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Abstract: In plants and animals, endogenous biological molecules, termed damage-associated molecular 

patterns (DAMPs) or alarmins, are released by damaged, stressed or dying cells following abiotic stress 

such as radiation and drought stress. In turn, a cascade of downstream signaling events is initiated leading 

to the up-regulation of defense-related genes. In the present study, in an effort to investigate the 

conservation status of the molecular mechanisms implicated in the danger signaling, thorough in silico 

phylogenetic and structural analyses of the effector biomolecules were performed in taxonomically diverse 

plant species. On the basis of our results, the defense mechanisms appear to be largely conserved within 

the plant kingdom. Of note is our finding that the sequence and/or function of several components of these 

mechanisms were found to be conserved in animals, as well. 
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1. Introduction 

Death-, danger- or damage-associated molecular patterns (DAMPs) are of biological origin and are 

considered the major immunogenic mediators released passively by damaged, stressed or dying cells, 

including tumor cells targeted by radiation or chemotherapy [1]. DAMPs are host cell-derived, as opposed 

to foreign (non-self) molecules termed Microbe-Associated Molecular Patterns (MAMPs) or Pathogen-

Associated Molecular Patterns (PAMPs) [2]. In a seminal study on this field by Matzinger (1994), it was 

suggested that the immune system does not actually distinguish between the self and non-self but rather 

detects "danger" through a series of positive and negative signals derived from damaged or stressed tissues 

mediated by DAMPs [3,4].  

DAMPs are perceived by pattern recognition receptors (PRRs), such as plasma membrane-

localized receptors, thereby leading to a cascade of events including cytoplasmic Ca2+ elevation, 

depolarization of the cell membrane, production of reactive oxygen species (ROS), the transient 

phosphorylation of mitogen activated protein kinases (MAPKs), and the transcriptional upregulation of 

defense-related genes. 

Plants have evolved mechanisms of innate immunity against detrimental pathogenic microorganisms 

and herbivorous animals. As mentioned above, DAMPs or alarmins i.e. biomolecules released by stressed 

cells, in many ways share similarities between plants and animals. For example, the recently discovered 

Arabidopsis HMGB3, is the counterpart of the pivotal animal DAMP HMGB1 [2].  

Plants’ immune response against intruders is regulated mainly by two antagonistic defense signaling 

pathways: i) the salicylic acid (SA)-mediated signal transduction pathway elicited by biotrophic and 

hemiobiotrophic pathogens and ii) the octadecanoid signaling pathway with the key hormone jasmomic 

acid (JA) induced by heterotrophic pathogens and herbivores [5-7]. Of note, the oxidized lipids that 

participate in octadecanoid signaling are the plant functional equivalents of the mammalian oxidized 

phospholipids [8].  

To date, there is still a knowledge gap concerning the evolutionary origin of the different DAMPs 

identified in the plant kingdom and how this valuable knowledge can be projected to more complex 

organisms, and especially animal cells. In this study, we have made an effort to assess the conservation of 

the defense mechanisms by conducting phylogenetic and structural analyses of the effector molecules 

implicated in danger signaling in 11 vascular plant species that represent diverse taxonomic divisions: 

Arabidopsis thaliana (thale-cress), Zea mays, Oryza sativa (rice), Hordeum vulgare (barley), Medicago truncatula 

(barrel medic), Nicotiana tabacum (tobacco), Populus trichocarpa (cottonwood), Solanum lycopersicum 

(tomato), Prunus persica (peach), Vitis vinifera (wine grape), Pisum sativum (pea) (Figure S1). 

 

2. Methods 

2.1. Sequence dataset & homology searching 

The names and/or accession numbers of the characterized proteins reported in PubMed 

(https://www.ncbi.nlm.nih.gov/pubmed) articles were used to retrieve their corresponding sequences from 

the publicly accessible sequence databases UniProtKB [9] and NCBI’s GenBank [10]. To identify more 

orthologous protein sequences, the known sequences were used as query in reciprocal BLASTp and 

tBLASTn [11] searches of the genomes of 11 vascular plant species, representing diverse taxonomic 

divisions (Figure S1). The canonical or longest transcripts were selected. Any partial or ambiguous 

sequences were not included in the subsequent steps of the study.  

 

2.2. Phylogenetic analyses 

The amino acid sequences of the corresponding proteins (Table S1) were aligned with MAFFT, version 

3.7 [12]. Phylogenetic analyses were performed by employing a maximum likelihood (ML) method. To this 

end, the resulting multiple alignments were provided as input to PhyML v.3.0 [13], which optimizes a 

distance-based starting tree (BioNJ) [14] by employing a heuristic algorithm. The expected number of 
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amino acid substitutions per site was estimated with the JTT model [15]. Protein sequences distantly related 

to those under study were used as outgroups. The robustness of the reconstructed phylogenetic trees was 

evaluated by bootstrapping (200 bootstrap pseudo-replicates). Trees were illustrated using Dendroscope 

[16].  

 

2.3. Pairwise distances estimation 

Pairwise distances between protein sequences were computed using the software package MEGA, 

version 7.0 [17]. 

 

2.4. Protein Domain Organization 

The protein sequences under study were searched against the protein signature databases SMART v.8.0 

[18] and CDD v.3.16 [19] in order to determine the boundaries of their constituent domains.  

 

2.5. Sequence Motifs 

The amino acid sequences corresponding to the catalytic kinase domain of the orthologous proteins 

DORN1, MAPK3, MAPK6, PEPR1/2, SERK3/4/5, SR106 and WAKL (Table S1), were aligned using MAFFT 

v.3.7 [12] and edited with Utopia’s CINEMA alignment editor [20]. Ungapped sequence motifs were 

extracted from the alignment and submitted to WebLogo 3.5.0 [21] with default parameters, to create 

consensus sequences.  

 

2.6. Tertiary structure analysis 

The plant MAPK3 and MAPK6 sequences under study were aligned using the PROMALS3D [22,23] 

multiple sequence alignment program, which incorporates evolutionary and tertiary structural information 

to improve alignment accuracy. The degree of conservation of amino acid residues of the homologous plant 

MAPK3 and MAPK6 proteins was estimated with the usage of the ConSurf program [24]. To this end, the 

resulting multiple sequence alignment of the MAPK3 and MAPK6 amino acid sequences was provided as 

input to ConSurf to map the conservation grades of the amino acid residues onto the resolved tertiary 

structure of the Arabidopsis thaliana MAPK6 (PDB ID: 5CI6; [25]). The protein structure was displayed using 

the PyMol molecular graphics program (http://www.pymol.org/). 

 

2.7. Structural modeling of protein-protein interactions 

The tertiary structure of the extracellular LRR domain of the A. thaliana PEPR2 was predicted by 

homology modeling. The X-ray crystal structures of the Arabidopsis PEPR1LRR (PDB ID: 5GR8, chain A; 

[26]) was used as template to model PEPR2LRR using the I-TASSER server [27]. The quality of the final 

modeled protein structures was evaluated with Procheck [28].  

In order to assemble the trimeric PEPR2LRR-AtPEP1-BAK1 complex, the following steps were carried 

out: LRR domains (bold) present in the PEPR1LRR-AtPEP1 (PDB ID: 5GR8) and FLS2LRR-FLG22-BAK1 

(PDB ID: 4MN8) complexes, and the PEPR2LRR homology model were structurally superimposed by 

using the alignment algorithm FATCAT [29]. Following this superimposition, the coordinates of FLS2LRR-

FLG22-BAK1 and PEPR1LRR were deleted. As a result of this procedure, a crude model of the PEPR2LRR-

AtPEP1-BAK1 complex was obtained. This crude model was refined with the water refinement step of the 

HADDOCK webserver [30]. During refinement, the interaction depicted in Figure 7B was used as a 

restraint, with the following restraint definition: i) assign (resi 438 and segid A) (resi 23 and segid C) 3.00 

3.00 0.05 and ii) assign (resi 392 and segid A)(resi 23 and segid C) 3.00 3.00 0.05. All of the interface statistics 

were carried out through CoCoMaps tool (https://www.molnac.unisa.it/BioTools/cocomaps/). 

 

 

3. Results and Discussion  
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3.1. Classes of DAMPs 

The diverse DAMPs that have been identified in plants are arbitrarily grouped, in this study, in the 

following classes.  

 

3..1.1. Cell wall-derived DAMPs 

Oligogalacturonide (OG) fragments are released from the degradation of cell wall constituent 

homogalacturonan (HGA) by pathogen-encoded polygalacturonases. The OG-mediated signal 

transduction pathway involves ROS production, increase in cytoplasmic Ca2+ concentration, activation of 

MAPK3 and MAPK6, upregulation of resistance genes, activation of components of the SA, JA, and 

ethylene pathways [31]. The wall-associated kinase 1 (WAK1) was suggested to perceive [32,33] OGs.  

Likewise, in animals, glycosaminoglycan hyaluronan fragments are released during damage and 

are implicated in wound repair and regeneration. These fragments are recognized by the Toll-like receptors 

TLR2 and TLR4 and activate the expression of inflammatory genes [34]. 

 

 

 

 

 

 

 

 

 

 
Figure 1. Phylogenetic distribution of plant effector proteins.  

 

The viridiplantae MAPK3 and MAPK6 proteins have orthologs in metazoa (Figure 1) which are 

also implicated in danger signaling [35]. The plant MAPK3 and MAPK6 have rather evolved independently 

from their animal orthologs as they form distinct monophyletic groups with bootstrap values of 100 and 

they are connected to the corresponding metazoan clade with a long branch which reflects long 

evolutionary distance (Figure 2 and 3). The monocotyledonous plant MAPK3 and MAPK6 sequences form 

well-separated clades in their respective phylogenetic trees, leading to the suggestion that these sequences 

have probably appeared after the monocot-eudicot divergence about 200 million years ago (MYA) [36]. The 

tomato and tobacco MAPK3 and MAPK6 sequences cluster together with high statistical confidence, 

indicating that these sequences emerged after the members of the order solanales branhed off from the 

other vascular plants (Figure 2 and 3).   
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Figure 2. ML-based tree of MAPK3 protein sequences. The branch lengths are proportional to the evolutiotary 

distance. Bootstrap support values ≥ 50% are shown at the nodes. The scale bar at the upper right denotes the 

length of amino acid replacements per position. The sequence ThaleCress MAPK9 was used as outgroup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Tree of MAPK6 protein sequences. The sequence ThaleCress MAPK9 was used as outgroup. The 

conventions are the same as in Figure 2. 

 

 

A cluster of five highly similar WAK (WAK1-5) genes are present in A. thaliana (thale cress) [37]. 

The Arabidopsis WAK1-5 protein sequences form a separate highly supported clade (Figure 4). Based on 

sequence database searches, a single copy of WAK was found in the other plant species (Figure 1). WAK 

homologs were not detected in pea; this is probably due to incomplete annotation of the Pisum sativum 

genome. The encoded protein was arbitrarily referred to as WAKL, where “L” stands for “Like”, by virtue 

of sequence similarity to the thale cress WAK1-5 (Figure 4). A primordial WAK gene might have undergone 

a series of duplications in A. thaliana, thereby giving rise to fıve WAK paralogs. However, there are not 

available fully sequenced and annotated genomes of other members of the order brassicales, apart from 

the one of the model plant organism A. thaliana, which would allow us to examine whether the WAK gene 

expansion is species- or order-specific. Based on extensive bibliographic searches, no experimental 

evidence was found about A. thaliana WAK2-5 acting as PRRs. WAK1 has apparently acquired a more 

specialized function during the course of evolution. WAK proteins are likely restricted to vascular plants, 

since orthologous WAK sequences were not found in metazoa. The role of these WAKL proteins in the 

perception of OGs in their host plant organisms remains to be investigated experimentally.  

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Tree of WAKL protein sequences. The sequence Pea NORK (nodulation receptor kinase) was used 

as outgroup. The conventions are the same as in Figure 2. 

3.1.2. Extracellular ATP 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 July 2018                   doi:10.20944/preprints201807.0522.v1

http://dx.doi.org/10.20944/preprints201807.0522.v1


6 

 

Extracellular ATP (eATP), released from stressed or damaged cells into the extracellular milieu, 

constitutes a class of danger signals both in plants and animals. In plants, eATP plays an important 

signaling role in plant cells by participating in several processes including cell development, viability and 

stress responses [38,39]. It is recognized by the plant-specific PRR, DORN1 (DOes not Respond to 

Nucleotides 1), which is a membrane lectin receptor kinase [40]. DORN1 is required for the ATP-mediated 

intracellular influx of Ca2+, formation of ROS, phosphorylation of MAPK3 and MAPK6 and stimulation of 

the expression of defense genes [40,41]. 

Putative DORN1 homologous sequences were detected in all plant species under investigation 

(Figure 1). The cereal plants as well as the solanales DORN1 sequences form their own monophyletic group 

with bootstrap values of 100, suggesting class- and order-specific evolution of DORN1 (Figure 5). DORN 

homologous sequences were found exclusively in plants, wherein might be implicated in the recognition 

of eATP.  

In animals, eATP is involved in inflammatory response by activating mast cells [42,43]. Two types 

of P2 purinoceptors, the ligand-gated cation channel P2X receptors and the metabotropic (G-protein-

coupled) P2Y receptors [44], are activated by eATP and are involved in the eATP-induced increase of 

cytosolic Ca2+ levels [45]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Tree of DORN1 protein sequences. The sequence ThaleCress LYK5 was used as outgroup. The 

conventions are the same as in Figure 2. 

 

 

3.1.3. Polypeptide-based DAMPs 

A wide range of polypeptide-based DAMPs are derived from larger precursors [46]. In Arabidopsis 

thaliana the 23-amino acid PEP1 (Plant Elicitor Peptide) is processed from a 92-amino acid precursor upon 

damage, JA, and ethylene [47]. Based on homology searches, only one ortholog of AtPEP1 was detected in 

the fellow plants, that is, ZmPEP1 in maize which exhibited DAMP-like behavior [48]. In A. thaliana, PEP1 

is perceived by two PRRs, PEPR1 (PEPtide Receptor 1) and PEPR2, leading to ROS production and 

upregulation of defensin-like genes [26,47,49,50]. Of note, the only PEP orthologs were found in two species 

belonging to divergent taxonomic groups, eudicots (A. thaliana) and monocots (Zea mays), and not any 

taxonomically related species (such as fellow eudicots). This suggest that even distantly related organisms 

respond to similar stimuli with similar mechanisms.  

PEPs’ cognate receptors, however, were found in all plants under study (except pea) (Figure 1). 

Thale cress harbors a total of seven PEPs (PEP1-PEP7) and two PEPR paralogs, the encoded proteins of 

which share 67% identity. In the inferred phylogenetic tree, the AtPEPR1 and AtPEPR12 protein sequences 

form a highly monophyletic branch with bootstrap support 100 (Figure 6). However, a single copy of PEPR 

was detected in the other plant species, the corresponding protein of which is called PEPR1/2 due to its 
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amino acid sequence similarity to both AtPEPR1 and AtPEPR2. The cereal plants form a separate highly 

supported clade, leading to the suggestion that PEPR1/2 genes evolved after the monocots-dicots split 

(Figure 6). PEPRs are also kingdom-restricted, since PEPR orthologs were detected exclusively in vascular 

plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Tree of PEPR1/2 protein sequences. The sequence ThaleCress BAM3 was used as outgroup. The 

conventions are the same as in Figure 2. 

 

AtPEPs exhibit functional similarity to the 18-amino acid peptide systemin, which is processed 

from the 200-amino acid hormone prosystemin (SYST) in tomato upon wounding [51]. Prosystemin was 

found only in tomato, and not in tobacco which is also member of the same solanales order (Figure 1). 

However, two hydroxyproline-rich systemin (HSY) peptides, designated HSYA and HSYB, cleaved from a 

larger preprotein, were identified in tobacco (Figure 1) which do not bear any sequence similarity to 

systemin [52]. Both SYST and HSY induce a JA-mediated signaling pathway that leads to the activation of  

defense-related genes [51,52].  

Of particular note, as in the case of AtPEPRs, systemin cognate receptors (SR160) were detected in 

all plant species under investigation (Figure 1). It would be intriguing to suggest that PEPR and SR160 

genes were probably propagated through vertical gene transfer in plants, and the peptides that specifically 

bind to them evolved later in certain species in order to carry out species-specific functions. 

Protein fragments, such as fibronectin fragments (FN-fs), are the equivalents of the plant 

polypeptide-based DAMPs in mammals, and they are perceived by Toll-like receptors (TLRs) [53]. PEPR1/2 

and SR160 are transmembrane (TM) proteins comprised of LRR (Leucine Rich Repeats) motifs, one TM 

domain, and one catalytic kinase domain in the cytoplasmic region. PEPRs resemble the mammalian TLRs 

in terms that they share LRR motifs in their amino-termini, suggesting that the extracellular LRR domain 

is used for DAMP perception both in plants and mammals. 

The interaction between PEPR2LRR-AtPEP1 (Figure 7) was also modeled by using the crystal 

structure of PEPR1LRR-AtPEP1 (PDB ID: 5GR8) as a template. According to 5GR8, there are 16 hydrogen 

bonds formed between PEPR1LRR and its AtPEP1 peptide [26]. In our PEPR2LRR-AtPEP1 model, this 

number increases to 17. Two hydrogen bonds, among all, were found to be strictly conserved, i.e. the ones 

between TYR395-GLN21 and ASP441-ASN23 across the PEPR1LRR-AtPEP1 interface; TYR346-GLN21 and 

ASP392-ASN23 across the PEPR2LRR-AtPEP1 interface. This reflects the importance of these stabilizing 

interactions within the PEPR family. The extent of the PEPR1LRR-AtPEP1 and PEPR2LRR-AtPEP1 

interfaces appear to be conserved, where 66 amino acids interact over an area of 1033 A2 in the case of 

PEPR1LRR-AtPEP1, and 65 amino acids interact through a 1046 A2 sized interface.  
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PEPR2LRR-BAK1 and its template FLS2LRR-BAK1 (PDB ID: 4MN8) entail a similar number of amino acids 

across their interfaces (57 for PEPR2LRR-BAK1 and 56 for FLS2LRR-BAK1) (Figure 7). Although this is the 

case, PEPR2LRR-BAK1 makes more polar interactions (through 12 hydrogen bonds) compared to 

FLS2LRR-BAK1 (entails 5 hydrogen bonds only), indicating the polar character of the PEPR2LRR surface 

and a possibly higher affinity between PEPR2LRR-BAK1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. A. Structural model of the Arabidopsis thaliana PEPR2LRR(green)-AtPEP1(gray)-BAK1(gold) 

complex. Important polar interactions formed across the PEPR2LRR and AtPEP1, PEPR2LRR and BAK1, 

AtPEP1 and BAK1 interfaces are depicted in panels B., C., D., respectively. Polar interactors are represented 

in ball-and-sticks, with oxygen atoms colored in red and nitrogens in blue.  

 

3.1.4. HMGB3 

A relatively novel class of plant DAMPs, the Arabidopsis thaliana HMBG3 (High Mobility Group 

Box 3), displayed DAMP-like responses, including activation of MAPK3/4/6 and defense-related genes, as 

well as increased resistance to necrotrophic pathogens. This response is mediated by the LRR-PRRs BAK1 

(Brassinosteroid insensitive 1-Associated Kinase 1)/SERK3 (Somatic Embryogenesis Receptor-like Kinase 

3) and BKK1 (BAK1-like 1)/SERK4 [54]. The mammalian counterpart of the plant HMBG3 is HMBG1, 

released upon tissue wounding and inflammation [55]. HMGB1 is a chromosomal scaffold protein involved 

in chromatin remodeling induced in response to DNA damage accumulation. HMGB1 promotes nucleotide 

excision repair (NER), base excision repair (BER) and mismatch repair (MMR) pathways, facilitating DNA 

protein kinase (DNA-PK) activity [56]; similarly to the catalytic subunit of DNA-PK, DNA-PKcs, HMGB1 

binds CpG oligonucleotides, inducing the TLR9-mediated inflammatory response [57]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 July 2018                   doi:10.20944/preprints201807.0522.v1

http://dx.doi.org/10.20944/preprints201807.0522.v1


9 

 

The human HMGB1 harbors two HMG boxes, BoxA and BoxB, whereas the A. thaliana HMGB 

proteins have only one HMG box. In the plant species under study, single HMBG homologs were detected 

that were found to be related to Arabidopsis HMBG1/2/3.  This is because the A. thaliana proteins HMBG1, 

HMBG2 and HMBG3 share a high degree of sequence identity/similarity. HMBG1/2/3-related sequences 

were found in all plant species (Figure S1).  

Genes encoding SERKs have been identified in the genomes of vascular plants, both monocots and 

dicots [58]. Furthermore, Sasaki et al. [59] reported the presence of SERK homologs in the less evolved 

plant liverwort Marchantia polymorpha and even in the unicellular green alga Closterium ehrenbergii.  SERKs 

are ancient, essential genes, conserved during speciation. Multiple SERK genes are found in 

dicots, monocots, and non-vascular plants. This indicates that SERK genes are at least 450 million years old, 

and were present before the split of non-vascular and vascular plants [60]. Putative SERK-related proteins 

were detected in the species under investigation (except pea) (Figure 1). 
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Figure 8. Sequence motifs identified in the kinase domain of plant proteins. Sequence logos of the conserved 

protein motifs identified in the catalytic domain of protein kinases. The first and last amino acid residues of 

each motif are numbered according to A. thaliana WAK1. The conserved/invariant amino acid residues critical 

for the protein kinase activity are denoted by dots. The height of each letter depicts the relative frequency of 

the corresponding amino at that position, and the letters are ordered in such a way that the most frequent one 

is on the top. 

 

3.2. Conserved structural features of plant proteins implicated in danger signaling 

In the present study, the 11 conserved catalytic sequence motifs reported by Hanks et al [61] were 

identified in the plant kinase domains under investigation (Figure 8). In motif 1, the consensus signature 

GxGxxG of phosphate binding, conserved across nucleotide binding proteins [62,63], was detected. The 

invariant lysine (K) in motif 2 is essential in protein kinase activity as it participates actively in the 

phosphate transfer reaction [64]. The invariant aspartate (D) and asparagine (N) amino acids in motif 6, as 

well as the stretch of Asp (D), Phe (F) and Gly (G) residues in motif 7 are actively involved in ATP binding 

[65]. In motif 8, the highly conserved Glu (E) and invariant Pro (P) were found to be flanked by a conserved 

alanine (A) residue in  [61]. However, in the plant kinase domain, at the same position, Asp (D) was found 

to be the most frequent residue instead. Phosphorylation of these residues was associated with enhanced 

catalytic activity in a number of protein kinases [66,67]. Moreover, several highly conserved amino acids 

with an unknown role identified by Hanks et al [61] were also found to be conserved in plant kinases, 

including Asp (D) in motif 3, Asp (D) and Gly (G) in motif 9 and Arg (R) in motif 11.  

The degree of conservation of the amino acid residues critical for kinase activity is depicted in the three-

dimensional structure of A. thaliana MAPK6 [25] (Figure 9). A total 13 out of the 16 amino acids found to 

be conserved/invariant in the primary structures of the kinase domain of plant proteins (Figure 8) are also 

shown to be conserved in the tertiary structure of this domain (Figure 9). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. A. Tertiary structure … blue corresponds to the most highly conserved region, where green to the 

least one. The conserved DFG (207-209) motif is highlighted in yellow (left panel, at the center of the molecule). 

The other important conserved residues can be listed as (from left to right) GLY251, ALA 231, PRO232, 

GLU233, ARG336, ASP246, ASP189, ASN194, GLU110, LYS92. The numbering is given as in 5CI6. 

 

 

4. Conclusion 

It has been only about two decades has the significance of DAMPs for the survival and homeostasis 

of multicellular organisms has surfaced. Related to the more than twenty DAMPs discovered in animals to 

date, relatively few have been recognized in plants[68,69]. Based on our study, several of these plant 

DAMPs have counterparts in animals, including eATP, HMGBs and MAPKs. This finding supports the 

idea that all efforts to elucidate the pathway(s) through which innate immunity is triggered will likely 
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identify additional signaling components that are shared by all kingdoms, from planta to humans. The 

“ancestral” mechanisms of defense are conserved across kingdoms. Several key molecular “players” of 

those mechanisms appear to be largely conserved (e.g. eATP, calcium, MAPKs). Some plant effector 

proteins were found to have sequence homologs in animals (e.g., MAPKs), whereas most of them were 

detected exclusively in plants. Both in plants and animals, selective pressure has been likely exerted to 

maintain the functional integrity of the defense mechanisms by recruiting or co-opting into the existing 

molecular pathways novel players. These players may have no apparent sequence / structural similarity 

but, through convergent evolution, have rather acquired similar functions, as in the case of DORN1 and P2 

purinoreceptors, in plants and animals, respectively. These findings could provide the foundation for 

expanding the current knowledge on DAMP molecules in plants and their role in adaptive defense 

mechanisms. 
 

Supplementary Materials: Figure S1. A cladogram extracted from NCBI’s Taxonomy database [70] depicting the 

evolutionary relationships among plant species. Table S1. Accession numbers of the protein sequences investigated in 

the present study. 
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