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Abstract: In some cases, the human impact on ancient landscapes has been so profound that local 15 
soils still remain significantly affected even after hundreds and thousands of years after ending 16 
impact. We studied the Late Bronze Age Muradymovo settlement located in Urals, Russia, aiming 17 
to estimate the consequences of the ancient people activity for environment. Despite the present 18 
humid climate, the modern soils inside the cultural layer of the study site contain more than 27% of 19 
gypsum at a depth of just 10 cm from the surface, and a microrelief of the study site is typical of a 20 
gypsum desert. The nearby background Chernozems are gypsum-free to a depth of 2 meters. 21 
According to the archaeological data, the ancient people belonged to the ‘Srubno-Alakul’ 22 
archaeological culture (1750-1350 yrs BC cal) and had a tradition of building their houses from 23 
gypsum rocks. At the present time, this area is still unsuitable for human settlement. The properties 24 
of modern soils inside the cultural layer of the study site are directly affected by the Late Bronze 25 
Age human activities. It has been identified on soil morphology, micromorphology and chemical 26 
properties of soils developed inside the cultural layer of the settlement. 27 

Keywords: Bronze Age settlement, modern soil, micromorphology, chemical properties, gypsum, 28 
anthropogenic impact 29 

 30 

1. Introduction 31 
In some cases, the human impact on ancient landscapes has been so profound that local soils 32 

still remain significantly affected even after hundreds and thousands of years after ending impact 33 
[1-9]. There are no natural soils left within such sites, being replaced by completely different 34 
anthropogenic soils with specific properties [10-17]. 35 

Studying the causes and implications of such negative influences of past human activities on 36 
soils and environment is necessary to prevent similar accidents in the future. The present article 37 
describes a case-study of the extremely severe and long-lasting impact of ancient people on soils and 38 
environment. The study site is the Late Bronze Age settlement of Muradymovo located in 39 
Bashkortostan Republic (Urals region, Russia). The site and its area have a peculiar hillocky 40 
microrelief that doesn’t occur anywhere else in Bashkortostan Republic. According to the 41 
archaeological data [18, 19], the Muradymovo people belonged to the ‘Srubno-Alakul’ culture of the 42 
Late Bronze Age and came here from an extra arid semidesert region of the southern Kazakhstan, 43 
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where they used to build their houses of gypsum rocks. There is a deposit of gypsum rocks just 5 km 44 
far from the Muradymovo settlement site [20]. 45 

The aim of our study was to investigate the micromorphological and chemical properties of the 46 
modern soils at the Bronze Age settlement Muradymovo site to estimate the consequences of the 47 
ancient people activity for environment. 48 

2. Materials and Methods  49 
The study site (53°58'44.8" N, 55°30'58.8" E) is located 2.5 km north of the village of 50 

Muradymovo, in the Aurgazinskiy District of the Bashkortostan Republic of Russia (Figure 1). The 51 
site of Muradymovo ancient settlement having a total area of 6 ha is found on the first terrace at the 52 
right bank of the Urshak River, 0.2 km east of the mainstream, on a hill about 1.5-2 m high. The 53 
bedrock is composed of gypsum, anhydrite, dolomite and sandstone of the Kungur stage of the 54 
Permian Period. The bedrock is overlain by loess-like silty sediments (approximately 8-10 m thick) of 55 
the Quaternary Period that serve as parent rocks for soils.  56 

 57 

 58 
Figure 1. Study site location. 59 
 60 
Climate is continental, moderately cold. The mean annual air temperature is +2.5°С, with the 61 

mean temperatures of January and July being -15°С and +19.5°С, respectively. The mean annual 62 
precipitation is about 500 mm, with more than 300 mm falling during the growing season. The 63 
hygrothermal coefficient is about 1 [21]. 64 

The typical modern vegetation is represented by steppe communities. 65 
The typical soils are Calcic Chernozems Loamic [22] that are naturally gypsum-free to a depth 66 

more than 3 meters [23, 24]. 67 
According to the archaeological data [25, 26], the settlement was built by ancient people of the 68 

‘Srubno-Alakul’ archaeological culture of the Late Bronze Age (1750-1350 yrs BC cal), who lived here 69 
for no longer than 200-300 years. Later the settlement has remained abandoned. At present, the site 70 
is covered with sparse steppe vegetation, partially used as a pasture and bordered by a gully from 71 
the west and north.  72 

We studied the archaeological excavation pit (no. IV) with the most representative morphology 73 
of cultural layers (Figures 2.a). The pit included several layers of house remains (no less than 5) and a 74 
hearth, i.e., this residential house was rebuilt several times [27]. 75 

The background soil outcropping from the bank of a small river at a short distance from the 76 
archeological excavation site was also studied. This soil was least affected by the ancient settlement 77 
construction, it was located on the opposite bank and had no traces of ancient human impact (Figure 78 
2.b).  79 

The modern microrelief consists of small hillocks separated by deep frost cracks, which covers 80 
the whole area of the study site and beyond, up to the banks of the river and gully. Frost cracks 81 
result from recent influence of continental climate. The hillocks are about 50 cm high and 1.5-2.2 m 82 
long. Such peculiar microrelief is absent at the other side of the gully. 83 
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a b 84 
Figure 2. Soil profiles: a) – archaeological pit; b) – background soil. 85 
 86 
We described morphological characteristics of the pit within the settlement and the profile of 87 

background soil, collected samples in vertical columns in the field and conducted 88 
micromorphological and chemical analyses of the samples in the laboratory using conventional 89 
techniques [28-30]. The samples were prepared according to the requirements for each specific 90 
analysis. 91 

Micromorphological observations were carried out on thin sections (3x4 cm square and 30 µm 92 
thick), which were prepared from undisturbed soil samples from the upper part (10-20 cm), from the 93 
lower part (60-70 см from the surface) of the cultural layer and from the humus horizon (10-20 cm) of 94 
the background soil. They were studied using an Olympus BX51 TL RL Pol microscope and an 95 
Olympus DP25 digital camera at the V.V. Dokuchaev Soil Science Institute, Moscow and using a 96 
polarizing microscope Carl Zeiss HBO 50 in the Chemical-Analytical Complex of the Institute of 97 
Physical, Chemical and Biological Problems in Soil Science, Russian Academy of Sciences, 98 
Pushchino. 99 

The mineralogical composition of the dry residue of the water extract from the cultural layer 100 
samples taken at the depths of 10-20 and 60-70 cm was determined by X-ray diffraction in the 101 
Laboratory of Soil mineralogy and Micromorphology of the V.V. Dokuchaev Soil Science Institute by 102 
Dr. E. Varlamov. The analysis was conducted using an HZG-4A universal X-ray diffractometer with 103 
the following settings: Cu radiation, 30 kV tube voltages, 20 mA current and a scan speed of 2°-2Θ 104 
per minute. Calculations were performed using ‘Difraktometr-Avto 2014’ software produced by the 105 
LLC Iris. 106 

Total phosphorus. The procedure included the sample combustion with concentrated sulfuric 107 
acid. Phosphate in the extract was determined calorimetrically using a SPECOL 211 108 
spectrophotometer and a blue ammonium molybdate method with ascorbic acid as a reducing agent 109 
[30]. 110 

Gypsum was determined using 10% BaCl2 solution [28]. Each sample was boiled for 3 minutes 111 
in 0.2N HCl, cooled for 30 minutes and passed through a filter. The filtrate was diluted with distilled 112 
water and passed through H-cationite. The resulting solution was titrated with BaCl2 solution. The 113 
obtained values of SO4 concentrations were recalculated for gypsum (CaSO4x2H2O). 114 

pHH2O was determined using a potentiometer, in suspension with soil to water ratio of 1:2.5, 115 
after a single shaking followed by settling for 30 min [28]. 116 

The organic carbon was determined by the Tyurin method, which included the wet combustion 117 
of organic substance in a mixture of 0.4 N K2Cr2O7 and concentrated H2SO4 (1:1) at 150°C for 20 min. 118 
The measurements were performed by photometry on a SPECOL 211 spectrometer at 590 nm [28]. 119 

Calcium carbonate concentrations in the samples were determined by alkalimetry using the 120 
Kozlovskii procedure. A soil sample was treated with 2 M HCl; the released CO2 was absorbed by a 121 
0.4 M NaOH solution. Then a saturated BaCl2 solution was added to the tube with NaOH, and the 122 
excess of alkali was titrated with 0.2 M HCl [30]. The obtained values of the carbonate ion 123 
concentrations were recalculated for calcium carbonates. 124 
  125 
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3. Results  126 

3.1. Morphological description. 127 
The soils studied were considerably different from each other (Figure 2). 128 

3.1.1. Modern soil (background or reference soil) 129 
Undisturbed background soils of the site were attributed to Calcic Chernozems Loamic and 130 

were characterized by the following features: a humus profile with the Ah + AhB horizons 50-(70) 131 
cm thick, followed by a carbonate-accumulative horizon Bk to a depth of 110 cm with the maximum 132 
occurrence of carbonate pedofeatures in the form of vertical chains of white soft spots (or soft 133 
carbonate nodules) at a depth of 90-110 cm, which, in turn, was followed by the soil-forming rock. 134 
The signs of burrowing animal’s activity in the profiles are apparent: in the upper horizons the 135 
structure is coprogenic, the AhB horizons contain dark gray and yellowish-pale animal holes; in the 136 
Bk horizon a number of thin long passages filled with humus material were found; there are not 137 
fresh holes with a clear contour, but only indistinct, diffused ones.  138 

The background (reference) soil had features of zonal Chernozem, with the organomineral 139 
horizon thicker than 50 cm, underlain by the calcic horizon. 140 

3.1.2. The soil inside the cultural layer 141 
The section was studied under forb-grassy vegetation. Soil of the excavation pit IV had a 142 

light-colored surface layer containing diffuse secondary calcium sulfate and abundant artefacts – 143 
pottery, bones and charcoal. According to archaeological data [26] it was the layer of habitation 144 
deposits. Under the habitation deposits, a well-preserved and morphologically distinct buried soil 145 
was found. We added the index “cul” to two surface horizons of the studied soil meaning that those 146 
horizons are developed inside the cultural layer. 147 

Asod cul, 0-3 cm. Sod horizon. 148 
A1 cul, 3-7(20) cm. Black, slightly dry, light loamy, with fine crumb structure; slightly 149 

compacted; siliceous powdering on ped faces; densely penetrated by roots; clear smooth boundary. 150 
Cultural Layer 7(20)-80(86)cm. Light grayish pale, slightly dry, light loamy, structureless; 151 

powdery (ashlike); soft nodules and filaments of calcareous pseudomycelium with a characteristic 152 
size of 0.3-0.6 cm; roots; animal bones of 2-3 to 10-15 cm in size; fragments of broken pottery, clear 153 
boundary.  154 

[A], 80(86)-106 cm. Black, slightly dry, heavy loam with coarse columnar-prismatic structure, 155 
calcareous powdering on ped faces; diffuse boundary. 156 

[AB], 106-116 cm. Dark ocherous brown, with humus streaks, slightly wet heavy loam, fine 157 
columnar-prismatic structure; with ocherous-colored mottles. 158 

3.2. Micromorphological description 159 
The humus horizon of modern background soil has weakly separated granular microstructure, 160 

complex packing voids, small granules with great content of organic fine material, plant tissue 161 
residues and signs of mezofauna activity in voids (Fig. 3 a, b); the plant tissue residues have visible 162 
cell structure surrounded by brown and black small granules, signs of mites activity, speckled 163 
b-fabric (Fig 3 c, d) and no gypsum.  164 

In the soil inside the cultural layer two samples, 10-20 and 60-70 cm depths, were compared. 165 
They have similarities and differences in their microfabric. The similarities include the absolute 166 
predominance of gypsum grains of various sizes and habits in the soil skeleton composition and the 167 
presence of granular peds consisting of isotropic amorphous organic fine material (Fig.4 a - h) [31]. 168 

The differences between the compared samples are expressed by quantitative rather than by the 169 
qualitative distinctions between prevailing forms of gypsum crystals and sizes of organic granular 170 
peds, as described below.  171 
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 172 
Figure 3. Micromorphological features of the humus horizon of modern reference soil at the 173 

depth 10-20 cm: а, b – weakly separated granular microstructure, complex packing voids, small 174 
granules with great content of organic fine material, tissue residues and signs of mezofauna activity 175 
in voids(a- PPL; b - XPL); c, d – tissue residue with visible cell structure surrounded by brown and 176 
black small granules, signs of mites activity, speckled b-fabric, complex packing voids (c - PPL; d 177 
–XPL). 178 

Dominant features in the layer at the 10-20 cm depth are as follows: 1) gypsum crystals of two 179 
types: а) aggregates of corroded thin prismatic crystals (on average about 30 µm long) between 180 
humus granular peds, many of which are covered with humus coatings, and b) thick infillings of 181 
very dense and small (about 0.05 µm) tabular gypsum crystals in channel pores containing fine 182 
residues of plant tissues (Fig.4 a - d); 2) relatively large crumb peds (100-140 µm) that consist of 183 
agglomerated small granular peds (with an average size of about 40-50 µm); 3) bone fragments that 184 
are very small and rare; 4) rare micrite crystals [31]. 185 

At the depth of 60-70 cm, compared to the above sample, the number of humus aggregates is 186 
significantly lower and gypsum is a main soil-forming mineral. Among gypsum crystals, aggregates 187 
(clusters) of regularly shaped acicular gypsum crystals predominate. They form loose continuous 188 
infillings formed of lenticular and acicular gypsum crystals in pores between soil peds (Fig. 4 e, f). 189 
These infillings have only few microzones with microfeatures of re-crystallization resulting in 190 
formation of very small tabular gypsum crystals, similar to those prevailing within dense pore 191 
infillings containing plant tissues at the 10-20 cm depth. Humus microaggregates occurring in rarer 192 
groups have features of fragmentation due to the growth of acicular gypsum crystals within certain 193 
microzones and also contain long fragments of aragonite. Compared to the above sample, this layer 194 
has an increased number of large fragments of bones with microfeatures of their carbonatization 195 
and/or small micrite concentrations over small fragments of bones. Large fragments of bones have 196 
humus coatings on their surface (Fig. 4 g, h). 197 
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 198 
Figure 4. Micromorphological features of soil within the cultural at different depths: 10-20 cm (a 199 

- d); 60-70 cm (e -h). a-d – thick infillings of very dense and small (about 0.05 µm) tabular gypsum 200 
crystals in channel pores containing fine residues of plant tissues (a, c - XPL; b, d - PPL); e, f – loose 201 
continuous infillings composed of lenticular and acicular gypsum crystals; g, h  – particles of bones 202 
with the carbonates (e, g - XPL; f, h - PPL). 203 
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3.3. The mineralogical investigation of dry residue of water extract 204 
The analysis of X-ray diffraction patterns of powder samples from the compared samples in the 205 

soil within the cultural layer (10-20 and 60-70 cm depths) has revealed that their mineralogical 206 
composition is similar: only gypsum minerals with characteristic diffraction peaks are present in the 207 
dry residue of water extract (Fig.5). No other mineral salts have been identified. 208 

 209 
Figure 5. Results of X-ray diffractions. 210 

3.4. Chemical analyses. 211 
The results of chemical analyses are presented in Table 1. 212 
Table 1. Chemical properties of soils and cultural layers 213 

Depth, cm 

horizon 

рНH2O Сorg, % Ptot, % CaСО3, % CaSO4, % 

(gypsum) 

Pit IV, inhabited house 

0-5 Asod cul 7.9 14.4 0.48 3.4 0.7 

5-10 Ah cul 8.3 11.4 0.64 15.3 1.9 

10-20 Ah+Cultural layer 8.3 3.8 0.26 9.5 49.8 

20-30 Cultural layer 8.2 2.7 0.29 13.6 49.9 

30-40 Cultural layer 8.2 2.9 0.42 15.3 39.2 

40-50 Cultural layer 8.2 2.3 0.50 14.4 38.2 

50-60 Cultural layer 8.0 2.7 0.48 19.4 8.0 

60-70 Cultural layer 7.9 2.2 0.48 15.9 31.4 

70-80 Cultural layer 7.9 1.5 0.45 18.4 25.6 

80-86 [Ah] 8.0 2.1 0.38 24.6 3.9 

86-96 [Ah] 8.4 2.4 0.21 33.1 1.3 

96-106 [Ah] 8.6 1.8 0.19 38.3 2.7 

106-116 [AhB] 9.1 1.8 0.19 42.2 2.3 

Background reference soil 
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0-10 Ah 7.4 7.7 0.21 3.4 0 

10-20 Ah 8.0 5.4 0.17 1.7 0 

20-30 Ah 8.2 4.7 0.15 0 0 

30-40 Ah 8.2 3.1 0.10 0 0 

40-50 Ah 8.3 2.2 0.08 1.8 0 

50-60 Ah 8.3 2.5 0.08 4.5 0 

60-70 AhB 8.3 1.2 0.07 9.3 0 

70-80 Bk 8.2 0.9 0.07 15.7 0 

80-90 Bk 8.2 0.5 0.07 18.6 0.2 

90-100 Bk 8.2 1.2 0.08 23.2 0.2 

100-110 Bk 8.3 - 0.08 23.3 0.03 
The background reference soil has a neutral reaction within its upper part and alkaline within 214 

its lower part. A similar pH distribution pattern is typical for native soils of the study region.  215 
The organic carbon content and distribution are typical for the Chernozems [22], with the 216 

maximal organic carbon content within the upper 50 cm followed by a sharp decrease in deeper 217 
layers. 218 

The content of Ptot in soil is low in comparison with the anthropogenic soils of excavation pit. 219 
The highest values (0.21%) occur within the litter horizon, while the mineral horizons have a 220 
uniform small concentration of phosphorus, which is typical for native soils. 221 

Calcium carbonate content is low within the upper 40-cm-thick layer and significantly increases 222 
in deeper layers, which is also usual for the native soils. 223 

The gypsum content is almost zero till the 70 cm depth. At the very bottom of the profile, there 224 
is a very small peak of gypsum and calcium carbonate concentration. 225 

The excavation pit IV (residential house). The soil inside the cultural layer has a neutral reaction 226 
within its upper part and alkaline within its lower part. A similar pH distribution pattern is typical 227 
for native soils of the study region and reflects the general trend of downward migration of 228 
calcareous soil solutions. The organic matter content is high throughout the soil profile. The 229 
maximum amount of organic matter is concentrated within the upper 10-cm-thick layer, which is 230 
generally typical for Chernozems.  231 

The Ptot distribution is irregular. The cultural layers occurring at 0-86 cm depth are 232 
characterized by a high content of total phosphorus (0.26-0.64%). The buried Chernozem (86-96 cm 233 
depth) has a lower Ptot content, virtually equal to that in the uppermost layer of the modern 234 
background soil. 235 

The CaCO3 content is high throughout the profile, being slightly higher in its lower part.  236 
The gypsum content and distribution are very unusual. In the field, at a macromorphological 237 

scale, the cultural layer of the excavation pit appeared to be composed of whitish-gray ash-like 238 
material, relatively homogeneous, compacted, with inclusions of various artefacts. The laboratory 239 
analyses have revealed that the cultural layer is composed of a mixture of gypsum and organic 240 
matter, with small amount of calcium carbonate. The data obtained (Table 1) show that a high 241 
content of gypsum (more than 49%) is registered within the cultural layer at the depths from 10 to 86 242 
cm, with a gradual downward decrease. The surface layer (0-10 cm) is relatively impoverished in 243 
gypsum (1.3%) as a result of leaching. 244 

  245 
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4. Discussion 246 
The upper horizons of the pit IV is the ancient cultural layer according to their morphological 247 

characteristics and the archaeological data [26]. The modern background soil bears no traces of 248 
former human impact.  249 

Background soil. By the content and distribution of Ptot the modern soil adequately reflects its 250 
natural background level, which can be used as a reference for separating the natural and 251 
anthropogenic layers: the former are poor in phosphorus, while the latter are characterized by the 252 
Ptot content above 0.22%. 253 

A small amount of calcium carbonate within the uppermost horizon has a biogenic origin, 254 
resulting from the calcium carbonate uptake by plant roots and its return to soil upon the death and 255 
decay of those roots [32-34]. This is a general natural phenomenon for soils of the steppe regions of 256 
Russia.  257 

The very limited amount of gypsum in the background soil is natural for soils developed in 258 
modern climatic conditions of the study region.  259 

The excavation pit IV. There is an overall decrease of the organic matter content with depth, 260 
with occasional humus-rich lenses. These lenses in the upper layers apparently result from 261 
man-made depositions of the organic matter during the period of settlement building and 262 
exploitation and indicate the cultural layer. Similar lenses in the lower layers, deeper than 86 cm, are 263 
a part of the organic matter of the buried paleosol. 264 

The “saw-tooth” pattern of the Ptot distribution within the total depth of the cultural layers 265 
reflects the stages of increase and decrease of anthropogenic pressure during the settlement 266 
functioning [35, 36, 12, 37]. There is no phosphorus depletion within the upper 10 cm, which is 267 
surprising after such a long period (more than 3000 years) following the abandonment of this site. 268 
Perhaps, presence of phosphorus within the surface layer could be its uptake by plants with 269 
subsequent decomposition of plant material. In addition, high amount of gypsum in the cultural 270 
layer may serve a “fixing factor” for phosphorus. 271 

In this excavation pit, the content of calcium carbonate is significantly higher than that in 272 
background soil. The latter is calcareous only at depths more than 50 cm, while the excavation pit 273 
profile is calcareous from a 5 cm depth. Such large concentrations at a shallow depth are typical for 274 
the sites of ancient settlements [37]. They are residues of limestone that was used as a house building 275 
material. Calcium carbonate forms almost insoluble complexes with phosphates and organic matter 276 
[35]. That is why even under a percolative water regime, the cultural layers of settlements are 277 
calcareous. 278 

Comparing the content of gypsum and calcium carbonates revealed a change in the use of 279 
bonding agents in the mud-bricks for house building [26]. The bonding agents were CaCO3-based at 280 
the beginning of the site occupation and later changed to gypsum. At the final stages of settlement 281 
existence gypsum was used with insignificant or no calcium carbonate content. 282 

Infillings of gypsum are clearly pedogenic since they are accumulations in pores. Commonly, 283 
the presence of gypsum-saturated groundwater, under a non-percolating soil water regime, creates 284 
the conditions for precipitation of gypsum in macropores and the formation of these pedofeatures 285 
[38, 29]. The study of thin sections has revealed that dense gypsum infillings formed of tabular 286 
microcrystals (at the depth of 10-20 cm) and loose continuous infillings composed of lenticular and 287 
acicular gypsum crystals (at the depth of 60-70 cm) are modern gypsum pedofeatures. They can be 288 
formed by two different processes: first, crystallization from solutions saturated with Ca2+ and SO4 289 
2- that are drawn upwards by plant roots; second, presumably, re-crystallization of more ancient 290 
narrow prismatic crystals of gypsum (corroded forms of which are found within the upper part of 291 
the cultural layer) to form acicular crystals. Large fragments of bones have microfeatures of both 292 
their carbonatization and the development of collomorphic organic coatings on their surfaces. The 293 
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collomorphic micromorphotype of humus having a well-developed crumb or granular structure is 294 
formed under strongly hydromorphic conditions. 295 

The analyses have shown that there is a high concentration of sulphates in the water extract of 296 
soil solution, which favors the migration and re-crystallization of gypsum throughout the ancient 297 
cultural layer.  298 

Gypsum crystals are present even at the surface of the studied soil inside the cultural layer, 299 
which is dramatically different from the background soil which contains no gypsum at the whole 300 
profile. 301 

The present day gradual dissolution of these salts results in the wider distribution of saline 302 
solutions beyond the settlement area. The high rainfall of the region causes calcium sulfate swelling, 303 
which leads to significant increases in the volume of the gypsum horizon and the further 304 
development of the characteristic hummocky microrelief. Such microrelief is often for gypsum 305 
deserts [39, 40] and absent in the study region, which is within the natural steppe zone. 306 

5. Conclusions 307 
On the basis of the data obtained it can be confidently concluded that the gypsum-bearing 308 

strata in the upper part of the excavation pit have an anthropogenic origin. In other words, people 309 
built their houses of mud-bricks made of a mixture of gypsum and organic matter (manure, for 310 
example), occasionally with addition of small amounts of calcareous rocks. 311 

There is almost pure gypsum within the cultural layer and represents a consecutive series of 312 
houses built one after another at the same place. Accumulation of large amounts of gypsum rocks 313 
within the ancient settlement site resulted in contamination of the environment with gypsum.  314 

During the period of abandonment of this site, the pedogenic processes homogenized the 315 
cultural layer of construction pits. The leaching of salts during the wet seasons was accompanied by 316 
the process of upward migration and precipitation of salts during occasional summer droughts as 317 
well as severe frosts. Still, the residual amount of gypsum is large after more than 3000 years after 318 
contamination. Therefore, it can be assumed that the initial man-made soil contamination by 319 
gypsum was extremely strong. The properties of the modern soil inside the cultural layer are 320 
directly affected by the Late Bronze Age human activities, with 3-3.5 thousand years being an 321 
insufficient timescale to restore the natural gypsum-free soils. 322 
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