Article

Heronian means as aggregation operators for multiattribute decision making applications

Xiaopu Shang ${ }^{1}$, Jun Wang ${ }^{1}$, Anupam Nanda ${ }^{2}$ and Weizi Li ${ }^{2, *}$
${ }^{1}$ School of Economics and Management, Beijing Jiaotong University; sxp@bjtu.edu.cn; 14113149@bjtu.edu.cn
${ }^{2}$ Henley Business School, University of Reading 2; a.nanda@henley.reading.ac.uk; weizi.li@henley.ac.uk
* Correspondence: Weizi.li@henley.ac.uk; Tel.: +44 (0)1183785436

Abstract

The Pythagorean fuzzy set (PFS), which is characterized by a membership and a nonmembership degree and the square sum of them is less or equal to one, can act as an effective tool to express decision makers' fuzziness and uncertainty. Considering that the Heronian mean (HM) is a powerful aggregation operator which can take the interrelationship between any two arguments, we study the HM in Pythagorean fuzzy environment and propose new operators for aggregating interval-valued Pythagorean fuzzy information. First, we investigate the HM and geometric HM (GHM) under interval-valued intuitionistic fuzzy environment and develop a series of aggregation operators for interval-valued intuitionistic fuzzy numbers (IVIFNs) including interval-valued intuitionistic fuzzy Heronian mean (IVIFHM), interval-valued intuitionistic fuzzy geometric Heronian mean (IVIFGHM), interval-valued intuitionistic fuzzy weighted Heronian mean (IVIFWHM) and interval-valued intuitionistic fuzzy weighted geometric Heronian mean (IVIFWGHM). Second, some desirable and important properties of these aggregation operators are discussed. Third, based on these aggregation operators, a novel approach to multi-attribute decision making (MADM) is proposed. Finally, to demonstrate the validity of the approach, a numerical example is provided and discussed. Moreover, we discuss several real-world applications of these operators within policy-making contexts.

Keywords: interval-valued intuitionistic fuzzy set; aggregation operator; Heronian mean; geometric Heronian mean; multi-attribute decision making

1. Introduction \& Context

Decision making (DM) is a very common and significant activity across all walks of economy and society. Individuals and organisations face with a large number of DM events. With the complexity of DM increasing and expansion of choice sets and possibilities of real situations, fuzziness and vagueness have become a common problem in DM. Fuzziness in DM can be an important determinant of uncertainty and perception of uncertain environment. In other words, decision maker's own perception of the possibilities and uncertainties around those possibilities can be fuzzy or vague or ambiguous and may as well be specified by multiple probability functions. Such fuzziness or ambiguity can shape and determine the actions and behaviors of the economic agents. There are two related problems [54] - first, behavior is influenced by ambiguity; second, the economic agents are ambiguity averse. This can lead to conservative choices depending on the extent of ambiguity. Any estimation of the belief represented by convex non-additive probability functions can be tricky through traditional operators. Such cases arise frequently in policy-making across a wide spectrum of sectors, circumstances and stakeholders. Schmeidler [55] presented a model of decision making (Choquet expected utility (CEU) model) with ambiguity aversion. In this paper, we first develop operators that can effectively express DM problem and highlight several areas of application drawing on the relevant literature.

To deal with fuzziness and uncertainty, Zadeh [1] introduced the concept of Fuzzy Set (FS) theory, which allows decision makers to assign a membership degree to an element, representing the degree of the element belonging to a given fixed set. Since the introduction of FS, DM under FS has
been widely investigated. Nevertheless, the FS only has a membership degree which makes it difficult to describe fuzziness, vagueness and hesitancy effectively. There are several extensions of FS such as interval-valued fuzzy set (IVFS) [2], type 2 fuzzy set [3] and type n fuzzy set [4]. Take the IVFS as an example, an interval is used to represent the membership degree instead of an accurate value which makes the IVFS contain more information and cause less distortion than FS. In 1986, another important extension of FS, called the intuitionistic fuzzy set (IFS) [5], was introduced by Atanassov. The IFS, which is characterized by a membership degree and a non-membership, is more suitable and useful to deal with fuzziness and hesitancy, which are common in DM for issues related to economy and society, than FS. Since the introduction of IFS, is has been widely investigated and applied to quite a few fields, such as medical diagnosis [6-8], pattern recognition [9-11], data mining [12-14] and MADM [15-18]. Motivated by the IVFS, Atanassov introduced the concept of IVIFS [19], which can be viewed as a combination of IVFS and IFS. The IVIFS has two intervals, denoting the membership degree and non-membership degree respectively. Because of this feature, the IVIFS has been widely investigated and applied to a lot of fields especially MADM [20-23].

In MADM, one of the most crucial aspects is aggregation operators. In the past several decades, several advancements have been reported. Xu [24] extended the traditional ordered weighted averaging (OWA) operator and the ordered weighted geometric averaging (OWG) operator to IFS and introduced a family of aggregation operators for intuitionistic fuzzy numbers (IFNs). Furthermore, Xu et al. [25] and Xu [26] generalized the OWA and OWG operators in interval-valued intuitionistic fuzzy environment and introduced a series of aggregation operators for IVIFNs. Motivated by the induced aggregation for IFNs [27], Yang et al. [28], Cai et al. [29] and Meng et al. [30] introduced some induced aggregation operators for IVIFNs. As relationship between arguments plays a crucial role in the aggregated result, scholars increasingly paid attention to aggregation operators which can incorporate the relationship into account. Xu [31] investigated the power aggregation operators under intuitionistic fuzzy environment and interval-valued intuitionistic fuzzy environment and developed power aggregation operators for IFNs and IVIFNs. Furthermore, Zhou et al. [32] proposed generalized forms of power aggregation operators for IFNs. Then He et al. [33] proposed the generalized power averaging operator for IVIFNs and applied that to MADM. Motivated by the Choquet integral, Xu [34], Tan et al. [35] and Wei et al. [36] introduced the Choquet integral operators for IFNs and applied these aggregation operators to MADM. Then, Meng et al. [37], Tan et al. [38] and Wu et al. [39] developed Choquet integral-based aggregation operators for IVIFNs. Xu et al. [40] investigated the Bonferroni mean (BM) for IFNs and introduced the intuitionistic fuzzy Bonferroni mean (IFBM). Xia et al. [41] and Zhou et al. [42] extended the BM and introduced the geometric Bonferroni mean (GBM). Furthermore, they studied the GBM in intuitionistic fuzzy environment and introduced the intuitionistic fuzzy geometric Bonferroni mean (IFGBM). Then, Xu et al. [43] and Shi et al. [44] generalized the BM and GBM in interval-valued intuitionistic fuzzy environment and introduced some BM and GBM for IVIFNs.

With a better understanding and awareness that the correlation between arguments can be a very significant determinant for the aggregated outcome, these aggregation operators which can build in the interrelationships between arguments have drawn a significant attention. The Heronian mean (HM) [45] operator can belong to these class of aggregation operators. Liu et al. [46] pointed out that the HM can overcome several drawbacks of BM. The HM was introduced for crisp numbers. In the past decade, some crucial advancement about HM in different fuzzy environments have been published. Liu et al. [47] introduced the generalized uncertain linguistic Heronian mean (GULHM), uncertain linguistic geometric Heronian mean (ULGHM), generalized uncertain linguistic weighted Heronian mean (GULWHM) and uncertain linguistic weighted geometric Heronian mean (ULWGHM) for uncertain linguistic variables. Liu et al. [48] investigated the HM in intuitionistic uncertain linguistic environment and developed some HM for intuitionistic uncertain linguistic. Yu et al. [49] generalized the HM in linguistic hesitant fuzzy environment and developed a series of HM aggregation operators for linguistic hesitant fuzzy information. Later, Chu et al. [50] studied the HM in two-dimensional uncertain linguistic fuzzy environment. Liu et al. [46] studied the HM in 2-tuple linguistic environment. Li et al. [51] extended the HM to some single valued neutrosophic number.

Yu et al. [52] studied HM under dual hesitant fuzzy environment and developed some dual hesitant fuzzy HM aggregation operators. Nevertheless, to the best of our knowledge, there has been no rigorous study about HM under interval-valued intuitionistic fuzzy environment which is the motivation of this paper.

The remainder of the paper is organized as follows. In Section 2, we give a brief description of IVIFS, IVIFN with their operational laws. The HM of IVIFNs with their desirable prosperities are developed and discussed in Section 3. The weighted form of HM for IVIFNs are proposed in Section 4. A novel approach to MADM is presented in Section 5. To illustrate the approach, a numerical example is provided in Section 6. Section 7 highlights several areas of applications with reference to literature and the last section provides concluding remarks.

2. Preliminaries

In this section, we review the basic concepts about IVIFS and HM.

2.1 Interval-valued intuitionistic fuzzy set

Atanassov and Gargov [20] extended the IFS to IVIFS, using two intervals instead of two accurate values to represent the membership degree and non-membership degree respectively.

Definition 1. Let X be a given fixed set, an interval-valued intuitionistic fuzzy set (IVIFS) \tilde{A} over X is defined as

$$
\begin{equation*}
\tilde{A}=\left\{\left\langle x, \tilde{\mu}_{A}(x), \tilde{v}_{A}(x)\right\rangle \mid x \in X\right\} \tag{1}
\end{equation*}
$$

where $\tilde{\mu}_{A}(x) \subset[0,1]$ represents the membership and $\tilde{v}_{A}(x) \subset[0,1]$ represents the nonmembership degree, satisfying $0 \leq \sup \left(\tilde{\mu}_{A}(x)\right)+\sup \left(\tilde{v}_{A}(x)\right) \leq 1, \forall x \in X$. For convenience, let $\tilde{\mu}_{A}(x)=[a, b]$ and $\tilde{v}_{A}(x)=[c, d]$, then \tilde{A} can be denoted as $\tilde{A}=([a, b],[c, d])$, which can be called an IVIFN.

Definition 2. Let $\tilde{\alpha}_{1}=\left(\left[a_{1}, b_{1}\right],\left[c_{1}, d_{1}\right]\right), \tilde{\alpha}_{2}=\left(\left[a_{2}, b_{2}\right],\left[c_{2}, d_{2}\right]\right), \tilde{\alpha}=([a, b],[c, d])$ be any three IVIFNs. The operational law for IVIFNs can be defined as
(1) $\tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2}=\left(\left[a_{1}+a_{2}-a_{1} a_{2}, b_{1}+b_{2}-b_{1} b_{2}\right],\left[c_{1} c_{2}, d_{1} d_{2}\right]\right)$,
(2) $\tilde{\alpha}_{1} \otimes \tilde{\alpha}_{2}=\left(\left[a_{1} a_{2}, b_{1} b_{2}\right],\left[c_{1}+c_{2}-c_{1} c_{2}, d_{1}+d_{2}-d_{1} d_{2}\right]\right)$,
(3) $\lambda \tilde{\alpha}=\left(\left[1-(1-a)^{\lambda}, 1-(1-b)^{\lambda}\right],\left[c^{\lambda}, d^{\lambda}\right]\right)$,
(4) $\tilde{\alpha}^{\lambda}=\left(\left[a^{\lambda}, b^{\lambda}\right],\left[1-(1-c)^{\lambda}, 1-(1-d)^{\lambda}\right]\right)$.

To compare two IVIFNs, Atanassov and Gargov [20] gave the definition of score function and accuracy function of an IVIFN. Then based on score function and accuracy function, a comparison law of two IVIFNs is introduced.

Definition 3. Let $\tilde{\alpha}=([a, b],[c, d])$ be an IVIFN, then a score function S and an accuracy function H can be defined as follows

$$
\begin{align*}
& S(\tilde{\alpha})=(a-c+b-d) / 2 \tag{2}\\
& H(\tilde{\alpha})=(a+b+c+d) / 2 \tag{3}
\end{align*}
$$

Definition 4. Let $\tilde{\alpha}_{1}=\left(\left[a_{1}, b_{1}\right],\left[c_{1}, d_{1}\right]\right)$ and $\tilde{\alpha}_{2}=$
$\left(\left[a_{2}, b_{2}\right],\left[c_{2}, d_{2}\right]\right)$ be two IVIFNs, $S\left(\tilde{\alpha}_{1}\right)$ and $S\left(\tilde{\alpha}_{2}\right)$ be the scores of $\tilde{\alpha}_{1}$ and $\tilde{\alpha}_{2}$ respectively; $H\left(\tilde{\alpha}_{1}\right)$ and $H\left(\tilde{\alpha}_{2}\right)$ be the accuracy of $\tilde{\alpha}_{1}$ and $\tilde{\alpha}_{2}$ respectively. Then the comparison law of two IVIFNs can be defined as
(1) If $S\left(\tilde{\alpha}_{1}\right)>S\left(\tilde{\alpha}_{2}\right)$, then $\tilde{\alpha}_{1}>\tilde{\alpha}_{2}$;
(2) If $S\left(\tilde{\alpha}_{1}\right)=S\left(\tilde{\alpha}_{2}\right)$, then

$$
\begin{aligned}
& \text { if } H\left(\tilde{\alpha}_{1}\right)>H\left(\tilde{\alpha}_{2}\right) \text {, then } \tilde{\alpha}_{1}<\tilde{\alpha}_{2} \\
& \text { if } H\left(\tilde{\alpha}_{1}\right)=H\left(\tilde{\alpha}_{2}\right), \text { then } \tilde{\alpha}_{1}=\tilde{\alpha}_{2}
\end{aligned}
$$

2.2 Heronian mean and geometric Heronian mean

Sykora [45] introduced the generalization form of HM, which is shown in Definition 4. It is worth pointing out that the HM was introduced for crisp numbers.

Definition 5. Let $a_{i}(i=1,2, \ldots, n)$ be a collection of crisp numbers, then the Heronian mean (HM) operator is defined as

$$
\begin{equation*}
H M^{p, q}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(\frac{2}{n(n+1)} \sum_{i=1}^{n} \sum_{j=i}^{n} a_{i}^{p} a_{j}^{q}\right)^{\frac{1}{p+q}} \tag{4}
\end{equation*}
$$

where $p, q \geq 0$ and $p+q>0$.
Then, Liu et al. [48] introduced the concept of GHM.

Definition 6. Let $a_{i}(i=1,2, \ldots, n)$ be a collection of nonnegative crisp numbers with $p, q \geq 0$ and $p+q>0$, then the geometric Heronian mean (GHM) operator is defined as

$$
\begin{equation*}
\operatorname{GHM}^{p, q}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\frac{1}{p+q}\left(\prod_{i=1, j=i}^{n}\left(p a_{i}+q a_{j}\right)^{\frac{2}{n(n+1)}}\right) \tag{5}
\end{equation*}
$$

3. Heronian mean operators for interval-valued intuitionistic fuzzy information

As the HM and GHM were introduced for crisp numbers. In this section, we investigate the HM and GHM under interval-valued intuitionistic fuzzy environment and develop some new aggregation operators for IVIFNs.

3.1. The interval-valued intuitionistic fuzzy Heronian mean operator

Definition 7. Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs, then the intervalvalued intuitionistic fuzzy Heronian mean (IVIFHM) is defined as

$$
\operatorname{IVIFHM}{ }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=
$$

$\left(\frac{2}{n(n+1)} \stackrel{n}{i=1}_{\oplus}^{j}{ }_{j=i}^{n}\left(\tilde{\alpha}_{i}^{p} \otimes \tilde{\alpha}_{j}^{q}\right)\right)^{\frac{1}{p+q}}$
where p and q are two crisp numbers, satisfying $p, q \geq 0$ and $p+q>0$.
By Definition 2, we can obtain Theorem 1, which is shown below.
Theorem 1. Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs with $p, q \geq 0$ and $p+q>0$, then

The proof is shown in the Appendix.

The IVIFHM ${ }^{p, q}$ operator also have the following properties.

$$
\operatorname{IVIFHM}{ }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=
$$

$$
\begin{equation*}
\left.\left(\left[\left(1-\prod_{i=1, j=i}^{n}\left(1-a_{i}^{p} a_{j}^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}},\left(1-\prod_{i=1, j=i}^{n}\left(1-b_{i}^{p} b_{j}^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}\right],, ~\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-c_{i}\right)^{p}\left(1-c_{j}\right)^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}, 1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-d_{i}\right)^{p}\left(1-d_{j}\right)^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}\right]\right) \tag{7}
\end{equation*}
$$

Theorem 2. (Idempotency) Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs with $\tilde{\alpha}_{i}=\tilde{\alpha}=([a, b],[c, d])$ holds for all i, then

$$
\begin{equation*}
\operatorname{IVIFHM}{ }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=\tilde{\alpha} \tag{8}
\end{equation*}
$$

The proof is shown in the Appendix

Theorem 3. (Monotonicity) Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ and $\widetilde{\beta}_{i}=\left(\left[e_{i}, f_{i}\right],\left[g_{i}, h_{i}\right]\right)(i=1,2, \ldots, n)$ be two collections of IVIFNS, if $a_{i} \leq e_{i}, b_{i} \leq f_{i}, c_{i} \geq g_{i}$ and $d_{i} \geq h_{i}$ then

$$
\begin{equation*}
\operatorname{IVIFHM}{ }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right) \leq \operatorname{VIFHM}^{p, q}\left(\widetilde{\beta}_{1}, \widetilde{\beta}_{2}, \ldots, \widetilde{\beta}_{n}\right) \tag{9}
\end{equation*}
$$

The proof is shown in the Appendix

Theorem 4. (Boundedness)

Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs, and

$$
\tilde{\alpha}^{-}=\min \left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right), \tilde{\alpha}^{+}=\max \left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)
$$

Then

$$
\begin{equation*}
\tilde{\alpha}^{-} \leq \operatorname{IVIFHM}^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right) \leq \tilde{\alpha}^{+} \tag{10}
\end{equation*}
$$

The proof is shown in the Appendix
The interval-valued intuitionistic fuzzy geometric Heronian mean operator
Definition 8. Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs, then the intervalvalued intuitionistic fuzzy geometric Heronian mean (IVIFGHM) is defined as
$\operatorname{IVIFGHM}{ }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=\frac{1}{p+q}\left({\left.\underset{\otimes}{\otimes}{ }_{i=1}^{n} \otimes_{j=i}^{n}\left(p \tilde{\alpha}_{i}, q \tilde{\alpha}_{j}\right)^{2 / n(\mathrm{n}+1)}\right)}\right.$
By Definition 2, we can obtain Theorem 5, which is shown below.
Theorem 5. Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs with $p, q \geq 0$ and $p+q>0$, then

The proof of Theorem 5 is similar to the proof of Theorem 1.

There are some other desirable properties of IVIFGHM operator.

$$
\left.\begin{array}{c}
\text { IVIFGHM }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)= \\
\left(\left[1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-a_{i}\right)^{p}\left(1-a_{j}\right)^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}, 1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-b_{i}\right)^{p}\left(1-b_{j}\right)^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}\right],\right. \tag{12}\\
{\left[\left(1-\prod_{i=1, j=i}^{n}\left(1-c_{i}^{p} c_{j}^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}},\left(1-\prod_{i=1, j=i}^{n}\left(1-d_{i}^{p} d_{j}^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}\right]}
\end{array}\right),
$$

Theorem 6. (Idempotency) Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs with $\tilde{\alpha}_{i}=\tilde{\alpha}=([a, b],[c, d])$ holds for all i, then

$$
\begin{equation*}
\operatorname{IVIFGHM}{ }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=\tilde{\alpha} \tag{13}
\end{equation*}
$$

The proof of Theorem 6 is similar to the proof of Theorem 2.

Theorem 7. (Monotonicity)

Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ and $\widetilde{\beta}_{i}=\left(\left[e_{i}, f_{i}\right],\left[g_{i}, h_{i}\right]\right)(i=1,2, \ldots, n)$ be two collections of IVIFNS, if $a_{i} \leq e_{i}, b_{i} \leq f_{i}, c_{i} \geq g_{i}$ and $d_{i} \geq h_{i}$ then

$$
\begin{equation*}
\operatorname{IVIFGHM}{ }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right) \geq \operatorname{VIFGHM}^{p, q}\left(\widetilde{\beta}_{1}, \widetilde{\beta}_{2}, \ldots, \widetilde{\beta}_{n}\right) \tag{14}
\end{equation*}
$$

The proof of Theorem 7 is similar to the proof of Theorem 3.

Theorem 8. (Boundedness)
Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs, and
$\tilde{\alpha}^{-}=\min \left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right), \tilde{\alpha}^{+}=\max \left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)$
Then
$\tilde{\alpha}^{-} \geq$IVIFGHM $^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right) \geq \tilde{\alpha}^{+}$
The proof of Theorem 8 is similar to the proof of Theorem 4.

4. Interval-valued intuitionistic fuzzy weighted Heronian mean

We have introduced the IVIFHM and the IVIFGHM operator for IVIFNs in Section 3. However, the weights of IVIFNs are not taken into account in those two aggregation operators. In this section, we develop some new HM aggregation operators for IVIFNs which can take the weight vector into consideration.

The interval-valued intuitionistic fuzzy weighted Heronian mean
Definition 9. Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs, then the intervalvalued intuitionistic fuzzy weighted Heronian mean (IVIFGHM) is defined as

$$
\begin{equation*}
\operatorname{IVIFGHM}{ }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=\left(\frac{2}{n(n+1)} \oplus_{i=1}^{n} \oplus \oplus_{j=i}^{n}\left(\left(w_{i} \tilde{\alpha}_{i}\right)^{p} \otimes\left(w_{j} \tilde{\alpha}_{j}\right)^{q}\right)\right)^{\frac{1}{p+q}} \tag{16}
\end{equation*}
$$

where, $p, q \geq 0$ and $p+q>0, \quad w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{T}$ is the weight vector of $\tilde{\alpha}_{i}(i=1,2, \ldots, n)$, satisfying $w_{i} \in[0,1]$ and $\sum_{i=1}^{n} w_{i}=1$.

$$
\begin{align*}
& \operatorname{IVIFWHM}^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)= \tag{17}\\
& \text { IVIFWHM }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=\binom{\left[\begin{array}{l}
\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-\left(1-a_{i}\right)^{w_{i}}\right)^{p}\left(1-\left(1-a_{i}\right)^{w_{j}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}, \\
\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-\left(1-b_{i}\right)^{w_{i}}\right)^{p}\left(1-\left(1-b_{i}\right)^{w_{j}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}
\end{array}\right],}{\left[\begin{array}{l}
1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-c_{i}^{w_{i}}\right)^{p}\left(1-c_{j}^{w_{j}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}, \\
1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-d_{i}^{w_{i}}\right)^{p}\left(1-d_{j}^{w_{j}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}
\end{array}\right]} \\
& \operatorname{IVIFWGHM}{ }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=\binom{\left[\begin{array}{l}
1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-a_{i}^{w_{i}}\right)^{p}\left(1-a_{j}^{w_{j}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}, \\
1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-b_{i}^{w_{i}}\right)^{p}\left(1-b_{j}^{w_{j}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}
\end{array}\right],}{\left.\left[\begin{array}{l}
\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-\left(1-c_{i}\right)^{w_{i}}\right)^{p}\left(1-\left(1-c_{i}\right)^{w_{j}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}, \\
\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-\left(1-d_{i}\right)^{w_{i}}\right)^{p}\left(1-\left(1-d_{i}\right)^{w_{j}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}
\end{array}\right]\right)} \tag{19}
\end{align*}
$$

Theorem 9. Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs, $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{T}$ be the weight vector of $\tilde{\alpha}_{i}(i=1,2, \ldots, n)$ with $w_{i} \in[0,1]$ and $\sum_{i=1}^{n} w_{i}=1$, then (See Eq. (17)).

The proof is similar to the proof of Theorem1.

4.1 The interval-valued intuitionistic fuzzy weighted geometric Heronian mean

Definition 10. Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs, then the intervalvalued intuitionistic fuzzy weighted geometric Heronian mean (IVIFWGHM) is defined as

$$
\begin{equation*}
\operatorname{IVIFWGHM}{ }^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=\frac{1}{p+q}\left(\stackrel{\otimes}{i=1}_{n}^{\otimes_{j=i}^{n}}\left(p\left(w_{i} \tilde{\alpha}_{i}\right) \oplus q\left(w_{j} \tilde{\alpha}_{j}\right)\right)^{2 / n(\mathrm{n}+1)}\right) \tag{18}
\end{equation*}
$$

Theorem 10. Let $\tilde{\alpha}_{i}=\left(\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]\right)(i=1,2, \ldots, n)$ be a collection of IVIFNs, $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{T}$ be the weight vector of $\tilde{\alpha}_{i}(i=1,2, \ldots, n)$ with $w_{i} \in[0,1]$ and $\sum_{i=1}^{n} w_{i}=1$, then we can obtain the result shown as Eq. (19).

The proof is similar to the proof of Theorem1.

Authors should discuss the results and how they can be interpreted in perspective of previous studies and of the working hypotheses. The findings and their implications should be discussed in the broadest context possible. Future research directions may also be highlighted.
5. A novel approach to multi-attribute decision making with interval-valued intuitionistic fuzzy information

In the present section, a novel approach to MADM under interval-valued intuitionistic fuzzy environment is proposed. Let $X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ be a set of alternatives, $G=\left\{G_{1}, G_{2}, \ldots G_{m}\right\}$ be a set of attributes with the weight vector $w=\left(w_{1}, w_{2}, \ldots, w_{m}\right)^{T}$, satisfying $w_{i} \in[0,1]$ and $\sum_{i=1}^{m} w_{i}=1$. The decision maker is required to express their preference information by IVIFNs. All the IVIFNs construct the interval-valued intuitionistic fuzzy decision matrix denoted by $\widetilde{R}=\left(\tilde{r}_{i j}\right)_{n \times m}=\left(\left[a_{i j}, b_{i j}\right],\left[c_{i j}, d_{i j}\right]\right)_{n \times m}$ where $\left[a_{i j}, b_{i j}\right]$ and $\left[c_{i j}, d_{i j}\right]$ repressively represent the degrees that the alternative x_{i} satisfies and does not satisfy the attribute G_{j}, satisfying $\left[a_{i j}, b_{i j}\right] \subset[0,1]$, $\left[c_{i j}, d_{i j}\right] \subset[0,1], b_{i j}+d_{i j} \leq 1, i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.

Next, we utilize the aggregation operators introduced in Section 4 to solve this problem. The steps are shown below.

Step 1. Standardize the decision matrix. Generally, the attributes can be classified into two varieties, the benefit attribute and the cost attribute. The decision matrix should be normalized by

$$
\tilde{r}_{i j}=\left\{\begin{array}{l}
\left(\left[a_{i j}, b_{i j}\right],\left[c_{i j}, d_{i j}\right]\right), G_{i} \in I_{1} \tag{20}\\
\left(\left[c_{i j}, d_{i j}\right],\left[a_{i j}, b_{i j}\right]\right), G_{i} \in I_{2}
\end{array}\right.
$$

where $i=1,2, \ldots n, j=1,2, \ldots, m, I_{1}$ and I_{2} represent the benefit attribute and the cost attribute respectively. We denote the standardized matrix by $\widetilde{R}=\left(\tilde{r}_{i j}\right)_{n \times m}=\left(\left[u_{i j}, v_{i j}\right],\left[t_{i j}, f_{i j}\right]\right)_{n \times m}$.

Step 2. Utilize the IVIFWHM operator or the IVIFWGH operator to aggregate $\tilde{r}_{i j}(j=1,2, \ldots, m)$ of the $i^{\text {th }}$ line and the overall value \tilde{r}_{i} of alternatives $x_{i}(i=1,2, \ldots, n)$ can be obtained. (See Eq. (21) and Eq. (22) in the next page)

Step 3. Calculate the scores of $\tilde{r}_{i}(i=1,2, \ldots, n)$ by definition 3.
Step 4. Rank $\tilde{r}_{i}(i=1,2, \ldots, n)$ according to their scores by definition 4.
Step 5. Rank the alternatives $x_{i}(i=1,2, \ldots, n)$ according to the rank of $\tilde{r}_{i}(i=1,2, \ldots, n)$ and choose the best alternative.

6. Numerical example

In this section, we utilize a numerical example introduced by Sun et al. [53] to illustrate the validity of the approach to MDAM in Section 5.

Decision makers are required to evaluate innovation capability and efficiency of high technology enterprises. There are five enterprises $x_{i}(i=1,2,3,4,5)$ and the four attributes are innovation resources input ability (G_{1}), research and development ability (G_{2}), manufacturing capacity and marketing ability $\left(G_{3}\right)$ and innovation output capacity $\left(G_{4}\right)$. Decision makers use IVIFNs to estimate the enterprise. The decision matrix is given as $\widetilde{R}=\left(\tilde{r}_{i j}\right)_{5 \times 4}=\left(\left[a_{i j}, b_{i j}\right],\left[c_{i j}, d_{i j}\right]\right)_{5 \times 4}$. The weight vector of attributes is $w=(0.15,0.35,0.2,0.3)^{T}$.

$$
\widetilde{R}=\left[\begin{array}{l}
([0.4,0.5],[0.3,0.4])([0.4,0.6],[0.2,0.4])([0.1,0.3],[0.5,0.6])([0.3,0.4],[0.3,0.5]) \\
([0.6,0.7],[0.2,0.3])([0.6,0.7],[0.2,0.3])([0.4,0.7],[0.1,0.2])([0.5,0.6],[0.1,0.3]) \\
([0.3,0.6],[0.3,0.4])([0.5,0.6],[0.3,0.4])([0.5,0.6],[0.1,0.3])([0.4,0.5],[0.2,0.4]) \\
([0.7,0.8],[0.1,0.2])([0.6,0.7],[0.1,0.3])([0.3,0.4],[0.1,0.2])([0.3,0.7],[0.1,0.2]) \\
([0.3,0.4],[0.2,0.3])([0.3,0.5],[0.1,0.3])([0.2,0.5],[0.4,0.5])([0.3,0.4],[0.5,0.6])
\end{array}\right]
$$

$$
\begin{align*}
& \tilde{r}_{i}=I_{\text {VIFWHM }}{ }^{p, q}\left(\tilde{r}_{i 1}, \tilde{r}_{i 2}, \ldots, \tilde{r}_{i m}\right)= \\
& \left(\left[\begin{array}{l}
\left(\begin{array}{l}
\left(1-\prod_{k=1, l=k}^{m}\left(1-\left(1-\left(1-u_{i k}\right)^{w_{k}}\right)^{p}\left(1-\left(1-u_{i l}\right)^{w_{i}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}, \\
\left(1-\prod_{k=1, l=k}^{m}\left(1-\left(1-\left(1-v_{i k}\right)^{w_{k}}\right)^{p}\left(1-\left(1-v_{i l}\right)^{w_{i}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}
\end{array}\right], \\
{\left[\begin{array}{l}
{\left[\begin{array}{l}
1-\left(1-\prod_{k=1, l=k}^{m}\left(1-\left(1-t_{i k}^{w_{k}}\right)^{p}\left(1-t_{i l}^{w_{i}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}, \\
1-\left(1-\prod_{k=1, l=k}^{m}\left(1-\left(1-f_{i k}^{w_{k}}\right)^{p}\left(1-f_{i l}^{w_{i}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}
\end{array}\right]}
\end{array}\right)} \\
\tilde{r}_{i}=I V I F W G H M^{p, q}\left(\tilde{r}_{i 1}, \tilde{r}_{i 2}, \ldots, \tilde{r}_{i m}\right)=
\end{array}\right]\right. \tag{21}
\end{align*}
$$

$$
\binom{\left[\begin{array}{l}
1-\left(1-\prod_{k=1, l=k}^{m}\left(1-\left(1-u_{i k}^{w_{k}}\right)^{p}\left(1-u_{i l}^{w_{l}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}, \tag{22}\\
1-\left(1-\prod_{k=1, l=k}^{m}\left(1-\left(1-v_{i k}^{w_{k}}\right)^{p}\left(1-v_{i l}^{w_{l}}\right)^{p}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}
\end{array}\right],}{\left.\left[\begin{array}{l}
\left(1-\prod_{k=1, l=k}^{m}\left(1-\left(1-\left(1-t_{i k}\right)^{w_{k}}\right)^{p}\left(1-\left(1-t_{i l}\right)^{w_{i}}\right)^{p}\right)^{2 /(n+1)}\right)^{\frac{1}{p+q}}, \\
\left(1-\prod_{k=1, l=k}^{m}\left(1-\left(1-\left(1-f_{i k}\right)^{w_{k}}\right)^{p}\left(1-\left(1-f_{i l}\right)^{w_{i}}\right)^{p}\right)^{2 / /(n+1)}\right)^{\frac{1}{p+q}}
\end{array}\right]\right) .}
$$

Next, we first utilize the novel approach to solve this problem. Then, we discuss more results by different values to the parameters p and q.

6.1 Calculation process

Step 1. Because all the attributes are benefit attributes, we do not need to standardize the decision matrix.

Step 2. Utilize Eq. (22) to aggregate the preference information of alternative $x_{i}(i=1,2,3,4,5)$. Here, without loss of generality, let $p=q=1$. We can obtain a series of overall values for the five enterprises.

$$
\begin{aligned}
& \tilde{r}_{1}=([0.0930,0.1509] \cdot[0.7346,0.8249]) \\
& \tilde{r}_{2}=([0.1544,0.2201] \cdot[0.6938,0.7644]) \\
& \tilde{r}_{3}=([0.1375,0.1914] \cdot[0.6808,0.7840]) \\
& \tilde{r}_{4}=([0.1572,0.2447] \cdot[0.5657,0.6937]) \\
& \tilde{r}_{5}=([0.0799,0.1422] \cdot[0.7036,0.7998])
\end{aligned}
$$

Step 3. Calculate the scores of the overall values of $\tilde{r}_{i}(i=1,2,3,4,5)$.

$$
S\left(\tilde{r}_{1}\right)=-0.6578 \quad S\left(\tilde{r}_{2}\right)=-0.5419
$$

$S\left(\tilde{r}_{3}\right)=-0.5679 \quad S\left(\tilde{r}_{4}\right)=-0.4287$
$S\left(\tilde{r}_{5}\right)=-0.6406$
Step 4. Rank the overall values according to their scores, we can obtain $\tilde{r}_{4}>\tilde{r}_{2}>\tilde{r}_{3}>\tilde{r}_{5}>\tilde{r}_{1}$.
Step 5. According to the rank of $\tilde{r}_{i}(i=1,2,3,4,5)$, we have $x_{4} \succ x_{2} \succ x_{3} \succ x_{5} \succ x_{1}$, which means x_{2} is the highest technological enterprise.

6.2 Further discussion

It is noted that the parameter p and q play a crucial role in the final result. Decision makers can change the parameters, leading to different outcomes. In this subsection, we discuss the impact of parameters p and q on the final result.

If p and q changes between 0 and 4 , we can get different overall values of $\tilde{r}_{i}(i=1,2,3,4,5)$. Thus, the scores of the overall values will be different. More details about the scores of overall values $\tilde{r}_{i}(i=1,2,3,4,5)$ are shown in Figure 1-5. These results are obtained by the IVIFWHM operator.路

Fig. 1. Score of x_{1}

Fig. 2. Score of x_{2}

Fig. 3. Score of x_{3}

Fig. 4. Score of x_{4}

Fig. 5. Score of x_{5}

Then let p be a fixed value, when p changes, we may get different scores of $x_{i}(i=1,2,3,4,5)$ and different ranking result. Here, let $p=1$. Figure 5 illustrates details of scores and ranking order.

Fig. 6. The scores and ranking order $(p=1, q \in[0,5])$.

From Figure 6, we observe that when $p=1$ and q changes from 0 to 5 , the ranking order is always $x_{4} \succ x_{2} \succ x_{3} \succ x_{5} \succ x_{1}$. However, if let q be a fixed value, we can get a different ranking order. Let $q=1$ and p changes from 0 to 5 . The scores and ranking orders and shown in Figure 7.

Fig. 7. The scores and ranking order ($q=1, p \in[0,5]$).

From Figure 7, we observe that
(1) when $p \in[0,0.2726)$, the ranking order is $x_{4} \succ x_{3} \succ x_{2} \succ x_{5} \succ x_{1}$, and the best alternative is x_{4};
(2) when $p \in(0.2726,5]$, the ranking order is $x_{4} \succ x_{2} \succ x_{3} \succ x_{5} \succ x_{1}$ and the best alternative is x_{4}.

From Figures 6 and 7, it is evident that by assigning different values, scores of aggregated overall values will be different. As the parameters p and q increase in value, the scores of the aggregated values will also increase. This phenomenon demonstrates that the parameters p and q play a very important role in determining the outcome. In real MADM, this has significant implication. Decision makers' perception (i.e. pessimistic vs. optimistic) of the environment attributes will lead to higher or lower values for p and q. It is also possible that parameters can take varying patterns, which would determine the outcomes. This will depend on specific real-world contexts, which we try to indicate in the next section with a few examples.

7. Application areas

Complexity of real-world issues can significantly determine the trajectory of changes and patterns in the parameter values. In cases where there are both cross-sectional (or spatial) and temporal variations, the parameters will require appropriate functional approximation or nonparametric approaches. In following discussion, we highlight a few examples of areas of application for the HM operators developed above and showcase the MADM problems.

- House price evaluation: House purchase involves several MADM events. Right from forming a choice set to steps towards preferred search option and subsequent offermaking and mortgage financing processes involve several numerical as well as nonnumerical evaluation with fuzziness in linguistic descriptions and uncertainty in outcomes. Such fuzziness can influence search patterns, decision inertia and timings. Asymmetry in information flow and perceptions among economic decision-makers contribute to the uncertainty. Moreover, perception varies significantly among the economic agents i.e. p and q in the above operators. The HM operators developed above can offer improvement in the forecasting precision [56].
- Investment project appraisal: Assessment of investment project risk is problematic due to inherent probabilities and possibilities of outcomes. The parameter uncertainty is generally described by probability and possibility distributions. The investment risk assessment is undertaken on the assumption that uncertainty distributions of the effectiveness calculation parameters take the form of fuzzy numbers [57]. Simple aggregation can lead to biased appraisal values.
- Project scheduling problem: Project scheduling problem typically involves determination and allocation of resources which lead to balancing of the total cost and the completion time. There are several issues of relevance in the problem - mixed uncertainty with randomness and fuzziness. Moreover, activity duration times also need to be assumed as random fuzzy variables [58]. Such problems require multiple aggregation procedures with often linguistic description of the choice sets.
- Decision policies in system dynamics models: System Dynamics (SD) can be defined as the branch of control theory that deals with socioeconomic systems and the branch of science that deals with management issues' controllability [59]. The use of fuzzy systems can enhance the application of system dynamics to understand real-world problems such as complex urban planning issues, designing urban operating system, citizen engagement problems etc. As MADM environments are frequently present in SD applications, a fuzzy-SD integrated methodology can allow a natural language modeling of decision policies [60].

8. Conclusion

In this paper, we investigate the aggregation operators for IVIFNs. Considering that the IVIFNs provided by decision makers are not independent, we focus on the aggregation operators which can
capture the interrelationship between IVIFNs. The HM is a class of aggregation operators which can effectively incorporate the interrelationship between arguments. However, the HM was introduced for crisp numbers in previous studies. Thus, we study HM in interval-valued environment and develop a family of new aggregation operators for IVIFNs. Then based on these new aggregation operators, we propose a new approach to MADM in which attributes values take the form of IVIFNs. To illustrate the new method, a numerical example about enterprise evaluation problem is presented. Furthermore, as the parameters play a significant role in the final result, we investigate the impact of the parameters on the ranking order. Several application areas have been highlighted.

Funding: This work was partially supported by National Science Foundation of China (Grant number 61702023), Humanities and Social Science Foundation of Ministry of Education of China (Grant number 17YJC870015), the Fundamental Research Funds for the Central Universities of China (Grant number 2018JBM304).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Appendix A

Proof of Theorem 1.
Proof. By Definition 2, we have

$$
\begin{aligned}
& \tilde{\alpha}_{i}^{p}=\left(\left[a_{i}^{p}, b_{i}^{p}\right],\left[1-\left(1-c_{i}\right)^{p}, 1-\left(1-d_{i}\right)^{p}\right]\right), \\
& \tilde{\alpha}_{j}^{q}=\left(\left[a_{j}^{q}, b_{j}^{q}\right],\left[1-\left(1-c_{j}\right)^{q}, 1-\left(1-d_{j}\right)^{q}\right]\right) .
\end{aligned}
$$

Thus,

$$
\tilde{\alpha}_{i}^{p} \otimes \tilde{\alpha}_{j}^{q}=\binom{\left[a_{i}^{p} a_{j}^{q}, b_{i}^{p} b_{j}^{q}\right],}{\left[1-\left(1-c_{i}\right)^{p}\left(1-c_{j}\right)^{q}, 1-\left(1-d_{i}\right)^{q}\left(1-d_{j}\right)^{q}\right]} .
$$

In the followings, we fist prove that

$$
\oplus_{i=1}^{n} \oplus_{j=i}^{n}\left(\tilde{\alpha}_{i}^{p} \otimes \tilde{\alpha}_{j}^{q}\right)=
$$

$$
\begin{equation*}
\left(\left[1-\prod_{i=1, j=i}^{n}\left(1-a_{i}^{p} a_{j}^{q}\right), 1-\prod_{i=1, j=i}^{n}\left(1-b_{i}^{p} b_{j}^{q}\right)\right],\left[\prod_{i=1, j=i}^{n}\left(1-\left(1-c_{i}\right)^{p}\left(1-c_{j}\right)^{q}\right), \prod_{i=1, j=i}^{n}\left(1-\left(1-d_{i}\right)^{p}\left(1-d_{j}\right)^{q}\right)\right]\right) \tag{1}
\end{equation*}
$$

(1) For $n=2$, we have

$$
\underset{i=1}{\underset{i}{2} \oplus\left(\underset{j=i}{2}\left(\tilde{\alpha}_{i}^{p} \otimes \tilde{\alpha}_{j}^{q}\right)=\left(\tilde{\alpha}_{1}^{p} \otimes \tilde{\alpha}_{1}^{q}\right) \oplus\left(\tilde{\alpha}_{1}^{p} \otimes \tilde{\alpha}_{2}^{q}\right) \oplus\left(\tilde{\alpha}_{2}^{p} \otimes \tilde{\alpha}_{2}^{q}\right)\right) ~}
$$

$$
\begin{gathered}
\binom{\left[a_{1}^{p} a_{1}^{q}, b_{1}^{p} b_{1}^{q}\right],}{\left[1-\left(1-c_{1}\right)^{p}\left(1-c_{1}\right)^{q}, 1-\left(1-d_{1}\right)^{q}\left(1-d_{1}\right)^{q}\right]} \oplus\binom{\left[a_{1}^{p} a_{2}^{q}, b_{1}^{p} b_{2}^{q}\right],}{\left[1-\left(1-c_{1}\right)^{p}\left(1-c_{2}\right)^{q}, 1-\left(1-d_{1}\right)^{q}\left(1-d_{2}\right)^{q}\right]} \oplus \\
\left(\left[\begin{array}{c}
\left.a_{2}^{p} a_{2}^{q}, b_{2}^{p} b_{2}^{q}\right], \\
{\left[1-\left(1-c_{2}\right)^{p}\left(1-c_{2}\right)^{q}, 1-\left(1-d_{2}\right)^{q}\left(1-d_{2}\right)^{q}\right]}
\end{array}\right)=\right.
\end{gathered}
$$

$$
\begin{equation*}
\left(\left[1-\prod_{i=1, j=i}^{2}\left(1-a_{i}^{p} a_{j}^{q}\right), 1-\prod_{i=1, j=i}^{2}\left(1-b_{i}^{p} b_{j}^{q}\right)\right],\left[\prod_{i=1, j=i}^{2}\left(1-\left(1-c_{i}\right)^{p}\left(1-c_{j}\right)^{q}\right), \prod_{i=1, j=i}^{2}\left(1-\left(1-d_{i}\right)^{p}\left(1-d_{j}\right)^{q}\right)\right]\right) \tag{2}
\end{equation*}
$$

i.e. Eq. (1) holds for $n=2$.
(2) If Eq. (1) holds for $n=k$, i.e.

$$
\begin{aligned}
& \underset{i=1}{k} \underset{j=i}{k}\left(\tilde{\alpha}_{i}^{p} \otimes \tilde{\alpha}_{j}^{q}\right)= \\
&\left(\left[1-\prod_{i=1, j=i}^{k}\left(1-a_{i}^{p} a_{j}^{q}\right), 1-\prod_{i=1, j=i}^{k}\left(1-b_{i}^{p} b_{j}^{q}\right)\right],\left[\prod_{i=1, j=i}^{k}\left(1-\left(1-c_{i}\right)^{p}\left(1-c_{j}\right)^{q}\right), \prod_{i=1, j=i}^{k}\left(1-\left(1-d_{i}\right)^{p}\left(1-d_{j}\right)^{q}\right)\right]\right) .
\end{aligned}
$$

Then when $n=k+1$, we have

$$
\begin{align*}
& \stackrel{k+1 k+1}{\oplus}\left(\tilde{\alpha}_{i=1}^{p}\right. \\
& j=i \tag{3}\\
& \left(\tilde{\alpha}_{i}^{q}\right. \\
& \left.\tilde{\alpha}_{j}^{q}\right)=\stackrel{k}{\oplus} \underset{i=1}{\oplus} \underset{j=i}{k}\left(\tilde{\alpha}_{i}^{p} \otimes \tilde{\alpha}_{j}^{q}\right) \oplus\left(\underset{i=1}{\oplus_{i=1}^{k+1}}\left(\tilde{\alpha}_{i}^{p} \otimes \tilde{\alpha}_{k+1}^{q}\right)\right) \\
& \left(\left[1-\prod_{i=1, j=i}^{k+1}\left(1-a_{i}^{p} a_{j}^{q}\right), 1-\prod_{i=1, j=i}^{k+1}\left(1-b_{i}^{p} b_{j}^{q}\right)\right],\left[\prod_{i=1, j=i}^{k+1}\left(1-\left(1-c_{i}\right)^{p}\left(1-c_{j}\right)^{q}\right), \prod_{i=1, j=i}^{k+1}\left(1-\left(1-d_{i}\right)^{p}\left(1-d_{j}\right)^{q}\right)\right]\right)
\end{align*}
$$

i.e. Eq. (1) holds for $n=k+1$. By Eq. (2) and Eq. (3), we get that Eq. (1) holds for all n.

Furthermore, by Definition 2, we can obtain

Proof of Theorem 2.
Proof. Since $\tilde{\alpha}_{i}=\tilde{\alpha}=([a, b],[c, d])$ holds for all i, then we have

$$
\operatorname{IVIFHM^{p,q}}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=\operatorname{IVIFHM^{p,q}}(\tilde{\alpha}, \tilde{\alpha}, \ldots, \tilde{\alpha})=
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
{\left[\left(1-\prod_{i=1, j=i}^{n}\left(1-a^{p} a^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}},\left(1-\prod_{i=1, j=i}^{n}\left(1-b^{p} b^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}\right],} \\
\left.\left[1-\left(1-\prod_{i=1, j=i}^{n}\left(1-(1-c)^{p}(1-c)^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}, 1-\left(1-\prod_{i=1, j=i}^{n}\left(1-(1-d)^{p}(1-d)^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}\right]\right)=
\end{array}\right]= \\
& \left(\left[\left(1-\left(1-a^{p+q}\right)^{\frac{n(n+1)}{2} \frac{2}{n(n+1)}}\right)^{\frac{1}{p+q}},\left(1-\left(1-b^{p+q}\right)^{\frac{n(n+1)}{2} \frac{2}{n(n+1)}}\right)^{\frac{1}{p+q}}\right],\right. \\
& \left(\left[1-\left(1-\left(1-(1-c)^{p+q}\right)^{\frac{n(n+1)}{2} \frac{2}{n(n+1)}}\right)^{\frac{1}{p+q}}, 1-\left(1-\left(1-(1-d)^{p+q}\right)^{\frac{n(n+1)}{2} \frac{2}{n(n+1)}}\right)^{\frac{1}{p+q}}\right]\right)=([a, b],[c, d])=\tilde{\alpha}
\end{aligned}
$$

Proof of Theorem 3.
Proof. Since $a_{i} \leq e_{i}, a_{j} \leq e_{j}, \quad b_{i} \leq f_{i}$ and $b_{j} \leq f_{j}$ for $i=1,2, \ldots, n$ and $j=i, i+1, \ldots, n$, we have $a_{i}^{p} a_{j}^{q} \leq e_{i}^{p} e_{j}^{q}$ and $b_{i}^{p} b_{j}^{q} \leq f_{i}^{p} f_{j}^{q}$.
Then

$$
\left(1-\prod_{i=1, j=i}^{n}\left(1-a_{i}^{p} a_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}} \leq\left(1-\prod_{i=1, j=i}^{n}\left(1-e_{i}^{p} e_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}}
$$

and

$$
\left(1-\prod_{i=1, j=i}^{n}\left(1-b_{i}^{p} b_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}} \leq\left(1-\prod_{i=1, j=i}^{n}\left(1-f_{i}^{p} f_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}}
$$

Since $c_{i} \leq g_{i}, \quad c_{j} \leq g_{j}, \quad d_{i} \leq h_{i}$ and $d_{j} \leq h_{j}$ or $i=1,2, \ldots, n$ and $j=i, i+1, \ldots, n$, we have

$$
\left(1-c_{i}\right)^{p}\left(1-c_{j}\right)^{q} \geq\left(1-g_{i}\right)^{p}\left(1-g_{j}\right)^{q} \text { and }\left(1-d_{i}\right)^{p}\left(1-d_{j}\right)^{q} \geq\left(1-h_{i}\right)^{p}\left(1-h_{j}\right)^{q}
$$

Then

$$
1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-c_{i}\right)^{p}\left(1-c_{j}\right)^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}} \geq 1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-g_{i}\right)^{p}\left(1-g_{j}\right)^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}
$$

and

$$
1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-d_{i}\right)^{p}\left(1-d_{j}\right)^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}} \geq 1-\left(1-\prod_{i=1, j=i}^{n}\left(1-\left(1-h_{i}\right)^{p}\left(1-h_{j}\right)^{q}\right)^{2 / n(n+1)}\right)^{\frac{1}{p+q}}
$$

Let $\operatorname{VIFHM}^{p, q}\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \ldots, \tilde{\alpha}_{n}\right)=\widetilde{\alpha}, \widetilde{\beta}=\operatorname{VIFHM}^{p, q}\left(\widetilde{\beta}_{1}, \widetilde{\beta}_{2}, \ldots, \widetilde{\beta}_{n}\right)$ then

$$
S(\widetilde{\alpha})=\binom{\left(1-\prod_{i=1, j=i}^{n}\left(1-a_{i}^{p} a_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}}-\left(1-\prod_{i=1, j=i}^{n}\left(1-b_{i}^{p} b_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}}+}{\left(1-\prod_{i=1, j=i}^{n}\left(1-e_{i}^{p} e_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}}-\left(1-\prod_{i=1, j=i}^{n}\left(1-f_{i}^{p} f_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}}} / 2 /
$$

and

$$
S(\widetilde{\beta})=\binom{\left(1-\prod_{i=1, j=i}^{n}\left(1-e_{i}^{p} e_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}}-\left(1-\prod_{i=1, j=i}^{n}\left(1-f_{i}^{p} f_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}}+}{\left(1-\prod_{i=1, j=i}^{n}\left(1-g_{i}^{p} g_{j}^{q}\right)^{1 / 1 /(n+1)}\right)^{\frac{1}{p+q}}-\left(1-\prod_{i=1, j=i}^{n}\left(1-h_{i}^{p} h_{j}^{q}\right)^{1 / n(n+1)}\right)^{\frac{1}{p+q}}} / 2
$$

Since $s(\tilde{\alpha})-s(\widetilde{\beta}) \leq 0$, then $\tilde{\alpha} \leq \widetilde{\beta}$, which completes the proof.

Proof of Theorem 4.
Proof. By Theorem 2, we can obtain $\tilde{\alpha}^{-}=\operatorname{IVIFHM}{ }^{p, q}\left(\tilde{\alpha}^{-}, \tilde{\alpha}^{-}, \ldots, \tilde{\alpha}^{-}\right)$and $\tilde{\alpha}^{+}=\operatorname{IVIFHM^{p,q}}\left(\tilde{\alpha}^{+}, \tilde{\alpha}^{+}, \ldots, \tilde{\alpha}^{+}\right)$ By Theorem 3, we have IVIFHM ${ }^{p, q}\left(\tilde{\alpha}^{-}, \tilde{\alpha}^{-}, \ldots, \tilde{\alpha}^{-}\right) \leq \operatorname{IFIVHM}^{p, q}(\tilde{\alpha}) \leq \operatorname{IVIFHM}^{p, q}\left(\tilde{\alpha}^{+}, \tilde{\alpha}^{+}, \ldots, \tilde{\alpha}^{+}\right)$, which completes the proof.

References

1. L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
2. B. Turksen, Interval-valued fuzzy set based on normal forms, Fuzzy Sets and Systems 20 (1986), 197-210.
3. M. Mizumoto and K. Tanaka, Some properties of fuzzy sets of type 2, Information and Control 31 (1976), 312340.
4. J.T. Rickard, J. Aisbett and G. Gibbon, Fuzzy subset hood for fuzzy sets of type-2 and generalized type n, IEEE Transactions on Fuzzy Systems 17 (2009), 50-60.
5. K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96.
6. S.K. De, R. Biswas and A.R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets and Systems 117 (2001), 209-213.
7. C.M. Own, Switching between type-2 fuzzy sets and intuitionistic fuzzy sets: an application in medical diagnosis, Applied Intelligence 31 (2009), 283-291.
8. L.H. Son and P.H. Phong, On the performance evaluation of intuitionistic vector similarity measures for medical diagnosis, Journal of Intelligent \& Fuzzy Systems 31 (2016), 1597-1608.
9. D.F. Li and C.T. Cheng, New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions, Pattern Recognition Letters 23 (2002), 221-225.
10. I.K. Vlachos and G.D. Sergiadis, Intuitionistic fuzzy information-applications to pattern recognition, Pattern Recognition Letters 28 (2007), 197-206.
11. V. Khatibi and G.A. Montazer, Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition, Artificial Intelligence in Medicine 47 (2009), 43-52.
12. Z.S. Xu, J. Chen and J.J. Wu, Clustering algorithm for intuitionistic fuzzy sets, Information Sciences $\mathbf{1 7 8}$ (2008), 3775-3790.
13. K. Atanassov, Intuitionistic fuzzy logics as tools for evaluation of Data Mining processes, Knowledge-Based Systems 80 (2015), 122-130.
14. K.P. Lin, H.F. Chang, T.L. Chen, Y.M. Lu and C.H. Wang, Intuitionistic fuzzy C-regression by using least squares support vector regression, Expert Systems with Applications 64 (2016), 296-304.
15. Z.S. Xu , Intuitionistic preference relations and their application in group decision making, Information sciences 177 (2007), 2363-2379.
16. F.E. Boran, S. Genç, M. Kurt and D. Akay, A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Systems with Applications 36 (8), 11363-11368.
17. H.C. Liao and Z.S. Xu, Automatic procedures for group decision making with intuitionistic fuzzy preference relations, Journal of Intelligent \& Fuzzy Systems 27 (2014), 2341-2353.
18. L. Abdullah and L. Najib, A new preference scale of intuitionistic fuzzy analytic hierarchy process in multicriteria decision making problems, Journal of Intelligent \& Fuzzy Systems 26 (2014), 1039-1049.
19. K. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (1989), 343349.
20. Z.S. Xu and X.Q. Cai, Incomplete interval-valued intuitionistic fuzzy preference relations, International Journal of General Systems 38 (2009), 871-886.
21. Z.S. Xu, A method based on distance measure for interval-valued intuitionistic fuzzy group decision making, Information Sciences 180 (2010), 181-190.
22. J.H. Park, I.Y. Park, Y.C. Kwun and X. Tan, Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy environment, Applied Mathematical Modelling 35 (2011), 25442556.
23. H. Zhao and Z.S. Xu , Group decision making with density-based aggregation operators under intervalvalued intuitionistic fuzzy environments, Journal of Intelligent \& Fuzzy Systems 27 (2014), 1021-1033.
24. Z.S. Xu, Intuitionistic fuzzy aggregation operators, IEEE Transactions on Fuzzy Systems 15 (2007), 1179-1187.
25. Z.S. Xu and J. Chen, An approach to group decision making based on interval-valued intuitionistic judgment matrices, System Engineer-Theory \& Practice 27 (2007), 129-133 (in Chinese).
26. Z.S. Xu and J. Chen, On geometric aggregation over interval-valued intuitionistic fuzzy information, Fourth international conference on fuzzy systems and knowledge discovery 2 (2007), 466-471.
27. G.W. Wei, Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making, Applied Soft Computing 10 (2010), 123-431.
28. Y.R. Yang and Y. Sheng, Induced interval-valued intuitionistic fuzzy Einstein ordered weighted geometric operator and their application to multiple attribute decision making, Journal of Intelligent \& Fuzzy Systems 26 (2014), 2949-2954.
29. X.S. Cai and L.G. Han, Some induced Einstein aggregation operators based on the data mining with interval-valued intuitionistic fuzzy information and their application to multiple attribute decision making, Journal of Intelligent \& Fuzzy Systems 27 (2014), 331-338.
30. F.Y. Cheng, H. Cheng and Q. Zhang, Induced Atanassov's interval-valued intuitionistic fuzzy hybrid Choquet integral operators and their application in decision making, International Journal of Computational Intelligence Systems 7 (2014), 524-542.
31. Z.S. Xu , Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators, Knowledge-Based Systems 24 (2011), 749-760.
32. L.G. Zhou, H.Y. Chen and J.P. Liu, Generalized power aggregation operators and their applications in group decision making, Computers \& Industrial Engineering 62 (2012), 989-999.
33. Y. He, H. Chen, L. Zhou and Z. Tao, Generalized interval-valued Atanassov's intuitionistic fuzzy power operators and their application to group decision making, International Journal of Fuzzy Systems 15 (2013), 401-411.
34. Z.S. Xu , Choquet integrals of weighted intuitionistic fuzzy information, Information Sciences $\mathbf{1 8 0}$ (2010), 726726.
35. C.Q. Tan and X.H. Chen, Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making, Expert Systems with Applications 37 (2010), 149-157.
36. G.W. Wei, R. Lin, X.F. Zhao and H.J. Wang, An approach to multiple attribute decision making based on the induced Choquet integral with fuzzy number intuitionistic fuzzy information, Journal of Business Economics and Management 15 (2014), 277-298.
37. F.Y. Meng, Q. Zhang and H. Cheng, Approaches to multiple-criteria group decision making based on interval-valued intuitionistic fuzzy Choquet integral with respect to the generalized λ-Shapley index, Knowledge-Based Systems 37 (2013), 237-249.
38. C.Q. Tan, A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS, Expert Systems with Applications 38 (4), 3023-3033.
39. J.Z. Wu, F. Chen C.P. Nie and Q. Zhang, Intuitionistic fuzzy-valued Choquet integral and its application in multi-criteria decision making, Information Sciences 222 (2013), 509-527.
40. Z.S. Xu and R.R. Yager, Intuitionistic fuzzy Bonferroni means, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 41 (2011), 568-578.
41. M.M. Xia, Z.S. Xu and B. Zhu, Geometric Bonferroni means with their application in multi-criteria decision making, Knowledge-Based Systems 10 (2013), 88-100.
42. W. Zhou and J.M. He, Intuitionistic fuzzy geometric Bonferroni means and their application in multicriteria decision making, International Journal of Intelligent Systems 27 (2012), 995-1019.
43. Z.S. Xu and Q . Chen, A multi-criteria decision making procedure based on interval-valued intuitionistic fuzzy Bonferroni means, Journal of Systems Science and Systems Engineering 20 (2011), 217-228.
44. Y.M. Shi and J.M. He, The interval-valued intuitionistic fuzzy optimized weighted Bonferroni means and their application, Journal of Applied Mathematics 2013 Article ID 981762.
45. S. Sykora., Mathematical means and averages: Generalized Heronian means. SykoraS. Stan's, Library 2009.
46. X. Liu, Z.F. Tao, H.Y Chen and L.G. Zhou, A MAGDM method Based on 2-tuple linguistic Heronian mean and new operational laws, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 24 (2016), 593-627.
47. X.D. Liu, J.J. Zhu, G.D. Liu and J.J. Hao, A multiple attribute decision making method based on uncertain linguistic Heronian mean, Mathematical Problems in Engineering 2013 Article ID 597671.
48. P.D. Liu, Z.M. Liu and X. Zhang, Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making, Applied Mathematics and Computation 230 (2014), 570-586.
49. S.M. Yu, H. Zhou, X.H. Chen and J.Q. Wang, A multi-criteria decision-making method based on Heronian mean operators under a linguistic hesitant fuzzy environment, Asia-Pacific Journal of Operational Research 32 (2015), Article ID 1550035.
50. Y.C. Chu and P.D. Liu, Some two-dimensional uncertain linguistic Heronian mean operators and their application in multiple-attribute decision making, Neural Computing and Applications 26 (2015), 1461-1480.
51. Y.H. Yan, P.D. Liu and Y.B. Chen, Some single valued neutrosophic number Heronian mean operators and their application in multiple attribute group decision making, Informatica 27 (1), 85-110.
52. D.J. Yu, D.F. Li and J.M. Merigó, Dual hesitant fuzzy group decision making method and its application to supplier selection, International Journal of Machine Learning and Cybernetics 7(2016), 819-831.
53. G. Sun and W.L. Xia, Evaluation method for innovation capability and efficiency of high technology enterprises with interval-valued intuitionistic fuzzy information, Journal of Intelligent \& Fuzzy Systems 31(2016) 1419-1425.
54. S. Mukerji and J.M. Tallon, An overview of economic applications of David Schmeidler's models of decision making under uncertainty. Uncertainty in economic theory, (2004), 13, 283.
55. D. Schmeidler. Subjective probability and expected utility without additivity. Econometrica: Journal of the Econometric Society (1989): 571-587.
56. H. Kuşan, O. Aytekin, İ. Özdemir, The use of fuzzy logic in predicting house selling price, Expert Systems with Applications, 37, 3, 2010, 1808-1813.
57. B. Rebiasz, Fuzziness and randomness in investment project risk appraisal, Computers \mathcal{E} Operations Research, 34, 1, (2007), 199-210.
58. H. Ke, B. Liu, Project scheduling problem with mixed uncertainty of randomness and fuzziness, European Journal of Operational Research, 183, 1, (2007), 135-147.
59. R. G. Coyle. System dynamics modelling: a practical Approach. 1996. CRC Press.
60. D. Cardoso de Salles, A. Celestino Gonçalves Neto, L. Guimarães Marujo, Using fuzzy logic to implement decision policies in system dynamics models, Expert Systems with Applications, 55, 2016, 172-18
