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 7 
Abstract: Pruning is one of the most important tree fruit production activities, which is highly 8 

dependent on human labor. Skilled labor is in short supply, and the increasing cost of labor is 9 

becoming a big issue for the tree fruit industry. Growers are motivated to seek mechanical or 10 

robotic solutions for reducing the amount of hand labor required for pruning. This paper reviews 11 

the research and development of sensing and automated systems for branch pruning for tree fruit 12 

production. Horticultural advancements, pruning strategies, 3D structure reconstruction of tree 13 

branches, as well as practice mechanisms or robotics are some of the developments that need to 14 

be addressed for an effective tree branch pruning system. Our study summarizes the potential 15 

opportunities for automatic pruning with machine-friendly modern tree architectures, previous 16 

studies on sensor development, and efforts to develop and deploy mechanical/robotic systems for 17 

automated branch pruning. We also describe two examples of qualified pruning strategies that 18 

could potentially simplify the automated pruning decision and pruning end-effector design.  19 

Finally, the limitations of current pruning technologies and other challenges for automated 20 

branch pruning are described, and possible solutions are discussed.  21 

Keywords: Tree fruit; Pruning; Sensing; Automation; Robotics 22 

Introduction 23 

The tree fruit industry is an important component in the U.S. agricultural sector, accounting for 26% ($11 24 

billion) of all specialty crop production (USDA NASS, 2015). Presently, the majority of tree fruit crop 25 
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production systems are highly dependent on seasonal human labor. Many critical activities are 26 

not only labor intensive, but are also highly time sensitive. This intense labor demand creates a 27 

significant risk of growers not having a sufficient supply of labor to conduct seasonal tasks for 28 

tree fruit production (Fennimore and Doohan, 2008; Calvin and Martin, 2010). Going forward, it 29 

is critical to minimize dependence on labor for the long-term sustainability of this industry 30 

(Gonzalez-Barrera, 2015).  31 

In recent decades, automation technologies, especially the use of autonomous tractors has created 32 

enormous gains in efficiency for agriculture in general (Noguchi et al., 2002; Kise et al., 2005; 33 

Zhang and Pierce, 2016). However, for the specialty crops including tree fruit crops, the 34 

application of automation and precision has lagged behind due to the complexity of field 35 

operations and inconsistency of crop systems (Karkee and Zhang, 2012). Studies have shown  36 

great potential for using mechanical or robotic system for trees with compatible canopy training, 37 

including autonomous assist platform (Lesser et al., 2008; Hamner et al., 2011), and 38 

mechanical/robotic harvesting (Gongal et al., 2015; De Kleine and Karkee, 2015; Davidson et 39 

al., 2016). New mechanization-friendly orchard architectures with better machine accessibility to 40 

either fruits or branches is presenting the promising opportunities for automation in tree fruit 41 

production.  42 

Dormant pruning of fruit trees refers to removing unproductive parts of trees, and is essential to 43 

maintain overall tree health, control plant size, and increase fruit quality and marketable yield. 44 

Presently, dormant pruning is still accomplished by field crews either using manual loppers or 45 

powered shears. Pruning is the second largest labor expense for tree fruit field production behind 46 

harvesting, accounting for 20% or more of total pre-harvest production cost (Gallardo et al., 47 

2011; Hansen, 2011). Due to the high cost and declining availability of skilled labor, alternative 48 
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solutions for pruning fruit trees are becoming essential. Non-selective mechanical pruning and 49 

precise robotic pruning are solutions proposed to address these issues.  50 

Mechanical pruning mainly referring to hedging is a non-selective process with a high rate of 51 

throughput, which will usually require follow-up hand pruning (Sansavini, 1976). Hedging has 52 

been tried in the past as a supplement or replacement to selective hand pruning. Ferree and Lakso 53 

(1979) evaluated hedging for dormant pruning of vigorous semi-dwarf apple trees, and reported 54 

negative consequences of low within-canopy light levels and poor fruit color. These conditions 55 

resulted from a proliferation of new shoots arising from the numerous non-selective heading cuts 56 

made by the hedger. Summer hedging with dormant selective hand pruning, conversely, was 57 

shown to be beneficial in creating higher light levels in the lower canopy (Ferree, 1984). 58 

Robotic pruning, which is a selective pruning with accurate cuts, typically cuts the branch by an 59 

end-effector consisting of a cutting blade and anvil that uses a scissors motion (Lehnert, 2012). 60 

Before cutting, the challenge is to detect the targeted branches, and identify the pre-determined 61 

cutting point. The location, orientation, and dimension of the branch are the critical information 62 

for conducting accurate pruning. For cutting itself, it also requires a highly specific degree of 63 

accuracy with respect to the placement of the end effector, the jaws of which must be 64 

maneuvered into a position over the branch and perpendicular to branch orientation. This level of 65 

specificity in the spatial placement of the end effector results in a complex set of maneuvers and 66 

slows the pruning process, resulting in low efficiency. In the following sections, we will discuss 67 

the horticultural advancement for automated pruning, the involved core technologies, the current 68 

development of automated pruning, and the issues and challenges that remain in the procedure.  69 

Horticultural Advancement 70 
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Tree architecture is critical to the success of adopting automation in orchard production systems. 71 

Previously, studies were conducted on free-standing trees on semi-dwarf rootstocks, established 72 

at moderate planting density and trained as central leader trees, with numerous scaffolds and a 73 

complex branching hierarchy. Modern intensive orchards have a smaller canopy with less 74 

branching hierarchy, and are grown at close spacing on size controlling rootstocks that restrict 75 

tree vigor, resulting in a smaller simpler canopy. Trellising reduces the variability in canopy 76 

shape and position. This serves to make the operation of machinery simpler and less fatiguing to 77 

the machine operator and should facilitate more predictable and repeatable results. 78 

Detection and accessibility to branches and fruits is a key factor for automating labor-intensive 79 

orchard tasks. Establishment of intensive orchards systems at close spacing and using size-80 

controlling rootstocks and training systems is a global trend. Modern intensive orchard systems 81 

could provide easier detection and access to both tree canopy and fruits, resulting in higher 82 

potential of applying mechanical and robotic technologies (Dininny, 2017). A ‘Robot Ready’ 83 

concept was proposed recently by Washington State University scientists to train and manage 84 

tree orchards for robotic harvesting (DuPont and Lewis, 2018). Horticultural advancement along 85 

with the attempt of conducting automated activities in tree fruit production has been blooming 86 

recently. Varieties of intensive modern tree architecture systems have been developed and tested 87 

for production and labor efficiency. Figure 1 shows two examples: a V-trellis fruiting wall 88 

system with horizontal branches, and the tall spindle tree system.  89 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2018                   doi:10.20944/preprints201807.0438.v1

Peer-reviewed version available at Agronomy 2018, 8, 211; doi:10.3390/agronomy8100211

http://dx.doi.org/10.20944/preprints201807.0438.v1
http://dx.doi.org/10.3390/agronomy8100211


             90 

Figure 1. Intensive modern fruit tree systems. Left) Horizontal branch fruiting wall V-Trellis 91 

system in Washington; Right) Tall spindle tree system in Mid-Atlantic fruit region.   92 

For intensive fruit systems, especially those trained to 2D planar fruiting wall, the narrow canopy 93 

becomes much simpler and easier to access with machines, which has brought great benefit to 94 

tree fruit growers in many aspects. Previous studies have documented the effect of intensive tree 95 

architectures in terms of light interception and distribution (Willaume et al., 2004; Zhang et al., 96 

2015), the influence on yield and fruit quality (Robinson et al., 1991; Hampson et al., 2002; 97 

Whiting et al., 2005), earlier production and higher returns (Balmer and Blanke, 2001), and 98 

compatibility to mechanical solutions such as blossom thinning machines or harvest aids (Lyons 99 

et al., 2017; Zhang et al., 2016). Additionally, mechanical or robotic harvesting is also becoming 100 

more promising on intensive trees (De Kleine et al., 2015; He et al., 2017a; Silwal et al., 2017). 101 

He et al. (2017a) developed a shake and catch harvesting system for trellis trained V-trellis apple 102 

trees. Their results indicated that this tree system provides an opportunity to shake only targeted 103 

fruiting limbs and catch the fruit just under those limbs, increasing the potential to keep fruit 104 

quality at a desirable level for the fresh market. In Silwal et al. (2017), the fruit detection and 105 

picking rate could be reach to 100% and 85% for robotic apple picking if working with 106 

horizontal branch fruiting wall system. Fewer studies have been focused on automated pruning 107 
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for the intensive architectural trees. With the simplified tree architecture, tree branches could be 108 

detected and identified much easier, thus to apply simple rules for robotic pruning (Karkee et al., 109 

2014).  110 

Pruning Strategies for Automated Pruning 111 

Pruning strategies for fruit trees were mainly determined by certain rules that manage canopy 112 

size and shape to improve the light distribution, with the primary goal of improved fruit quality. 113 

Another goal for pruning is to remove a certain amount of flower buds to manage crop density 114 

(Robinson, et al., 2014). Schupp (2014) proposed a severity level pruning strategy for tall spindle 115 

apple trees to provide guidelines for determining the cutting threshold for robotic pruning. In 116 

robotic pruning, cuts must be precisely defined so the computer can transfer accurate information 117 

to the pruner. Researchers have studied on developing simple and quantified pruning rules to 118 

increase the feasibility of using robotic and automated pruning (Karkee et al., 2014). Two 119 

examples of quantified pruning rules are given here, which could be potentially used for robotic 120 

pruning systems. 121 

Case 1: Severity pruning levels for tall spindle apple trees (Schupp et al., 2017) 122 

Dr. Schupp and his team have been working on creating an effective pruning strategy for tall 123 

spindle apple trees based on severity levels. This study was a component of USDA NIFA project 124 

Automation of Dormant Pruning of Specialty Crops. The initial phase of the project established  125 

four pruning rules; the pruning strategies for the pruning task. A pruning severity index, namely 126 

limb-to-trunk ratio (LTR), was calculated from the sum of the cross-sectional area of all 127 

branches on a tree at 2.5 cm from their union to the central leader divided by the trunk cross-128 

sectional area at 30 cm above the graft union (Figure 2). In the LTR index, a lower value means 129 
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less limb area relative to trunk area, which represents more severe pruning. Six severity levels 130 

ranging from LTR 0.5 to LTR 1.75 have been applied by successively removing the largest 131 

branches from the apple trees. The LTR provides a measurable way to define and create different 132 

levels of pruning severity and achieve consistent outcomes. This allows a greater degree of 133 

accuracy and precision to dormant pruning of tall spindle apple trees. The use of the LTR to 134 

establish the level of pruning severity provides a simple and consistent rule for using of 135 

autonomous pruning systems. 136 

 137 

Figure 2. Pruning the apple trees with the proposed severity pruning levels (Schupp et al., 2017) 138 

The rules and pruning strategy generated in this study are very easily implemented, removing 139 

only those branches with diameters greater than the setting level. Once the pruning severity level 140 

is determined, the maximum allowable branch diameter could be calculated easily based on the 141 

calculation. Those with diameters greater than the threshold will be cut from the branch base or 142 

about one inch away the trunk depending on the necessary of new branch growth. Therefore, the 143 

first critical information needed for automated pruning is to measure the diameter of the trunk as 144 

well as the diameter for each individual branch, then the cross-sections and LTR are calculated, 145 
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and pruning decision are made. This method is suitable for intensively planted trees with 146 

minimal branching complexity and no permanent branches, such as the tall spindle or the super 147 

spindle. To apply robotic pruning, it will require machine vision to locate branches and map a 148 

pruning path.  149 

Case 2: Pruning based on twig length and length/diameter ratio (Zhang et al., 2017)  150 

While the primary goal of this study is to investigate the effect of mechanical harvesting with 151 

different pruning treatments, it is still a good model for developing automated pruning, since the 152 

proposed rules are simple and measureable. Four different treatments were applied, with 10, 15, 153 

20 cm twig length and variable pruning with diameter to length ratio setting to 0.06 based on our 154 

previous study (He et al., 2017b). Figure 3 shows an example of cutting a twig to the length of 15 155 

cm.  156 

 157 

Figure 3. Pruning based on the length of the twigs and the ratio of length and diameter of twig 158 

(Zhang et al., 2017) 159 

The pruning rules proposed in this study are mainly for the trellis trained trees with horizontal 160 

permanent branches, the removed part is from the twigs growing from the permanent horizontal 161 
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branches. Three different pruning treatments with different twig lengths were compared, and 162 

results showed that shorter length twigs had higher fruit removal efficiency, while it required 163 

more cuts since there were more twigs needed to be cut if the targeted twig length is shorter. 164 

Furthermore, by adopting the twig diameter into consideration, an index was proposed based on 165 

the ratio of twig diameter and length. With determined index, the twigs with larger diameter 166 

could retain longer. The results indicated that the treatment of using an index determined pruning 167 

treatment achieved very promising fruit removal as well as fruit yield. The pruning strategy 168 

created in this study gained the guidance for the autonomous pruning by providing the specific 169 

rules to cut the branches. To apply the created pruning strategy for automated pruning, 170 

identifying the twig length as well as the diameter would be essential.  171 

Machine Vision Sensing for Branch Detection and Identification 172 

Normally, the first step of automated pruning is to find tree branch and target the cutting location 173 

in the branch. A proper sensing technique is essential to identify the branch in the fruit trees, and 174 

then select unwanted branches and cutting points based on the desired pruning rules to conduct 175 

selective pruning. Machine vision, is a system combined with sensors and algorithms to obtain 176 

information of the target objects. Machine vision sensing has been used in agricultural 177 

application for several decades for various operations (Chen et al., 2002; Davies, 2009; 178 

McCarthy et al., 2010; Radcliffe et al., 2018). There are many different sensors have been used 179 

in machine vision system for detection of agricultural objects, e.g., cameras and Lidar sensor. 180 

Table 1 listed some past studies using different sensors and techniques for tree/branch detection 181 

and identification. Among those applications, identifying branches and pruning points for robotic 182 

pruning is one. 183 
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Table 1. Sensors and techniques used for branch detection and identification in different 184 

applications 185 

Application Sensors/techniques References 

 
Tree crown identification 

 
Lidar/3D cloud points 

 

Brandtberg et al., 2003; Edson and Wing, 2011; Van 
Aardt et al., 2008 

 

Mechanical harvesting RGB and 3D cameras 
Kinect sensor 
 

Amatya et al., 2017 
Zhang et al., 2107 

 
Robotic grapevine 
pruning 

Laser scanner 
Stereo vision/3D vision 
 

RGB cameras 

Tagarakis et al., 2013 
Hosseini and Jafari, 2017; Botterill et al., 2016 
Naugle et al., 1989; McFarlane et al., 1997; Gao and 
Lu, 2006; Corbett-Davies et al., 2012 
 

 
 

Robotic fruit tree pruning 

Lidar sensor/ToF sensor 
3D sensing (Stereo camera; 
Kinect; 3D camera) 
RGB/RGBD cameras 

Medeiros et al. (2017); Chattopahdyay et at., 2016 
Karkee et al., 2014; Tabb et al., 2018; Elfiky et al., 
2015 
Akbar et al., 2016a; Akbar et al., 2016b 

Lidar based machine vision systems have been mainly used for biomass mapping or individual 186 

tree detection, especially for the forest application (Brandtberg et al., 2003; Edson and Wing, 187 

2011; Van Aardt et al., 2008). Recently, Li et al. (2017) proposed an adaptive extracting method 188 

of tree skeleton based on the point cloud data with a terrestrial laser scanner, and obtained 189 

consistent tree structure. A Lidar sensor also has been tried for the branch length and diameter 190 

identification (Bucksch and Fleck, 2011). In their study, a 3D canopy structure of trees was 191 

modeled using Lidar sensor and a reconstruction algorithm, the results indicated that the 192 

correlation could be up to 0.78 and 0.99 for branch length and branch diameter respectively. 193 

Mapping the pruning wood for grape vines in the vineyards was another application of laser 194 

scanner (Tagarakis et al., 2013). Furthermore, in Medeiros et al. (2017), a laser sensor was used 195 

to collect observation of fruit tress aiming for automatic dormant pruning, the results showed that 196 

the system is able to identify the primary branches with an average accuracy of 98% and estimate 197 

their diameters with an average error of 0.6 cm. Even the current system is too slow for large-198 
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scale practice, the study shows the proposed approach may serve as a fundamental building 199 

block of robotic pruners in the near future.  200 

Camera based machine vision system is widely studied and/or applied in the agriculture 201 

production in the past several decades for many applications. Among those, fruit detection for 202 

tree fruit robotic harvesting was the one attracted most attention (Pla et al., 1993; Jimenez et al., 203 

2000; Hannan et al., 2010; Silwal et al., 2016). There are also a few studies on the branch 204 

detection to determine shaking positions using 3D sensing for mechanical massive harvesting 205 

(Amatya et al., 2017; Zhang et al., 2017). Amatya et al. (2017) used RGB and 3D cameras to 206 

detect and reconstruct the branches that could be used for determining the shaking points for the 207 

mechanical sweet cherry harvesting (Figure 7a); and Zhang et al. (2017) using Microsoft Kinect 208 

sensor and CNN deep learning algorithm to detect and model the horizontal branches in the V-209 

trellis fruiting wall apple trees for mechanical harvesting purpose (Figure 7b).  210 

                            211 

Figure 4. Left) Branch detection for sweet cherry trees in Y-Trellis; Right) Branch detection for 212 

apple trees in V-trellis fruiting wall 213 

Most of effort for machine vision towards branch detection for robotic pruning was on the grape 214 

vines due to its more uniform and organized canopy architecture. For examples, some 215 

researchers used a single 2D camera and image processing techniques for identification of 216 
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pruning points in grapevines (Naugle et al., 1989; McFarlane et al., 1997; Gao and Lu, 2006; 217 

Corbett-Davies et al., 2012). Furthermore, a stereo vision system based 3D machine vision 218 

system was used and cutting points on the branches were determined with remaining certain 219 

length of branches by segmenting the branches and measuring the length of branches (Hosseini 220 

and Jafari, 2017). A computer vision system builds a three dimensional (3D) model of the‐  221 

vines, an artificial intelligence (AI) system decides which canes to prune, and a six degree of‐ ‐222 

freedom robot arm makes the required cuts (Botterill et al., 2016).   223 

Some progress has been made in the development of robotics technology for pruning more 224 

complex canopies such as apple trees. Dr. Karkee and his team from Washington State 225 

University proposed a machine vision system with 3D camera to detect and identify tree 226 

branches for pruning for tall spindle apple trees (Karkee et al., 2014; Karkee and Adhikari, 227 

2015). The studies developed an algorithm with two simple rules to determine the pruning 228 

points, i.e., branch length and inter-branch spacing. The results showed that the algorithm 229 

removed 85% of long branches, and 69% of overlapping branches. Researchers from Purdue 230 

University have been working on tree modeling using different vision sensing for automatic 231 

pruning, such as Kinect 2 (Elfiky et al., 2015); RGBD (Akbar et al., 2016a), depth image (Akbar 232 

et al., 2016b), and time-of-flight data (Chattopahdyay et at., 2016). Tabb and her collaborator 233 

focused on developing a 3D reconstruction of fruit trees (Figure 5) for automatic pruning with 234 

identifying the branch parameters such as length, diameter, angle etc. (Tabb, 2009; Tabb and 235 

Mederios, 2017; Tabb and Mederios, 2018). Through the studies above on the tree branch 236 

pruning, the accuracy of branch detection and identification, the efficiency of branch 237 

reconstruction as well as the cost of the system would be critical for the success of the robotic 238 

tree branch pruning system.  239 
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 240 

Figure 5. An example of tree reconstruction with 3D machine vision. Left) RGB image of the 241 

test tree, Right) Reconstructed tree (Tabb and Mederios, 2017) 242 

Mechanical Pruning System 243 

Among those commercialized mechanical systems for tree fruit crop production, mechanical 244 

pruning system is one of them. Here, mechanical pruning mainly refers to hedging. There are a 245 

few types of pruning machine available on the market designed for tree fruit crops, such as disc-246 

type cutter and teeth-type cutter (Figure 6). Depending on the requirement, mechanical pruning 247 

could be performed with topping the canopy parallel to the ground, and/or hedging on both sides 248 

of canopy (Dias et al., 2014).  249 

                    250 
Figure 6. Mechanical pruning systems. Left) Pruning machine with discs (Martí and González, 251 

2010); Right) Pruning machine with saw-tooth cutter 252 
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Hedging is a non-selective mass pruning systems in which a cutting tool was run over rows in 253 

orchards keeping pre-determined distance from the trees. With this approach, everything beyond 254 

certain distance from canopy center and/or above certain height was removed (Gautz et al., 255 

2002). Hedging pruning has gained extensive application for grape vine pruning (Morris et al., 256 

1975; Bate and Morris, 2009; Poni et al., 2016). For tree fruit crops, non-selective mechanical 257 

pruning has been investigated for different crops, such as sweet cherry (Guimond et al., 1998), 258 

citrus (Marti and Gonzalez, 2010), and olive (Albarracin et al., 2017). While, those non-selective 259 

pruning systems are limited in their ability to ensure the quality of pruning (Carbonneau, 1979; 260 

Jensen et al., 1980). Non-selective and excessive pruning can result in excessive growth of 261 

shoots, which may lead to reduced fruit quality and yield (Moore and Gough, 2007). On the 262 

other hand, inadequate pruning will result in a tree populated with unproductive woods 263 

(Carbonneau, 1979; Jensen, 1980). Therefore, mechanical pruning for fruit trees was mainly used 264 

for summer pruning with removing some exterior shoots to increase the light interception to the 265 

fruits (Ferree and Rhodus, 1993). With intensive tree architecture, hedging technology would be 266 

beneficial to those trees due to the less possibility of branch regrowth with simple tree structure. 267 

Furthermore, automated hedging pruning with precise canopy size control could be considered 268 

by estimating the canopy size/shape using sensors such as Lidar. 269 

Robotic Pruning System  270 

Robotic pruning is a selective pruning operation, which aims to mechanically prune the tree 271 

branches at the same quality and level as human hands. Pruning for tree fruit crops is highly 272 

labor intensive, but no work specific to automated pruning has been carried out in the past due to 273 

a few challenges. First challenge is the complex environments of tree canopy/structure, second 274 

challenge is moving robotic parts quickly, efficiently and delicately. Compare to fruit trees, 275 
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grape vines are relatively in more uniform architecture, which gained certain amount of studies 276 

and field trials.   277 

Sevilla (1985) conducted research on a robotic grapevine pruning manipulator with modeling 278 

and simulation. Ochs and Gunkel (1993) worked on a machine vision system for grapevine 279 

pruner. Similarly, Lee et al. (1994) reported work in the electro-hydraulic control of a vine 280 

pruning robot. Kondo et al. (1993 and 1994) developed a manipulator and vision system for 281 

multi-purpose vineyard robot. Especially, there were two serial robots developed and tested for 282 

grape vine pruning (Figure 7), one is from vision robotics Inc. (Koselka, T., 2012), and the other 283 

one is from Botterill et al. (2016). However, all of these robotic systems focused on grapevines, 284 

which have relative uniform and organized canopy architecture.  285 

            286 

Figure 7. Robotic pruning systems. Left) Vision robotics-Robotic arm with attached customized 287 

pruner (Koselka, 2012); Right) A router mill-end cutter (Botterill et al., 2016). 288 

Even there is no actual machine developed for robotic pruning for tree fruit crops, a little 289 

progress has been made in the development of robotics technology for pruning more complex 290 

canopies such as apple and cherry trees. As we discussed earlier, most of the studies for robotic 291 

fruit tree pruning focused on developing machine vision system for the branch identification and 292 

reconstruction. While, a few studies focused on the robotic arm for simulation of pruning task 293 
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(Korayem et al., 2014; Megalingam et al., 2016). Furthermore, as plenty of robotic systems have 294 

been developed for pruning grape vines as well as picking fruits, it would be possible to develop 295 

an effective robotic pruner for tree fruit crops when the tree architecture is getting more uniform. 296 

The challenges and solutions were discussed in the following section.  297 

Discussion: Challenges and Solutions 298 

As we discussed earlier, tree structures in modern orchard are getting much simpler by adopting 299 

the intensive system. While even with these trees, the pruning task is still relative complex due to 300 

the natural of biological system. For robotic pruning, the cuts on branches require high precision 301 

with a cutting end-effector applied at the right locations and perpendicular to branch orientation. 302 

A successful robotic pruning system would be considered as accurate, robust, fast, or even 303 

inexpensive system. Therefore, the critical points for success of robotic pruning for fruit trees are 304 

the accuracy of branch identification/reconstruction, the spatial requirement of pruning end-305 

effector, and the efficiency of pruning operation (time for branch identification and the time for 306 

maneuvering the end-effector). 307 

To apply robotic pruning, firstly, the tree branch and cutting location need to be accurately 308 

identified. Majority of studies on automated pruning focused on the tree branch identification 309 

and reconstruction using machine vison system as we discussed earlier. And some more studies 310 

have been reported on developing algorithms to improve the accuracy of the branch 311 

reconstruction (Krissian et al., 2000; Chuang et al., 2000; Duan et al., 2004). While, most of 312 

these studies focused on the tree skeleton from the 3D images, which typically could get the 313 

location and the length of the tree branches. While, it is hard to get other information, such as the 314 

diameter and angle of the branches. One of recent study from Tabb and Medeiros showed the 315 

capability to detect and automatically measure the branching structure, branch diameters, branch 316 
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lengths, and branch angles. Those information are required for tasks such as robotic pruning of 317 

trees as well as structural phenotyping. While at this stage, it takes about 8 minutes to finish one 318 

tree reconstruction, which is too long for practical pruning process (Tabb and Medeiros, 2017).   319 

Not only branch identification task, but also the accessibility of the robotic manipulator and end-320 

effector is challenging due to complexity and variability of agricultural environment, as well as 321 

the required speed of operation. The previous developed pruning robots were typically using 322 

serial robotic arm with a fix cutter (Figure 7), while this level of specificity in the spatial 323 

placement of the end effector results in a complex set of maneuvers and slows the pruning 324 

process. Meanwhile, the serial robot arm with an end-effector requires large space for the cutter 325 

to engage with the branches. Although it is not for pruning directly, effort has been made to 326 

simplify the maneuvers and improve the efficiency of robotic operations in harvesting. Two 327 

robotic fruit picking robots have been developed and tested, one is from FFRbotics (Gesher 328 

HaEts 12, Israel) and the other one is from Abundant Robotics (California, USA). These robotic 329 

arms are in parallel type, which limited the spatial requirement of the picking end-effector. The 330 

position of the end-effector could be adjusted at the base of the overall robotic arm, and then the 331 

picking end-effector could reach the fruit directly or by extending the rod. Similar robotic arms 332 

could be considered for developing the pruning system. While, there is one thing needs to 333 

consider, that normally no specific orientation was required for the end-effector to engage fruits. 334 

For robotic pruning, the end-effector (cutter) needs not only to reach the right location, but also 335 

to be placed perpendicularly to the branch. To be always perpendicular to the branch, and well as 336 

using the parallel type robotic arm, the end-effector should be with adjustable orientation (He et 337 

al., 2018, unpublished document). With this kind of end-effector, the cutter itself could be 338 
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rotated with very small spatial need. Moreover, the cutter could be made of saw blade with no 339 

specific orientation constraints.  340 

At last, the economics of the robotic pruning system also needs to be considered. The robotic 341 

pruning machine may be too expensive with little or no gain in pruning efficiency compared to 342 

human pruners on the self-steering motorized platforms and simple trees like the Tall Spindle. 343 

While, by considering the labor shortage issue as well as putting effort on building low cost 344 

robotic pruning system with off-the-shelf components, the benefit of developing a robotic 345 

pruning system would be obvious. Meanwhile, multiple robots could be employed to improve 346 

the working efficiency. The cost/benefit ratio of a robotic pruning machine will have to be 347 

analyzed after the machine is built. 348 

Conclusion 349 

In this study, automated pruning related technologies have been reviewed, from the horticultural 350 

advancement, machine vision sensing, pruning strategies, as well as mechanical and robotic 351 

pruning development. Through these comprehensive review and discussion, the following 352 

statement could be concluded.  353 

1. Tree architecture is very critical for adopting automated orchard operations like pruning 354 

and harvesting. Intensive tree orchard with narrow tree canopy or even 2D planar fruiting 355 

wall would be suitable for fully autonomous pruning system in the future.  356 

2. In order to develop robotic pruning, simple and quantified pruning rules are the essential 357 

of practical pruning strategies. 358 
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3. Even plenty of studies have been focused on the tree branch identification and 359 

reconstruction, the accuracy and efficiency still require to be improved for practical 360 

pruning operation. 361 

4. Robotic pruning technologies have been successfully investigated in some uniformed 362 

crops, such as grapevines. With the adopting the intensive tree architectures as well as the 363 

improvement of cutting end-effector, it is very promising to have a robotic pruning 364 

system for tree fruit crops.  365 
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