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Abstract: We proposed in this work the introduction of a new vision of stochastic processes through 
geometry induced by dilation. The dilation matrices of a given process are obtained by a composition 
of rotation matrices built in with respect to partial correlation coefficients. Particularly interesting 
is the fact that the obtention of dilation matrices is regardless of the stationarity of the underlying 
process. When the process is stationary, only one dilation matrix is obtained and it corresponds 
therefore to Naimark dilation. When the process is nonstationary, a set of dilation matrices is obtained. 
They correspond to Kolmogorov decomposition. In this work, the nonstationary class of periodically 
correlated processes was of interest. The underlying periodicity of correlation coefficients is then 
transmitted to the set of dilation matrices. Because this set lives on the Lie group of rotation matrices, 
we can see them as points of a closed curve on the Lie group. Geometrical aspects can then be 
investigated through the shape of the obtained curves, and to give a complete insight into the space 
of curves, a metric and the derived geodesic equations are provided. The general results are adapted 
to the more specific case where the base manifold is the Lie group of rotation matrices, and because 
the metric in the space of curve naturally extends to the space of shapes, this enables a comparison 
between curves’ shapes and allows then the classification of processes’ measure.

Keywords: nonstationary processes; spectral measure; differential geometry; shape manifold; square 
root velocity function; Lie group17

1. Introduction18

The analysis and/or the representation of nonstationary processes has been tackled for 4 or19

5 decades now by time-scale/time-frequency analysis [4,21], by Fourier-like representation when20

the processes belong to the periodically correlated (PC) subclass [25,40], or by partial correlation21

coefficients (pacors) series [20,30], to cite a few. One of the advantages of dealing with parcors resides22

in their strong relation to the measure of the process by the one-to-one relation with correlation23

coefficients [18,55]. They consequently appear explicitly in the Orthogonal Polynomial on the Real24

Line/Unit Circle decomposition of the measure [11,47] and are the elements for the construction25

of dilation matrices that appear in the CMV/GGT [46], for the Schur flows problem with upper26

Hessenberg matrices [1] that are also seen in the literature as evolution operators[47] or shift operator27

[35], and finally appear in the state-space representation [15,17]. The dilation theory takes its roots from28

the operator theory [51], which bridges the process’ measure and unitary operators. In its simplest29

version, the dilation theory corresponds to Naimark dilation [3,51], and states that given a sequence30

of correlation coefficients, there exists a unitary matrix W such that Rn , (1 0 0 · · · )Wn(1 0 0 · · · )T
31

where ·T denotes the transposition. When the process is not stationary, its associated correlation32

matrix is no more Toeplitz structured, a set of matrices is required [15] and the previous expression33

becomes Ri,j , (1 0 0 · · · )Wi+1Wi+2 · · ·Wj(1 0 0 · · · )T . The matrices Wi are theoretically understood34

as infinite rotation matrices, which become finite when the correlation coefficients sequence is itself35
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finite. In that particular case, the matrices Wi belong to SO(n) or SU(n), the special orthogonal or36

unitary group, respectively, and the process’ measure is totally described by the set of Wi. As a37

consequence, the measure of the process is beautifully characterised for the nonstationary case, by a38

sampled trajectory induced by the dilation matrices on the appropriate Lie group. When the process is39

periodically correlated, the sequence of parcors inherits the periodicity and the sequence of dilation40

matrices becomes periodic as well, we consequently obtain a closed path as illustrated in Figure1.41

Characterising the time-varying measure of the process is now tackled by studying curves (or sampled42

curves) on special groups.43

Information geometry is now a fundamental approach to describing stochastic processes [34]. The44

second-order statistical properties/moments may be analysed, characterised and compared [5,8] to45

improve the estimation [39,50] or classification of different processes [28]. When dealing with density46

estimation [26], the space of n × n symmetric matrices Sym(n) is generally preferred, and many47

developments have been proposed under the semi-positive-definite (SPD) assumption [14,41,42,48]48

for which the set of SPD matrices constitute a convex half-cone in the vector space of matrices. This49

leads to giving more insights into the Fisher information metric [14,26] or the Wasserstein metric [29]50

and coping with optimal mass transportation problems [7]. Many efforts have also been made in the51

last decade to exploit the hyperbolic geometry structure not of the correlation matrices directly but52

of the related parcors when obtained in stationary conditions [2,6,16,19,55]. As the Kullback–Leibler53

divergence let do, the comparison of stationary processes is then made by comparing curves, whose54

sampled points are parcors sequences, defined on several copies of the Poincaré disk through geodesics55

deformation. Treating the nonstationary case has not been tackled to our knowledge with the previous56

mentioned approaches. In this paper, we hope to initiate interest in filling this gap by extending57

the representation and the characterisation of processes’ measure in nonstationary context, first in58

using the dilation theory approach to give sampled points and then in giving the prescribed geodesics59

equations used for curve or path comparisons in the Lie group.60

To support the reader, some insights on dilation theory are given in Section 2. Practical implementations61

of dilation matrices according to the operator theory approach [3,15] or the lattice filter structure62

approach [27,44] are also discussed and the strong connection between parcors and the dilation63

matrices is emphasised. Section 3 focuses on the geometry of the curves induced by the dilation on64

particular manifolds. The general framework is first introduced by recalling concepts of distances and65

shape of curves when the ambient space is not flat. Next, the square root velocity (SRV) functions are66

developed and adapted to the Lie group, and a procedure to compare nonstationary processes through67

their time evolution trajectory is presented. Finally, a conclusion is drawn in Section 4 and the reader68

will find some technical tools in the Appendix section.69

2. The structure of semi-positive-definite matrices and the dilation theory70

2.1. The theory of dilation and the interaction with71

Let us give some insights into the dilation theory. In its fundamental definition, the dilation theory
consists of a Hilbert spaceH and an operator-valued function f , i.e. an L(H)-valued function, to find
a larger Hilbert space H and an other application F such that f is the orthogonal projection of F :

f (t) = PHF (t), t ∈ Z (1)

where PH denotes the orthogonal projection onto the Hilbert spaceH. The ideas of the dilation72

theory are :73

• there exists a larger space from which the original function (or matrix) is deduced74

• we can choose the "dilated" function to be simpler. For instance, when dealing with matrices,75

each of its coefficients can be expressed as the projection of a larger unitary matrix. In this case,76
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Figure 1. Illustration of a sampled closed trajectory drawn in SO(n) or SU(n) that materialises the
time varying of the PC measure for a stochastic process. Each Wi is a dilation matrix built through the
parcors.

we obtain a unitary dilation. This approach has been for example developed in [33,36] and77

[37] for the stationary dilation of periodically-correlated processes.78

2.1.1. Dilation and rotation of contractions79

For an operator T on a Hilbert space H, we denote by T∗ the adjoint operator, i.e. the operator
on H such that 〈Tx, y〉 = 〈x, T∗y〉 for all x, y ∈ H. An operator T ∈ L(H) is said to be a contraction
if || T ||≤ 1 where || · || is the operator norm. We deduce the expression for the defect operator
DT = (I − T∗T)1/2 and its adjoint DT∗ = (I − TT∗)1/2.
One of the easiest results is that, given a contraction Γ, the aforementioned unitary Julia operator

J(Γ) =

(
Γ DΓ∗

DΓ −Γ∗

)
(2)

satisfies, for all n ∈ N

Γn =
(

1 0
)

J(Γ)n

(
1
0

)
. (3)

In other words, the elementary rotation of a contraction, called consequently the Julia operator,80

also corresponds to the unitary dilation operator of the contraction. Note that the Julia operator is81

sometimes called the Halmos extension [35] of a contraction.82

83

2.1.2. Dilation and isometries84

Following the idea and the formulation of Naimark, the dilation theory can be restated in terms
of dilation of the sequence of operators or sequence of numbers when the dimension of the underlying
Hilbert space is 1. Recall that a sequence of operators {Rn}∞

n=1 acting onH is said to be positive if

+∞

∑
i,j=0
〈Ri−jhi, hj〉 ≥ 0 f or all hi ∈ Hi. (4)
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Assuming now that R∗n = R−n and R0 = I, leads to the following Toeplitz matrix:

R(m) =


I R1 · · · Rm−1

R∗1 I · · · Rm−2

· · · · · ·
· · · · · ·

R∗m−1 R∗m−2 · · · I

 (5)

which is positive-definite. Remark that this matrix can be seen as the correlation matrix of a stationary
process, as it is positive and Toeplitz [3,12,54]. Owing to this property, we obtain the following relation:

Rn = PHUn |H, f or all n ≥ 0 and U an isometry on K (6)

as a result of the Naimark dilation theorem. Furthermore, if K =
∨

n≥0
UnH then U is unique up to an85

isomorphism.86

87

2.1.3. Dilation and measure88

From Bochner’s theorem, we known a matrix of type (5) can be seen as the Fourier coefficient
of a given positive Borelian measure. This is also known as the moment or trigonometric problem
[15]. Therefore, we can restate the dilation problem in terms of measure. If we denote by Eλ an
operator-valued distribution function on [0, 2π[, then the function

Rn =
∫ 2π

0
einλdEλ. (7)

This function is positive-definite and shows the strong correspondence between the spectral measure
and the dilation theory. There hence exists a unitary operator on a Hilbert space K such that Rn =

PHU(n) where PH stands for the orthogonal projection. With the spectral representation of unitary
operators, U =

∫ 2π
0 eiλdEλ and we have

∫ 2π

0
einλd〈Eλu, v〉 =

∫ 2π

0
einλd〈Fλu, v〉 (8)

or, in an equivalent form :
Eλ = PHFλ. (9)

Note that the operator-valued measure Fλ is in fact an orthogonal projection-valued measure because89

all its increments are orthogonal.90

With dilation matrices having been introduced, we give now in the next section a methodology to91

understand how they are obtained.92

2.2. Construction of Dilation Matrices93

As mentioned previously, given an SPD matrix R =
(

Ri,j
)

i,j∈N, it is possible to build a sequence94

of matrices {Wi}i∈N such that Ri,j =
(

1 0 0 · · · 0
)

WiWi+1 · · ·Wj−1

(
1 0 0 · · · 0

)T
by a95

two-step procedure. For the first step, the following theorem is needed [15] :96

Theorem 1 (Structure of a positive-definite block matrix). Let X and Z be positive operators in L(HX)97

and L(HZ) respectively. Then the following are equivalent :98

• The operator A =

(
X Y
Y∗ Z

)
is positive99
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• There exists a unique contraction Γ in L(R(Z),R(X)) such that

Y = X1/2ΓZ1/2 (10)

Proof. Annexe A100

Let us now apply this relation repeatedly on an SPD matrix. To fix ideas, let the 3× 3 (block-)matrix
be

R =

R1,1 R1,2 R1,3

R∗1,2 R2,2 R2,3

R∗1,3 R∗2,3 R3,3

 (11)

and apply Theorem 1 to

(
R1,1 R1,2

R∗1,2 R2,2

)
,

(
R2,2 R2,3

R∗2,3 R3,3

)
and finally to

(
R1,2 R1,3

)
. Note that when

a square root of a (block-)matrix has to be chosen, it is done according to the Schur decomposition
given in Annexe A. At each step, a contraction Γi,j is generated with respect to the indices of the upper

and lower (block-)matrices of the main diagonal, e.g. Γ1,2 for the first

(
R1,1 R1,2

R∗1,2 R2,2

)
(block-)matrix.

We thus obtain a one-to-one correspondence between the SPD matrix R and the set of contractions{
Γi,j
}

i=1,2 j=3. Regarding the huge work of Constantinescu [15], we will called these contractions the
Schur-Constantinescu parameters. Considering now unit variance and arbitrary size n× n for the SPD
matrix, allows us to write the correspondence as:



I R1,2 R1,n

R∗1,2 I
. . .

. . . . . . Rn−1,n

R∗1,n R∗n−1,1 I


←→



0 Γ1,2 Γ1,3 · · · Γ1,n
0 0 Γ2,3 Γ2,4 · · · Γ2,n
...

. . . . . . . . .
Γn−2,n

0 Γn−1,n
0 0 · · · 0


. (12)

Once (12) is established, each dilation matrix Wi is built-up as a product of Givens rotations of a
sequence of Schur-Constantinescu parameters in the following way:

Wi = G(Γi,i+1)G(Γi,i+2) · · ·G(Γi,j), (13)

where GΓi,i+l denotes the Givens rotation of Γi,i+l as follows:

G(Γi,i+l) = I ⊕
(

Γi,i+l DΓ∗i,i+l

DΓi,i+l −Γ∗i,i+l

)
⊕ I. (14)

When the SPD matrix is Toeplitz, which correspond to a stationary underlying process, then all dilation
matrices Wi are identical and they take the form

Wi = U =



Γ1 DΓ∗1
Γ2 DΓ∗1

DΓ∗2 Γ3 DΓ∗1
DΓ∗2 DΓ∗3 Γ4 · · ·

DΓ1 −Γ∗1Γ2 −Γ∗1 DΓ∗2 Γ3 −Γ∗1 DΓ∗2 DΓ∗3 Γ3 · · ·
0 DΓ2 −Γ∗2Γ3 −Γ∗2 DΓ∗3 Γ4 · · ·
0 0 DΓ3 −Γ∗3Γ4 · · ·
0 0 0 DΓ4 · · ·
· · · · · · ·
· · · · · · ·


(15)
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which is nothing less than the Naimark dilation introduced in the first part, i.e. Ri,j = Rj−1 =101

[1 0 0 · · · ]U j−i[1 0 0 · · · ]T . For the sake of completeness, we give the correspondence between the102

coefficients of the SPD matrix (the left-hand side of (12) ) and the Schur-Constantinescu parameters:103

Theorem 2. The matrix R(n) = [Rk,j]
n
k,j=1, satisfying R∗j,k = Rk,j is positive if and only if104

• Rkk > 0 for all k105

• there exists a family {Γk,j | k, j = 1, · · · n, k 6 j} of contraction such that

Rk,j = B∗k,k(Lk,j−1Uk+1,j−1Ck+1,j + DΓ∗k,k+l
· · ·DΓ∗k,j−l

Γk,jDΓk+1,j · · ·DΓj−1,j)Bj,j (16)

where Bk,k is any square root of Rk,k106

and
Lk,j = [Γk,k+1 DΓ∗k,k+l

Γk,k+2 · · · DΓ∗k,k+l
· · ·DΓ∗k,j−1

Γk,j] (17)

a row contraction associated to the set of parameters {Γk,m | k < m ≤ j},

Ck,j = [Γj−1,j Γj−2,jDΓj−1,j · · · Γk,jDΓk+1,j · · ·DΓj−1,j ]
T (18)

a column contraction associated to the set of parameters {Γm,j | m = j− 1, · · · k}, and finally

Uk,j = G(Γk,k+1)G(Γk,k+2) · · ·G(Γk,k+j)
(

Uk+1,j ⊕ I
)

(19)

Proof. This theorem is proved in [15].107

A different approach leading to the same results can be found in [52], using directly the108

Kolmogorov decomposition. In [27] the Naimark dilation is constructed using the lattice filter and109

finally applications of this decomposition in quantum mechanics are to be found in [53,54] for example.110

3. Analysis of curves on a manifold induced by the dilation111

Parcors, composing dilation matrices, have already been given a geometrical point of view, as, for112

example, in [55] where the sequence of parcors associated with a stationary process is seen as a point113

onto the Poincaré polydisk Pn, that is, the product of the Poincaré disk. To give geometrical settings, a114

distance to characterise individual parcors is then proposed and discussed. In [31], a stochastic process115

is studied under the local stationarity assumption. To each stationary slice of the process corresponds116

a sequence of parcors, represented as a point in the Poincaré polydisk Pn as well. A trajectory is then117

generated on that space which materialises a curve on the manifold Pn. The underlying computations118

are quite intricate because of the product manifolds, and the question of nonstationarity arises. Based119

on the works of Le Brigant [31,32], Celledoni et al. [13] and Zhang et al. [57], we propose then to120

give a particular attention to this question. We first make use of the dilation theory introduced in121

Section 2. When the process under study is nonstationary, a set of matrices Wi is obtained. The basic122

idea for having geometric information on the nonstationary process is therefore to characterize the123

trajectory formed by the set of dilation matrices. These matrices are theoretically operators of infinite124

dimension, but as we dispose of only a finite set of parcors, the theoretical matrices of (15) are truncated.125

Matrices respecting (15) are general rotation matrices that become perfect rotation operators belonging126

to SO(n) for real processes and SU(n) when dealing with complex processes, when their dimensions127

are reduced to n× n. Our aim is finally to analyse those curves living on the Lie group of rotation128

matrices and emphasise the geometry or, more precisely, the intrinsic geometry formulation of these129

objects. For example, we aim at comparing different curves coming from different processes or at130

resuming many realisations of a stochastic process (multiple measurements) through the computation131

of the mean of the associated several curves. The question as to computation complexity still exists,132
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but many results have been proposed recently to overcome this difficulty and to propose closed-form133

formulations. In particular, it is predicated to extract the shape of the trajectory for it contains the134

essentials, in topologic sense, information.135

To allow the curves comparison, we have based our development on the works of Le Brigant [31] and136

Celledoni et al. [13]. First, we define the manifoldM given by the set of all curves in the base manifold.137

This leads to another space, the shape space, for which the manifoldM will be a fiber bundle. We138

dispose then of a metric inM from which a metric on the shape space is deduced. These steps are139

now explained in the following.140

3.1. Basic Outline of Geometry141

Curves of interest are those living in the Lie group of real rotation matrices; this yields c : [0, 1]→
SO(n). For the sake of clarity, we suppose that c is continuous, we will come back to the case of
discrete curves later. To study the geometrical features of such curves, we interest ourselves with the
set of all curves lying in SO(n) (where SO(n) is seen as a manifold) with nonvanishing velocity, i.e.
M = {c ∈ C∞([0, 1], SO(n)) : c′(t) 6= 0 ∀t}, this is in fact a sub-manifold of C∞([0, 1], SO(n)). A curve
c is thus a particular point inM. The tangent space at a curve c is given by

TcM =
{

v ∈ C∞([0, 1], TSO(n)) : v(t) ∈ Tc(t)SO(n)
}

(20)

where TSO(n) denotes the tangent bundle of the base manifold SO(n). Note that a tangent vector is a
curve in the tangent space of SO(n). In this manifold, the expression of distances and, thus, geodesics
depends on the chosen metric. When comparing two curves, it is natural that the distance between
these two curves should remain the same if the curves are only reparametrised, that is, if we define
other curves that pass through the same points than the original curves but at different speeds. When
the curve is discretised as we will see in the sequel, doing a reparametrisation is equivalent to changing
the chosen points (see Figure2). A reparametrisation is represented by increasing diffeomorphism
φ ∈ D : [0, 1]→ [0, 1] acting on the right of the curve by composition. In other words, we required that
the Riemannian metric g onM satisfies the following property:

gc◦φ(u ◦ φ, v ◦ φ) = gc(u, v) (21)

for all c ∈ M, u, v ∈ TcM and φ ∈ D. This property is called reparametrisation invariance. We insist

b

b

b

b

b

b

b
b
b
b
b

b

b

b

b

b

b

b

Figure 2. Example of a reparametrisation of a curve. Here, it consists in changing the discretisation
with nonlinear time sample.

on the fact that g is the metric onM, the space of all curves on SO(n) and not on SO(n) itself. In terms
of distances, this gives

dM(c0 ◦ φ, c1 ◦ φ) = dM(c0, c1) (22)

where dM denote the distance onM corresponding to the metric g. The reparametrisation introduced
above induces an equivalence relation between points inM such that

c0 ∼ c1 ⇐⇒ ∃φ ∈ D : c0 = c1 ◦ φ. (23)
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With this equivalence relation, a quotient space can be constructed as the collection of equivalence
classes, it is named the shape space and has the following writing:

S =M/ ∼, or S =M/D. (24)

A distance function on the shape space is obtained from the distance onM as follows:

dS ([c0], [c1]) = in f
φ∈D

dM(c0, c1 ◦ φ) (25)

where [c0] and [c1] are representatives of the equivalence classes of c0 and c1 respectively. It can be
shown that this distance is independent of the choice of the representatives. It is in fact inherited from
the fiber bundle structure π =M→ S . As closed curves are of main interest in this work, we can also
define the set

Mc =
{

c ∈ C([0, 1], SO(n)) : c′(t) 6= 0, c(0) = c(1)
}

. (26)

Basically, the closure of a curve just imposes the equality of the first and the last point of it, and not of
their first derivative. Consequently,MC turns into

Mc+ =
{

c ∈ C([0, 1], SO(n)) : c′(t) 6= 0, c(0) = c(1), c′(0) = c′(1)
}

. (27)

We need now to introduce the Square Root Velocity function (SRV function) [49], in which a curve
is represented by its starting point and its normalised velocity at each time t. There are several
possibilities to define the SRV of a curve. The more general definition is the following

F :M→ SO(n)× TM

c→
(

c(0), q =
c′√
|| c′ ||

)
.

(28)

However we can go further and benefit from the specific case of Lie group. In this section, we will
denote the base manifold G = SO(n) to emphasise its group structure, and g an element of the group.
As in [13], we consider only curves that start at the identity, this is because other curves can be reduced
to this case by right or left translation. In these settings, it is interesting to turn the SRV function into
the Transported SRV function (TSRV). This is basically the SRV that has been parallel transported to
a reference point. Different versions have been given in [9], [13] or [57] which differ in the choice of
their reference point. For our case of study, the identity is our natural curve starting point and is thus a
particularly good choice for being the reference point. In a Lie group, a parallel transport operation
can be defined, here again, by the right (or left) translation. This justifies that we can take, as suggested
in [13] a TSRV function of the following form:

FLie : C∞([0, 1], G) −→ SO(n)× {q ∈ C∞([0, 1], g), q(t) 6= 0, ∀t ∈ [0, 1]}

FLie(c)(t) = (c(0), q(t)) =

c(0),
R−1

c(t)∗(c
′(t))√

|| c′(t) ||

 =

(
c(0),

Tc(t)→I
c (c′(t))√
|| c′(t) ||

)
,

(29)

where g is the Lie algebra, R is the right translation on the group, Rg1(g2) = g2g1, Rg∗ = TeRg is the142

tangent map at the identity, || · || is a norm induced by a right-invariant metric on G, and Tc(t)→I
c143

denotes the parallel transport from c(t) to the identity according to the curve c. A curve is now144

represented as an element of the tangent bundle (c(0), q(t)) ∈ M× TM (recall that q draws a curve in145

the tangent bundle), and c(0) is the identity element of the Lie group. The inverse of the SRV function146

is then straightforward: for every q ∈ C∞([0, 1], TM), there exists a unique curve c such that F(ci) = qi147

and c(t) =
∫ t

0 q(r) || q(r) || dr where || · || is the norm in SO(n).148
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b
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N

h(t0)
T
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h(t1)
N

h(t1)

P t1,t0
c h(t0)

T

P t1,t0
c h(t0)

N

P t1,t0
c h(t0)

Figure 3. The inner product measures the angle between a frame at a given point and the parallel
transport version of this frame at a latter time.

3.2. Metric and distance overM and S149

We now give insights on a relevant metric that should be used onM to compare different closed
trajectories. The idea is to have a metric onM that induced a "coherent" distance on the shape space S .
The following development and expression of metrics and distances can be found in [31]. The distance
on the shape space is used to compare how the curves are intrinsically different. It has been seen in
[38] that the simple L2 metric onM given by

gL2

c (u, v) =
∫
〈u, v〉 || c′(t) || dt (30)

where 〈·, ·〉 is the Riemannian metric on SO(n), induced a vanishing metric on the shape space, that is,
we can not differentiate shape with this metric. To overcome this difficulty, the family of elastic metric,
derived from the Sobolev metric [10], [23], has been investigated for it is non-vanishing on the shape
space. In the case of an Euclidean space Rn, it admits the expression:

ga,b
c (u, v) =

∫ (
a2〈DluN , DlvN〉+ b2〈DluT , DlvT〉

)
|| c′(t) || dt, (31)

where Dlu = h′/ || c′ ||, DluT = 〈Dlu, w〉w, with w = c′/ || c′ || and DluN = Dlu− DluT this way,(
DluN , DluN) defines a mobile frame along the curve c, see Figure 3. Here, we are only interested in

the special metric that has been proposed in [31], and which is an adaptation of the elastic metric for the
Riemannian manifold:

gc(u, v) = 〈u(0), v(0)〉+
∫ (
〈∇luN ,∇lvN〉+ 1

4
〈∇luT ,∇lvT〉

)
|| (c′t) || dt, (32)

With this metric, the starting point of the curves intervenes explicitly and the metric admits a quite
simple form. With the SRV framework, the length of a path of a curve (and not the length of a curve in
SO(n)) becomes then

L(c) =
∫ 1

0

√
|| x(s) ||2 +

∫ 1

0
|| ∇∂c/∂sq(s, t) ||2 dtds. (33)

Once geometry has been settled inM, the geometry of the shape space can be derived from its quotient
structure. Let Before the tangent bundle be decomposed into a vertical and a horizontal subspace:
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T[c]M
[c]

HM

S

Figure 4. The tangent space T[c]M at a point [c] in the shape space S is isomorphic to the horizontal
partHM of the tangent space at a point on the associated fiber.

TM = HM ⊕ VM, with VM = ker (Tcπ) and Tc the tangent map, π :M→ S the fiber bundle, and
HM = (VM)⊥. This metric is reparametrisation invariant, that is, constant along the fibers, hence we
have

gc(uH, vH) = [g]π(c) (Tcπ(u), Tcπ(v)) (34)

where [g] denotes the metric on the shape space. A similar result in a different (but still close) context
is used in [56], lemma 1. In terms of distances, this can be understood in the following sense. The
geodesic s 7→ [c](s) between [c0] and [c1] in the shape space is the projection of the horizontal geodesic
linking c0 to the fiber containing c1. In fact, the horizontal geodesic between c0 of c1 intersects the fiber
at c1 at the reparametrised version of c1, c1 ◦ φ which gives the distance in the shape space:

[d]([c0], [c1]) = dg(c0, c1 ◦ φ) (35)

where [d] denotes the distance in S , and dg denotes the distance on the space of curves induced by the
aforementioned Riemannian metric. In the TSRV formulation, the distance problem of eq. (35) yields
an optimisation problem:

[d]([c0], [c1]) = in f
φ∈D

(∫ 1

0
|| q0(t)− q1(φ(t))

√
φ′(t) ||2

)1/2

, (36)

which is solved by a traditional gradient descent algorithm or a dynamic linear programming [13].
Finally, we have to mention that in a practical situation, the above formula has to be discretised. This
is the object of [32]. Formulae are essentially similar, but in this setting, a curve is now represented by
a set of points cdisc(x0, x1, · · · , xn) and the tangent space turns into

TdiscM = {v = (v0, v1, · · · , vn), vi ∈ Txi SO(n), ∀i} . (37)

Concerning the metric on the space of curves, it becomes

gcdisc(u, v) = 〈u0, v0〉+
1
n

n−1

∑
i=0
〈∇∂c/∂squ

(
0,

k
n

)
,∇∂c/∂sqv

(
0,

k
n

)
〉 ∀u, v ∈ TdiscM (38)
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where, as before, for a u ∈ TcdiscM, we define a path of piecewise geodesic curves (s, t) 7→ cu(s, t) such150

that the following traditional initial conditions are fulfilled151

cu
(

0,
k
n

)
= xk, and

(∂cu/∂t)
(

0,
k
n

)
= n logxk

(xk+1).

This is the discrete analogue of the tangent vector of a continuous curve at time t. The log function
is the inverse of the exponential map on the base manifold, SO(n) for us, and here cu (s, ·) must be a
geodesic on SO(n) between xk/n and x(k+1)/n. The SRV function that appears in the formula refer to
the SRV function of the piecewise geodesics cu (s, ·). Then, the discretised version of the SRV function,
qk =

√
n logxk

(xk+1)/
√
|| logxk

(xk+1) || is such that

∇∂c/∂sq
(

s,
k
n

)
= ∇∂c/∂sqk(s) (39)

3.3. The geodesic equation in the Lie group case152

Before giving the geodesic equation in the space of curves on a Lie group, we start with some
preliminaries. We recall some useful facts about Lie group and Lie algebra, for those who are not
familiar with these objects.
A metric 〈·, ·〉 on a Lie group is said to be left invariant if:

〈u, v〉b = 〈(dLa)bu, (dLa)bv〉ab (40)

where (dLa)b is the derivative in the manifold field sense (so the tangent map) of the left translation La153

at b. A left-invariant metric gives the same number whenever the vectors are translated on the left. It is154

straightforward to adapt this definition to a right-invariant metric. A metric that is both left and right155

invariant is called a bi-invariant metric. A Lie group endowed with a bi-invariant metric has plenty of156

import properties that can be exploited for our study of curves on shape spaces. We list some of them157

in the following.158

• The geodesics through e (the identity element) are the integral curves t 7→ exp(tu), u ∈ g, that159

is, the one-parameter groups. Also, because left and right are isometries and isometries maps160

geodesics to geodesics, the geodesics through any point a ∈ G are the left (right) translates of161

the geodesics through e162

γ(t) = La (exp(tu)) , u ∈ g. (41)

Of course, we have
γ′(0) = (dLa) e(u). (42)

• The Levi-Civita connection is given by : ∇XY =
1
2
[X, Y], ∀X, Y ∈ g163

• The curvature tensor is given by : R(u, v)w =
1
4
[[u, v], w]164

where [·, ·] denotes the Lie bracket. We can now link these formulas to our based manifold SO(n).165

A Killing form, B, of a Lie algebra is a symmetric bilinear form B : g× g −→ C given by B(u, v) =166

tr(ad(u) ◦ ad(v)), where tr denotes the trace operator and ad denotes the adjoint representation of the167

group, namely, the map ad : G −→ GL(g) such that, for all a ∈ G ada : g −→ g is the linear isomorphism168

defined by ada = d(R−1
a ◦ La)e. If we now assume B to be negative-definite, then -B is an inner product169

and is adjoint invariant. Thus, it is a classical result of the Lie theory that -B induces a bi-invariant170

metric on G. Furthermore, the Ricci curvature is given by Ric(u, v) = −1
4

B(u, v).171
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The Lie algebra of SO(n) is the set of skew-symmetric matrices which verifies MT = −M. The172

Killing form on SO(n) is given by Bso(n) = (n − 2)tr(XY), and as a result of the skew symmetry,173

we have −Bso(n) = (n − 2)tr(XYT). Therefore, it induces a bi-invariant metric and the previous174

formula can be plugged into the expression of the metric on the space of curves. To conclude these175

preliminaries, we see that because of the simpler form of the parallel transportation and of the metric,176

the distance equations (36) are now easier to handle.177

It is now time to give the geodesic equation, relative to our chosen measure. As a result of the TSRV,178

the geodesic equation takes a much simpler form than what can be found in [31] and [32]. The formula179

can be found in [13]. For the sake of completeness, we give a reformulated proof in Annexe B. Recall180

that a geodesic is a particular path of curves. A path of curve is a continuous set of curve s 7→ c(s, ·)181

such that for each s, c(s, ·) is a point inM, or, equivalently, a curve in M, (see Figure ??). Thus, for182

each curve of the path of curves, we can defined its TSRV function. Then for all s ∈ [0, 1], we have (we183

omit the letter ’s’ for clarity): q =
∂c/∂t√
|| ∂c/∂t ||

184

Theorem 3. A path of curves [0, 1] 3 s 7→ (c(s, 0), q(s, t)) (t is the parameter of the curve c(s, ·))is a geodesic
onM if and only if

∇∂c/∂s (∇∂c/∂sq(s, t)) (s, t) = 0 ∀s, t (43)

Proof. Annexe B185

Thus, we have a quite familiar expression for the geodesic interpolation between two curves c0

and c1, expressed in their TSRV domain:

F−1
Lie ((1− s)FLie(c0) + sFLie(c1)) (44)

for s ∈ [0, 1]. This expression is nothing but a linear interpolation on the transported tangent space.
We have almost all the ingredients now to give the procedure for nonstationary processes
characterization and comparison. We first adapt the example given in [13] for curves on SO(3)
to give the piecewise geodesic as follows:

c(t) =
n−1

∑
k=0

χk,k+1(t)exp
(
(t− k)logck (ck+1)

)
ck. (45)

Notice that this geodesic is in the base manifold, and not in the space of curves. Thus, the geodesics186

are expressed in terms of one-parameter groups. In order to have a curve at least C1, and also187

because the distance between the Wi matrices can be quite high, we interpolate first. There are188

many ways to interpolate on SO(n), see [45] for example, but one of the simplest is to interpolate189

in the tangent space, which is Euclidean, and to go back to the manifold via the exponential map [24,45].190

191

Finally, our procedure to compare closed curves associated with the time evolution of the spectral192

measure for nonstationary process is the following193

194

1. Input : a set of rotation matrices {Wi}i, seen as a partial observation of a closed trajectory on195

SO(n).196

2. Interpolate with splines between matrices Wi [24,45].197

3. Go back in the base manifold SO(n).198

4. Compute the distance defined by (36).199

5. Output : distance between two curves in the manifold defined by the set of curves in SO(n).200

We note that geodesic shooting [31,43] or other path straightening methods could ne applied to201

obtain a geodesic path between two curves, and between the shapes of the two curves.202

203
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Figure 5. 1000 samples of PC processes generated by (a) a modulated zero mean and unit variance
stationary random process a(t), (b) a periodic AR(2) model with a period of 54 points, (c) a periodic
AR(2) model with a period of 20 points, and (d) a periodic ARMA(2,1) model with a period of 20 points

3.4. Results204

In order to expose how the approach of this work gives interesting results for PC processes205

understanding, we propose to compare four PC processes, displayed along with Figure 5. We also206

bring their corresponding SO(3) representation on Figure 6. For this scenario we have generated four207

PC processes with 1000 samples each. A classical amplitude modulated model a(t) cos(2π f / fe t)208

where a(t) is a zero mean and unit variance stationary random process with a period of 20 points, a209

periodic AR(2) with a period of 20 points, a periodic AR(2) with a period of 54 points, and a periodic210

ARMA(2,1) with a period of 20 points have been generated. We have used the R package PerARMA to211

generate the periodic ARMA and AR signals and we finally used the PerPACF function of this package212

to estimate the 20 (or 54) sequences of 3 parcors each. The analysis of Figure 5 with the Figure 6 shows213

that the spectral measure of the amplitude modulated signal of Figure 5-(a) has dilation matrices214

which do not spread a lot, we could think that this process is almost stationary due to the weak215

distance between each matrices. A contrario, whereas the temporal form of the PARMA(2,1) signal of216

Figure 5-(d) is quite identical to the amplitude modulated signal of Figure 5-(a), their representation217

on SO(3) is very different. The spectral measure of the PARMA(2,1) signal spread much more. Lastly,218

when we observe the Figure 5-(b) and Figure 5-(c) which are generated with the same model but with219

a different period, we can see that the more the number of points per period is important, the more the220

curve wraps.221

To end this analysis by the example, we have computed the distance defined by (36) between222

the PC process of Figure 7 and all the PC processes studied and displayed on Figure 5 and Figure 6.223

The distances are reported inside the Table. 1. Clearly, the distances between the shapes of the curves224

characterizing the spectral measure of each PC process, reveal some spectral proximity between the225

PC processes benchmarked. The PAR(2) and PARMA(2,1) are the two models which are closed to the226
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Figure 6. Representation inside the ball of radius π of the 4 PC processes drawn in Figure 5, arranged
in the same order.

PAR(2) signal model of reference. Their spectral measure evolves consequently in a similar way with227

one major loop and a second less important. These observations let open besides the question of the228

topology of theses curves and how it could be used for the classification.229

4. Conclusion230

We have introduced a new vision of stochastic processes through geometry induced by dilation.231

The dilation matrices of given processes were obtained by a composition of rotations whose angle232

correspond to the well-known parcors, reflexion coefficients or Verblunski coefficients. The advantage233

of working with these particular matrices is that they are strongly related to the stochastic measure of234

the process, and thus, to its spectra. Furthermore, the dilation theory is independent of the stationarity235

of the underlying process; when the signal is stationary, its dilation operator is related to the Naimark236

dilation whereas when the signal is nonstationary, a set of dilation matrices is obtained and it is related237

to the Kolmogorov decomposition. Rigorously, dilation matrices are infinite dimensional, although we238

turn them into rotation matrices by truncation. Each of them belongs to the Special Orthogonal Group239
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Figure 7. A PAR(2) signal with a period of 20 points, 1000 samples were generated, and its
corresponding SO(3) representation inside the ball of radius π.

Table 1. Table of the distances between all the PC processes of Figure 5 to the gold standard PC process
of Figure 7 through the distance of their curves’ shapes on SO(3). We have applied here a DP to solve
the optimization assignment problem.

Model of Signal displayed in Figure 5 Distance to the signal of Figure 7
(a) 8.97
(b) 9.11
(c) 5.12
(d) 3.92

SO(n) or the Special Unitary Group SU(n) depending on the real- or complex-valued process under240

study. We focused our attention on the Periodically Correlated (PC) class of nonstationary processes for241

which a timely ordered set of dilation matrices describes the process measure. This set draws a closed242

curve on the Lie group of rotation matrices, and describing or classifying the different PC processes is243

made by curves comparison. We use for that the Square Root Velocity (SRV) function which represents244

a curve by its starting point and by its normed velocity vector on the space or curves. The metric in the245

space of curve naturally extends to the space of shapes. It is then possible to compare the shape of246

curves when the metric is translated into the Lie algebra, achieving therefore a closed-form expression247

and easy computation. Nonstationary processes are then characterized via their embedded curves.248
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Appendix A Defect operator, elementary rotation255

Introducing the defect operator of a contraction T as being DT = (I − T∗T)1/2, we have the256

following factorisation:257
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(
X Y
Y∗ Z

)
=

(
X1/2 0

Z1/2Γ∗ Z1/2DΓ

)(
X1/2 ΓZ1/2

0 DΓZ1/2

)
(A1)

where X and Y are positive matrices. Note that this is a Cholesky factorisation-type result. This type of258

decomposition is used as the square root of matrices in the construction of the dilation. A corollary is259

that the operator

(
I T

T∗ I

)
is positive if and only if T is a contraction.260

Theorem 4. Let X and Y be operators in z. The following statements are equivalent :261

• There exists a contraction Γ in z such that X = ΓY,262

• X∗X 6 Y∗Y.263

Proof. This result can be proved by taking the contraction Γ with respect to ΓXh = Yh. [53].264

As a corollary If, X∗X = Y∗Y, then there exists a partial isometry V such that VX = Y. It is easy265

to see that we can choose V to be the contraction Γ defined above. Isometry V can also be assumed266

unitary. For a positive operator A ∈ L(H), if we denote by A1/2 its unique positive square root, then267

every L such that L∗L = A is related to A1/2 by A1/2 = VL (or A1/2 = L∗V∗).268

Let us state another theorem that intervene much in Constantinescu’s factorisation of positive-definite269

kernel. Note that in the following, R(Γ) will denote the close range of the operator Γ. We first start270

with a basic case:271

Theorem 5 (row contraction). Let T = [T1 T2] ∈ L(H1 ⊕H2,H), then || T ||6 0 if and only if there
exists contractions Γ1 ∈ L(H1,H) and Γ2 ∈ L(H2,H) such that

T = [Γ1 DΓ∗1
Γ2] (A2)

Proof. The proof is a simple application of Theorem4. For the if part, it is obvious that we can take Γ1

to be T1. Then || T ||6 1 implies

I − TT∗ = I − Γ1Γ∗1 − T2T∗2 > 0 (A3)

with D2
Γ∗1

> T2T∗2 . Hence, there exists ∆ such that ∆DΓ∗1
= T∗2 . Choosing Γ2 = ∆∗ finishes the272

argument.273

In the same way as that of the Cholesky factorisation, we can write down the defect operator for
the whole contraction T = [T1 T2] [53] to be

D2
T =

(
DΓ1 0
−Γ∗2Γ1 DΓ1

)(
DΓ1 −Γ∗1Γ2

0 DΓ1 .

)
(A4)

Therefore, with Theorem 5, we have an operator α such that

DT =

(
DΓ1 0
−Γ∗2Γ1 DΓ1

)
α (A5)

Similarly,
D2

T∗ = (DΓ∗1
DΓ∗2 DΓ∗2 DΓ∗1

) (A6)

and the general case is274

Theorem 6 (Structure of row contraction). The following are equivalent :275
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• The operator Tn = [T1 T2 · · · Tn] in L(⊕n
k=1Hk,H′) is a contraction276

• T1 = Γ1 is a contraction and, for k > 2, there exists uniquely determined contractions Γk ∈277

L(Hk,R(γk)) such that Tk = DΓ∗1
DΓ∗2 · · ·DΓ∗k−1

Γk.278

Furthermore, the defect operators of the whole contraction T are of the form

D2
T = 

DΓ1 0 · · · 0
−Γ∗2 Γ1 DΓ2 · · · 0

...
...

. . .
...

−Γ∗nDΓ∗n−1
· · ·DΓ∗2

−Γ∗nDΓ∗n−1
· · ·DΓ∗3

Γ2 · · · DΓn




DΓ1 −Γ∗1 Γ2 · · · −Γ∗1 DΓ∗2
· · ·DΓ∗n−1

Γn

0 DΓ2 · · · −Γ∗2 DΓ∗3
· · ·DΓ∗n−1

Γn

...
...

. . .
...

0 0 · · · DΓn

 (A7)

and
D2

T∗ = DΓ∗1
· · ·DΓ∗n DΓ∗n · · ·DΓ∗1

(A8)

Proof. It can be proved straightforwardly by induction.279

This construction permits to understand the apparition of the operators α and β in the publications280

of Constantinescu which are used to identify the defect space of the components (the underlying281

contractions of a row contraction) of a row contraction with the defect space of the row contraction282

itself. Same results are readily obtained for a column contraction of the form T =

T1
...

T2

.283

Appendix B Geodesic equation in the space of curveM284

To have a complete insight on the geodesic equation, we give the proof for a more general case285

that arises when considering the SRV and not only the TSRV function of a curve, that is, the curves are286

parametrised by their starting point and their velocity, but their starting points are not transported to287

the identity.288

Theorem 7. A path of curves [0, 1] 3 s 7→ (c(s, 0), q(s, t)) (t is the parameter of the curve c(s, ·))is a geodesic
onM if and only if:

∇∂c/∂sc(s, 0) +
∫ 1

0
R (q(s, t),∇∂c/∂sq(s, t)) (c(s, 0))dt = 0 ∀s (A9)

∇∂c/∂s (∇∂c/∂sq(s, t)) (s, t) = 0 ∀s, t (A10)

Similarly to [31] and [57], we consider a variation of the path s 7→ c(s, 0), q(s, t) starting and
ending at the same points, we denote {(c(s, 0, τ), q(s, t, τ))}. In Figure (A1), to get a clear picture, we
have represented a variation of a path of curves with fixed starting and ending points. Although
similar, the situation here is a bit different because of the representation of the curve through its SRV
function, which we can hardly represent. However, the process remains similar. We emphasise the
subtle difference with [31]. Here, we work directly in the tangent space representation, via the SRV

representation, and not with "the whole family" of curves c(s, t, τ). We denote ∂τc(s, 0, τ) =
∂c(s, 0, τ)

∂τ
,

and similarly for ∂sc(s, 0, τ) and ∂τc(s, 0, τ). The energy of the path indexed by τ is

E(τ) =
1
2

∫ 1

0
〈∂sc(s, 0, τ), ∂sc(s, 0, τ)〉+ 〈∇∂c/∂sq(s, t, τ),∇∂c/∂sq(s, t, τ)〉ds. (A11)
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b b
c0 c1

b

b

c0(s1, ·, τ1)

c0(s2, ·, τ2)

Figure A1. we consider a beam of curves, which consists in a slight modification of the geodesic. The
different curves are indexed by τ. The idea is to find which of these curves gives the minimal energy to
go from c0 to c1.

Recall that the derivative of the inner product is given by
d

dx
〈 f (x), f (x)〉 = 2 ∗ 〈 f (x),

d f
dx
〉. Then

E′(0) =
∫ 1

0
〈∇∂c/∂τ

∂c
∂s

(s, 0, 0),
∂c
∂s

(s, 0, 0)〉+ 〈∇∂c/∂τ∇∂c/∂sq(s, t, 0),∇∂c/∂sq(s, t, 0)〉ds (A12)

with ∇∂c/∂s (∂τc(s, 0, τ)) = ∇∂c/∂τ (∂sc(s, 0, τ)) and owing to the curvature tensor
R (∂τc(s, 0, τ), ∂sc(s, 0, τ)) (q(s, t, τ) = ∇∂c/∂τ∇∂c/∂s(q(s, t, τ))−∇∂c/∂s∇∂c/∂τ(q(s, t, τ)) we have

E′(0) =∫ 1

0
〈∇∂sc∂τc(s, 0, τ), ∂sc(s, 0, τ)〉+ 〈R (∂τc(s, 0, τ), ∂sc(s, 0, τ)) q(s, t, τ),∇∂s q(s, t, τ)〉

+ 〈∇∂sc∇∂τcq(s, t, 0),∇∂scq(s, t, 0)〉 ds. (A13)

Integrating by parts now, allows to have

∫ 1

0
〈∇∂τc∂sc(s, 0, τ), ∂sc(s, 0, τ)〉ds = −

∫ 1

0
〈∇∂sc∂sc(s, 0, τ), ∂τc(s, 0, τ)〉ds∫ 1

0
〈∇∂sc∇∂τc(q(s, t, τ)),∇∂s q(s, t, τ)〉 = −

∫ 1

0
〈∇∂sc∇∂sc(q(s, t, τ)),∇∂τ

q(s, t, τ)〉

which yields to

E′(0) =
∫ 1

0
(−〈∇∂sc∂sc(s, 0, τ), ∂τc(s, 0, τ)〉)

+ 〈R (∂τc(s, 0, τ), ∂sc(s, 0, τ)) q(s, t, τ),∇∂s q(s, t, τ)〉
+ (−〈∇∂sc∇∂scq(s, t, 0),∇∂τcq(s, t, 0)〉)ds, (A14)

for any vector fields X, Y, Z, W, 〈R(X, Y)Z, W〉 = −〈R(W), Z〉, we consequently obtain

E′(0) = −
∫ 1

0
〈∇∂sc∂τc(s, 0, τ), ∂sc(s, 0, τ)〉

+ 〈R (q(s, t, τ),∇∂s q(s, t, τ)) (∂sc(s, 0, τ)), ∂τc(s, 0, τ〉
+ 〈∇∂c/∂s∇∂c/∂τq(s, t, 0),∇∂c/∂sq(s, t, 0)〉ds. (A15)

Geodesic corresponds to minimal energy. It means that every other path that starts and ends at the289

same points should require more energy to travel than the geodesic. We then have to solve E′(0) = 0290

for every ∂τc(s, 0, τ) and every ∇∂τ
(q(s, t, τ)). This gives the result.291

Now when the framework is given by the TSRV and not by the SRV, only the second part of the292

geodesic equation remains as a result of the fixed starting point which corresponds to the identity293

element. This very much simplifies the equation, even though the derivation is the same.294
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