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Abstract: The chain ladder method is a popular technique to estimate the future reserves needed to 
handle claims that are not fully settled. Since the predictions of the aggregate portfolio (consisting of 
different subportfolios) in general differ from the sum of the predictions of the subportfolios, a general 
multivariate chain ladder (GMCL) method has already been proposed. However, the GMCL method 
is based on the seemingly unrelated regression (SUR) technique which makes it very sensitive to 
outliers. To address this issue a robust alternative is introduced which estimates the SUR parameters 
in a more outlier resistant way. With the robust methodology it is possible to detect which claims have 
an abnormally large influence on the reserve estimates. We introduce a simulation design to generate 
artificial multivariate run-off triangles based on the GMCL model and illustrate the importance of 
taking into account contemporaneous correlations and structural connections between the run-off 
triangles. By adding contamination to these artificial datasets, the sensitivity of the traditional GMCL 
method and the good performance of the robust GMCL method is shown. From the analysis of a 
portfolio from practice it is clear that the robust GMCL method can provide better insight in the 
structure of the data.

Keywords: Claims reserving; Contemporaneous correlations; Outliers; Robust MM-estimators; 
Seemingly unrelated regression16

1. Introduction17

Stochastic claims reserving in non-life insurance, also known as general insurance in the UK or property18

and casualty insurance in the US, is an important and challenging discipline for actuaries. Since the19

claims settlement in non-life insurance may last several years, e.g. due to long legal procedures or20

difficulties in determining the size of the claim, insurers have to build up reserves enabling them to21

handle the liabilities related to current insurance contracts. These outstanding claims reserves are often22

the largest position on the liability side of the balance sheet of a non-life insurance company.23

With the introduction of new regulatory guidelines for the insurance business (e.g. Solvency24

II in Europe) there is a growing awareness that advanced statistical techniques should be used for25

forecasting the future claims payments. A comprehensive discussion on the Solvency II directive and26

its implications may be found in Dreksler et al. (2015).27

A well-known and widely used technique to forecast future claims is the chain ladder method,28

a deterministic algorithm which estimates the future claims recursively using a set of development29

factors. To include a stochastic component, this simple technique can be embedded into the statistical30

framework of generalized linear models (GLM), introduced by Nelder and Wedderburn (1972). The31

relationship between the deterministic chain ladder method and various stochastic models based on32

GLMs is discussed in England and Verrall (2002) and Wüthrich and Merz (2008) for instance.33

In practice, a non-life insurance company subdivides portfolios into several correlated34

subportfolios, such that each subportfolio, presented in the form of a run-off triangle, satisfies certain35
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homogeneity properties. The chain ladder method is then typically applied to the different single36

run-off triangles, ignoring the contemporaneous correlations between these various subportfolios.37

It is well known that the chain ladder predictions for the aggregate portfolio, which consists of38

the sum of the different subportfolios, is in general different from the sum of the chain ladder39

predictions for each of the separate subportfolios (Ajne 1994). To address this issue the claims40

reserving problem is also studied in a multivariate context to cope with the problem of dependence41

between different subportfolios. Braun (2004) studied the bivariate model which takes into account42

the correlation between two subportfolios of an aggregate portfolio. Merz and Wüthrich (2007)43

consider claims reserving for a portfolio consisting of N correlated run-off triangles. Pröhl and Schmidt44

(2005) and Schmidt (2006) proposed a multivariate chain ladder (MCL) model where they deduced45

multivariate chain ladder predictors that take into account the dependency between the different46

subportfolios. These predictors are shown to satisfy a classical optimality criterion. Moreover, it47

is explained how multivariate methods solve the lack of additivity of the chain ladder predictions.48

Multivariate methods also have the advantage that we can learn something about the behavior of49

several subportfolios by observing another subportfolio. Merz and Wüthrich (2008) further discussed50

the conditional mean squared error of prediction (MSEP) for the MCL model.51

Recently, Zhang (2010) proposed a general multivariate chain ladder (GMCL) model that further52

extends the MCL model by including intercepts to improve model adequacy. The parameters of this53

flexible model are estimated using the seemingly unrelated regression (SUR) framework. The SUR54

model (Zellner 1962) is a generalization of a linear regression model which consists of more than one55

equation and where the error terms of these equations are contemporaneously correlated. SUR models56

have found considerable use in many applications in econometrics, finance and insurance. Taking57

into account the contemporaneous correlations among different portfolios may lead to more accurate58

uncertainty assessments. Another advantage is that also structural relationships between triangles59

where the development of one triangle depends on past losses from other triangles can be included in60

the GMCL model. The GMCL model also allows joint development of the paid and incurred losses61

from multiple business lines. The similarity and difference between the GMCL model on bivariate62

data and the Munich chain ladder model (Quarg and Mack 2004) are discussed by Zhang (2010), who63

also shows that several existing multivariate claims reserving estimators can find their equivalent in64

the SUR estimator family.65

To estimate the parameters in a SUR model, one typically uses the feasible generalized least66

squares (FGLS) estimator (Zellner 1962)), which takes into account the covariance structure of the67

errors. Since FGLS is based on the classical covariance matrix and ordinary least squares estimation,68

using FGLS makes the SUR estimates and thus in particular the GMCL estimates very sensitive to69

outliers. Outliers are observations that differ from the majority of the data and it is well known that70

these atypical observations can have a large impact on traditional statistical methods. On the other71

hand, robust methods provide estimates for the claim provisions which resemble the classical estimates72

that would have been obtained if there were no outliers in the data, while they do not model the outlier73

generating process. As a consequence of fitting the majority of the data well, robust methods also74

provide a reliable method to detect outliers. Observations which are flagged as outliers can then be75

examined in detail by experts to understand their origin. In Koenker and Portnoy (1990) a robust76

SUR estimator is proposed based on M-estimators. Since this procedure is not affine equivariant and77

does not take full account of the multivariate nature of the problem, a method based on S-estimators78

was introduced in Bilodeau and Duchesne (2000). This robust SUR estimator is regression and affine79

equivariant, but is computationally expensive. Therefore, Hubert et al. (2017) proposed the FastSUR80

algorithm, which implements the ideas of the FastS algorithm (Salibian-Barrera and Yohai 2006) for81

the SUR S-estimator. Recently, Peremans and Van Aelst (2018) developed robust inference for the SUR82

model based on MM-estimators.83

This paper is structured as follows. A review of the GMCL model of Zhang (2010) is given in84

Section 2. In Section 3 the GMCL model is formulated in the SUR framework and the FGLS estimator is85
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introduced. Section 4 describes robust MM-estimators for estimating the parameters in GMCL models86

and its numerical algorithm for computation. We then show the good performance of these estimators87

in an extensive simulation study in Section 5. In Section 6 the robust procedure is illustrated on a real88

dataset from a non-life business line. Some concluding remarks and potential directions for further89

research are given in Section 7. The Appendix contains the parameter estimates obtained from the90

GMCL models for the real dataset.91

2. General Multivariate Chain Ladder Model92

We assume that the non-life insurance company needs to handle M ≥ 1 subportfolios. Let I and93

K denote the final accident and development period respectively. For 1 6 i 6 I, 1 6 k 6 K and94

1 6 m 6 M denote C(m)
i,k as the cumulative claims amount of accident period i and development95

period k of subportfolio m. Depending on the size of K, one refers to long or short tail business and for96

simplicity we take K = I.97

At time I we have observed the claims C(m)
i,k with i + k− 1 6 I for every subportfolio m. Typically,

a subportfolio m is then presented in the form of a run-off triangle as illustrated in Table 1. This triangle

Table 1. Typical representation of subportfolio m as a run-off triangle.

accident development period k
period i 1 2 . . . k . . . I − 1 I

1 C(m)
1,1 C(m)

1,2 . . . C(m)
1,k . . . C(m)

1,I−1 C(m)
1,I

2 C(m)
2,1 C(m)

2,2 . . . C(m)
2,k . . . C(m)

2,I−1
... . . . . . . . . . . . . . . .

i C(m)
i,1 C(m)

i,2 . . . C(m)
i,k

... . . . . . . . . .

I − 1 C(m)
I−1,1 C(m)

I−1,2

I C(m)
I,1

structure shows the development of claims for each accident period. Usually yearly, quarterly or
monthly periods are used. The columns represent the development periods whereas the diagonals
present payments in the same calendar period. The overall outstanding reserve R that will need to be
paid in future, is defined as

R =
M

∑
m=1

I

∑
i=2

(
C(m)

i,I − C(m)
i,I−i+1

)
,

and depends on the ultimate claim values C(m)
i,I . The aim of claims reserving is then to complete the98

run-off triangles into squares, i.e. forecasting the future claims in the bottom right corner of the run-off99

triangles in order to estimate the overall outstanding reserves.100

Let Ci,k = (C(1)
i,k , . . . , C(M)

i,k )′ denote the vector of cumulative claims of accident period i and
development period k. Consider the following model structure from development period k to k + 1:

Ci,k+1 = Ak + BkCi,k + εi,k, (1)

for i = 1, . . . , I − k, where Ak is the M vector containing intercepts β10, . . . , βM0, and where Bk is the
corresponding M×M development matrix that contains the development parameters βm1, . . . , βmM

for run-off triangle m in row m. Moreover, εi,k = (ε
(1)
i,k , . . . , ε

(M)
i,k )′ are independent and symmetrically

distributed errors. For a non-diagonal development matrix Bk, the model allows the development of
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one run-off triangle in development period k to depend on the claims in the other run-off triangles at
development period k. Moreover, it is assumed that the errors εi,k satisfy

E(εi,k|Di,k) = 0 (2)

Cov(εi,k|Di,k) = diag(Ci,k)
1/2Σk diag(Ci,k)

1/2, (3)

where Di,k = {Ci,j|j 6 k}, the set of cumulative claims for accident period i up to and including101

development period k, Σk is a symmetric positive definite M×M matrix, and diag is the operator102

that turns its argument(s) into a diagonal matrix. Consequently, for a non-diagonal matrix Σk the103

components of the error terms εi,k are allowed to be correlated. Equations (1), (2), and (3) for k =104

1, . . . , I − 1 constitute the general multivariate chain ladder model as proposed in Zhang (2010). A105

separate chain ladder (SCL) model can be obtained as a special case by taking Ak the zero vector, and106

by imposing that Bk and Σk are diagonal matrices. The advantages of the GMCL model over already107

existing models like SCL are evident (Zhang 2010). The parameters Ak, Bk and Σk are unknown model108

parameters and need to be estimated from historic claims.109

3. Seemingly Unrelated Regression110

In Zhang (2010) the model structure from development period k to k + 1, given in equation (1) for
i = 1, . . . , I − k, has been rewritten as a multiple linear regression model. Omitting the dependence on
k, the following system of equations is obtained: y1

...
yM

 =

X1 . . . 0
...

. . .
...

0 . . . X M


 β1

...
βM

+

 ε1
...

εM

 , (4)

where for m = 1, . . . , M and n = I − k it holds that111

• ym = (C(m)
1,k+1, . . . , C(m)

n,k+1)
′ is the n vector of all observed losses at development period k + 1 from112

triangle m;113

• Xm = ((1, C′1,k)
′, . . . , (1, C′n,k)

′)′ is the n × (M + 1) matrix of the first n observations at114

development period k from each triangle, including the constant 1 for the intercept. Hence,115

X1 = . . . = X M;116

• βm = (βm0, . . . , βmM)′ is the (M + 1) vector of development parameters, including the intercept;117

• εm = (ε
(m)
1,k+1, . . . , ε

(m)
n,k+1)

′ is the n vector of error terms.118

From (2) and (3) it follows that

Cov(ε) = E(εε′) = diag(V k)
1/2(Σk ⊗ In)diag(V k)

1/2,

where ε = (ε′1, . . . , ε′M)′, and V k = (V (1)′
k , . . . , V (M)′

k )′ with V (m)
k = (C(m)

1,k , . . . , C(m)
n,k )′ for m = 1, . . . , M.119

Moreover, In is the identity matrix of size n and ⊗ represents the Kronecker product.120

Pre-multiplying both sides of equation (4) by diag(V k)
−1/2 leads to the following linear regression

model  y∗1
...

y∗M

 =

X∗1 . . . 0
...

. . .
...

0 . . . X∗M


 β1

...
βM

+

 ε∗1
...

ε∗M

 , (5)

where y∗m = diag(V (m)
k )−1/2ym, X∗m = bdiag(V (m)

k )−1/2Xm, and ε∗m = diag(V (m)
k )−1/2εm. Note

that now the n × (M + 1) matrices X∗m are different for each equation, i.e. X∗m 6= X∗m′ for m 6= m′.
Moreover, denote ε∗ = (ε∗′1 , . . . , ε∗′M)′, then for the representation of the GMCL model given in (5)
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the error covariance matrix Cov(ε∗) is consistent with the SUR assumption of contemporaneous
correlation (Zellner 1962):

Cov(ε∗) = diag(V k)
−1/2 Cov(ε)diag(V k)

−1/2 = Σk ⊗ In.

Hence, it is straightforward to estimate the development parameters by using estimators for SUR121

models on the transformed data.122

Consider the estimation of the unknown development parameters β = (β′1, . . . , β′M)′ under the
SUR model given in (5). The equations in this model can be considered as M separate linear regression
models of the form

y∗m = X∗mβm + ε∗m, (6)

for m = 1, . . . , M. Then each linear regression model can be estimated separately by least squares (LS).
However, this method may yield inefficient estimates since it ignores the correlation structure in the
error terms. Generalized least squares (GLS) is a modification of least squares that can deal with any
type of correlation. In this context, the GLS estimator for the model in (5) becomes

β̂ = (X∗′(Σ−1
k ⊗ In)X∗)−1X∗′(Σ−1

k ⊗ In)y∗, (7)

where X∗ = diag(X∗1 , . . . , X∗M), a block diagonal matrix of size nM × M(M + 1), and y∗ =123

(y∗′1 , . . . , y∗′M)′. GLS produces efficient estimators (Zellner 1962). However, since Σk is unknown124

a feasible GLS (FGLS) estimator is usually introduced. FGLS replaces the unknown matrix Σk in (7)125

with Σ̂k = (ε̂∗1 , . . . , ε̂∗M)′(ε̂∗1 , . . . , ε̂∗M)/n, where ε̂∗m are the residuals obtained from estimating (6) by least126

squares. The efficiency of FGLS is in general smaller than for GLS, although the asymptotic efficiency127

of both methods is identical. Note that this two-step procedure can be iterated until convergence of the128

development parameter estimates. After estimating the development parameters β = (β′1, . . . , β′M)′ or129

equivalently the development matrix (Ak, Bk) = (β1, . . . , βM)′ using the LS or the FGLS estimation130

procedure consecutively for all development periods k = 1, . . . , I − 1, the bottom right corner of the131

run-off triangles can be predicted and the overall reserve estimate R̂ can be obtained (for all M triangles132

simultaneously).133

4. Robust GMCL Method134

In the univariate setting (M = 1) Verdonck and Debruyne (2011) have demonstrated that the chain135

ladder method is very sensitive to outliers. Several robust alternatives have already been developed136

in the univariate claims reserving framework (see e.g. Brazauskas et al. (2009), Brazauskas (2009),137

Verdonck et al. (2009), Verdonck and Van Wouwe (2011), Pitselis et al. (2015) and Peremans et al. (2017)).138

Even one outlier can lead to a huge over- or underestimation of the overall reserve estimate. Moreover,139

Hubert et al. (2017) have shown that FGLS estimators in the GMCL model are also not robust and140

that an outlier in one of the run-off triangles may also affect the estimates of future claims in the other141

run-off triangles. Note that the multivariate aspect makes the task of outlier detection more challenging142

because outliers can be univariate or multivariate. Multivariate outliers are observations that deviate143

from the multivariate pattern indicated by the majority of the observations, i.e. inconsistent with the144

covariance structure of the dataset, but in contrast to univariate outliers are not necessarily extreme145

along a single coordinate (a single run-off triangle). Therefore, univariate outlier detection methods146

may fail to find these outliers and it is important to rely on robust multivariate alternatives. When147

we combine robust SUR methods with the GMCL model, we obtain robust reserve estimates and148

diagnostics for outlier detection.149

We now introduce MM-estimators for the SUR model in (5) as studied by Peremans and Van Aelst
(2018). The system of equations in (5) can be rewritten as another linear regression model by reordering
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the equations. Let Y∗i , X∗i and e∗i be the subvector or submatrix of y∗, X∗ and ε∗ respectively by
extracting rows i, i + n, . . . , i + n(M− 1). Then the system of equations in (5) is equivalent to

Y∗i = X∗i β + e∗i , (8)

for i = 1, . . . , n. In this case we easily obtain that Cov(e∗i ) = Σk. Decompose the covariance matrix
Σk into a shape component Γk and a scale parameter σk such that Σk = σ2

k Γk with |Γk| = 1. Here
|A| denotes the determinant of the matrix A. Since we assume that Σk is positive definite, such a
decomposition always exists. Let e∗i (b) be equal to Y∗i −X∗i b for any M(M + 1) vector b according
to the SUR representation in (8). Then, given an initial estimator of the scale σ̂k, the MM-estimators
(β̂, Γ̂k) minimize

1
n

n

∑
i=1

ρ


√

e∗i (b)
′G−1e∗i (b)

σ̂k

 ,

over all M(M + 1) vectors b and positive definite symmetric M×M matrices G with |G| = 1. The150

MM-estimator for covariance is defined as Σ̂k = σ̂2
k Γ̂k. The function ρ should satisfy the following151

conditions:152

• ρ is symmetric, twice continuously differentiable and satisfies ρ(0) = 0;153

• ρ is strictly increasing on [0, c] and constant on [c, ∞[ for some c > 0.154

Evidently, taking ρ(x) = x2 fulfills the conditions and yields the iterated FGLS estimator. To be robust155

against outliers, it is necessary to consider bounded ρ functions. The most popular family of ρ functions156

for MM-estimators is the class of Tukey bisquare ρ functions given by ρ(x) = min(x2/2− x4/2c2 +157

x6/6c4, c2/6). The tuning parameter c > 0 is usually chosen to obtain a certain level of asymptotic158

efficiency under the SUR model with normally distributed errors.159

MM-estimators require an initial estimator of scale σ̂k. In order for MM-estimators to be robust,160

also this scale estimator should be robust. Therefore, highly robust S-estimators are computed to obtain161

a highly robust scale estimator. S-estimators have been introduced for SUR models in Bilodeau and162

Duchesne (2000), and a computational efficient algorithm has been proposed in Hubert et al. (2017).163

Robustness can be measured by the breakdown point of an estimator, which is roughly equal to the164

maximal fraction of contaminated observations that an estimator can tolerate before its bias becomes165

unbounded. For MM-estimators the breakdown point can be up to 50%. In this paper we have tuned166

the MM-estimators to have a 25% breakdown point and 95% normal efficiency, which is commonly167

considered to be a good compromise between robustness and precision of the estimator.168

MM-estimators do not have explicit solutions, although they satisfy a similar set of equations
as the FGLS estimators given in (7). Indeed, the MM-estimators (β̂, Σ̂k) satisfy the following set of
equations

β̂ = (X∗′(Σ̂−1
k ⊗ Dk)X∗)−1X∗′(Σ̂−1

k ⊗ Dk)y
∗

Σ̂k = M(e∗1(β̂), . . . , e∗n(β̂))Dk(e
∗
1(β̂), . . . , e∗n(β̂))′

(
n

∑
i=1

ρ′(di)di

)−1

with Dk = diag(w(d1), . . . , w(dn)) where w(x) = ρ′(x)/x, d2
i = e∗i (β̂)′Σ̂

−1
k e∗i (β̂), and e∗i (β̂) = Y∗i −169

X∗i β̂ are the residuals derived from the representation in (8). Starting from the initial S-estimates,170

MM-estimates are calculated easily by iterating these estimating equations until convergence. If w171

is bounded and non-increasing, the convergence of this iterative procedure to a local minimum is172

guaranteed (Maronna et al. 2006). The function w can be interpreted as a weight function that can be173

used to identify outliers. Indeed, a small value of w(di) corresponds with a large residual distance di174

and indicates that the observation corresponding to accident period i is an outlier. For more details on175

the properties of S and MM-estimators, we refer to Peremans and Van Aelst (2018). We now explore176
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the use of these robust estimators in the GMCL model to obtain robust reserve estimates and identify177

outliers in the run-off triangles.178

5. Simulation Study179

First, we introduce a simulation design according to the GMCL model to generate multivariate run-off180

triangles. Then, we investigate the prediction performance of the classical and robust estimators for181

GMCL models by simulation.182

We consider the case where two run-off triangles are available (M = 2), but the results can easily
be generalized to more triangles (M > 2). To generate two run-off triangles under the GMCL model
in (1), we first generate C(m)

i,1 for i = 1, . . . , I and m = 1, 2 independently from a uniform distribution
on the interval [104, 2× 104]. These numbers represent the losses observed in the first development
period. Then, let

Ak =

(
104sk
104sk

)
, Bk =

(
1 0.1sk

0.1sk 1

)
,

for k = 1, . . . , I− 1 with sk = 0.9(k−1). The entries of the first (second) rows determine the increase of the183

cumulative claims of the first (second) triangle. Note that the structural connections among triangles,184

i.e. the non-diagonal entries of Bk, decrease towards zero for k→ I − 1 to ensure that the cumulative185

claims stabilize at a certain point in time. Furthermore, assume that the error terms e∗1 , . . . , e∗n from the186

representation in (8) are independently and normally distributed with mean zero and covariance Σk.187

The covariance matrices Σk are defined by multiplying the equicorrelation matrix with correlation 0.5188

by the scalar 102sk for k = 1, . . . , I − 1. This choice of Σk leads to error terms that become smaller for189

k→ I − 1. If no shrinkage would be applied on the covariance matrices, then the error terms would190

grow on average because they are linearly related to the cumulative claims of the previous period191

which increase over time. Finally, the cumulative claims C(m)
i,k for i = 1, . . . , I, k = 2, . . . , I and m = 1, 2192

can be computed according to the GMCL model in (1) by generating independent error terms from193

the aforementioned error distribution. We have chosen the parameters Ak, Bk and Σk such that the194

resulting run-off triangles resemble real data. The cumulative and incremental claims of two run-off195

triangles simulated according to this data generating process are shown in Figure 1. Note that the196

patterns in these run-off triangles behave similar for every accident period.197

Consider the prediction of a single cell E(C(m)
i,k ) of subportfolio m for i + k > I + 1, i.e. the

prediction of a future loss. Given historic claims of M subportfolios, the development parameters Ak
and Bk of the GMCL model can be estimated for k = 1, . . . , I − 1. Following the GMCL model these
parameter estimators yield a corresponding prediction estimator Ĉ(m)

i,k for E(C(m)
i,k ). In order to measure

the prediction accuracy of the estimator Ĉ(m)
i,k , we consider its mean squared error of prediction (MSEP),

given by
MSEP(Ĉ(m)

i,k ) = E(Ĉ(m)
i,k − E(C(m)

i,k ))2.

Since in general it is not possible to derive a simple expression for the MSEP, we adopt a Monte-Carlo
simulation strategy to estimate this quantity. By repeatedly generating M run-off triangles as described
before, fitting the GMCL model and predicting E(C(m)

i,k ) through the computation of the estimator Ĉ(m)
i,k ,

we obtain J prediction estimators denoted by (Ĉ(m)
i,k )1, . . . , (Ĉ(m)

i,k )J . Then, an estimator of the MSEP of

Ĉ(m)
i,k is given by

M̂SEP(Ĉ(m)
i,k ) =

1
J

J

∑
j=1

((Ĉ(m)
i,k )j − E(C(m)

i,k ))2.

Smaller values of MSEP indicate a better prediction performance. In our simulation results we will198

report the square root of the MSEP denoted by RMSEP.199
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Figure 1. Cumulative and incremental claims for a pair of dependent run-off triangles. The top figures
show the cumulative claims of both triangles, whereas the bottom figures show the incremental claims.
Development periods are on the horizontal axis, accident periods are on the vertical axis. The bar plot
represents a color code indicating the magnitude of the numbers.

For data simulated as described before we consider three procedures: the SCL model in200

combination with LS (in short SCL-LS) and the GMCL model in combination with FGLS and robust201

MM-estimators (in short GMCL-FGLS and GMCL-MM respectively). As noted by Zhang (2010, pp.202

595-596) it is difficult to fit the SUR models for the upper right part of the triangles because the data203

is scarce. To avoid numerical instabilities, it is recommended to use SCL for the development in the204

tail. Naturally, we advice to combine the robust procedure based on MM-estimators with a robust SCL205

method such as proposed in Verdonck and Debruyne (2011) for the tail development. Since the focus206

of this paper is on the multivariate model, we present all results without the tail development part, i.e.207

the final 10 development periods using traditional or robust SCL.208

Consider the prediction of the expected claim size E(C(m)
I,2 ) for m = 1, 2. The top right panel of209

Figure 2 shows the estimated RMSEP of Ĉ(1)
I,2 for SCL-LS, GMCL-FGLS and GMCL-MM as a function210

of the total number of accident periods I ranging from 25 to 50 for J = 1000 simulations. We can see211

that the RMSEP estimates are larger for SCL-LS. This is expected because SCL does not take structural212

connections among run-off triangles into account and contemporaneous correlations between the error213

terms of the run-off triangles are ignored. Note that GMCL-FGLS and GMCL-MM perform similarly214

in this setting where the triangles contain only regular measurements. Moreover, similar performance215

was obtained for Ĉ(2)
I,2 and hence, these results are omitted.216

We now change the parameters Ak, Bk and Σk in the simulation design in such a way that it
matches the SCL structure. For k = 1, . . . , I − 1 take

Ak =

(
0
0

)
, Bk =

(
1 0
0 1

)
,
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Figure 2. RMSEP estimates of Ĉ(1)
I,2 obtained from SCL-LS, GMCL-FGLS and GMCL-MM as a function

of I for the restricted, general and outlier settings.

and let Σk be the identity matrix multiplied with the scalar 102sk. In this setting SCL is optimal, whereas217

the GMCL model uses too many parameters. Intercepts, slopes measuring the effects of the other218

triangles and correlation parameters are unnecessary in this case. When we compare the results of219

both estimation procedures, presented in the top left window of Figure 2, we observe that the RMSEP220

is only slightly larger for GMCL models.221

To illustrate the sensitivity of the classical procedures and the robustness of MM-estimators, we222

now consider the following outlier setting: for each pair of run-off triangles we replace the simulated223

error term e2 to generate C2,2 with (105, 105)′. Based on J = 1000 generated pairs of triangles of this224

kind, we obtained the results in the bottom left panel of Figure 2. Clearly, both classical estimates break225

down because they largely overestimate E(C(m)
I,2 ), while the robust estimates are not influenced by226

the outliers. The robust results are similar to the classical results that were obtained when no outliers227

were present in the data. We also show the effect of small losses in run-off triangles. Therefore, we228

consider a second outlier setting: for each pair of run-off triangles we replace C2,2 with (0, 0)′. The229

bottom right plot of Figure 2 shows the RMSEP estimates for this outlier setting. Now, both classical230

estimators underestimate E(C(m)
I,2 ) due to a small loss observed in accident period two, leading to large231

RMSEP values. On the other hand, the robust method resists the effect of the outlier and still performs232

well. In both outlier settings the robust method can also detect the outlier because the weight of the233

corresponding accident period is zero as can be seen in Figure 3 for the first outlier setting. For the234

second outlier setting the plot of weights is nearly identical.235

To illustrate the impact of the outlier’s distance to the regular data, we also consider a third outlier236

setting: for each pair of run-off triangles we replace the simulated error term e2 to generate C2,2 with237
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Figure 3. Weights obtained from GMCL-MM for a pair of dependent run-off triangles with one outlier.

104(d, d)′ where d ranges from -1 to 1. Non-contaminated error terms take values between -3000 and238

3000 for the first development period. Therefore, the situations when |d| > 0.3 are cases with outliers.239

Again J = 1000 bivariate run-off triangles are generated and the prediction accuracy of the expected240

claim E(C(m)
I,2 ) is measured by MSEP. As opposed to the previous simulations we now fix the number241

of accident periods I to 25. Figure 4 contains the RMSEP results for different outlier distances d. When
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Figure 4. RMSEP estimates of Ĉ(1)
I,2 obtained from SCL-LS, GMCL-FGLS and GMCL-MM as a function

of the outlier distance d.

242

|d| ≤ 0.3 no outliers are generated and the prediction performance of the procedures GMCL-FGLS and243

GMCL-MM are identical, as we have seen before. For situations with outliers the classical methods244

yield large RMSEP values because their predictions under- or overestimate the target claim due to245

the presence of the outliers. The larger the outlier distance d, the worse the prediction accuracy is for246

non-robust methods. On the other hand, the prediction estimates obtained from the robust method247

remain stable for all situations.248

A more general case is to consider the prediction of E(C(m)
I,k ) for m = 1, 2 with k > 2. In particular,249

we consider k = 15. We repeat the same procedure of squaring J = 500 pairs of dependent triangles250

and measure the prediction accuracy of Ĉ(m)
I,15 by means of RMSEP. The results for the general setting251

are shown in Figure 5. The performance of the different methods is comparable to their performance252

in the previous setting when predicting E(C(m)
I,2 ). However, since k = 15 the prediction of E(C(m)

I,15)253

depends on 14 model fits, and consequently, the MSEP estimates of Ĉ(m)
I,15 become much larger. The254

prediction performance in the restricted setting and outlier settings (not shown) are also similar as255

before.256
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Figure 5. RMSEP estimates of Ĉ(1)
I,15 obtained from SCL-LS, GMCL-FGLS and GMCL-MM as a function

of I for the general setting.

We have also investigated how the position of the outlier influences the prediction performance.257

Here the outlier’s position refers to the development period in which it has occurred because the effect258

is similar for all accident years. If the outlier occurs after the target claim, then both the classical and259

robust methods yield reliable prediction results for the target claim. However, when the outlier occurs260

before the target claim, then the classical methods yield prediction estimates that are affected by the261

outlier, while the robust method remains reliable. Only when the outlier appears in the upper right tail262

of a run-off triangle, it will affect any method, whether it is robust or not, because there is not enough263

data available in this tail to be able to identify an outlier. Since the position of outliers is unknown in264

practice, this illustrates the importance of robust procedures which offer protection against outliers in265

almost any position of the run-off triangles.266

6. Real Data267

To illustrate the new methodology, we consider an example with paid and incurred data from a motor268

third party liability (MTPL) and a general third party liability (GTPL) insurance portfolio from a269

non-life insurance company operating in Belgium. The data have been recorded between March 2008270

and December 2015. Quarterly data are available leading to run-off triangles of dimension 31× 31271

shown in Figure 6. Observe that from accident trimester 15 onwards the cumulative claim amounts272

for MTPL become much smaller. This effect is due to a decrease in total premium volume, and hence,273

also in total number of claims. For the GTPL data, accident trimester 1 seems suspicious. The claim274

amounts are much larger in comparison to any other period. Finally, notice that for the first 15 accident275

trimesters the losses in the subportfolios are almost fully developed, i.e. the changes in consecutive276

cumulative claims are minuscule in the last development years.277

We model these run-off triangles separately with SCL and jointly with GMCL. The joint model is278

given by equation (1) with M = 3. The separate model simplifies the joint model by excluding279

intercepts, structural connections and contemporaneous correlations. We have applied SCL-LS,280

GMCL-FGLS and GMCL-MM to square the run-off triangles up until period 21. As explained before,281

we exclude the tail development part in order to focus on the multivariate models.282

Table A1 in the Appendix contains the estimates of the development parameters and the sample283

correlations between the resulting residuals obtained by SCL-LS for all development periods. While284

the run-off triangles have been modeled separately, for some development periods there are substantial285

correlations between the residuals which indicates that the independence assumption might be violated286

for these data.287

The parameter estimates obtained from GMCL-FGLS are summarized in Table A2 in the Appendix.
The slope estimates β̂21, β̂31, β̂12, β̂32, β̂13 and β̂23 measure the contribution of the other two triangles
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Figure 6. Cumulative run-off triangles (divided by 100000) of a real insurance portfolio. Top left: paid
data of MTPL. Top right: incurred data of MTPL. Bottom left: paid data of GTPL. Development periods
are on the horizontal axis, accident periods are on the vertical axis. The bar plot represents a color code
indicating the magnitude of the numbers.

when predicting future losses in a triangle. From Table A2 it can be seen that for some development
periods these estimates are substantially different from zero. They improve the model fit and the
prediction performance. The last three columns of Table A2 contain the sample correlations between
the residuals of the three run-off triangles, which have been obtained as

ρ̂mm′ =
σ̂mm′√

σ̂mmσ̂m′m′
,

for m, m′ = 1, 2, 3, where σ̂mm′ are the entries of the covariance matrix Σ̂k. Several moderate to large288

correlations have been obtained which again supports the joint GMCL model for these data.289

We now apply the robust method GMCL-MM which yields the development parameter estimates290

shown in Table A3 in the Appendix. Based on this robust procedure we can now detect possible291

outliers. The weights assigned to each observation in the SUR models are shown in Figure 7. The292

smaller the weight, the more outlying is an observation with respect to the bulk of the data. For293

example, from Figure 7 we can observe that in the first development period there are two major294

outliers corresponding to accident trimesters 16 and 28 respectively.295

The outliers identified by the GMCL-MM method may have affected the classical estimators, and296

hence, also the prediction of future losses. Hence, in Table 2 we compare the total reserve estimates for297

all methods. Let us first focus on the paid losses of the MTPL portfolio. The non-robust SCL-LS and298

GMCL-FGLS methods both yield a total reserve estimate that is larger than for the robust GMCL-MM.299

A close inspection of the predicted run-off triangles revealed that the transition from development300

trimester 20 to 21 is highly responsible for these large differences. For development trimester 21 one301

can observe in Figure 6 a large incremental increase of the losses that occurred in accident trimester302
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Figure 7. Weights obtained from GMCL-MM for a real insurance portfolio. Each row corresponds to
an accident trimester used in the fitting procedure. Each columns represents a SUR model.

Table 2. Total reserve estimates for all run-off triangles of a real insurance portfolio obtained from
SCL-LS, GMCL-FGLS and GMCL-MM.

Method Run-off Triangle
MTPL paid MTPL incurred GTPL paid

SCL-LS 1924001 -654695 386949
GMCL-FGLS 12198112 -1175336 -670116
GMCL-MM 167221 1043591 -128463

8. The SCL-LS and GMCL-FGLS fits for this transition period are both largely influenced by this303

particular observation. Consequently, the predicted future losses from this development trimester304

onward are much larger. On the other hand, the robust GMCL-MM method is much less influenced by305

this observation and is able to flag this observation as an outlier.306

Let us now consider the reserve estimates of the incurred losses. The two non-robust approaches307

agree quite well. The difference is mainly caused by accident trimester 29 for which unexpectedly308

small paid losses have been observed but at the same time large incurred losses were recorded. In309

the joint GMCL model the development factor β12 for model 7 differs from zero and thus influences310

the incurred losses obtained by GMCL-FGLS which is not the case for SCL-LS. Moreover, remark311

that these reserve estimates are negative. Negative reserve estimates are often observed for incurred312

run-off triangles due to overestimation of the losses. The robust total reserve estimate obtained by313

GMCL-MM is much larger than for the non-robust methods. This indicates that the presence of outliers314

has again affected the classical results. More specifically, in this case the classical procedures yield315

smaller prediction estimates as compared to the robust procedure. For example, one can verify that for316

the transition from development trimester 18 to 19 the prediction estimates obtained by GMCL-MM317

are much larger than those obtained by GMCL-FGLS.318

Finally, we also consider the estimated reserve for the GTPL portfolio. The unusual data in the319

first accident trimester affect the total reserve estimates of both non-robust methods. On the other hand,320

the robust GMCL-MM detected the deviating pattern in the first accident trimester as well as other321

moderate outliers and yields a robust total reserve estimate that is not driven by atypical behavior in322
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the available data. Note that the GMCL based methods yield negative reserve estimates for these data.323

While negative reserve estimates are not uncommon for incurred losses, they are rather unusual for324

run-off triangles with paid losses. However, the real data have been obtained from a small company325

and the company informed us that for some claims there has been substantial recovery of initially paid326

losses. These recoveries have an impact on the cumulative claims data which may explain the negative327

reserve estimates in this case.328

To further investigate the performance of the estimation methods, we now focus on the prediction329

of the values on the last diagonal of all run-off triangles. To measure the accuracy of the predictions,330

we consider their MSEP. More specifically, we leave out the last diagonal of all three run-off triangles,331

apply the different methods on the remaining data and calculate the mean squared relative prediction332

error for each method. The results are given in Table 3 for each subportfolio separately as well as all333

portfolios jointly. While the three methods perform quite similar on the first two run-off triangles, this

Table 3. MSEP for the last diagonal of all run-off triangles (and totals) of a real insurance portfolio
obtained from SCL-LS, GMCL-FGLS and GMCL-MM.

Method Run-off Triangle Total
MTPL paid MTPL incurred GTPL paid

SCL-LS 0.024 0.021 0.142 0.187
GMCL-FGLS 0.032 0.057 0.337 0.426
GMCL-MM 0.024 0.040 0.076 0.140

334

is not the case for the GTPL paid data as can be seen from Table 3. The MSEP of GMCL-FGLS is large335

for this run-off triangle. SCL-LS performs better, but not as good as GMCL-MM which is the only336

method that yields reasonable performance for these data. As a result, GMCL-MM also shows the best337

overall performance which illustrates that the outliers in these run-off triangles affect the predictions338

of the non-robust methods.339

7. Conclusion340

In this paper we have presented a robust estimation method for the general multivariate chain341

ladder model proposed by Zhang (2010). Hence, our proposed methodology takes into account342

contemporaneous correlations and structural connections between different run-off triangles and still343

yields reliable results when the data are contaminated. Moreover, it allows us to automatically identify344

the most influential and atypical claims in the run-off triangles.345

It is important to further inspect the detected outliers and to understand the reasons for their346

atypical behavior. If the outliers are errors or due to causes that are not likely to happen again in future,347

then the robust results can be used as reserve estimates. However, if such atypical observations are348

expected to re-occur in the future, it is necessary to model also their process (which is outside the349

scope of this paper) and to predict how much extra reserve besides the robust total reserve estimate350

is needed to cope with such atypical observations in future years. In such a case the final estimate351

may for instance be equal to the robust total reserve estimate plus a safe margin when outliers lead to352

an overestimation of the total reserve estimate. Note that it can also happen that outliers lead to an353

underestimation of the total reserve estimate even if the atypical claims are larger than the expected354

claims.355

The robust GMCL method was applied on simulated run-off triangles illustrating its excellent356

performance. From a portfolio analysis of real run-off triangles from a small non-life insurance357

company in Belgium it was clear that the proposed robust methodology is helpful to gain insight in358

the data and to build up a more realistic reserve, certainly when it is used in addition to the classical359

multivariate chain ladder method.360
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Appendix366

Table A1. Development parameter estimates and empirical correlation estimates obtained from SCL-LS
for a real insurance portfolio.

k β̂11 β̂22 β̂33 ρ̃12 ρ̃13 ρ̃23

1 1.29 1.04 1.88 0.13 0.51 0.04
2 1.14 1.01 1.18 -0.22 -0.08 0.13
3 1.08 0.99 1.35 0.20 -0.08 -0.08
4 1.05 1.01 1.06 0.26 -0.02 -0.09
5 1.04 1.00 1.12 0.11 -0.02 0.18
6 1.03 1.00 1.05 -0.22 -0.01 0.08
7 1.03 1.00 1.01 -0.14 -0.11 0.53
8 1.02 0.99 1.03 0.38 0.14 0.26
9 1.02 0.99 1.02 0.39 0.14 0.01
10 1.01 1.01 1.01 0.36 -0.11 0.17
11 1.02 1.00 1.01 -0.35 -0.01 -0.03
12 1.01 0.99 1.03 0.26 0.16 0.08
13 1.01 1.01 1.02 -0.29 -0.13 -0.28
14 1.01 0.99 1.03 0.17 0.05 -0.28
15 1.02 0.99 1.02 0.11 -0.23 -0.01
16 1.01 0.99 1.01 0.09 0.43 0.49
17 1.01 1.00 1.03 -0.23 -0.17 0.24
18 1.01 0.99 1.03 -0.54 -0.18 -0.08
19 1.01 0.99 1.03 0.08 -0.28 0.32
20 1.04 0.99 1.01 -0.37 -0.07 -0.04
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