Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Performance Analysis of an Intermediate Temperature SOE Test Bench Under CO2-H2O Feeding Stream

Version 1 : Received: 24 July 2018 / Approved: 24 July 2018 / Online: 24 July 2018 (10:20:27 CEST)

A peer-reviewed article of this Preprint also exists.

Fragiacomo, P.; De Lorenzo, G.; Corigliano, O. Performance Analysis of an Intermediate Temperature Solid Oxide Electrolyzer Test Bench under a CO2-H2O Feed Stream. Energies 2018, 11, 2276. Fragiacomo, P.; De Lorenzo, G.; Corigliano, O. Performance Analysis of an Intermediate Temperature Solid Oxide Electrolyzer Test Bench under a CO2-H2O Feed Stream. Energies 2018, 11, 2276.

Abstract

Renewable sources and electric distribution network can produce or make available a surplus of electric and thermal energies. The Intermediate Temperature Solid Oxide Electrolyzer (IT-SOE) fed by CO2-steam mixtures can store these electric and thermal energies producing CO-H2 mixtures with high conversion efficiency. Inside the IT-SOE, the CO2-steam mixtures are converted to CO-H2 mixtures and O2 through the cathode and anode electrochemical reactions and reverse water gas shift chemical reaction. In this article an IT-SOE stack fed by different types of steam mixtures was tested at different operating temperatures and the stack polarization and electric power curves were detected experimentally. At the highest hydrogen production operating temperature of the stack fed by steam mixtures, the experimental polarization and electric power curves of the stack fed by steam and CO2-steam mixtures were compared. A simulation model of the IT-SOE system (stack and furnace) fed by CO2-steam mixtures was formulated ad hoc and implemented in a Matlab environment and experimentally validated. At the highest hydrogen production stack operating temperature, the IT-SOE system thermal equilibrium current was evaluated through the simulation model. Moreover, the influence of this current on the IT-SOE system efficiency and the CO-H2 mixture degree of purity was highlighted.

Keywords

CO/H2 production; intermediate temperature SOEC; SOEC modeling; performance analysis

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.