For convenience

of reference, the above two areas stamped by dashed frames are called significant zones.
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Figure 10. As in Figure 9, but for difference between Exp-B2 and Exp-B1 (upper), Exp-B3 and Exp-
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B1 (lower), and the forecasted sea fog at 0100 UTC 02 Apr 2014.

After having an insight into the evolution of forecasted sea fog in the sea fog cases (Fig. 4 and
Fig. 5), it is found that the forecast improvement is embodied in the development stage for the case
C-09 (e.g., cf. Figs. 41, n, s and Fig. 4d), but for the case C-14 the forecast improvement is already
spotted in the initial stage (cf. Figs. 51, k, p and Fig. 5a). It implies that the mechanisms of data
assimilation for the two cases might be different.

Combing the above information, two questions for further analysis are proposed here:

® Are the forecast improvements closely related to the significant zones?

® [fthe answer is yes to the above question, then how are the significant zones formed in the

assimilation process?
4.3.2 Reason of the forecast improvements

For the case C-14, Exp-B1 completely fails, resulting in no sea fog in the whole forecast period
(Fig. 5). However, Exp-B3 successfully capture the sea fog process from the beginning. The
positive mixing ratio difference at 1000 hPa in the significant zones (cf. Fig. 10b and Fig. 10e),
which shows it is about 0.6 g/kg wetter in Exp-B3 that Exp-B1, indicates that the failure of Exp-B1
may be due to lack of enough moisture. On the contrary, the success of Exp-B3 results from
enough moisture (Fig. 10e) additionally with a strengthening high-pressure (Fig. 10f and Fig. 1c¢),
which means the atmospheric stratification is more stable and suitable for sea fog occurrence.

Figure 11 furtherly gives the observation innovation (i.e.,y — HxP) and analysis increment (i. e.,
x? — xP) at the lowest model level for Exp-B1 and at the last DA cycle (t =tz in Fig. 3). Prior to the

assimilation of this cycle, the observation innovations and analysis increments of temperature and
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mixing ratio differ very little between Exp-B1 and Exp-B3 (cf. Fig 11a and Fig. 11d; cf. Fig 11b and
Fig. 11e). It means that Exp-B1 and Exp-B3 have almost the same backgrounds (i.e., xP) of
temperature and mixing ratio. However, after assimilating new observations, Exp-B1 and Exp-B3
obtain distinctly different analysis increments (Figs. 11c, f). In the significant zones, both Exp-B1
and Exp-B3 get negative temperature increment, but the amplitude of the former is much smaller
than that of the latter; Exp-B1 has nearly no gain of mixing ratio, whereas the gain of Exp-B3

increases up to 0.2 g/kg at least almost over the whole significant zone.
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Figure 11. Comparison of observation innovation (y — HxP) and analysis increment (x® — xP) at the
lowest model level between Exp-B1 (upper) and Exp-B3 (bottom) for the last DA cycle. Observation
innovations of temperature and mixing ratio before and after assimilation are illustrated in the left
and middle panels, respectively; and analysis increments of temperature (colors) and mixing ratio

(contours, unit: g/kg) are shown in the right panels.
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To be brief, the marine PBL below 1000 hPa of Exp-B3 is much wetter than that of Exp-B1 in the
initial condition over significant zone, contributing to the successful forecast of Exp-B3. Unlike the
case C-14, the significant zone of the case C-09 does not locate over the sea fog area (Fig. 9). The
case C-09 gains its forecast improvement in the developing stage instead of the beginning (Fig. 4),
and it seems that the expansion of the fog area (cf. Fig. 4t and Fig. 4j) depends to great extent on the
strengthened flow (Fig. 9f).

To understand the relationship between the significant zone and the forecast improvement in
Exp-A3, evolution of the averages of temperature, mixing ratio, and u- and v-components of wind
over the zone during the DA window and forecast period are demonstrated by the time series in Fig.
12. At the forecast beginning (t = 0), compared to Exp-A1, Exp-A3 has lower temperature
(Fig.12a), higher humidity (Fig.12a), and stronger southeasterly wind (smaller u- and v-components;
Fig.12c, d), which agrees well with these differences in Fig. 9. This trend continues during the
whole forecast period, resulting in moisture advection from the significant zone to the fog area (Figs.
9e, f) and promoting the forecast improvement.

4.3.3 Impact of the background error

As seen in the above reason analysis, the sea fog forecast improvements are clearly related to the
significant zones in the two fog cases. Next, we try to explain the formation of the significant
zones, and compare the impact of background error on the formation by 3DVAR and EnKF.

In the assimilation process, analysis increment represents the gain of assimilating observations
jointly controlled by the background error and observation error.  Since observation error is usually
confirmed in advance, background error becomes the key factor to determine the analysis increment.
If we focus on inspecting the analysis increments in Fig. 11 and Fig. 12, it is found that there are two
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noteworthy facts. One fact is that increments of the 3DV AR are generally larger than the EnKF in
the case C-09 (see the bars in Fig.12) except for humidity. The other one is that in the case C-14
there is a seesawing relationship of the increments between temperature and humidity in the EnKF
but not in the 3DVAR. Namely that negative temperature increment corresponds to positive
humidity increment, and vice versa (Fig. 11f). According to the theoretical introduction in Section

2, these two facts involve the variance and covariance of the background error.
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Figure 12. Time series of the average (a) temperature, (b) mixing ratio, (¢) u and (d) v wind
components over the area marked by the dashed frame in Figure8 for Exp-A1l (red) and Exp-A3 (blue).

The bars show the analysis increments within data assimilation window.

The formula (3) is taken to calculate the background-error variance for 3DVAR. Removing HT
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from the formula (6) yields the formula to estimate the background-error variance for EnKF:

m

sz%li(x;» —xP)(xp —x*)" (12)

m i=1

Forecast differences of a half-month-long term are used in the formula (3), but instead the
formula (12) employs member differences at a certain time. Figure 13 shows the background-error
variances of temperature, relative humidity and wind speed at 1000 hPa for the case C-09. Figure
14 is as the same as Figure 13 but for the case C-14, and the variances are calculated in the last cycle.
Note that the variances for 3DVAR do not vary within the whole assimilation window. Overall, the
variances of 3DVAR are larger than EnKF over sea (cf. the upper row and the bottom row in Fig. 13
and Fig. 14). Since observation error can be considered fixed, larger variances make assimilation
result approach closer to observation than to background. This may explain the first fact mentioned
above: why variables’ increments of 3DVAR are generally larger than those of EnKF in the

assimilation window (see the bars in Fig. 12).
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Figure 13. Comparison between the variance distributions at 1000 hPa for temperature (left), relative
humidity (middle) and wind speed (right) for 3DVAR (upper; Exp-Al) and EnKF (lower; Exp-A3)

of the case C-09. The dashed frame indicates the significant zone.
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Figure 14. As in Figure 13, but for Exp-B1 and Exp-B3 of the case C-14.

To clearly reveal the impacts of the background-error variances and covariances from 3VAR and
EnKeF, six assimilation experiments with single synthetic observation were conducted in the last
cycle. Their description is given in Table 4. Two points (points A and C) are deliberately arranged
locating in the significant zones for the two cases, respectively. In addition, another point (point B)
is placed in the Taiwan Strait to further demonstrate the flow-dependent feature of EnKF. The
values of the observation are given based on the real relation between the observation and the

background.
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Table 4. Description of single observation tests.

. Case Location Assimilation Observation
Experiment
method
Exp-AS1 3DVAR
A (125.00 °E, 33.00 °N
Exp-AS2 C-09 ( ’ ) EnKF 2 m/s u-component wind
Exp-AS3 ) 3DVAR above the background
B (120.00 °E, 25.00 °N
Exp-AS4 ( ’ ) EnKF
Exp-BSl1 3DVAR 2 K temperature below
-14 120.33 °E, 36.07 °N
Exp-BS2 ¢ € (120.33 °E, 36.07°N) EnKF the background

Figure 15 shows that the different responses of 3DVAR and EnKF to assimilating of a single
synthetic u-component wind observation of a value of 2 m/s above the background flow (arrows in
Fig. 15). The increment of EnKF is smaller than that of 3DVAR due to the difference of
background-error variances. The former is about 0.8 m/s while the latter is about 1.2 m/s at the
point A (the top right point in Fig. 15). The corresponding background-error variances of 3DVAR
are larger than that of EnKF, which can be seen in comparing the background-error variances in the
significant zones of Fig. 13e and Fig. 13f. Because the background flow is easterly, smaller u-
component wind increment of EnKF makes stronger easterly wind than that of 3DVAR, which may
interpret the wind increments in the significant zone in Fig. 9f. The almost same result is shown at
the point B. Beyond that, the flow-dependent characteristics of EnKF is clearly found in Fig.15.
Even though the observation measures the values of u-component at one point, the data assimilation
has spread out this information. However, the spreads of 3DVAR and EnKF differ so much. For
3DVAR, the spread patterns at points A and B are almost the same though the background flow is
markedly different (Fig. 15a). But for EnKF, the spread patterns are closely corelated with the flow

resulting by its flow-dependent background-error covariances (Fig. 15b).
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Figure 15. Comparison between (a) 3DVAR and (b) EnKF for mixing ratio (blue contours, unit: g/kg)
and u wind component (colors) increments at 1000 hPa in single synthetic observation tests from Exp-

ASI1 to Exp-AS4. Vectors show background flow.

Moisture increments in the assimilation process especially benefit from the multivariate
correlations of EnKF, which has been well certified by the result of Exp-B3. Here, this benefit is
simply illustrated in Fig. 16. Given a single synthetic temperature with a value of 2 K below the
background at the point C, 3DVAR only responses to the temperature itself (Fig. 16a), however the
response of EnKF includes not only the temperature but also the mixing ratio (Fig. 16b). The
amplitude pattern of the temperature increments is almost the same as that of the background-error
variances of temperature (cf. the color shadings in Fig. 16b and Fig. 16¢), indicating that the
temperature assimilation strongly depends on the background-error variances of temperature.

However, the assimilation of mixing ratio is chiefly controlled by the background-error covariances
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between relative humidity and temperature (cf. the color shading in Fig. 16d and the contours in Fig.

16b).
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Figure 16. Results of (a) Exp-BS1 and (b)-(d) Exp-BS2. Colors in (a) and (b) show temperature

increments (K) and contours in (b) represent mixing ratio increments (g/kg); Covariances between

temperature at the dot and (c) temperature or (d) RH at each model grid are illustrated.

5. Summary
Numerical forecasting of sea fog is undoubtedly challenging. It can be tricky due to many
imperfect aspects closely related to sea fog simulation, such as microphysics scheme for vapor

32


http://dx.doi.org/10.20944/preprints201807.0577.v1
http://dx.doi.org/10.3390/atmos9090346

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2018 d0i:10.20944/preprints201807.0577.v1

condensation with aerosol effect, turbulence scheme for air-sea interaction in the bottom of marine
PBL, subsidence inversion caused by a high, warm-moisture advection controlled by a
cyclone/anticyclone couplet, and the initial conditions. Particularly, the last reason is vital for sea
fog modeling. Some works have been done previously for it based on 3DVAR method.

In view of the theoretical advantages of EnKF and its effective applications on some weather
phenomena except sea fog, two sea fog cases over the Yellow sea were studied in details. There are
distinguished differences between the two sea fogs, one spread widely and the other spread narrowly
along the coastal area. A series of data assimilation and forecast experiments were conducted
aiming at the comparison between 3DVAR and EnKF for the data assimilation effects on the Yellow
Sea fog forecast. The results of the experiments, including forecasted sea fog area, vertical profiles
of temperature and moisture in the initial conditions, were evaluated by retrieved sea fog patch and
measurements. The main conclusions of this research work are summarized below:

1) The assimilation effect of EnKF obviously excel that of 3DVAR, performing at not only
forecasted sea fog but also the distribution of temperature, moisture and wind in the initial
conditions. For the widespread-fog case, the assimilation by EnKF significantly improves
the forecasted sea fog area, raising POD and ETS by up to about 57.9% and 55.5%,
respectively.  Especially for the case that spread along the coast, the assimilation by EnKF
successfully produces the sea fog that is completely mis-forecasted by 3DVAR.

2) The analysis increments strongly depend on the background error. The flow-dependent
background error of EnKF out-competes that of 3DVAR, as evidenced by more realistic
depiction of sea surface wind for the widespread-fog case and better existence of moisture for
the other case in the initial conditions.
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3) Compared with 3DVAR, the multivariate correlations (e.g., correlation between temperature
and humidity) in the background error of EnKF plays a key role on adjusting/generating
moisture through assimilating of temperature. It helps greatly to improve the moisture
conditions for sea fog forecast.

Further studies are still needed, though encouraging results have been achieved in this study. For
instance, why in the initial condition of the widespread-fog case, no sea fog is formed responding to
the assimilation by EnKF as that of the other case? It is not enough to clarify in detail the
advantages of EnKF on sea fog assimilation only using two sea fog cases, hence more cases are
required in the next study. In addition, the forecast experiments with EnKF assimilation are
deterministic, in which the mean of the ensemble of assimilation analyses is taken as the initial
condition. As a matter of fact, it is easy and convenient to carry out ensemble forecast of sea fog
initialized by the members of EnKF, and therefore sea fog ensemble forecast based on EnKF will be

desirable.
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