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Abstract: A black hole in a Schwarzschild spacetime is considered. A transformation is proposed 
that describes the relationship between the coordinate systems exterior and interior to an event 
horizon. Application of this transformation permits considerations of the (a)symmetry of a range of 
phenomena taking place on both sides of the event horizon. The paper investigates two distinct 
problems of a uniformly accelerated particle. In one of these, although the equations of motion are 
the same in the regions on both sides, the solutions turn out to be very different. This manifests the 
differences of the properties of these two ranges.  
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1. Introduction 

Outside the horizon of a black hole the Killing vector is time-like and it becomes space-like inside 
the horizon –this means that energy conservation is broken. Such a conversion of the Killing vector 
results in a lot of interesting phenomena, Hawking radiation and the information paradox being the 
most prominent among them [1,2]. The status of these two outcomes arising from the presence of the 
event horizon is, in a sense, similar: both appeared mainly due to the work of Hawking and both of 
them are still debated [3]. More recent studies have considered a range of interesting questions. One 
of the latest was the supposition that black holes (BH) do indeed have hair [4]; another interesting 
outcome was the claim that the volume of a BH may be infinite [5]. In view of the argument that there 
is not enough space inside a black hole to store arbitrarily large amounts of information, this 
discovery turns out to be a contribution strictly associated with the problem of information stored 
and lost within an event horizon[6]. Following a proposal by Unruh [7] of development of analogues 
gravity, condensed, soft matter or photonic black hole-like systems that develop an event horizon 
have been experimentally realized [8]. A recent experiment has led to a Kerr-like BH including an 
ergo-sphere, not just an event horizon, opening up the possibility of experimental observations of the 
Penrose effect.  

The interior of a black hole itself has been the subject of fewer but more diverse considerations. 
Hamilton et al. [9] presented a discussion on the question of (spectroscopic) vision inside the horizon 
of a Schwarzschild BH. In another approach Hamilton and Leslie [10] considered the exterior and 
interior of a BH within a so-called river model based on the use of a Painleve-Gullstrand co-moving 
frame. It is well-known that the static spacetime outside a BH’s horizon turns out to be dynamic 
inside the outer horizon in the situation when two horizons are formed. Such a dynamic interior of a 
BH may be viewed as a cosmological model [11].  

The aim of this paper is to study the properties of the interior of a Schwarzschild BH, i.e. which 
is isotropic and static outside the horizon. The investigations are presented from a special perspective. 
One finds a formal, specific symmetry between the exterior and interior ranges, even though the 
properties of these two regions are found to be completely different. We illustrate the differences 
using two problems related to the behavious of a test particle uniformly accelerated outside and 
inside the horizon. In the first example the particle moves radially outside the horizon and its natural 
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extension is motion along a homogeneity axis (see below) inside the horizon. It is found then that 
although the equations of motion are the same in both regions the solutions differ significantly. In 
the other example a test particle follows a circular trajectory belonging to the photon sphere [12] and 
inside the horizon the test particle moves along a photon sphere analogy.  

The paper is organized as follows. In Sec.2 we present a transformation between coordinate 
systems outside and inside horizon of the Schwarzschild black hole. Section 3 is devoted for thorough 
investigation of the problem of a uniformly accelerated motion of along a straight line: radially 
outside horizon along homogeneity direction inside horizon. In Sec. 4 we consider the case of uniform 
acceleration for motion along a circle on a photon sphere outside horizon and its analogue inside 
horizon. The discussion and final remarks are given in the last section. 

2. Systems of co-ordinates in space-time with a horizon  

Arbitrary co-ordinate system constitute a diffeomorphism Φ from an open set U of the space-
time M into an open set U’ of the real Euclidean flat space 𝑅, where 𝑛 is the dimension of M:  

Φ: 𝑈 ⊂ 𝑀 → 𝑈′ ⊂ 𝑅 
      Φ(𝑝) = (𝑥ଵ, … 𝑥) where 𝑝 ∈ 𝑈.       (1) 

We will consider spherically symmetric space-time with a black hole defined by a horizon. The 
horizon 𝐻 which is a global property of such a space-time, divides 𝑀 into an exterior 𝑀ା and an 
interior 𝑀ି: 
         𝑀 = 𝑀ି ∪ 𝐻 ∪ 𝑀ା.        (2) 
On 𝑀ା (which is static) one can introduce the coordinate system which in the spherical coordinates 
(𝑟, 𝜃, 𝜑) on 𝑅ଷ takes the form: 

Φା: 𝑀ା → 𝑅ସ 
        Φା(𝑝) = (𝑡, 𝑟, 𝜃, 𝜑) = (𝑥ఓ),       (3) 
where 𝑟 > 𝑟  and 𝑟  is a (gravitational) radius of the horizon 𝐻 . The metric 𝑑𝑠ା

ଶ  on 𝑀ା  in this 
framework has the form 

       𝑑𝑠ା
ଶ = ቀ1 −




ቁ 𝑑𝑡ଶ − ቀ1 −




ቁ

ିଵ

𝑑𝑟ଶ − 𝑟ଶ𝑑Ωଶ.    (4) 
This is the well-knownSchwarzschild space-time with 𝑟 = 2𝑀 , and 𝑑Ωଶ = 𝑑𝜃ଶ + 𝑠𝑖𝑛ଶ𝜃 𝑑𝜑ଶ  is a 
unit metric on 𝑆ଶ.  

On 𝑀ି one can introduce the following coordinate system: 
Φି: 𝑀ି → 𝑅ସ 

        Φି(𝑝) = (𝑇, 𝑅, 𝜃, 𝜑) = (𝑋ఈ),       (5) 
where 0 < 𝑇 < 𝑟. The metric 𝑑𝑠ି

ଶ on 𝑀ି in this coordinate system has the following form (see [11]) 

       𝑑𝑠ି
ଶ =

ௗ்మ

ିଵା
ೝ



− ቀ


்
− 1ቁ 𝑑𝑅ଶ − 𝑇ଶ𝑑Ωଶ.      (6) 

Hence, on 𝑀 there are two coordinate systems with two metrics 𝑑𝑠ା
ଶ = 𝑔ఈఉ(𝑥)𝑑𝑥ఈ𝑑𝑥ఉ and 𝑑𝑠ି

ଶ =

ℎఈఉ(𝑋)𝑑𝑋ఈ𝑑𝑋ఉ. The transformation 𝕋 between these two systems of coordinates has the form:  
          𝕋: 𝑀ା → 𝑀ି,        (7) 
where 𝕋 is given by the matrix: 

        𝕋 = ቌ

0 1
1 0

0 0
0 0

0 0
0 0

1 0
0 1

ቍ = 𝕋ିଵ.       (8) 

It acts as follows: 
𝕋𝑥 = 𝑋, 

       𝑇 = 𝑟, 𝑅 = 𝑡, 𝜃 = 𝜃, 𝜑 = 𝜑,      (9) 
and 
         ℎ(𝑋) = 𝕋𝑔(𝕋𝑥)𝕋,        (10) 
where ℎ(𝑋) = ቀℎఈఉ(𝑋)ቁ and 𝑔(𝕋𝑥) = ቀ𝑔ఈఉ(𝕋𝑥)ቁ. 

There are two Killing vectors manifesting the symmetry properties of the exterior 𝑀ା and 
interior 𝑀ି of the horizon. In 𝑀ା  these are a time-like one, 𝜕௧  representing energy conservation 
due to the static character of the spacetime and a space-like one, 𝜕ఝ  reflecting angular momentum 
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conservation. In 𝑀ି  there is a space-like one, 𝜕ோ  reflecting 𝑅 -momentum conservation due to 
homogeneity along the 𝑅 -axis and another space-like one, 𝜕ఝ  representing angular momentum 
conservation. 
 The exterior of the Schwarzschild black hole, 𝑀ା is a static spacetime and its interior, 𝑀ି is a 
dynamic spacetime. One can introduce a class of static observers in the former and a class of resting 
observers in the latter case. The velocity vector of such observers has only a temporal non-vanishing 
coordinate 𝑈 = 𝛼𝜕. It appears natural to label them as: 

a) t-observers 
𝑈௧ =

ଵ

ඥ
𝜕௧         (11) 

outside the horizon and 
b) T-observers 

𝑈் = −
ଵ

ඥ
𝜕்        

 (12) 
inside the horizon. 

3. Uniformly accelerated motion along straight line 

In this section we will consider the problem of a uniformly accelerated test particle in the exterior 
and interior of the horizon. The motion of such a test particle will be confined to the 𝑥, 𝑥ଵ and 
𝑋, 𝑋ଵ hyperplanes respectively. So one can discuss the case of a 1+1 dimensional spacetime 

𝑑𝑠ଶ = 𝑓(𝑑𝜉)ଶ − 𝑓ିଵ(𝑑𝜉ଵ)ଶ      (13) 
such that 

a) Outside the horizon, 𝜉ఈ ≡ 𝑥ఈ and 𝑓 = 𝑔௧௧ is a function of spatial coordinate 𝜉ଵ 
b) Inside the horizon, 𝜉ఈ ≡ 𝑋ఈ and 𝑓 = ℎ்்  is a function of temporal coordinate 𝜉. 

The components of a velocity vector 𝑢 
𝑢 = 𝑢ఈ𝜕ఈ        (14) 

of the test particle, 𝑢ఈwill depend on 𝜉ଵ in the case (a) and on 𝜉 in case (b). 
 An acceleration vector field 𝑎 for 𝑢 is: 

𝑎 = ∇௨𝑢        (15) 
and one obtains the following equations for its components: 

a) outside the horizon 
𝑎௧ = −𝑔𝑢 ௗ

ௗ
(𝑔௧௧𝑢௧)      (16) 

𝑎 = 𝑔௧௧𝑢௧ ௗ

ௗ
(𝑔௧௧𝑢௧)      (17) 

and 
b) inside the horizon 

𝑎் = ℎோோ𝑢ோ ௗ

ௗ்
(ℎோோ 𝑢ோ)      (18) 

𝑎ோ = −ℎ்்𝑢் ௗ

ௗ்
(ℎோோ𝑢ோ)      (19) 

Hence, one finds that these two pairs of equations are transformed into each other under the 
interchange of the temporal and spatial coordinates, 𝑡 ↔ 𝑅 and 𝑟 ↔ 𝑇 as emphasized in the former 
section (see Eq. (9)). Uniform acceleration is defined by the condition: 

𝑎ଶ = 𝑓(𝑎)ଶ − 𝑓ିଵ(𝑎ଵ)ଶ = −𝛼ଶ    (20) 
where 𝛼 = 𝑐𝑜𝑛𝑠𝑡. The equations for the world line of the test particle are then derived as follows. 

a) Outside the horizon 
ௗ

ௗ
(𝑔௧௧𝑢௧) = ±𝛼.       (21) 

Thus the world line 𝛾 = {𝑡(𝜏), 𝑟(𝜏)} of the uniformly accelerated particle is given in the case of a 
static metric by the integral curve of the vector field: 

𝑢௧ =
ௗ௧

ௗఛ
=

ଵ


(𝐸 ± 𝛼 ∫ 𝑑𝑟)     (22) 

𝑢 =
ௗ

ௗఛ
= ±ඥ(𝐸 ± 𝛼 ∫ 𝑑𝑟)ଶ − 𝑔௧௧    (23) 

where E is an integration constant. 
b) Inside the horizon 
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ௗ

ௗ்
(ℎோோ𝑢ோ) = ±𝛼.       (24) 

In this case of a dynamic spacetime the world line of the test particle is given as follows: 
𝑢ோ = ±

ଵ

ೃೃ
(𝐸′ ± 𝛼 ∫ 𝑑𝑇)     (25) 

𝑢் = ඥ(𝐸′ ± 𝛼 ∫ 𝑑𝑇)ଶ − ℎோோ .     (26) 
Applying the fact that inside the horizon 

𝑔௧௧ = 1 −



= ℎோோ(𝑟)      (27) 

one finds that the world line equations for the outer and inner horizon regions, Eqs. (22,23) and Eqs. 
(25, 26) take the same form: 

�̇� =
ாାఈ

ଵି
ೝ

ೝ

         (28) 

�̇� = ට(𝐸 + 𝛼𝑟)ଶ − ቀ1 −



ቁ.     (29) 

Here we will examine the following point: how does the speed of a uniformly accelerated test particle 
change with respect to the static observers? In general a relative velocity four-vector 𝑤 of 𝑢′ as 
measured by another observer characterized by velocity 𝑢 at the same event 𝑝 = (𝑥ఈ) is given by 
(see [13]) 

𝑤 =
௨ᇱ

(௨,௨ᇱ)
− 𝑢,        (30) 

where (𝑢, 𝑢′)  is the scalar product of the two velocity four-vectors, 𝑢  and 𝑢′ , 𝑢ଶ = 𝑢′ଶ = 1 . 
Velocity 𝑤 is orthogonal to 𝑢, (𝑤, 𝑢) = 0, i.e. 𝑤 is a space-like vector, 

𝑤ଶ =
ଵ

(௨,௨ᇱ)మ − 1 < 0.      (31) 
Then the squared speed 𝑣ଶ is given as: 

𝑣ଶ = −𝑤ଶ > 0.       (32) 

3.1. Black hole exterior 

In the exterior of the Schwarzschild black hole the spacetime is static and static observers denoted 
as t-o are characterized by their velocity vector 𝑈௧ (see Eq. (11)). Such an observer measures the 
speed 𝑣 of a nearby passing uniformly accelerated (ua) test particle, 

𝑢௨ = �̇�𝜕௧ + �̇�𝜕 .       (33)  

Hence, for 𝑢 = 𝑈௧ , and 𝑢′ = 𝑢௨  one applies the procedure described above to find: 

𝑤ଶ = −
̇మ

( ௧̇)మ.        (34) 

Using Eqs. (28,29) we obtain 

𝑣ଶ =
(ாାఈ)మି

(ாାఈ)మ .       (35) 
This case of a uniformly accelerated test particle initially at rest, 𝑟 = 2𝑟 is illustrated in Figure 1.  
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Figure 1. Squared speed 𝑣ଶ (Eq. (35)) of a uniformly accelerated test particle initially at rest at 𝑟 =

2𝑟 ≡ 4 (in this case 𝑟 ≡ 2) escaping radially from the gravitational field for different values of α=0.1 
(red), α=0.5 (green), α=1 (black) 

 

3.2. Black hole interior 

Inside the horizon, ℎ்் = ቀ


்
− 1ቁ

ିଵ

. A class of resting (or co-moving, see below) observers is 
determined by (12) 

𝑈் = −ට


்
− 1𝜕் .       (36) 

Using Eqs. (26), (36), (32) one obtains the squared speed 𝑣ଶ of the uniformly accelerated test 
particle inside the horizon:  

𝑣ଶ =
(ாᇱାఈ்)మ

(ாᇱାఈ்)మିቀଵି
ೝ


ቁ
.      (37) 

Using the relation 𝑇 = 𝑟 inside the horizon, one can express the squared speed 𝑣ଶ as a function of 
a temporal coordinate, 𝑟. In Figure 2, the squared speed of the uniformly accelerated test particle 
initially at rest is illustrated by applying expression (37). The speed initially increases, reaches some 
(non-universal) maximal value and finally decreases to zero at the ultimate singularity, 𝑟 → 0. 
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Figure 2. Squared speed 𝑣ଶ (Eq. (37)) a test particle initially, 𝑇 = 0.9 𝑟 at rest (in this case 𝑟 ≡ 10) 
uniformly accelerated along homogeneity axis 𝑅(=t) for different values of α=0.05 (blue), α=0.1 (red), 
α=0.2 (green), α=1 (black). 

4. Uniform acceleration on a photon sphere and on its analogue inside the horizon  

A photon sphere outside the horizon, 𝑟 > 𝑟 , has a radius, 𝑟௦ =
ଷ

ଶ
𝑟 . It consists of null geodesic 

circles, 𝑘 = 𝑘௧𝜕௧ + 𝑘ఝ𝜕ఝ , 𝑘ଶ = 0 ൫𝑟 = 𝑟௦൯. Its analogy inside the horizon, 𝑟 < 𝑟, consists of planar 
null geodesics having two non-vanishing components, 𝑘 = 𝑘𝜕 + 𝑘ఝ𝜕ఝ . However, in this case the 
radius, 𝑟 of such a “sphere” diminishes from 𝑟 to 0. We shall consider the problem of a uniformly 
accelerated test particle on a circle belonging to the photon sphere and on a “circle” belonging to the 
photon sphere analogue. 

4.1. Black hole exterior 

In a case of a test particle moving outside the horizon along a circle of radius 𝑟 ≥ 𝑟௦ the velocity 
vector is two-component 

𝑢 = 𝑢௧𝜕௧ + 𝑢ఝ𝜕ఝ,       (38)  

where without the lost of generality, we have considered a circle in an equatorial plane, 𝜃 = 𝜋/2. 
An acceleration vector field 𝑎 = ∇௨𝑢 in the case of motion with constant speed is found to be  𝑎 =

𝑎𝜕  (see [12]) 

𝑎 = −
ଵ

ଶ
ቂ(𝑢௧)ଶ ௗ

ௗ
+ (𝑢ఝ)ଶ ௗകക

ௗ
ቃ.    (39)  

Applying a normalization condition, 𝑢ଶ = 1, one finds that the acceleration of a photon sphere, 
𝑟 = 𝑟௦ =

ଷ

ଶ
𝑟, turns out to be speed independent [12] 

𝑎 = −
ଵ

ଶ

ଵ



ௗ

ௗ
=

ଶ

ଷ
.      (40) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 July 2018                   doi:10.20944/preprints201807.0574.v1

Peer-reviewed version available at Symmetry 2018, 10, 366; doi:10.3390/sym10090366

http://dx.doi.org/10.20944/preprints201807.0574.v1
http://dx.doi.org/10.3390/sym10090366


 

Hence in this case one can consider a generalization of the twin-paradox and other features such as 
specific non-geodesic motion [14].  

4.2. Black hole interior 

Motion along a photon sphere analogue in this case, 𝑟 < 𝑟 is as follows.  
The two-component velocity vector of a test particle takes the form: 

         𝑢 = 𝑢𝜕 + 𝑢ఝ𝜕ఝ,       (41)  

and its components will be 𝑟-dependent. An acceleration vector field 𝑎 = ∇௨𝑢 is found to be two-
component, 

         𝑎 = 𝑎𝜕 + 𝑎ఝ𝜕ఝ ,       (42)  

and its components are: 

         𝑎 = −
௨ക

ೝೝ

ௗ

ௗ
൫𝑔ఝఝ𝑢ఝ൯,      (43)  

         𝑎ఝ =
௨ೝ

കക

ௗ

ௗ
൫𝑔ఝఝ𝑢ఝ൯.      (44)  

 
Uniform acceleration is defined by the condition (see Eq. (13)) 

        𝑎ଶ = 𝑔(𝑎)ଶ + 𝑔ఝఝ(𝑎ఝ)ଶ = −𝛽ଶ = 𝑐𝑜𝑛𝑠𝑡.   45)  

The equations for the world line of the test particle are then derived as follows. Applying Eqs. (45), 
(43), (44) one finds, 

        ௗ

ௗ
൫𝑔ఝఝ𝑢ఝ൯ = ±𝛽ඥ−𝑔𝑔ఝఝ.      (46)  

Thus the world line 𝛾 = {𝑟(𝜏), 𝜑(𝜏)} of the test particle uniformly accelerated on a sphere of ever 
diminishing radius, is given by an integral curve of the vector field 𝑢: 

𝑢 =
ௗ

ௗఛ
= ±

ଵ

√ೝೝ
൬1 −

ଵ

കക
൫𝐶 ± 𝛽 ∫ ඥ−𝑔𝑔ఝఝ 𝑑𝑟൯

ଶ
൰,   (47) 

      𝑢ఝ =
ௗఝ

ௗఛ
=

ଵ

കക
൫𝐶 ± 𝛽 ∫ ඥ−𝑔𝑔ఝఝ 𝑑𝑟൯,      (48)  

where C is an integration constant. Here we are interested in the following question (see above): how 
does the speed of a uniformly accelerated test particle change with respect to the static (resting) 
observers? Similarly, as in the former section, the speed is measured by (resting) T – observers, Eq. 
(36). In this case one finds: 

𝑣ଶ = 1 −
ଵ

ೝೝ(௨ೝ)మ =
൫±ఉ ∫ ඥିೝೝകകௗ൯

మ

൫±ఉ ∫ ඥିೝೝകകௗ൯
మ

ିകക

.    (49) 

 
The meaning of the result (49) is: the speed of the uniformly accelerated test particle, of total 
acceleration 𝛽 tends to the speed of light as the ultimate singularity, 𝑟 → 0 approaches, as 𝑔ఝఝ =

−𝑟ଶ → 0. 

5. Discussion and final remarks 

In order to investigate the properties of the interior of a Schwarzschild black hole one can apply 
a specific symmetry to the coordinate systems of its exterior and interior. The  meaning of such a 
symmetry is that the radial and temporal coordinates interchange their roles. This  symmetry may 
be regarded as a justification of the fact that one can apply a Schwarzschild system of coordinates, 
(𝑡, 𝑟, 𝜃, 𝜑) both outside as well as inside the horizon. It is an almost trivial notion but it is important 
to remember the existence of a singularity in this system, which is the horizon itself. In this paper we 
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have considered the application of this interchange of roles – a symmetry which is particular to the 
case of a uniformly accelerated particle. In the case of radial motion, outside the horizon and motion 
along the direction of homogeneity inside the horizon, one find that the equations of motion on both 
sides of the horizon are of the same form. In the case of circular motion on a photon sphere and 
“circular” motion on a photon sphere analogue, outside and inside the horizon, respectively, the 
equations of motion are found to be different. In both cases, with either the same or different 
equations of motion, one gets the very different solutions. Outside the horizon one reproduces more 
or less well-known outcomes; inside the horizon the outcomes are found to be rather unexpected.  
Outside the horizon a radially accelerated particle departs with ever increasing speed (if the 
acceleration is larger than some critical value); the speed of a test particle uniformly accelerated along 
the homogeneity axis inside the horizon, whose equation of motion is the same as the one outside the 
horizon, initially increases but then decreases to zero when approaching the ultimate singularity. The 
radial acceleration during circular motion of the test particle on the photon sphere is independent of 
its speed; the speed of a test particle following accelerated motion along a circle belonging to the 
photon sphere analogue (of ever decreasing radius) increases to the speed of light when approaching 
the ultimate singularity. Having in mind an (intimate) symmetry (7) between the exterior and interior 
of the Schwarzschild black hole leading in the simplest case to the same equation of motion, one may 
wonder how it arises that the properties of the solutions are so different. The answer is: it is because 
𝑟 and 𝑡, spatial (radial) and temporal coordinates, respectively, outside horizon interchange their 
roles, becoming temporal and spatial (in the direction of homogeneity) coordinates inside the 
horizon. Such an exchange of roles has a deeper consequence: outside the horizon spacetime is 
spherically symmetric and static and inside the horizon it is no longer static, it is dynamically 
changing (ie an “anisotropic cosmology”, see [11]) but homogeneous along one of its spatial 
directions. 
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